mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -139,7 +139,7 @@ class Model2VecModel(AbsEncoder):
|
|
|
139
139
|
**kwargs: Additional arguments to pass to the wrapper.
|
|
140
140
|
"""
|
|
141
141
|
requires_package(self, "model2vec", model_name, "pip install 'mteb[model2vec]'")
|
|
142
|
-
from model2vec import StaticModel
|
|
142
|
+
from model2vec import StaticModel
|
|
143
143
|
|
|
144
144
|
self.model_name = model_name
|
|
145
145
|
self.model = StaticModel.from_pretrained(self.model_name)
|
|
@@ -161,6 +161,7 @@ class Model2VecModel(AbsEncoder):
|
|
|
161
161
|
m2v_base_glove_subword = ModelMeta(
|
|
162
162
|
loader=Model2VecModel,
|
|
163
163
|
name="minishlab/M2V_base_glove_subword",
|
|
164
|
+
model_type=["dense"],
|
|
164
165
|
languages=["eng-Latn"],
|
|
165
166
|
open_weights=True,
|
|
166
167
|
revision="5f4f5ca159b7321a8b39739bba0794fa0debddf4",
|
|
@@ -171,7 +172,7 @@ m2v_base_glove_subword = ModelMeta(
|
|
|
171
172
|
embed_dim=256,
|
|
172
173
|
license="mit",
|
|
173
174
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
174
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
175
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
175
176
|
reference="https://huggingface.co/minishlab/M2V_base_glove_subword",
|
|
176
177
|
use_instructions=False,
|
|
177
178
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -186,6 +187,7 @@ m2v_base_glove_subword = ModelMeta(
|
|
|
186
187
|
m2v_base_glove = ModelMeta(
|
|
187
188
|
loader=Model2VecModel,
|
|
188
189
|
name="minishlab/M2V_base_glove",
|
|
190
|
+
model_type=["dense"],
|
|
189
191
|
languages=["eng-Latn"],
|
|
190
192
|
open_weights=True,
|
|
191
193
|
revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2b",
|
|
@@ -196,7 +198,7 @@ m2v_base_glove = ModelMeta(
|
|
|
196
198
|
embed_dim=256,
|
|
197
199
|
license="mit",
|
|
198
200
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
199
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
201
|
+
framework=["NumPy", "Sentence Transformers", "safetensors"],
|
|
200
202
|
reference="https://huggingface.co/minishlab/M2V_base_glove",
|
|
201
203
|
use_instructions=False,
|
|
202
204
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -210,6 +212,7 @@ m2v_base_glove = ModelMeta(
|
|
|
210
212
|
m2v_base_output = ModelMeta(
|
|
211
213
|
loader=Model2VecModel,
|
|
212
214
|
name="minishlab/M2V_base_output",
|
|
215
|
+
model_type=["dense"],
|
|
213
216
|
languages=["eng-Latn"],
|
|
214
217
|
open_weights=True,
|
|
215
218
|
revision="02460ae401a22b09d2c6652e23371398329551e2",
|
|
@@ -220,7 +223,7 @@ m2v_base_output = ModelMeta(
|
|
|
220
223
|
embed_dim=256,
|
|
221
224
|
license="mit",
|
|
222
225
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
223
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
226
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
224
227
|
reference="https://huggingface.co/minishlab/M2V_base_output",
|
|
225
228
|
use_instructions=False,
|
|
226
229
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -234,6 +237,7 @@ m2v_base_output = ModelMeta(
|
|
|
234
237
|
m2v_multilingual_output = ModelMeta(
|
|
235
238
|
loader=Model2VecModel,
|
|
236
239
|
name="minishlab/M2V_multilingual_output",
|
|
240
|
+
model_type=["dense"],
|
|
237
241
|
languages=["eng-Latn"],
|
|
238
242
|
open_weights=True,
|
|
239
243
|
revision="2cf4ec4e1f51aeca6c55cf9b93097d00711a6305",
|
|
@@ -244,7 +248,7 @@ m2v_multilingual_output = ModelMeta(
|
|
|
244
248
|
embed_dim=256,
|
|
245
249
|
license="mit",
|
|
246
250
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
247
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
251
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
248
252
|
reference="https://huggingface.co/minishlab/M2V_multilingual_output",
|
|
249
253
|
use_instructions=False,
|
|
250
254
|
adapted_from="sentence-transformers/LaBSE",
|
|
@@ -258,6 +262,7 @@ m2v_multilingual_output = ModelMeta(
|
|
|
258
262
|
potion_base_2m = ModelMeta(
|
|
259
263
|
loader=Model2VecModel,
|
|
260
264
|
name="minishlab/potion-base-2M",
|
|
265
|
+
model_type=["dense"],
|
|
261
266
|
languages=["eng-Latn"],
|
|
262
267
|
open_weights=True,
|
|
263
268
|
revision="86db093558fbced2072b929eb1690bce5272bd4b",
|
|
@@ -268,7 +273,7 @@ potion_base_2m = ModelMeta(
|
|
|
268
273
|
embed_dim=64,
|
|
269
274
|
license="mit",
|
|
270
275
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
271
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
276
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
272
277
|
reference="https://huggingface.co/minishlab/potion-base-2M",
|
|
273
278
|
use_instructions=False,
|
|
274
279
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -282,6 +287,7 @@ potion_base_2m = ModelMeta(
|
|
|
282
287
|
potion_base_4m = ModelMeta(
|
|
283
288
|
loader=Model2VecModel,
|
|
284
289
|
name="minishlab/potion-base-4M",
|
|
290
|
+
model_type=["dense"],
|
|
285
291
|
languages=["eng-Latn"],
|
|
286
292
|
open_weights=True,
|
|
287
293
|
revision="81b1802ada41afcd0987a37dc15e569c9fa76f04",
|
|
@@ -292,7 +298,7 @@ potion_base_4m = ModelMeta(
|
|
|
292
298
|
embed_dim=128,
|
|
293
299
|
license="mit",
|
|
294
300
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
295
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
301
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
296
302
|
reference="https://huggingface.co/minishlab/potion-base-4M",
|
|
297
303
|
use_instructions=False,
|
|
298
304
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -306,6 +312,7 @@ potion_base_4m = ModelMeta(
|
|
|
306
312
|
potion_base_8m = ModelMeta(
|
|
307
313
|
loader=Model2VecModel,
|
|
308
314
|
name="minishlab/potion-base-8M",
|
|
315
|
+
model_type=["dense"],
|
|
309
316
|
languages=["eng-Latn"],
|
|
310
317
|
open_weights=True,
|
|
311
318
|
revision="dcbec7aa2d52fc76754ac6291803feedd8c619ce",
|
|
@@ -316,7 +323,7 @@ potion_base_8m = ModelMeta(
|
|
|
316
323
|
embed_dim=256,
|
|
317
324
|
license="mit",
|
|
318
325
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
319
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
326
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
320
327
|
reference="https://huggingface.co/minishlab/potion-base-8M",
|
|
321
328
|
use_instructions=False,
|
|
322
329
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -330,6 +337,7 @@ potion_base_8m = ModelMeta(
|
|
|
330
337
|
potion_multilingual_128m = ModelMeta(
|
|
331
338
|
loader=Model2VecModel,
|
|
332
339
|
name="minishlab/potion-multilingual-128M",
|
|
340
|
+
model_type=["dense"],
|
|
333
341
|
languages=_POTION_MULTILINGUAL_128M_LANGUAGES,
|
|
334
342
|
open_weights=True,
|
|
335
343
|
revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2a",
|
|
@@ -340,7 +348,7 @@ potion_multilingual_128m = ModelMeta(
|
|
|
340
348
|
embed_dim=256,
|
|
341
349
|
license="mit",
|
|
342
350
|
similarity_fn_name="cosine",
|
|
343
|
-
framework=["NumPy"],
|
|
351
|
+
framework=["NumPy", "ONNX", "safetensors", "Sentence Transformers"],
|
|
344
352
|
reference="https://huggingface.co/minishlab/potion-multilingual-128M",
|
|
345
353
|
use_instructions=False,
|
|
346
354
|
adapted_from="BAAI/bge-m3",
|
|
@@ -354,6 +362,7 @@ potion_multilingual_128m = ModelMeta(
|
|
|
354
362
|
pubmed_bert_100k = ModelMeta(
|
|
355
363
|
loader=Model2VecModel,
|
|
356
364
|
name="NeuML/pubmedbert-base-embeddings-100K",
|
|
365
|
+
model_type=["dense"],
|
|
357
366
|
languages=["eng-Latn"],
|
|
358
367
|
open_weights=True,
|
|
359
368
|
revision="bac5e3b12fb8c650e92a19c41b436732c4f16e9e",
|
|
@@ -364,7 +373,7 @@ pubmed_bert_100k = ModelMeta(
|
|
|
364
373
|
embed_dim=64,
|
|
365
374
|
license="apache-2.0",
|
|
366
375
|
similarity_fn_name="cosine",
|
|
367
|
-
framework=["NumPy"],
|
|
376
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
368
377
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-100K",
|
|
369
378
|
use_instructions=False,
|
|
370
379
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -377,6 +386,7 @@ pubmed_bert_100k = ModelMeta(
|
|
|
377
386
|
pubmed_bert_500k = ModelMeta(
|
|
378
387
|
loader=Model2VecModel,
|
|
379
388
|
name="NeuML/pubmedbert-base-embeddings-500K",
|
|
389
|
+
model_type=["dense"],
|
|
380
390
|
languages=["eng-Latn"],
|
|
381
391
|
open_weights=True,
|
|
382
392
|
revision="34ba71e35c393fdad7ed695113f653feb407b16b",
|
|
@@ -387,7 +397,7 @@ pubmed_bert_500k = ModelMeta(
|
|
|
387
397
|
embed_dim=64,
|
|
388
398
|
license="apache-2.0",
|
|
389
399
|
similarity_fn_name="cosine",
|
|
390
|
-
framework=["NumPy"],
|
|
400
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
391
401
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-500K",
|
|
392
402
|
use_instructions=False,
|
|
393
403
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -400,6 +410,7 @@ pubmed_bert_500k = ModelMeta(
|
|
|
400
410
|
pubmed_bert_1m = ModelMeta(
|
|
401
411
|
loader=Model2VecModel,
|
|
402
412
|
name="NeuML/pubmedbert-base-embeddings-1M",
|
|
413
|
+
model_type=["dense"],
|
|
403
414
|
languages=["eng-Latn"],
|
|
404
415
|
open_weights=True,
|
|
405
416
|
revision="2b7fed222594708da6d88bcda92ae9b434b7ddd1",
|
|
@@ -410,7 +421,7 @@ pubmed_bert_1m = ModelMeta(
|
|
|
410
421
|
embed_dim=64,
|
|
411
422
|
license="apache-2.0",
|
|
412
423
|
similarity_fn_name="cosine",
|
|
413
|
-
framework=["NumPy"],
|
|
424
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
414
425
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-1M",
|
|
415
426
|
use_instructions=False,
|
|
416
427
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -423,6 +434,7 @@ pubmed_bert_1m = ModelMeta(
|
|
|
423
434
|
pubmed_bert_2m = ModelMeta(
|
|
424
435
|
loader=Model2VecModel,
|
|
425
436
|
name="NeuML/pubmedbert-base-embeddings-2M",
|
|
437
|
+
model_type=["dense"],
|
|
426
438
|
languages=["eng-Latn"],
|
|
427
439
|
open_weights=True,
|
|
428
440
|
revision="1d7bbe04d6713e425161146bfdc71473cbed498a",
|
|
@@ -433,7 +445,7 @@ pubmed_bert_2m = ModelMeta(
|
|
|
433
445
|
embed_dim=64,
|
|
434
446
|
license="apache-2.0",
|
|
435
447
|
similarity_fn_name="cosine",
|
|
436
|
-
framework=["NumPy"],
|
|
448
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
437
449
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-2M",
|
|
438
450
|
use_instructions=False,
|
|
439
451
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -446,6 +458,7 @@ pubmed_bert_2m = ModelMeta(
|
|
|
446
458
|
pubmed_bert_8m = ModelMeta(
|
|
447
459
|
loader=Model2VecModel,
|
|
448
460
|
name="NeuML/pubmedbert-base-embeddings-8M",
|
|
461
|
+
model_type=["dense"],
|
|
449
462
|
languages=["eng-Latn"],
|
|
450
463
|
open_weights=True,
|
|
451
464
|
revision="387d350015e963744f4fafe56a574b7cd48646c9",
|
|
@@ -456,7 +469,7 @@ pubmed_bert_8m = ModelMeta(
|
|
|
456
469
|
embed_dim=256,
|
|
457
470
|
license="apache-2.0",
|
|
458
471
|
similarity_fn_name="cosine",
|
|
459
|
-
framework=["NumPy"],
|
|
472
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
460
473
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-8M",
|
|
461
474
|
use_instructions=False,
|
|
462
475
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -91,6 +91,7 @@ m3e_dataset = {
|
|
|
91
91
|
m3e_base = ModelMeta(
|
|
92
92
|
loader=sentence_transformers_loader,
|
|
93
93
|
name="moka-ai/m3e-base",
|
|
94
|
+
model_type=["dense"],
|
|
94
95
|
languages=["zho-Hans", "eng-Latn"],
|
|
95
96
|
open_weights=True,
|
|
96
97
|
revision="764b537a0e50e5c7d64db883f2d2e051cbe3c64c",
|
|
@@ -103,7 +104,7 @@ m3e_base = ModelMeta(
|
|
|
103
104
|
max_tokens=512,
|
|
104
105
|
reference="https://huggingface.co/moka-ai/m3e-base",
|
|
105
106
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
106
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
107
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
107
108
|
use_instructions=False,
|
|
108
109
|
superseded_by=None,
|
|
109
110
|
adapted_from=None,
|
|
@@ -116,6 +117,7 @@ m3e_base = ModelMeta(
|
|
|
116
117
|
m3e_small = ModelMeta(
|
|
117
118
|
loader=sentence_transformers_loader,
|
|
118
119
|
name="moka-ai/m3e-small",
|
|
120
|
+
model_type=["dense"],
|
|
119
121
|
languages=["zho-Hans", "eng-Latn"],
|
|
120
122
|
open_weights=True,
|
|
121
123
|
revision="44c696631b2a8c200220aaaad5f987f096e986df",
|
|
@@ -141,6 +143,7 @@ m3e_small = ModelMeta(
|
|
|
141
143
|
m3e_large = ModelMeta(
|
|
142
144
|
loader=sentence_transformers_loader,
|
|
143
145
|
name="moka-ai/m3e-large",
|
|
146
|
+
model_type=["dense"],
|
|
144
147
|
languages=["zho-Hans", "eng-Latn"],
|
|
145
148
|
open_weights=True,
|
|
146
149
|
revision="12900375086c37ba5d83d1e417b21dc7d1d1f388",
|
|
@@ -0,0 +1,70 @@
|
|
|
1
|
+
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
2
|
+
from mteb.models.sentence_transformer_wrapper import (
|
|
3
|
+
SentenceTransformerEncoderWrapper,
|
|
4
|
+
)
|
|
5
|
+
|
|
6
|
+
nb_sbert = ModelMeta(
|
|
7
|
+
loader=SentenceTransformerEncoderWrapper, # type: ignore[arg-type]
|
|
8
|
+
name="NbAiLab/nb-sbert-base",
|
|
9
|
+
model_type=["dense"],
|
|
10
|
+
languages=["nno-Latn", "nob-Latn", "swe-Latn", "dan-Latn"],
|
|
11
|
+
open_weights=True,
|
|
12
|
+
revision="b95656350a076aeafd2d23763660f80655408cc6",
|
|
13
|
+
release_date="2022-11-23",
|
|
14
|
+
n_parameters=1_780_000_000,
|
|
15
|
+
memory_usage_mb=678,
|
|
16
|
+
embed_dim=4096,
|
|
17
|
+
license="apache-2.0",
|
|
18
|
+
max_tokens=75,
|
|
19
|
+
reference="https://huggingface.co/NbAiLab/nb-sbert-base",
|
|
20
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
21
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
22
|
+
use_instructions=False,
|
|
23
|
+
public_training_code=None,
|
|
24
|
+
public_training_data="https://huggingface.co/datasets/NbAiLab/mnli-norwegian",
|
|
25
|
+
training_datasets=set(),
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
nb_bert_large = ModelMeta(
|
|
29
|
+
loader=SentenceTransformerEncoderWrapper, # type: ignore[arg-type]
|
|
30
|
+
name="NbAiLab/nb-bert-large",
|
|
31
|
+
model_type=["dense"],
|
|
32
|
+
languages=["nno-Latn", "nob-Latn"],
|
|
33
|
+
open_weights=True,
|
|
34
|
+
revision="f9d0fc184adab4dc354d85e1854b7634540d7550",
|
|
35
|
+
release_date="2021-04-29",
|
|
36
|
+
n_parameters=355087360,
|
|
37
|
+
memory_usage_mb=1359,
|
|
38
|
+
embed_dim=1024,
|
|
39
|
+
license="cc-by-4.0",
|
|
40
|
+
max_tokens=512,
|
|
41
|
+
reference="https://huggingface.co/NbAiLab/nb-bert-large",
|
|
42
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
43
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
44
|
+
use_instructions=False,
|
|
45
|
+
public_training_code=None,
|
|
46
|
+
public_training_data="https://huggingface.co/NbAiLab/nb-bert-large#training-data",
|
|
47
|
+
training_datasets=set(),
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
nb_bert_base = ModelMeta(
|
|
51
|
+
loader=SentenceTransformerEncoderWrapper, # type: ignore[arg-type]
|
|
52
|
+
name="NbAiLab/nb-bert-base",
|
|
53
|
+
model_type=["dense"],
|
|
54
|
+
languages=["nno-Latn", "nob-Latn"],
|
|
55
|
+
open_weights=True,
|
|
56
|
+
revision="9417c3f62a3adc99f17ff92bff446f35d011f994",
|
|
57
|
+
release_date="2021-01-13",
|
|
58
|
+
n_parameters=177853440,
|
|
59
|
+
memory_usage_mb=681,
|
|
60
|
+
embed_dim=768,
|
|
61
|
+
license="cc-by-4.0",
|
|
62
|
+
max_tokens=512,
|
|
63
|
+
reference="https://huggingface.co/NbAiLab/nb-bert-base",
|
|
64
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
65
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
66
|
+
use_instructions=False,
|
|
67
|
+
public_training_code=None,
|
|
68
|
+
public_training_data="https://huggingface.co/NbAiLab/nb-bert-base#training-data",
|
|
69
|
+
training_datasets=set(),
|
|
70
|
+
)
|
|
@@ -30,13 +30,13 @@ class NoInstructModel(AbsEncoder):
|
|
|
30
30
|
self,
|
|
31
31
|
model_name: str,
|
|
32
32
|
revision: str,
|
|
33
|
+
device: str | None = None,
|
|
33
34
|
model_prompts: dict[str, str] | None = None,
|
|
34
35
|
**kwargs: Any,
|
|
35
36
|
):
|
|
36
37
|
from transformers import AutoModel, AutoTokenizer
|
|
37
38
|
|
|
38
39
|
self.model_name = model_name
|
|
39
|
-
device = kwargs.pop("device", None)
|
|
40
40
|
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
|
41
41
|
self.model = AutoModel.from_pretrained(
|
|
42
42
|
model_name, revision=revision, **kwargs
|
|
@@ -97,6 +97,7 @@ class NoInstructModel(AbsEncoder):
|
|
|
97
97
|
no_instruct_small_v0 = ModelMeta(
|
|
98
98
|
loader=NoInstructModel,
|
|
99
99
|
name="avsolatorio/NoInstruct-small-Embedding-v0",
|
|
100
|
+
model_type=["dense"],
|
|
100
101
|
languages=["eng-Latn"],
|
|
101
102
|
open_weights=True,
|
|
102
103
|
revision="b38747000553d8268915c95a55fc87e707c9aadd",
|
|
@@ -108,7 +109,7 @@ no_instruct_small_v0 = ModelMeta(
|
|
|
108
109
|
license="mit",
|
|
109
110
|
reference="https://huggingface.co/avsolatorio/NoInstruct-small-Embedding-v0",
|
|
110
111
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
111
|
-
framework=["PyTorch"],
|
|
112
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
112
113
|
use_instructions=False,
|
|
113
114
|
adapted_from=None,
|
|
114
115
|
superseded_by=None,
|
|
@@ -23,6 +23,7 @@ class NomicWrapper(SentenceTransformerEncoderWrapper):
|
|
|
23
23
|
self,
|
|
24
24
|
model_name: str,
|
|
25
25
|
revision: str,
|
|
26
|
+
device: str | None = None,
|
|
26
27
|
model_prompts: dict[str, str] | None = None,
|
|
27
28
|
**kwargs: Any,
|
|
28
29
|
):
|
|
@@ -37,7 +38,9 @@ class NomicWrapper(SentenceTransformerEncoderWrapper):
|
|
|
37
38
|
f"Current transformers version is {transformers.__version__} is lower than the required version"
|
|
38
39
|
f" {MODERN_BERT_TRANSFORMERS_MIN_VERSION}"
|
|
39
40
|
)
|
|
40
|
-
super().__init__(
|
|
41
|
+
super().__init__(
|
|
42
|
+
model_name, revision, device=device, model_prompts=model_prompts, **kwargs
|
|
43
|
+
)
|
|
41
44
|
|
|
42
45
|
def to(self, device: torch.device) -> None:
|
|
43
46
|
self.model.to(device)
|
|
@@ -199,6 +202,7 @@ nomic_embed_v1_5 = ModelMeta(
|
|
|
199
202
|
model_prompts=model_prompts,
|
|
200
203
|
),
|
|
201
204
|
name="nomic-ai/nomic-embed-text-v1.5",
|
|
205
|
+
model_type=["dense"],
|
|
202
206
|
languages=["eng-Latn"],
|
|
203
207
|
open_weights=True,
|
|
204
208
|
revision="b0753ae76394dd36bcfb912a46018088bca48be0",
|
|
@@ -211,7 +215,13 @@ nomic_embed_v1_5 = ModelMeta(
|
|
|
211
215
|
license="apache-2.0",
|
|
212
216
|
reference="https://huggingface.co/nomic-ai/nomic-embed-text-v1.5",
|
|
213
217
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
214
|
-
framework=[
|
|
218
|
+
framework=[
|
|
219
|
+
"Sentence Transformers",
|
|
220
|
+
"PyTorch",
|
|
221
|
+
"ONNX",
|
|
222
|
+
"safetensors",
|
|
223
|
+
"Transformers",
|
|
224
|
+
],
|
|
215
225
|
use_instructions=True,
|
|
216
226
|
adapted_from=None,
|
|
217
227
|
superseded_by=None,
|
|
@@ -227,6 +237,7 @@ nomic_embed_v1 = ModelMeta(
|
|
|
227
237
|
model_prompts=model_prompts,
|
|
228
238
|
),
|
|
229
239
|
name="nomic-ai/nomic-embed-text-v1",
|
|
240
|
+
model_type=["dense"],
|
|
230
241
|
languages=["eng-Latn"],
|
|
231
242
|
open_weights=True,
|
|
232
243
|
revision="0759316f275aa0cb93a5b830973843ca66babcf5",
|
|
@@ -238,7 +249,13 @@ nomic_embed_v1 = ModelMeta(
|
|
|
238
249
|
license="apache-2.0",
|
|
239
250
|
reference="https://huggingface.co/nomic-ai/nomic-embed-text-v1",
|
|
240
251
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
241
|
-
framework=[
|
|
252
|
+
framework=[
|
|
253
|
+
"Sentence Transformers",
|
|
254
|
+
"PyTorch",
|
|
255
|
+
"ONNX",
|
|
256
|
+
"safetensors",
|
|
257
|
+
"Transformers",
|
|
258
|
+
],
|
|
242
259
|
use_instructions=True,
|
|
243
260
|
citation=NOMIC_CITATION,
|
|
244
261
|
adapted_from=None,
|
|
@@ -255,6 +272,7 @@ nomic_embed_v1_ablated = ModelMeta(
|
|
|
255
272
|
model_prompts=model_prompts,
|
|
256
273
|
),
|
|
257
274
|
name="nomic-ai/nomic-embed-text-v1-ablated",
|
|
275
|
+
model_type=["dense"],
|
|
258
276
|
languages=["eng-Latn"],
|
|
259
277
|
open_weights=True,
|
|
260
278
|
revision="7d948905c5d5d3874fa55a925d68e49dbf411e5f",
|
|
@@ -266,7 +284,7 @@ nomic_embed_v1_ablated = ModelMeta(
|
|
|
266
284
|
license="apache-2.0",
|
|
267
285
|
reference="https://huggingface.co/nomic-ai/nomic-embed-text-v1-ablated",
|
|
268
286
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
269
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
287
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX"],
|
|
270
288
|
use_instructions=True,
|
|
271
289
|
adapted_from=None,
|
|
272
290
|
superseded_by=None,
|
|
@@ -282,6 +300,7 @@ nomic_embed_v1_unsupervised = ModelMeta(
|
|
|
282
300
|
model_prompts=model_prompts,
|
|
283
301
|
),
|
|
284
302
|
name="nomic-ai/nomic-embed-text-v1-unsupervised",
|
|
303
|
+
model_type=["dense"],
|
|
285
304
|
languages=["eng-Latn"],
|
|
286
305
|
open_weights=True,
|
|
287
306
|
revision="b53d557b15ae63852847c222d336c1609eced93c",
|
|
@@ -293,7 +312,7 @@ nomic_embed_v1_unsupervised = ModelMeta(
|
|
|
293
312
|
license="apache-2.0",
|
|
294
313
|
reference="https://huggingface.co/nomic-ai/nomic-embed-text-v1-unsupervised",
|
|
295
314
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
296
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
315
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "Transformers"],
|
|
297
316
|
use_instructions=True,
|
|
298
317
|
adapted_from=None,
|
|
299
318
|
superseded_by=None,
|
|
@@ -309,6 +328,7 @@ nomic_modern_bert_embed = ModelMeta(
|
|
|
309
328
|
model_prompts=model_prompts,
|
|
310
329
|
),
|
|
311
330
|
name="nomic-ai/modernbert-embed-base",
|
|
331
|
+
model_type=["dense"],
|
|
312
332
|
languages=["eng-Latn"],
|
|
313
333
|
open_weights=True,
|
|
314
334
|
revision="5960f1566fb7cb1adf1eb6e816639cf4646d9b12",
|
|
@@ -320,7 +340,7 @@ nomic_modern_bert_embed = ModelMeta(
|
|
|
320
340
|
license="apache-2.0",
|
|
321
341
|
reference="https://huggingface.co/nomic-ai/modernbert-embed-base",
|
|
322
342
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
323
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
343
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
324
344
|
use_instructions=True,
|
|
325
345
|
adapted_from="answerdotai/ModernBERT-base",
|
|
326
346
|
public_training_code="https://github.com/nomic-ai/contrastors/blob/5f7b461e5a13b5636692d1c9f1141b27232fe966/src/contrastors/configs/train/contrastive_pretrain_modernbert.yaml",
|
|
@@ -328,4 +348,151 @@ nomic_modern_bert_embed = ModelMeta(
|
|
|
328
348
|
superseded_by=None,
|
|
329
349
|
training_datasets=nomic_training_data,
|
|
330
350
|
public_training_data=None,
|
|
351
|
+
citation="""@misc{nussbaum2024nomic,
|
|
352
|
+
title={Nomic Embed: Training a Reproducible Long Context Text Embedder},
|
|
353
|
+
author={Zach Nussbaum and John X. Morris and Brandon Duderstadt and Andriy Mulyar},
|
|
354
|
+
year={2024},
|
|
355
|
+
eprint={2402.01613},
|
|
356
|
+
archivePrefix={arXiv},
|
|
357
|
+
primaryClass={cs.CL}
|
|
358
|
+
}""",
|
|
359
|
+
)
|
|
360
|
+
|
|
361
|
+
|
|
362
|
+
m_languages = [
|
|
363
|
+
"eng-Latn",
|
|
364
|
+
"spa-Latn",
|
|
365
|
+
"fra-Latn",
|
|
366
|
+
"deu-Latn",
|
|
367
|
+
"ita-Latn",
|
|
368
|
+
"por-Latn",
|
|
369
|
+
"pol-Latn",
|
|
370
|
+
"nld-Latn",
|
|
371
|
+
"tur-Latn",
|
|
372
|
+
"jpn-Jpan",
|
|
373
|
+
"vie-Latn",
|
|
374
|
+
"rus-Cyrl",
|
|
375
|
+
"ind-Latn",
|
|
376
|
+
"arb-Arab",
|
|
377
|
+
"ces-Latn",
|
|
378
|
+
"ron-Latn",
|
|
379
|
+
"swe-Latn",
|
|
380
|
+
"ell-Grek",
|
|
381
|
+
"ukr-Cyrl",
|
|
382
|
+
"zho-Hans",
|
|
383
|
+
"hun-Latn",
|
|
384
|
+
"dan-Latn",
|
|
385
|
+
"nor-Latn",
|
|
386
|
+
"hin-Deva",
|
|
387
|
+
"fin-Latn",
|
|
388
|
+
"bul-Cyrl",
|
|
389
|
+
"kor-Hang",
|
|
390
|
+
"slk-Latn",
|
|
391
|
+
"tha-Thai",
|
|
392
|
+
"heb-Hebr",
|
|
393
|
+
"cat-Latn",
|
|
394
|
+
"lit-Latn",
|
|
395
|
+
"fas-Arab",
|
|
396
|
+
"msa-Latn",
|
|
397
|
+
"slv-Latn",
|
|
398
|
+
"lav-Latn",
|
|
399
|
+
"mar-Deva",
|
|
400
|
+
"ben-Beng",
|
|
401
|
+
"sqi-Latn",
|
|
402
|
+
"cym-Latn",
|
|
403
|
+
"bel-Cyrl",
|
|
404
|
+
"mal-Mlym",
|
|
405
|
+
"kan-Knda",
|
|
406
|
+
"mkd-Cyrl",
|
|
407
|
+
"urd-Arab",
|
|
408
|
+
"fry-Latn",
|
|
409
|
+
"fil-Latn",
|
|
410
|
+
"tel-Telu",
|
|
411
|
+
"eus-Latn",
|
|
412
|
+
"swh-Latn",
|
|
413
|
+
"som-Latn",
|
|
414
|
+
"snd-Arab",
|
|
415
|
+
"uzb-Latn",
|
|
416
|
+
"cos-Latn",
|
|
417
|
+
"hrv-Latn",
|
|
418
|
+
"guj-Gujr",
|
|
419
|
+
"hin-Latn",
|
|
420
|
+
"ceb-Latn",
|
|
421
|
+
"epo-Latn",
|
|
422
|
+
"jav-Latn",
|
|
423
|
+
"lat-Latn",
|
|
424
|
+
"zul-Latn",
|
|
425
|
+
"mon-Cyrl",
|
|
426
|
+
"sin-Sinh",
|
|
427
|
+
"ell-Latn",
|
|
428
|
+
"gle-Latn",
|
|
429
|
+
"kir-Cyrl",
|
|
430
|
+
"tgk-Cyrl",
|
|
431
|
+
"mya-Mymr",
|
|
432
|
+
"khm-Khmr",
|
|
433
|
+
"mlg-Latn",
|
|
434
|
+
"pan-Guru",
|
|
435
|
+
"rus-Latn",
|
|
436
|
+
"sna-Latn",
|
|
437
|
+
"zho-Latn",
|
|
438
|
+
"hau-Latn",
|
|
439
|
+
"heb-Latn",
|
|
440
|
+
"hmn-Latn",
|
|
441
|
+
"hat-Latn",
|
|
442
|
+
"jpn-Latn",
|
|
443
|
+
"sun-Latn",
|
|
444
|
+
"bul-Latn",
|
|
445
|
+
"gla-Latn",
|
|
446
|
+
"nya-Latn",
|
|
447
|
+
"pus-Arab",
|
|
448
|
+
"kur-Latn",
|
|
449
|
+
"hbs-Latn",
|
|
450
|
+
"amh-Ethi",
|
|
451
|
+
"ibo-Latn",
|
|
452
|
+
"lao-Laoo",
|
|
453
|
+
"mri-Latn",
|
|
454
|
+
"nno-Latn",
|
|
455
|
+
"smo-Latn",
|
|
456
|
+
"yid-Hebr",
|
|
457
|
+
"sot-Latn",
|
|
458
|
+
"tgl-Latn",
|
|
459
|
+
"xho-Latn",
|
|
460
|
+
"yor-Latn",
|
|
461
|
+
]
|
|
462
|
+
|
|
463
|
+
nomic_embed_text_v2_moe = ModelMeta(
|
|
464
|
+
loader=NomicWrapper,
|
|
465
|
+
loader_kwargs=dict(
|
|
466
|
+
trust_remote_code=True,
|
|
467
|
+
model_prompts=model_prompts,
|
|
468
|
+
),
|
|
469
|
+
name="nomic-ai/nomic-embed-text-v2-moe",
|
|
470
|
+
model_type=["dense"],
|
|
471
|
+
languages=m_languages,
|
|
472
|
+
open_weights=True,
|
|
473
|
+
revision="1066b6599d099fbb93dfcb64f9c37a7c9e503e85",
|
|
474
|
+
release_date="2025-02-07",
|
|
475
|
+
n_parameters=475292928,
|
|
476
|
+
memory_usage_mb=1813,
|
|
477
|
+
max_tokens=512,
|
|
478
|
+
embed_dim=768,
|
|
479
|
+
license="apache-2.0",
|
|
480
|
+
reference="https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe",
|
|
481
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
482
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
483
|
+
use_instructions=True,
|
|
484
|
+
adapted_from="nomic-ai/nomic-xlm-2048",
|
|
485
|
+
public_training_data="https://github.com/nomic-ai/contrastors?tab=readme-ov-file#data-access",
|
|
486
|
+
public_training_code="https://github.com/nomic-ai/contrastors/blob/613ddfd37309e538cceadb05b1e6423e7b09f603/src/contrastors/configs/train/contrastive_finetune_moe.yaml",
|
|
487
|
+
training_datasets=None, # did not look into this further
|
|
488
|
+
superseded_by=None,
|
|
489
|
+
citation="""@misc{nussbaum2025trainingsparsemixtureexperts,
|
|
490
|
+
title={Training Sparse Mixture Of Experts Text Embedding Models},
|
|
491
|
+
author={Zach Nussbaum and Brandon Duderstadt},
|
|
492
|
+
year={2025},
|
|
493
|
+
eprint={2502.07972},
|
|
494
|
+
archivePrefix={arXiv},
|
|
495
|
+
primaryClass={cs.CL},
|
|
496
|
+
url={https://arxiv.org/abs/2502.07972},
|
|
497
|
+
}""",
|
|
331
498
|
)
|
|
@@ -1,8 +1,9 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
6
|
import torch.nn.functional as F
|
|
5
|
-
from PIL import Image
|
|
6
7
|
from torch.utils.data import DataLoader
|
|
7
8
|
from tqdm.auto import tqdm
|
|
8
9
|
|
|
@@ -12,6 +13,9 @@ from mteb.models.abs_encoder import AbsEncoder
|
|
|
12
13
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
13
14
|
from mteb.types import Array, BatchedInput, PromptType
|
|
14
15
|
|
|
16
|
+
if TYPE_CHECKING:
|
|
17
|
+
from PIL import Image
|
|
18
|
+
|
|
15
19
|
NOMIC_EMBED_VISION_CITATION = """@article{nussbaum2024nomicembedvision,
|
|
16
20
|
title={Nomic Embed Vision: Expanding the Latent Space},
|
|
17
21
|
author={Nussbaum, Zach and Duderstadt, Brandon and Mulyar, Andriy},
|
|
@@ -164,6 +168,7 @@ nomic_embed_vision_v1_5 = ModelMeta(
|
|
|
164
168
|
"text_model_revision": "a03db6748c80237063eb0546ac6b627eca2318cb",
|
|
165
169
|
},
|
|
166
170
|
name="nomic-ai/nomic-embed-vision-v1.5",
|
|
171
|
+
model_type=["dense"],
|
|
167
172
|
languages=["eng-Latn"],
|
|
168
173
|
revision="af2246fffdab78d8458418480e4886a8e48b70a7",
|
|
169
174
|
release_date="2024-06-08",
|
|
@@ -176,7 +181,7 @@ nomic_embed_vision_v1_5 = ModelMeta(
|
|
|
176
181
|
open_weights=True,
|
|
177
182
|
public_training_code="https://github.com/nomic-ai/contrastors",
|
|
178
183
|
public_training_data=None,
|
|
179
|
-
framework=["PyTorch"],
|
|
184
|
+
framework=["PyTorch", "Transformers", "ONNX", "safetensors"],
|
|
180
185
|
reference="https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5",
|
|
181
186
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
182
187
|
use_instructions=True,
|