mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -1,7 +1,20 @@
|
|
|
1
1
|
from mteb.models import ModelMeta
|
|
2
2
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
3
|
+
from mteb.models.model_meta import ScoringFunction
|
|
3
4
|
from mteb.types import PromptType
|
|
4
5
|
|
|
6
|
+
F2LLM_CITATION = """@article{2025F2LLM,
|
|
7
|
+
title={F2LLM Technical Report: Matching SOTA Embedding Performance with 6 Million Open-Source Data},
|
|
8
|
+
author={Ziyin Zhang and Zihan Liao and Hang Yu and Peng Di and Rui Wang},
|
|
9
|
+
journal={CoRR},
|
|
10
|
+
volume={abs/2510.02294},
|
|
11
|
+
year={2025},
|
|
12
|
+
url={https://doi.org/10.48550/arXiv.2510.02294},
|
|
13
|
+
doi={10.48550/ARXIV.2510.02294},
|
|
14
|
+
eprinttype={arXiv},
|
|
15
|
+
eprint={2510.02294}
|
|
16
|
+
}"""
|
|
17
|
+
|
|
5
18
|
training_datasets = {
|
|
6
19
|
"MSMARCO",
|
|
7
20
|
"ArguAna",
|
|
@@ -62,6 +75,22 @@ training_datasets = {
|
|
|
62
75
|
"TwentyNewsgroupsClustering",
|
|
63
76
|
}
|
|
64
77
|
|
|
78
|
+
c2llm_training_datasets = {
|
|
79
|
+
"CodeSearchNet",
|
|
80
|
+
"CodeSearchNetRetrieval",
|
|
81
|
+
"CodeSearchNetCCRetrieval",
|
|
82
|
+
"CodeEditSearchRetrieval",
|
|
83
|
+
"CodeFeedbackMT",
|
|
84
|
+
"CodeFeedbackST",
|
|
85
|
+
"CodeTransOceanContest",
|
|
86
|
+
"CodeTransOceanDL",
|
|
87
|
+
"COIRCodeSearchNetRetrieval",
|
|
88
|
+
"CosQA",
|
|
89
|
+
"StackOverflowQA",
|
|
90
|
+
"SyntheticText2SQL",
|
|
91
|
+
"AdvTrain",
|
|
92
|
+
}
|
|
93
|
+
|
|
65
94
|
prompts_dict = {
|
|
66
95
|
"AmazonCounterfactualClassification": "Classify a given Amazon customer review text as either counterfactual or not counterfactual.",
|
|
67
96
|
"Banking77Classification": "Given an online banking query, find the corresponding intents.",
|
|
@@ -107,6 +136,77 @@ prompts_dict = {
|
|
|
107
136
|
}
|
|
108
137
|
|
|
109
138
|
|
|
139
|
+
c2llm_prompts_dict = {
|
|
140
|
+
"CodeEditSearchRetrieval": {
|
|
141
|
+
"query": "Retrieve the diff code that relevant the following query:\n",
|
|
142
|
+
"document": "Retrieved Answer:",
|
|
143
|
+
},
|
|
144
|
+
"CodeSearchNetRetrieval": {
|
|
145
|
+
"query": "Retrieve the code that solves the following query:\n",
|
|
146
|
+
"document": "Retrieved Answer:",
|
|
147
|
+
},
|
|
148
|
+
"AppsRetrieval": {
|
|
149
|
+
"query": "Given a problem description from a programming contest, retrieve code examples that can assist in solving it.\n",
|
|
150
|
+
"document": "Retrieved Answer:",
|
|
151
|
+
},
|
|
152
|
+
"CodeFeedbackMT": {
|
|
153
|
+
"query": "Given a multi-turn conversation history that includes both text and code, retrieve relevant multi-modal answers composed of text and code that address the ongoing discussion.\n",
|
|
154
|
+
"document": "Retrieved Answer:",
|
|
155
|
+
},
|
|
156
|
+
"CodeFeedbackST": {
|
|
157
|
+
"query": "Given a single-turn question composed of text and code, retrieve suitable answers that also mix text and code to provide helpful feedback.\n",
|
|
158
|
+
"document": "Retrieved Answer:",
|
|
159
|
+
},
|
|
160
|
+
"CodeSearchNetCCRetrieval": {
|
|
161
|
+
"query": "Given an initial code segment, retrieve the subsequent segment that continues the code.\n",
|
|
162
|
+
"document": "Retrieved Answer:",
|
|
163
|
+
},
|
|
164
|
+
"CodeTransOceanContest": {
|
|
165
|
+
"query": "Given a Python code snippet, retrieve its semantically equivalent version written in C++.\n",
|
|
166
|
+
"document": "Retrieved Answer:",
|
|
167
|
+
},
|
|
168
|
+
"CodeTransOceanDL": {
|
|
169
|
+
"query": "Given a Python code snippet, retrieve its semantically equivalent version written in C++.\n",
|
|
170
|
+
"document": "Retrieved Answer:",
|
|
171
|
+
},
|
|
172
|
+
"COIRCodeSearchNetRetrieval": {
|
|
173
|
+
"query": "Given a code snippet, retrieve its corresponding document string that summarizes its functionality.\n",
|
|
174
|
+
"document": "Retrieved Answer:",
|
|
175
|
+
},
|
|
176
|
+
"CosQA": {
|
|
177
|
+
"query": "Given a query from a web search, retrieve code that is helpful in addressing the query.\n",
|
|
178
|
+
"document": "Retrieved Answer:",
|
|
179
|
+
},
|
|
180
|
+
"StackOverflowQA": {
|
|
181
|
+
"query": "Given a question combining text and code, retrieve relevant answers that also contain both text and code snippets and can address the question.\n",
|
|
182
|
+
"document": "Retrieved Answer:",
|
|
183
|
+
},
|
|
184
|
+
"SyntheticText2SQL": {
|
|
185
|
+
"query": "Given a natural language question, retrieve SQL queries that serve as appropriate responses.\n",
|
|
186
|
+
"document": "Retrieved Answer:",
|
|
187
|
+
},
|
|
188
|
+
}
|
|
189
|
+
|
|
190
|
+
c2llm_languages = [
|
|
191
|
+
"eng-Latn",
|
|
192
|
+
"zho-Hans",
|
|
193
|
+
"python-Code",
|
|
194
|
+
"javascript-Code",
|
|
195
|
+
"go-Code",
|
|
196
|
+
"ruby-Code",
|
|
197
|
+
"java-Code",
|
|
198
|
+
"php-Code",
|
|
199
|
+
]
|
|
200
|
+
|
|
201
|
+
c2llm_loader_kwargs = dict(
|
|
202
|
+
trust_remote_code=True,
|
|
203
|
+
prompts_dict=c2llm_prompts_dict,
|
|
204
|
+
apply_instruction_to_passages=True,
|
|
205
|
+
max_seq_length=2048,
|
|
206
|
+
padding_side="left",
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
|
|
110
210
|
def instruction_template(
|
|
111
211
|
instruction: str, prompt_type: PromptType | None = None
|
|
112
212
|
) -> str:
|
|
@@ -130,6 +230,7 @@ F2LLM_0B6 = ModelMeta(
|
|
|
130
230
|
max_seq_length=8192,
|
|
131
231
|
),
|
|
132
232
|
name="codefuse-ai/F2LLM-0.6B",
|
|
233
|
+
model_type=["dense"],
|
|
133
234
|
languages=["eng-Latn"],
|
|
134
235
|
open_weights=True,
|
|
135
236
|
revision="36416618b83d4bd84a8ca30c2ee01ed518f9f2e7",
|
|
@@ -141,11 +242,12 @@ F2LLM_0B6 = ModelMeta(
|
|
|
141
242
|
max_tokens=8192,
|
|
142
243
|
reference="https://huggingface.co/codefuse-ai/F2LLM-0.6B",
|
|
143
244
|
similarity_fn_name="cosine",
|
|
144
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
245
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
145
246
|
use_instructions=True,
|
|
146
247
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
147
248
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
148
249
|
training_datasets=training_datasets,
|
|
250
|
+
citation=F2LLM_CITATION,
|
|
149
251
|
)
|
|
150
252
|
|
|
151
253
|
F2LLM_1B7 = ModelMeta(
|
|
@@ -158,6 +260,7 @@ F2LLM_1B7 = ModelMeta(
|
|
|
158
260
|
max_seq_length=8192,
|
|
159
261
|
),
|
|
160
262
|
name="codefuse-ai/F2LLM-1.7B",
|
|
263
|
+
model_type=["dense"],
|
|
161
264
|
languages=["eng-Latn"],
|
|
162
265
|
open_weights=True,
|
|
163
266
|
revision="fdce0e09655f42cea26f7f66f5a70cd4507ea45c",
|
|
@@ -169,11 +272,12 @@ F2LLM_1B7 = ModelMeta(
|
|
|
169
272
|
max_tokens=8192,
|
|
170
273
|
reference="https://huggingface.co/codefuse-ai/F2LLM-1.7B",
|
|
171
274
|
similarity_fn_name="cosine",
|
|
172
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
275
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
173
276
|
use_instructions=True,
|
|
174
277
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
175
278
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
176
279
|
training_datasets=training_datasets,
|
|
280
|
+
citation=F2LLM_CITATION,
|
|
177
281
|
)
|
|
178
282
|
|
|
179
283
|
F2LLM_4B = ModelMeta(
|
|
@@ -186,6 +290,7 @@ F2LLM_4B = ModelMeta(
|
|
|
186
290
|
max_seq_length=8192,
|
|
187
291
|
),
|
|
188
292
|
name="codefuse-ai/F2LLM-4B",
|
|
293
|
+
model_type=["dense"],
|
|
189
294
|
languages=["eng-Latn"],
|
|
190
295
|
open_weights=True,
|
|
191
296
|
revision="9fe95901ed2b6b59dd7673d6e93c9d76766a1e25",
|
|
@@ -197,9 +302,66 @@ F2LLM_4B = ModelMeta(
|
|
|
197
302
|
max_tokens=8192,
|
|
198
303
|
reference="https://huggingface.co/codefuse-ai/F2LLM-4B",
|
|
199
304
|
similarity_fn_name="cosine",
|
|
200
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
305
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
201
306
|
use_instructions=True,
|
|
202
307
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
203
308
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
204
309
|
training_datasets=training_datasets,
|
|
310
|
+
citation=F2LLM_CITATION,
|
|
311
|
+
)
|
|
312
|
+
|
|
313
|
+
C2LLM_0B5 = ModelMeta(
|
|
314
|
+
loader=InstructSentenceTransformerModel,
|
|
315
|
+
loader_kwargs=c2llm_loader_kwargs,
|
|
316
|
+
name="codefuse-ai/C2LLM-0.5B",
|
|
317
|
+
revision="f08c18be03de42c6e388948a1804d4b271a953a2",
|
|
318
|
+
release_date="2025-12-22",
|
|
319
|
+
languages=c2llm_languages,
|
|
320
|
+
n_parameters=497252096,
|
|
321
|
+
memory_usage_mb=948.0,
|
|
322
|
+
max_tokens=32768,
|
|
323
|
+
embed_dim=896,
|
|
324
|
+
license="apache-2.0",
|
|
325
|
+
open_weights=True,
|
|
326
|
+
public_training_code=None,
|
|
327
|
+
public_training_data=None,
|
|
328
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
329
|
+
reference="https://huggingface.co/codefuse-ai/C2LLM-0.5B",
|
|
330
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
331
|
+
use_instructions=True,
|
|
332
|
+
training_datasets=c2llm_training_datasets,
|
|
333
|
+
adapted_from=None,
|
|
334
|
+
superseded_by=None,
|
|
335
|
+
modalities=["text"],
|
|
336
|
+
is_cross_encoder=None,
|
|
337
|
+
citation=None,
|
|
338
|
+
contacts=None,
|
|
339
|
+
)
|
|
340
|
+
|
|
341
|
+
C2LLM_7B = ModelMeta(
|
|
342
|
+
loader=InstructSentenceTransformerModel,
|
|
343
|
+
loader_kwargs=c2llm_loader_kwargs,
|
|
344
|
+
name="codefuse-ai/C2LLM-7B",
|
|
345
|
+
revision="c1dc16d6d64eb962c783bfb36a6d9c2f24a86dca",
|
|
346
|
+
release_date="2025-12-22",
|
|
347
|
+
languages=c2llm_languages,
|
|
348
|
+
n_parameters=7667028992,
|
|
349
|
+
memory_usage_mb=14624.0,
|
|
350
|
+
max_tokens=32768,
|
|
351
|
+
embed_dim=3584,
|
|
352
|
+
license="apache-2.0",
|
|
353
|
+
open_weights=True,
|
|
354
|
+
public_training_code=None,
|
|
355
|
+
public_training_data=None,
|
|
356
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
357
|
+
reference="https://huggingface.co/codefuse-ai/C2LLM-7B",
|
|
358
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
359
|
+
use_instructions=True,
|
|
360
|
+
training_datasets=c2llm_training_datasets,
|
|
361
|
+
adapted_from=None,
|
|
362
|
+
superseded_by=None,
|
|
363
|
+
modalities=["text"],
|
|
364
|
+
is_cross_encoder=None,
|
|
365
|
+
citation=None,
|
|
366
|
+
contacts=None,
|
|
205
367
|
)
|
|
@@ -1,6 +1,15 @@
|
|
|
1
1
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
2
2
|
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
3
3
|
|
|
4
|
+
CODESAGE_CITATION = """@inproceedings{
|
|
5
|
+
zhang2024code,
|
|
6
|
+
title={{CODE} {REPRESENTATION} {LEARNING} {AT} {SCALE}},
|
|
7
|
+
author={Dejiao Zhang and Wasi Uddin Ahmad and Ming Tan and Hantian Ding and Ramesh Nallapati and Dan Roth and Xiaofei Ma and Bing Xiang},
|
|
8
|
+
booktitle={The Twelfth International Conference on Learning Representations},
|
|
9
|
+
year={2024},
|
|
10
|
+
url={https://openreview.net/forum?id=vfzRRjumpX}
|
|
11
|
+
}"""
|
|
12
|
+
|
|
4
13
|
codesage_languages = [
|
|
5
14
|
"python-Code",
|
|
6
15
|
"javascript-Code",
|
|
@@ -13,6 +22,7 @@ codesage_languages = [
|
|
|
13
22
|
codesage_large = ModelMeta(
|
|
14
23
|
loader=sentence_transformers_loader,
|
|
15
24
|
name="codesage/codesage-large-v2",
|
|
25
|
+
model_type=["dense"],
|
|
16
26
|
languages=codesage_languages,
|
|
17
27
|
revision="6e5d6dc15db3e310c37c6dbac072409f95ffa5c5",
|
|
18
28
|
release_date="2024-02-03",
|
|
@@ -25,7 +35,7 @@ codesage_large = ModelMeta(
|
|
|
25
35
|
open_weights=True,
|
|
26
36
|
public_training_code=None,
|
|
27
37
|
public_training_data=None,
|
|
28
|
-
framework=["PyTorch"],
|
|
38
|
+
framework=["PyTorch", "Transformers"],
|
|
29
39
|
reference="https://huggingface.co/codesage/codesage-large-v2",
|
|
30
40
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
31
41
|
use_instructions=False,
|
|
@@ -33,11 +43,13 @@ codesage_large = ModelMeta(
|
|
|
33
43
|
"CodeSearchNetRetrieval",
|
|
34
44
|
"CodeSearchNetCCRetrieval",
|
|
35
45
|
},
|
|
46
|
+
citation=CODESAGE_CITATION,
|
|
36
47
|
)
|
|
37
48
|
|
|
38
49
|
codesage_base = ModelMeta(
|
|
39
50
|
loader=sentence_transformers_loader,
|
|
40
51
|
name="codesage/codesage-base-v2",
|
|
52
|
+
model_type=["dense"],
|
|
41
53
|
languages=codesage_languages,
|
|
42
54
|
revision="92eac4f44c8674638f039f1b0d8280f2539cb4c7",
|
|
43
55
|
release_date="2024-02-03",
|
|
@@ -50,7 +62,7 @@ codesage_base = ModelMeta(
|
|
|
50
62
|
open_weights=True,
|
|
51
63
|
public_training_code=None,
|
|
52
64
|
public_training_data=None,
|
|
53
|
-
framework=["PyTorch"],
|
|
65
|
+
framework=["PyTorch", "Transformers"],
|
|
54
66
|
reference="https://huggingface.co/codesage/codesage-base-v2",
|
|
55
67
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
56
68
|
use_instructions=False,
|
|
@@ -58,11 +70,13 @@ codesage_base = ModelMeta(
|
|
|
58
70
|
"CodeSearchNetRetrieval",
|
|
59
71
|
"CodeSearchNetCCRetrieval",
|
|
60
72
|
},
|
|
73
|
+
citation=CODESAGE_CITATION,
|
|
61
74
|
)
|
|
62
75
|
|
|
63
76
|
codesage_small = ModelMeta(
|
|
64
77
|
loader=sentence_transformers_loader,
|
|
65
78
|
name="codesage/codesage-small-v2",
|
|
79
|
+
model_type=["dense"],
|
|
66
80
|
languages=codesage_languages,
|
|
67
81
|
revision="4844c2f24b25e181aa43ca058cc73dd2622565c1",
|
|
68
82
|
release_date="2024-02-03",
|
|
@@ -75,7 +89,7 @@ codesage_small = ModelMeta(
|
|
|
75
89
|
open_weights=True,
|
|
76
90
|
public_training_code=None,
|
|
77
91
|
public_training_data=None,
|
|
78
|
-
framework=["PyTorch"],
|
|
92
|
+
framework=["PyTorch", "Transformers"],
|
|
79
93
|
reference="https://huggingface.co/codesage/codesage-small-v2",
|
|
80
94
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
81
95
|
use_instructions=False,
|
|
@@ -83,4 +97,5 @@ codesage_small = ModelMeta(
|
|
|
83
97
|
"CodeSearchNetRetrieval",
|
|
84
98
|
"CodeSearchNetCCRetrieval",
|
|
85
99
|
},
|
|
100
|
+
citation=CODESAGE_CITATION,
|
|
86
101
|
)
|
|
@@ -8,6 +8,7 @@ import torch
|
|
|
8
8
|
from torch.utils.data import DataLoader
|
|
9
9
|
from tqdm.auto import tqdm
|
|
10
10
|
|
|
11
|
+
from mteb._requires_package import requires_package
|
|
11
12
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
12
13
|
from mteb.models.abs_encoder import AbsEncoder
|
|
13
14
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
@@ -219,9 +220,11 @@ class CohereTextEmbeddingModel(AbsEncoder):
|
|
|
219
220
|
output_dimension: int | None = None,
|
|
220
221
|
**kwargs,
|
|
221
222
|
) -> None:
|
|
222
|
-
|
|
223
|
+
requires_package(self, "cohere", model_name, "pip install 'mteb[cohere]'")
|
|
223
224
|
|
|
224
|
-
|
|
225
|
+
import cohere
|
|
226
|
+
|
|
227
|
+
self.model_name = model_name.removeprefix("Cohere/Cohere-")
|
|
225
228
|
self.sep = sep
|
|
226
229
|
self.model_prompts = self.validate_task_to_prompt_name(model_prompts)
|
|
227
230
|
if embedding_type not in get_args(EmbeddingType):
|
|
@@ -377,6 +380,7 @@ cohere_mult_3 = ModelMeta(
|
|
|
377
380
|
model_prompts=model_prompts,
|
|
378
381
|
),
|
|
379
382
|
name="Cohere/Cohere-embed-multilingual-v3.0",
|
|
383
|
+
model_type=["dense"],
|
|
380
384
|
languages=supported_languages,
|
|
381
385
|
open_weights=False,
|
|
382
386
|
revision="1",
|
|
@@ -388,7 +392,7 @@ cohere_mult_3 = ModelMeta(
|
|
|
388
392
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
389
393
|
license=None,
|
|
390
394
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
391
|
-
framework=["API"],
|
|
395
|
+
framework=["API", "Transformers"],
|
|
392
396
|
use_instructions=True,
|
|
393
397
|
public_training_code=None,
|
|
394
398
|
public_training_data=None, # assumed
|
|
@@ -401,6 +405,7 @@ cohere_eng_3 = ModelMeta(
|
|
|
401
405
|
model_prompts=model_prompts,
|
|
402
406
|
),
|
|
403
407
|
name="Cohere/Cohere-embed-english-v3.0",
|
|
408
|
+
model_type=["dense"],
|
|
404
409
|
languages=["eng-Latn"],
|
|
405
410
|
open_weights=False,
|
|
406
411
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
@@ -412,7 +417,7 @@ cohere_eng_3 = ModelMeta(
|
|
|
412
417
|
embed_dim=1024,
|
|
413
418
|
license=None,
|
|
414
419
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
415
|
-
framework=["API"],
|
|
420
|
+
framework=["API", "Transformers"],
|
|
416
421
|
use_instructions=True,
|
|
417
422
|
public_training_code=None,
|
|
418
423
|
public_training_data=None, # assumed
|
|
@@ -425,6 +430,7 @@ cohere_mult_light_3 = ModelMeta(
|
|
|
425
430
|
model_prompts=model_prompts,
|
|
426
431
|
),
|
|
427
432
|
name="Cohere/Cohere-embed-multilingual-light-v3.0",
|
|
433
|
+
model_type=["dense"],
|
|
428
434
|
languages=supported_languages,
|
|
429
435
|
open_weights=False,
|
|
430
436
|
revision="1",
|
|
@@ -436,7 +442,7 @@ cohere_mult_light_3 = ModelMeta(
|
|
|
436
442
|
embed_dim=384,
|
|
437
443
|
license=None,
|
|
438
444
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
439
|
-
framework=["API"],
|
|
445
|
+
framework=["API", "Transformers"],
|
|
440
446
|
use_instructions=True,
|
|
441
447
|
public_training_code=None,
|
|
442
448
|
public_training_data=None, # assumed
|
|
@@ -449,6 +455,7 @@ cohere_eng_light_3 = ModelMeta(
|
|
|
449
455
|
model_prompts=model_prompts,
|
|
450
456
|
),
|
|
451
457
|
name="Cohere/Cohere-embed-english-light-v3.0",
|
|
458
|
+
model_type=["dense"],
|
|
452
459
|
languages=["eng-Latn"],
|
|
453
460
|
open_weights=False,
|
|
454
461
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
@@ -460,7 +467,7 @@ cohere_eng_light_3 = ModelMeta(
|
|
|
460
467
|
embed_dim=384,
|
|
461
468
|
license=None,
|
|
462
469
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
463
|
-
framework=["API"],
|
|
470
|
+
framework=["API", "Transformers"],
|
|
464
471
|
use_instructions=True,
|
|
465
472
|
public_training_code=None,
|
|
466
473
|
public_training_data=None, # assumed
|
|
@@ -378,9 +378,10 @@ def cohere_v_loader(model_name, **kwargs):
|
|
|
378
378
|
|
|
379
379
|
|
|
380
380
|
cohere_mult_3 = ModelMeta(
|
|
381
|
-
loader=cohere_v_loader,
|
|
381
|
+
loader=cohere_v_loader,
|
|
382
382
|
loader_kwargs={"model_name": "embed-multilingual-v3.0"},
|
|
383
383
|
name="cohere/embed-multilingual-v3.0",
|
|
384
|
+
model_type=["dense"],
|
|
384
385
|
languages=[], # Unknown, but support >100 languages
|
|
385
386
|
revision="1",
|
|
386
387
|
release_date="2024-10-24",
|
|
@@ -401,9 +402,10 @@ cohere_mult_3 = ModelMeta(
|
|
|
401
402
|
)
|
|
402
403
|
|
|
403
404
|
cohere_eng_3 = ModelMeta(
|
|
404
|
-
loader=cohere_v_loader,
|
|
405
|
+
loader=cohere_v_loader,
|
|
405
406
|
loader_kwargs={"model_name": "embed-english-v3.0"},
|
|
406
407
|
name="cohere/embed-english-v3.0",
|
|
408
|
+
model_type=["dense"],
|
|
407
409
|
languages=["eng-Latn"],
|
|
408
410
|
revision="1",
|
|
409
411
|
release_date="2024-10-24",
|
|
@@ -426,6 +428,7 @@ cohere_eng_3 = ModelMeta(
|
|
|
426
428
|
cohere_embed_v4_multimodal = ModelMeta(
|
|
427
429
|
loader=cohere_v_loader,
|
|
428
430
|
loader_kwargs=dict(model_name="embed-v4.0"),
|
|
431
|
+
model_type=["dense"],
|
|
429
432
|
name="Cohere/Cohere-embed-v4.0",
|
|
430
433
|
languages=all_languages,
|
|
431
434
|
revision="1",
|
|
@@ -450,6 +453,7 @@ cohere_embed_v4_multimodal_binary = ModelMeta(
|
|
|
450
453
|
loader=cohere_v_loader,
|
|
451
454
|
loader_kwargs=dict(embedding_type="binary"),
|
|
452
455
|
name="Cohere/Cohere-embed-v4.0 (output_dtype=binary)",
|
|
456
|
+
model_type=["dense"],
|
|
453
457
|
languages=all_languages,
|
|
454
458
|
revision="1",
|
|
455
459
|
release_date="2024-12-01",
|
|
@@ -474,6 +478,7 @@ cohere_embed_v4_multimodal_int8 = ModelMeta(
|
|
|
474
478
|
loader=cohere_v_loader,
|
|
475
479
|
loader_kwargs=dict(embedding_type="int8"),
|
|
476
480
|
name="Cohere/Cohere-embed-v4.0 (output_dtype=int8)",
|
|
481
|
+
model_type=["dense"],
|
|
477
482
|
languages=all_languages,
|
|
478
483
|
revision="1",
|
|
479
484
|
release_date="2024-12-01",
|
|
@@ -1,8 +1,9 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
|
-
from PIL import Image
|
|
6
7
|
from torch.utils.data import DataLoader
|
|
7
8
|
from tqdm.auto import tqdm
|
|
8
9
|
|
|
@@ -15,6 +16,9 @@ from mteb.models.abs_encoder import AbsEncoder
|
|
|
15
16
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
16
17
|
from mteb.types import Array, BatchedInput, PromptType
|
|
17
18
|
|
|
19
|
+
if TYPE_CHECKING:
|
|
20
|
+
from PIL import Image
|
|
21
|
+
|
|
18
22
|
logger = logging.getLogger(__name__)
|
|
19
23
|
|
|
20
24
|
|
|
@@ -89,6 +93,7 @@ class ColPaliEngineWrapper(AbsEncoder):
|
|
|
89
93
|
**kwargs,
|
|
90
94
|
):
|
|
91
95
|
import torchvision.transforms.functional as F
|
|
96
|
+
from PIL import Image
|
|
92
97
|
|
|
93
98
|
all_embeds = []
|
|
94
99
|
|
|
@@ -196,10 +201,10 @@ COLPALI_CITATION = """
|
|
|
196
201
|
|
|
197
202
|
COLPALI_TRAINING_DATA = {
|
|
198
203
|
# from https://huggingface.co/datasets/vidore/colpali_train_set
|
|
199
|
-
"
|
|
200
|
-
"
|
|
201
|
-
"
|
|
202
|
-
"
|
|
204
|
+
"VidoreDocVQARetrieval",
|
|
205
|
+
"VidoreInfoVQARetrieval",
|
|
206
|
+
"VidoreTatdqaRetrieval",
|
|
207
|
+
"VidoreArxivQARetrieval",
|
|
203
208
|
}
|
|
204
209
|
|
|
205
210
|
colpali_v1_1 = ModelMeta(
|
|
@@ -208,6 +213,7 @@ colpali_v1_1 = ModelMeta(
|
|
|
208
213
|
torch_dtype=torch.float16,
|
|
209
214
|
),
|
|
210
215
|
name="vidore/colpali-v1.1",
|
|
216
|
+
model_type=["late-interaction"],
|
|
211
217
|
languages=["eng-Latn"],
|
|
212
218
|
revision="a0f15e3bcf97110e7ac1bb4be4bcd30eeb31992a",
|
|
213
219
|
release_date="2024-08-21",
|
|
@@ -220,7 +226,7 @@ colpali_v1_1 = ModelMeta(
|
|
|
220
226
|
open_weights=True,
|
|
221
227
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
222
228
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
223
|
-
framework=["ColPali"],
|
|
229
|
+
framework=["ColPali", "safetensors"],
|
|
224
230
|
reference="https://huggingface.co/vidore/colpali-v1.1",
|
|
225
231
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
226
232
|
use_instructions=True,
|
|
@@ -234,6 +240,7 @@ colpali_v1_2 = ModelMeta(
|
|
|
234
240
|
torch_dtype=torch.float16,
|
|
235
241
|
),
|
|
236
242
|
name="vidore/colpali-v1.2",
|
|
243
|
+
model_type=["late-interaction"],
|
|
237
244
|
languages=["eng-Latn"],
|
|
238
245
|
revision="6b89bc63c16809af4d111bfe412e2ac6bc3c9451",
|
|
239
246
|
release_date="2024-08-26",
|
|
@@ -246,7 +253,7 @@ colpali_v1_2 = ModelMeta(
|
|
|
246
253
|
open_weights=True,
|
|
247
254
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
248
255
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
249
|
-
framework=["ColPali"],
|
|
256
|
+
framework=["ColPali", "safetensors"],
|
|
250
257
|
reference="https://huggingface.co/vidore/colpali-v1.2",
|
|
251
258
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
252
259
|
use_instructions=True,
|
|
@@ -260,6 +267,7 @@ colpali_v1_3 = ModelMeta(
|
|
|
260
267
|
torch_dtype=torch.float16,
|
|
261
268
|
),
|
|
262
269
|
name="vidore/colpali-v1.3",
|
|
270
|
+
model_type=["late-interaction"],
|
|
263
271
|
languages=["eng-Latn"],
|
|
264
272
|
revision="1b5c8929330df1a66de441a9b5409a878f0de5b0",
|
|
265
273
|
release_date="2024-11-01",
|
|
@@ -272,7 +280,7 @@ colpali_v1_3 = ModelMeta(
|
|
|
272
280
|
open_weights=True,
|
|
273
281
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
274
282
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
275
|
-
framework=["ColPali"],
|
|
283
|
+
framework=["ColPali", "safetensors"],
|
|
276
284
|
reference="https://huggingface.co/vidore/colpali-v1.3",
|
|
277
285
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
278
286
|
use_instructions=True,
|