mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -1,5 +1,7 @@
|
|
|
1
1
|
"""Implementation of Sentence Transformers model validated in MTEB."""
|
|
2
2
|
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
3
5
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
4
6
|
from mteb.models.sentence_transformer_wrapper import (
|
|
5
7
|
SentenceTransformerEncoderWrapper,
|
|
@@ -113,6 +115,7 @@ sent_trf_training_dataset = {
|
|
|
113
115
|
all_minilm_l6_v2 = ModelMeta(
|
|
114
116
|
loader=sentence_transformers_loader,
|
|
115
117
|
name="sentence-transformers/all-MiniLM-L6-v2",
|
|
118
|
+
model_type=["dense"],
|
|
116
119
|
languages=["eng-Latn"],
|
|
117
120
|
open_weights=True,
|
|
118
121
|
revision="8b3219a92973c328a8e22fadcfa821b5dc75636a",
|
|
@@ -124,7 +127,13 @@ all_minilm_l6_v2 = ModelMeta(
|
|
|
124
127
|
max_tokens=256,
|
|
125
128
|
reference="https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
|
|
126
129
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
127
|
-
framework=[
|
|
130
|
+
framework=[
|
|
131
|
+
"Sentence Transformers",
|
|
132
|
+
"PyTorch",
|
|
133
|
+
"ONNX",
|
|
134
|
+
"safetensors",
|
|
135
|
+
"Transformers",
|
|
136
|
+
],
|
|
128
137
|
use_instructions=False,
|
|
129
138
|
superseded_by=None,
|
|
130
139
|
adapted_from=None,
|
|
@@ -137,6 +146,7 @@ all_minilm_l6_v2 = ModelMeta(
|
|
|
137
146
|
all_minilm_l12_v2 = ModelMeta(
|
|
138
147
|
loader=sentence_transformers_loader,
|
|
139
148
|
name="sentence-transformers/all-MiniLM-L12-v2",
|
|
149
|
+
model_type=["dense"],
|
|
140
150
|
languages=["eng-Latn"],
|
|
141
151
|
open_weights=True,
|
|
142
152
|
revision="364dd28d28dcd3359b537f3cf1f5348ba679da62",
|
|
@@ -148,7 +158,13 @@ all_minilm_l12_v2 = ModelMeta(
|
|
|
148
158
|
max_tokens=256,
|
|
149
159
|
reference="https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
|
|
150
160
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
151
|
-
framework=[
|
|
161
|
+
framework=[
|
|
162
|
+
"Sentence Transformers",
|
|
163
|
+
"PyTorch",
|
|
164
|
+
"ONNX",
|
|
165
|
+
"safetensors",
|
|
166
|
+
"Transformers",
|
|
167
|
+
],
|
|
152
168
|
use_instructions=False,
|
|
153
169
|
superseded_by=None,
|
|
154
170
|
adapted_from=None,
|
|
@@ -161,6 +177,7 @@ all_minilm_l12_v2 = ModelMeta(
|
|
|
161
177
|
paraphrase_multilingual_minilm_l12_v2 = ModelMeta(
|
|
162
178
|
loader=sentence_transformers_loader,
|
|
163
179
|
name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
|
180
|
+
model_type=["dense"],
|
|
164
181
|
languages=paraphrase_langs,
|
|
165
182
|
open_weights=True,
|
|
166
183
|
revision="bf3bf13ab40c3157080a7ab344c831b9ad18b5eb",
|
|
@@ -172,7 +189,13 @@ paraphrase_multilingual_minilm_l12_v2 = ModelMeta(
|
|
|
172
189
|
max_tokens=512,
|
|
173
190
|
reference="https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
|
174
191
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
175
|
-
framework=[
|
|
192
|
+
framework=[
|
|
193
|
+
"Sentence Transformers",
|
|
194
|
+
"PyTorch",
|
|
195
|
+
"ONNX",
|
|
196
|
+
"safetensors",
|
|
197
|
+
"Transformers",
|
|
198
|
+
],
|
|
176
199
|
use_instructions=False,
|
|
177
200
|
superseded_by=None,
|
|
178
201
|
adapted_from=None,
|
|
@@ -185,6 +208,7 @@ paraphrase_multilingual_minilm_l12_v2 = ModelMeta(
|
|
|
185
208
|
paraphrase_multilingual_mpnet_base_v2 = ModelMeta(
|
|
186
209
|
loader=sentence_transformers_loader,
|
|
187
210
|
name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
|
211
|
+
model_type=["dense"],
|
|
188
212
|
languages=paraphrase_langs,
|
|
189
213
|
open_weights=True,
|
|
190
214
|
revision="79f2382ceacceacdf38563d7c5d16b9ff8d725d6",
|
|
@@ -196,7 +220,13 @@ paraphrase_multilingual_mpnet_base_v2 = ModelMeta(
|
|
|
196
220
|
max_tokens=512,
|
|
197
221
|
reference="https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
|
198
222
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
199
|
-
framework=[
|
|
223
|
+
framework=[
|
|
224
|
+
"Sentence Transformers",
|
|
225
|
+
"PyTorch",
|
|
226
|
+
"ONNX",
|
|
227
|
+
"safetensors",
|
|
228
|
+
"Transformers",
|
|
229
|
+
],
|
|
200
230
|
use_instructions=False,
|
|
201
231
|
superseded_by=None,
|
|
202
232
|
adapted_from=None,
|
|
@@ -220,6 +250,7 @@ paraphrase_multilingual_mpnet_base_v2 = ModelMeta(
|
|
|
220
250
|
labse = ModelMeta(
|
|
221
251
|
loader=sentence_transformers_loader,
|
|
222
252
|
name="sentence-transformers/LaBSE",
|
|
253
|
+
model_type=["dense"],
|
|
223
254
|
languages=paraphrase_langs,
|
|
224
255
|
open_weights=True,
|
|
225
256
|
revision="e34fab64a3011d2176c99545a93d5cbddc9a91b7",
|
|
@@ -231,7 +262,7 @@ labse = ModelMeta(
|
|
|
231
262
|
max_tokens=512,
|
|
232
263
|
reference="https://huggingface.co/sentence-transformers/LaBSE",
|
|
233
264
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
234
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
265
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
235
266
|
use_instructions=False,
|
|
236
267
|
superseded_by=None,
|
|
237
268
|
adapted_from=None,
|
|
@@ -257,6 +288,7 @@ labse = ModelMeta(
|
|
|
257
288
|
multi_qa_minilm_l6_cos_v1 = ModelMeta(
|
|
258
289
|
loader=sentence_transformers_loader,
|
|
259
290
|
name="sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
|
|
291
|
+
model_type=["dense"],
|
|
260
292
|
languages=["eng-Latn"],
|
|
261
293
|
open_weights=True,
|
|
262
294
|
revision="b207367332321f8e44f96e224ef15bc607f4dbf0",
|
|
@@ -268,7 +300,13 @@ multi_qa_minilm_l6_cos_v1 = ModelMeta(
|
|
|
268
300
|
max_tokens=512,
|
|
269
301
|
reference="https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
|
|
270
302
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
271
|
-
framework=[
|
|
303
|
+
framework=[
|
|
304
|
+
"Sentence Transformers",
|
|
305
|
+
"PyTorch",
|
|
306
|
+
"ONNX",
|
|
307
|
+
"safetensors",
|
|
308
|
+
"Transformers",
|
|
309
|
+
],
|
|
272
310
|
use_instructions=False,
|
|
273
311
|
superseded_by=None,
|
|
274
312
|
adapted_from="nreimers/MiniLM-L6-H384-uncased",
|
|
@@ -281,6 +319,7 @@ multi_qa_minilm_l6_cos_v1 = ModelMeta(
|
|
|
281
319
|
all_mpnet_base_v2 = ModelMeta(
|
|
282
320
|
loader=sentence_transformers_loader,
|
|
283
321
|
name="sentence-transformers/all-mpnet-base-v2",
|
|
322
|
+
model_type=["dense"],
|
|
284
323
|
languages=["eng-Latn"],
|
|
285
324
|
open_weights=True,
|
|
286
325
|
revision="9a3225965996d404b775526de6dbfe85d3368642",
|
|
@@ -292,7 +331,13 @@ all_mpnet_base_v2 = ModelMeta(
|
|
|
292
331
|
max_tokens=384,
|
|
293
332
|
reference="https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
|
294
333
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
295
|
-
framework=[
|
|
334
|
+
framework=[
|
|
335
|
+
"Sentence Transformers",
|
|
336
|
+
"PyTorch",
|
|
337
|
+
"ONNX",
|
|
338
|
+
"safetensors",
|
|
339
|
+
"Transformers",
|
|
340
|
+
],
|
|
296
341
|
use_instructions=False,
|
|
297
342
|
superseded_by=None,
|
|
298
343
|
adapted_from=None,
|
|
@@ -380,6 +425,7 @@ static_multi_languages = [
|
|
|
380
425
|
|
|
381
426
|
static_similarity_mrl_multilingual_v1 = ModelMeta(
|
|
382
427
|
name="sentence-transformers/static-similarity-mrl-multilingual-v1",
|
|
428
|
+
model_type=["dense"],
|
|
383
429
|
loader=SentenceTransformerEncoderWrapper,
|
|
384
430
|
loader_kwargs=dict(
|
|
385
431
|
device="cpu", # CPU is just as quick, if not quicker
|
|
@@ -395,18 +441,28 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
|
|
|
395
441
|
max_tokens=None,
|
|
396
442
|
reference="https://huggingface.co/sentence-transformers/static-similarity-mrl-multilingual-v1",
|
|
397
443
|
similarity_fn_name="cosine",
|
|
398
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
444
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
399
445
|
use_instructions=False,
|
|
400
446
|
superseded_by=None,
|
|
401
447
|
adapted_from=None,
|
|
402
448
|
training_datasets=static_multi_datasets,
|
|
403
449
|
public_training_code="https://huggingface.co/blog/static-embeddings",
|
|
404
450
|
public_training_data="https://huggingface.co/collections/sentence-transformers/embedding-model-datasets-6644d7a3673a511914aa7552",
|
|
451
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
452
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
453
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
454
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
455
|
+
month = "11",
|
|
456
|
+
year = "2019",
|
|
457
|
+
publisher = "Association for Computational Linguistics",
|
|
458
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
459
|
+
}""",
|
|
405
460
|
)
|
|
406
461
|
|
|
407
462
|
contriever = ModelMeta(
|
|
408
463
|
loader=SentenceTransformerEncoderWrapper,
|
|
409
464
|
name="facebook/contriever-msmarco",
|
|
465
|
+
model_type=["dense"],
|
|
410
466
|
languages=["eng-Latn"],
|
|
411
467
|
open_weights=True,
|
|
412
468
|
revision="abe8c1493371369031bcb1e02acb754cf4e162fa",
|
|
@@ -418,7 +474,7 @@ contriever = ModelMeta(
|
|
|
418
474
|
max_tokens=512,
|
|
419
475
|
reference="https://huggingface.co/facebook/contriever-msmarco",
|
|
420
476
|
similarity_fn_name=ScoringFunction.DOT_PRODUCT,
|
|
421
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
477
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
422
478
|
use_instructions=False,
|
|
423
479
|
citation="""
|
|
424
480
|
@misc{izacard2021contriever,
|
|
@@ -436,6 +492,7 @@ contriever = ModelMeta(
|
|
|
436
492
|
microllama_text_embedding = ModelMeta(
|
|
437
493
|
loader=sentence_transformers_loader,
|
|
438
494
|
name="keeeeenw/MicroLlama-text-embedding",
|
|
495
|
+
model_type=["dense"],
|
|
439
496
|
languages=["eng-Latn"],
|
|
440
497
|
open_weights=True,
|
|
441
498
|
revision="98f70f14cdf12d7ea217ed2fd4e808b0195f1e7e",
|
|
@@ -447,7 +504,7 @@ microllama_text_embedding = ModelMeta(
|
|
|
447
504
|
max_tokens=2048,
|
|
448
505
|
reference="https://huggingface.co/keeeeenw/MicroLlama-text-embedding",
|
|
449
506
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
450
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
507
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
451
508
|
use_instructions=False,
|
|
452
509
|
superseded_by=None,
|
|
453
510
|
adapted_from=None,
|
|
@@ -467,9 +524,21 @@ microllama_text_embedding = ModelMeta(
|
|
|
467
524
|
public_training_data=None,
|
|
468
525
|
)
|
|
469
526
|
|
|
527
|
+
SENTENCE_T5_CITATION = """
|
|
528
|
+
@misc{ni2021sentencet5scalablesentenceencoders,
|
|
529
|
+
title={Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models},
|
|
530
|
+
author={Jianmo Ni and Gustavo Hernández Ábrego and Noah Constant and Ji Ma and Keith B. Hall and Daniel Cer and Yinfei Yang},
|
|
531
|
+
year={2021},
|
|
532
|
+
eprint={2108.08877},
|
|
533
|
+
archivePrefix={arXiv},
|
|
534
|
+
primaryClass={cs.CL},
|
|
535
|
+
url={https://arxiv.org/abs/2108.08877},
|
|
536
|
+
}
|
|
537
|
+
"""
|
|
470
538
|
sentence_t5_base = ModelMeta(
|
|
471
539
|
loader=sentence_transformers_loader,
|
|
472
540
|
name="sentence-transformers/sentence-t5-base",
|
|
541
|
+
model_type=["dense"],
|
|
473
542
|
languages=["eng-Latn"],
|
|
474
543
|
open_weights=True,
|
|
475
544
|
revision="50c53e206f8b01c9621484a3c0aafce4e55efebf",
|
|
@@ -481,16 +550,18 @@ sentence_t5_base = ModelMeta(
|
|
|
481
550
|
max_tokens=512,
|
|
482
551
|
reference="https://huggingface.co/sentence-transformers/sentence-t5-base",
|
|
483
552
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
484
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
553
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
485
554
|
use_instructions=False,
|
|
486
555
|
public_training_code=None,
|
|
487
556
|
public_training_data=None,
|
|
488
557
|
training_datasets={"SNLI", "Community QA"},
|
|
558
|
+
citation=SENTENCE_T5_CITATION,
|
|
489
559
|
)
|
|
490
560
|
|
|
491
561
|
sentence_t5_large = ModelMeta(
|
|
492
562
|
loader=sentence_transformers_loader,
|
|
493
563
|
name="sentence-transformers/sentence-t5-large",
|
|
564
|
+
model_type=["dense"],
|
|
494
565
|
languages=["eng-Latn"],
|
|
495
566
|
open_weights=True,
|
|
496
567
|
revision="1fc08ea477205aa54a3e5b13f0971ae16b86410a",
|
|
@@ -502,16 +573,18 @@ sentence_t5_large = ModelMeta(
|
|
|
502
573
|
max_tokens=512,
|
|
503
574
|
reference="https://huggingface.co/sentence-transformers/sentence-t5-large",
|
|
504
575
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
505
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
576
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
506
577
|
use_instructions=False,
|
|
507
578
|
public_training_code=None,
|
|
508
579
|
public_training_data=None,
|
|
509
580
|
training_datasets={"SNLI", "Community QA"},
|
|
581
|
+
citation=SENTENCE_T5_CITATION,
|
|
510
582
|
)
|
|
511
583
|
|
|
512
584
|
sentence_t5_xl = ModelMeta(
|
|
513
585
|
loader=sentence_transformers_loader,
|
|
514
586
|
name="sentence-transformers/sentence-t5-xl",
|
|
587
|
+
model_type=["dense"],
|
|
515
588
|
languages=["eng-Latn"],
|
|
516
589
|
open_weights=True,
|
|
517
590
|
revision="2965d31b368fb14117688e0bde77cbd720e91f53",
|
|
@@ -523,16 +596,18 @@ sentence_t5_xl = ModelMeta(
|
|
|
523
596
|
max_tokens=512,
|
|
524
597
|
reference="https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
|
525
598
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
526
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
599
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
527
600
|
use_instructions=False,
|
|
528
601
|
public_training_code=None,
|
|
529
602
|
public_training_data=None,
|
|
530
603
|
training_datasets={"SNLI", "Community QA"},
|
|
604
|
+
citation=SENTENCE_T5_CITATION,
|
|
531
605
|
)
|
|
532
606
|
|
|
533
607
|
sentence_t5_xxl = ModelMeta(
|
|
534
608
|
loader=sentence_transformers_loader,
|
|
535
609
|
name="sentence-transformers/sentence-t5-xxl",
|
|
610
|
+
model_type=["dense"],
|
|
536
611
|
languages=["eng-Latn"],
|
|
537
612
|
open_weights=True,
|
|
538
613
|
revision="4d122282ba80e807e9e6eb8c358269e92796365d",
|
|
@@ -544,15 +619,28 @@ sentence_t5_xxl = ModelMeta(
|
|
|
544
619
|
max_tokens=512,
|
|
545
620
|
reference="https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
|
546
621
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
547
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
622
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
548
623
|
use_instructions=False,
|
|
549
624
|
public_training_code=None,
|
|
550
625
|
public_training_data=None,
|
|
551
626
|
training_datasets={"SNLI", "Community QA"},
|
|
627
|
+
citation=SENTENCE_T5_CITATION,
|
|
552
628
|
)
|
|
629
|
+
GTR_CITATION = """
|
|
630
|
+
@misc{ni2021largedualencodersgeneralizable,
|
|
631
|
+
title={Large Dual Encoders Are Generalizable Retrievers},
|
|
632
|
+
author={Jianmo Ni and Chen Qu and Jing Lu and Zhuyun Dai and Gustavo Hernández Ábrego and Ji Ma and Vincent Y. Zhao and Yi Luan and Keith B. Hall and Ming-Wei Chang and Yinfei Yang},
|
|
633
|
+
year={2021},
|
|
634
|
+
eprint={2112.07899},
|
|
635
|
+
archivePrefix={arXiv},
|
|
636
|
+
primaryClass={cs.IR},
|
|
637
|
+
url={https://arxiv.org/abs/2112.07899},
|
|
638
|
+
}
|
|
639
|
+
"""
|
|
553
640
|
gtr_t5_large = ModelMeta(
|
|
554
641
|
loader=sentence_transformers_loader,
|
|
555
642
|
name="sentence-transformers/gtr-t5-large",
|
|
643
|
+
model_type=["dense"],
|
|
556
644
|
languages=["eng-Latn"], # in format eng-Latn
|
|
557
645
|
open_weights=True,
|
|
558
646
|
revision="a2c8ac47f998531948d4cbe32a0b577a7037a5e3",
|
|
@@ -564,7 +652,7 @@ gtr_t5_large = ModelMeta(
|
|
|
564
652
|
max_tokens=512,
|
|
565
653
|
reference="https://huggingface.co/sentence-transformers/gtr-t5-large",
|
|
566
654
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
567
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
655
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
568
656
|
use_instructions=False,
|
|
569
657
|
public_training_code=None,
|
|
570
658
|
public_training_data=None,
|
|
@@ -581,11 +669,13 @@ gtr_t5_large = ModelMeta(
|
|
|
581
669
|
"NQ-PL", # translation not trained on
|
|
582
670
|
"Community QA",
|
|
583
671
|
},
|
|
672
|
+
citation=GTR_CITATION,
|
|
584
673
|
)
|
|
585
674
|
|
|
586
675
|
gtr_t5_xl = ModelMeta(
|
|
587
676
|
loader=sentence_transformers_loader,
|
|
588
677
|
name="sentence-transformers/gtr-t5-xl",
|
|
678
|
+
model_type=["dense"],
|
|
589
679
|
languages=["eng-Latn"], # in format eng-Latn
|
|
590
680
|
open_weights=True,
|
|
591
681
|
revision="23a8d667a1ad2578af181ce762867003c498d1bf",
|
|
@@ -597,7 +687,7 @@ gtr_t5_xl = ModelMeta(
|
|
|
597
687
|
max_tokens=512,
|
|
598
688
|
reference="https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
|
599
689
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
600
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
690
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
601
691
|
use_instructions=False,
|
|
602
692
|
public_training_code=None,
|
|
603
693
|
public_training_data=None,
|
|
@@ -614,10 +704,12 @@ gtr_t5_xl = ModelMeta(
|
|
|
614
704
|
"NQ-PL", # translation not trained on
|
|
615
705
|
"Community QA",
|
|
616
706
|
},
|
|
707
|
+
citation=GTR_CITATION,
|
|
617
708
|
)
|
|
618
709
|
gtr_t5_xxl = ModelMeta(
|
|
619
710
|
loader=sentence_transformers_loader,
|
|
620
711
|
name="sentence-transformers/gtr-t5-xxl",
|
|
712
|
+
model_type=["dense"],
|
|
621
713
|
languages=["eng-Latn"], # in format eng-Latn
|
|
622
714
|
open_weights=True,
|
|
623
715
|
revision="73f2a9156a3dcc2194dfdb2bf201cd7d17e17884",
|
|
@@ -629,7 +721,7 @@ gtr_t5_xxl = ModelMeta(
|
|
|
629
721
|
max_tokens=512,
|
|
630
722
|
reference="https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
|
631
723
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
632
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
724
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
633
725
|
use_instructions=False,
|
|
634
726
|
public_training_code=None,
|
|
635
727
|
public_training_data=None,
|
|
@@ -646,11 +738,13 @@ gtr_t5_xxl = ModelMeta(
|
|
|
646
738
|
"NQ-PL", # translation not trained on
|
|
647
739
|
"Community QA",
|
|
648
740
|
},
|
|
741
|
+
citation=GTR_CITATION,
|
|
649
742
|
)
|
|
650
743
|
|
|
651
744
|
gtr_t5_base = ModelMeta(
|
|
652
745
|
loader=sentence_transformers_loader,
|
|
653
746
|
name="sentence-transformers/gtr-t5-base",
|
|
747
|
+
model_type=["dense"],
|
|
654
748
|
languages=["eng-Latn"], # in format eng-Latn
|
|
655
749
|
open_weights=True,
|
|
656
750
|
revision="7027e9594267928589816394bdd295273ddc0739",
|
|
@@ -662,7 +756,7 @@ gtr_t5_base = ModelMeta(
|
|
|
662
756
|
max_tokens=512,
|
|
663
757
|
reference="https://huggingface.co/sentence-transformers/gtr-t5-base",
|
|
664
758
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
665
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
759
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
666
760
|
use_instructions=False,
|
|
667
761
|
public_training_code=None,
|
|
668
762
|
public_training_data=None,
|
|
@@ -679,4 +773,69 @@ gtr_t5_base = ModelMeta(
|
|
|
679
773
|
"NQ-PL", # translation not trained on
|
|
680
774
|
"Community QA",
|
|
681
775
|
},
|
|
776
|
+
citation=GTR_CITATION,
|
|
777
|
+
)
|
|
778
|
+
|
|
779
|
+
static_retrieval_mrl_en_v1 = ModelMeta(
|
|
780
|
+
loader=sentence_transformers_loader,
|
|
781
|
+
name="sentence-transformers/static-retrieval-mrl-en-v1",
|
|
782
|
+
revision="f60985c706f192d45d218078e49e5a8b6f15283a",
|
|
783
|
+
release_date="2024-10-24",
|
|
784
|
+
languages=["eng-Latn"],
|
|
785
|
+
n_parameters=3_125_4528,
|
|
786
|
+
memory_usage_mb=119,
|
|
787
|
+
max_tokens=np.inf,
|
|
788
|
+
embed_dim=1024,
|
|
789
|
+
license="apache-2.0",
|
|
790
|
+
open_weights=True,
|
|
791
|
+
public_training_code="https://huggingface.co/sentence-transformers/static-retrieval-mrl-en-v1/blob/main/train.py",
|
|
792
|
+
public_training_data=None,
|
|
793
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
794
|
+
reference="https://huggingface.co/sentence-transformers/static-retrieval-mrl-en-v1",
|
|
795
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
796
|
+
use_instructions=False,
|
|
797
|
+
training_datasets={
|
|
798
|
+
"MSMARCO",
|
|
799
|
+
# gooaq
|
|
800
|
+
# s2orc
|
|
801
|
+
# allnli
|
|
802
|
+
# paq
|
|
803
|
+
# trivia-qa
|
|
804
|
+
# swim-ir-monolingual
|
|
805
|
+
# PubMedQA
|
|
806
|
+
# swim
|
|
807
|
+
"MIRACLRetrieval",
|
|
808
|
+
"MultiLongDocRetrieval",
|
|
809
|
+
"MrTidyRetrieval",
|
|
810
|
+
},
|
|
811
|
+
modalities=["text"],
|
|
812
|
+
model_type=["dense"],
|
|
813
|
+
)
|
|
814
|
+
|
|
815
|
+
multi_qa_mpnet_base_dot_v1 = ModelMeta(
|
|
816
|
+
loader=sentence_transformers_loader,
|
|
817
|
+
name="sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
|
818
|
+
revision="3af7c6da5b3e1bea796ef6c97fe237538cbe6e7f",
|
|
819
|
+
release_date="2021-08-23",
|
|
820
|
+
languages=["eng-Latn"],
|
|
821
|
+
n_parameters=109486978,
|
|
822
|
+
memory_usage_mb=418.0,
|
|
823
|
+
max_tokens=512,
|
|
824
|
+
embed_dim=768,
|
|
825
|
+
license=None,
|
|
826
|
+
open_weights=True,
|
|
827
|
+
public_training_code="https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1/blob/main/train_script.py",
|
|
828
|
+
public_training_data=None,
|
|
829
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
830
|
+
reference="https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
|
831
|
+
similarity_fn_name=ScoringFunction.DOT_PRODUCT,
|
|
832
|
+
use_instructions=False,
|
|
833
|
+
training_datasets={
|
|
834
|
+
"MSMARCO",
|
|
835
|
+
"YahooAnswersTopicsClassification",
|
|
836
|
+
"NQ",
|
|
837
|
+
},
|
|
838
|
+
adapted_from="microsoft/mpnet-base",
|
|
839
|
+
modalities=["text"],
|
|
840
|
+
model_type=["dense"],
|
|
682
841
|
)
|
|
@@ -1,31 +1,32 @@
|
|
|
1
|
-
from mteb.models.model_meta import ModelMeta
|
|
2
|
-
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
3
|
-
|
|
4
|
-
codemodernbert_crow_meta = ModelMeta(
|
|
5
|
-
loader=sentence_transformers_loader,
|
|
6
|
-
name="Shuu12121/CodeSearch-ModernBERT-Crow-Plus",
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
# "
|
|
26
|
-
# "Shuu12121/
|
|
27
|
-
# "Shuu12121/
|
|
28
|
-
# "Shuu12121/
|
|
29
|
-
# "Shuu12121/
|
|
30
|
-
|
|
31
|
-
|
|
1
|
+
from mteb.models.model_meta import ModelMeta
|
|
2
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
3
|
+
|
|
4
|
+
codemodernbert_crow_meta = ModelMeta(
|
|
5
|
+
loader=sentence_transformers_loader,
|
|
6
|
+
name="Shuu12121/CodeSearch-ModernBERT-Crow-Plus",
|
|
7
|
+
model_type=["dense"],
|
|
8
|
+
languages=["eng-Latn"],
|
|
9
|
+
open_weights=True,
|
|
10
|
+
revision="044a7a4b552f86e284817234c336bccf16f895ce",
|
|
11
|
+
release_date="2025-04-21",
|
|
12
|
+
n_parameters=151668480,
|
|
13
|
+
memory_usage_mb=607,
|
|
14
|
+
embed_dim=768,
|
|
15
|
+
license="apache-2.0",
|
|
16
|
+
max_tokens=1024,
|
|
17
|
+
reference="https://huggingface.co/Shuu12121/CodeSearch-ModernBERT-Crow-Plus",
|
|
18
|
+
similarity_fn_name="cosine",
|
|
19
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
20
|
+
use_instructions=False,
|
|
21
|
+
public_training_code=None,
|
|
22
|
+
public_training_data=None,
|
|
23
|
+
training_datasets={
|
|
24
|
+
"CodeSearchNetRetrieval",
|
|
25
|
+
# "code-search-net/code_search_net",
|
|
26
|
+
# "Shuu12121/python-codesearch-filtered",
|
|
27
|
+
# "Shuu12121/java-codesearch-filtered",
|
|
28
|
+
# "Shuu12121/javascript-codesearch-filtered",
|
|
29
|
+
# "Shuu12121/ruby-codesearch-filtered",
|
|
30
|
+
# "Shuu12121/rust-codesearch-filtered",
|
|
31
|
+
},
|
|
32
|
+
)
|