mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -123,8 +123,9 @@ siglip_training_datasets = set(
|
|
|
123
123
|
)
|
|
124
124
|
|
|
125
125
|
siglip_so400m_patch14_224 = ModelMeta(
|
|
126
|
-
loader=SiglipModelWrapper,
|
|
126
|
+
loader=SiglipModelWrapper,
|
|
127
127
|
name="google/siglip-so400m-patch14-224",
|
|
128
|
+
model_type=["dense"],
|
|
128
129
|
languages=["eng-Latn"],
|
|
129
130
|
revision="d04cf29fca7b6374f74d8bea1969314492266b5e",
|
|
130
131
|
release_date="2024-01-08",
|
|
@@ -137,7 +138,7 @@ siglip_so400m_patch14_224 = ModelMeta(
|
|
|
137
138
|
open_weights=True,
|
|
138
139
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
139
140
|
public_training_data=None,
|
|
140
|
-
framework=["PyTorch"],
|
|
141
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
141
142
|
reference="https://huggingface.co/google/siglip-so400m-patch14-224",
|
|
142
143
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
143
144
|
use_instructions=False,
|
|
@@ -146,8 +147,9 @@ siglip_so400m_patch14_224 = ModelMeta(
|
|
|
146
147
|
)
|
|
147
148
|
|
|
148
149
|
siglip_so400m_patch14_384 = ModelMeta(
|
|
149
|
-
loader=SiglipModelWrapper,
|
|
150
|
+
loader=SiglipModelWrapper,
|
|
150
151
|
name="google/siglip-so400m-patch14-384",
|
|
152
|
+
model_type=["dense"],
|
|
151
153
|
languages=["eng-Latn"],
|
|
152
154
|
revision="9fdffc58afc957d1a03a25b10dba0329ab15c2a3",
|
|
153
155
|
release_date="2024-01-08",
|
|
@@ -160,7 +162,7 @@ siglip_so400m_patch14_384 = ModelMeta(
|
|
|
160
162
|
open_weights=True,
|
|
161
163
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
162
164
|
public_training_data=None,
|
|
163
|
-
framework=["PyTorch"],
|
|
165
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
164
166
|
reference="https://huggingface.co/google/siglip-so400m-patch14-384",
|
|
165
167
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
166
168
|
use_instructions=False,
|
|
@@ -169,8 +171,9 @@ siglip_so400m_patch14_384 = ModelMeta(
|
|
|
169
171
|
)
|
|
170
172
|
|
|
171
173
|
siglip_so400m_patch16_256_i18n = ModelMeta(
|
|
172
|
-
loader=SiglipModelWrapper,
|
|
174
|
+
loader=SiglipModelWrapper,
|
|
173
175
|
name="google/siglip-so400m-patch16-256-i18n",
|
|
176
|
+
model_type=["dense"],
|
|
174
177
|
languages=["eng-Latn"],
|
|
175
178
|
revision="365d321c0cfdea96bc28e3a29787a11a062681a1",
|
|
176
179
|
release_date="2024-01-08",
|
|
@@ -183,7 +186,7 @@ siglip_so400m_patch16_256_i18n = ModelMeta(
|
|
|
183
186
|
open_weights=True,
|
|
184
187
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
185
188
|
public_training_data=None,
|
|
186
|
-
framework=["PyTorch"],
|
|
189
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
187
190
|
reference="https://huggingface.co/google/siglip-so400m-patch16-256-i18n",
|
|
188
191
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
189
192
|
use_instructions=False,
|
|
@@ -192,8 +195,9 @@ siglip_so400m_patch16_256_i18n = ModelMeta(
|
|
|
192
195
|
)
|
|
193
196
|
|
|
194
197
|
siglip_base_patch16_256_multilingual = ModelMeta(
|
|
195
|
-
loader=SiglipModelWrapper,
|
|
198
|
+
loader=SiglipModelWrapper,
|
|
196
199
|
name="google/siglip-base-patch16-256-multilingual",
|
|
200
|
+
model_type=["dense"],
|
|
197
201
|
languages=["eng-Latn"],
|
|
198
202
|
revision="8952a4eafcde3cb7ab46b1dd629b33f8784ca9c6",
|
|
199
203
|
release_date="2024-01-08",
|
|
@@ -206,7 +210,7 @@ siglip_base_patch16_256_multilingual = ModelMeta(
|
|
|
206
210
|
open_weights=True,
|
|
207
211
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
208
212
|
public_training_data=None,
|
|
209
|
-
framework=["PyTorch"],
|
|
213
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
210
214
|
reference="https://huggingface.co/google/siglip-base-patch16-256-multilingual",
|
|
211
215
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
212
216
|
use_instructions=False,
|
|
@@ -215,8 +219,9 @@ siglip_base_patch16_256_multilingual = ModelMeta(
|
|
|
215
219
|
)
|
|
216
220
|
|
|
217
221
|
siglip_base_patch16_256 = ModelMeta(
|
|
218
|
-
loader=SiglipModelWrapper,
|
|
222
|
+
loader=SiglipModelWrapper,
|
|
219
223
|
name="google/siglip-base-patch16-256",
|
|
224
|
+
model_type=["dense"],
|
|
220
225
|
languages=["eng-Latn"],
|
|
221
226
|
revision="b078df89e446d623010d890864d4207fe6399f61",
|
|
222
227
|
release_date="2024-01-08",
|
|
@@ -229,7 +234,7 @@ siglip_base_patch16_256 = ModelMeta(
|
|
|
229
234
|
open_weights=True,
|
|
230
235
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
231
236
|
public_training_data=None,
|
|
232
|
-
framework=["PyTorch"],
|
|
237
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
233
238
|
reference="https://huggingface.co/google/siglip-base-patch16-256",
|
|
234
239
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
235
240
|
use_instructions=False,
|
|
@@ -238,8 +243,9 @@ siglip_base_patch16_256 = ModelMeta(
|
|
|
238
243
|
)
|
|
239
244
|
|
|
240
245
|
siglip_base_patch16_512 = ModelMeta(
|
|
241
|
-
loader=SiglipModelWrapper,
|
|
246
|
+
loader=SiglipModelWrapper,
|
|
242
247
|
name="google/siglip-base-patch16-512",
|
|
248
|
+
model_type=["dense"],
|
|
243
249
|
languages=["eng-Latn"],
|
|
244
250
|
revision="753a949581523b60257d93e18391e8c27f72eb22",
|
|
245
251
|
release_date="2024-01-08",
|
|
@@ -252,7 +258,7 @@ siglip_base_patch16_512 = ModelMeta(
|
|
|
252
258
|
open_weights=True,
|
|
253
259
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
254
260
|
public_training_data=None,
|
|
255
|
-
framework=["PyTorch"],
|
|
261
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
256
262
|
reference="https://huggingface.co/google/siglip-base-patch16-512",
|
|
257
263
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
258
264
|
use_instructions=False,
|
|
@@ -261,8 +267,9 @@ siglip_base_patch16_512 = ModelMeta(
|
|
|
261
267
|
)
|
|
262
268
|
|
|
263
269
|
siglip_base_patch16_384 = ModelMeta(
|
|
264
|
-
loader=SiglipModelWrapper,
|
|
270
|
+
loader=SiglipModelWrapper,
|
|
265
271
|
name="google/siglip-base-patch16-384",
|
|
272
|
+
model_type=["dense"],
|
|
266
273
|
languages=["eng-Latn"],
|
|
267
274
|
revision="41aec1c83b32e0a6fca20ad88ba058aa5b5ea394",
|
|
268
275
|
release_date="2024-01-08",
|
|
@@ -275,7 +282,7 @@ siglip_base_patch16_384 = ModelMeta(
|
|
|
275
282
|
open_weights=True,
|
|
276
283
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
277
284
|
public_training_data=None,
|
|
278
|
-
framework=["PyTorch"],
|
|
285
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
279
286
|
reference="https://huggingface.co/google/siglip-base-patch16-384",
|
|
280
287
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
281
288
|
use_instructions=False,
|
|
@@ -284,8 +291,9 @@ siglip_base_patch16_384 = ModelMeta(
|
|
|
284
291
|
)
|
|
285
292
|
|
|
286
293
|
siglip_base_patch16_224 = ModelMeta(
|
|
287
|
-
loader=SiglipModelWrapper,
|
|
294
|
+
loader=SiglipModelWrapper,
|
|
288
295
|
name="google/siglip-base-patch16-224",
|
|
296
|
+
model_type=["dense"],
|
|
289
297
|
languages=["eng-Latn"],
|
|
290
298
|
revision="7fd15f0689c79d79e38b1c2e2e2370a7bf2761ed",
|
|
291
299
|
release_date="2024-01-08",
|
|
@@ -298,7 +306,7 @@ siglip_base_patch16_224 = ModelMeta(
|
|
|
298
306
|
open_weights=True,
|
|
299
307
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
300
308
|
public_training_data=None,
|
|
301
|
-
framework=["PyTorch"],
|
|
309
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
302
310
|
reference="https://huggingface.co/google/siglip-base-patch16-224",
|
|
303
311
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
304
312
|
use_instructions=False,
|
|
@@ -307,8 +315,9 @@ siglip_base_patch16_224 = ModelMeta(
|
|
|
307
315
|
)
|
|
308
316
|
|
|
309
317
|
siglip_large_patch16_256 = ModelMeta(
|
|
310
|
-
loader=SiglipModelWrapper,
|
|
318
|
+
loader=SiglipModelWrapper,
|
|
311
319
|
name="google/siglip-large-patch16-256",
|
|
320
|
+
model_type=["dense"],
|
|
312
321
|
languages=["eng-Latn"],
|
|
313
322
|
revision="d0da9f876e7d66b4e250cd2450c3ba2ce735e447",
|
|
314
323
|
release_date="2024-01-08",
|
|
@@ -321,7 +330,7 @@ siglip_large_patch16_256 = ModelMeta(
|
|
|
321
330
|
open_weights=True,
|
|
322
331
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
323
332
|
public_training_data=None,
|
|
324
|
-
framework=["PyTorch"],
|
|
333
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
325
334
|
reference="https://huggingface.co/google/siglip-large-patch16-256",
|
|
326
335
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
327
336
|
use_instructions=False,
|
|
@@ -330,8 +339,9 @@ siglip_large_patch16_256 = ModelMeta(
|
|
|
330
339
|
)
|
|
331
340
|
|
|
332
341
|
siglip_large_patch16_384 = ModelMeta(
|
|
333
|
-
loader=SiglipModelWrapper,
|
|
342
|
+
loader=SiglipModelWrapper,
|
|
334
343
|
name="google/siglip-large-patch16-384",
|
|
344
|
+
model_type=["dense"],
|
|
335
345
|
languages=["eng-Latn"],
|
|
336
346
|
revision="ce005573a40965dfd21fd937fbdeeebf2439fc35",
|
|
337
347
|
release_date="2024-01-08",
|
|
@@ -344,7 +354,7 @@ siglip_large_patch16_384 = ModelMeta(
|
|
|
344
354
|
open_weights=True,
|
|
345
355
|
public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
|
|
346
356
|
public_training_data=None,
|
|
347
|
-
framework=["PyTorch"],
|
|
357
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
348
358
|
reference="https://huggingface.co/google/siglip-large-patch16-384",
|
|
349
359
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
350
360
|
use_instructions=False,
|
|
@@ -0,0 +1,416 @@
|
|
|
1
|
+
"""
|
|
2
|
+
SauerkrautLM Visual Document Retrieval Models - MTEB Integration
|
|
3
|
+
|
|
4
|
+
This module provides MTEB wrappers for SauerkrautLM ColPali-style models:
|
|
5
|
+
- SLM-ColQwen3 (Qwen3-VL backbone)
|
|
6
|
+
- SLM-ColLFM2 (LFM2 backbone)
|
|
7
|
+
- SLM-ColMinistral3 (Ministral3 backbone)
|
|
8
|
+
|
|
9
|
+
Based on:
|
|
10
|
+
- MTEB ColPali implementation: mteb/models/model_implementations/colpali_models.py
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
from __future__ import annotations
|
|
14
|
+
|
|
15
|
+
import logging
|
|
16
|
+
from typing import Any
|
|
17
|
+
|
|
18
|
+
import torch
|
|
19
|
+
from torch.utils.data import DataLoader
|
|
20
|
+
from tqdm.auto import tqdm
|
|
21
|
+
|
|
22
|
+
from mteb._requires_package import (
|
|
23
|
+
requires_image_dependencies,
|
|
24
|
+
requires_package,
|
|
25
|
+
)
|
|
26
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
27
|
+
from mteb.models.abs_encoder import AbsEncoder
|
|
28
|
+
from mteb.models.model_implementations.colpali_models import (
|
|
29
|
+
COLPALI_CITATION,
|
|
30
|
+
COLPALI_TRAINING_DATA,
|
|
31
|
+
)
|
|
32
|
+
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
33
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
34
|
+
|
|
35
|
+
logger = logging.getLogger(__name__)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
SUPPORTED_LANGUAGES = [
|
|
39
|
+
"eng-Latn", # English
|
|
40
|
+
"deu-Latn", # German
|
|
41
|
+
"fra-Latn", # French
|
|
42
|
+
"spa-Latn", # Spanish
|
|
43
|
+
"ita-Latn", # Italian
|
|
44
|
+
"por-Latn", # Portuguese
|
|
45
|
+
]
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
class SLMBaseWrapper(AbsEncoder):
|
|
49
|
+
"""
|
|
50
|
+
Base wrapper for SauerkrautLM multi-vector embedding models.
|
|
51
|
+
|
|
52
|
+
All our models use late interaction (MaxSim) for retrieval scoring.
|
|
53
|
+
"""
|
|
54
|
+
|
|
55
|
+
model_class = None
|
|
56
|
+
processor_class = None
|
|
57
|
+
model_name_prefix = "SLM"
|
|
58
|
+
|
|
59
|
+
def __init__(
|
|
60
|
+
self,
|
|
61
|
+
model_name: str,
|
|
62
|
+
revision: str | None = None,
|
|
63
|
+
device: str | None = None,
|
|
64
|
+
use_flash_attn: bool = True,
|
|
65
|
+
**kwargs,
|
|
66
|
+
):
|
|
67
|
+
requires_image_dependencies()
|
|
68
|
+
requires_package(
|
|
69
|
+
self, "sauerkrautlm_colpali", model_name, "pip install sauerkrautlm-colpali"
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
|
73
|
+
self._load_model_and_processor(model_name, revision, use_flash_attn, **kwargs)
|
|
74
|
+
self.mdl = self.mdl.to(self.device)
|
|
75
|
+
self.mdl.eval()
|
|
76
|
+
|
|
77
|
+
def _load_model_and_processor(self, model_name, revision, use_flash_attn, **kwargs):
|
|
78
|
+
"""Override in subclasses to load specific model/processor."""
|
|
79
|
+
raise NotImplementedError
|
|
80
|
+
|
|
81
|
+
def encode(
|
|
82
|
+
self,
|
|
83
|
+
inputs: DataLoader[BatchedInput],
|
|
84
|
+
*,
|
|
85
|
+
task_metadata: TaskMetadata,
|
|
86
|
+
hf_split: str,
|
|
87
|
+
hf_subset: str,
|
|
88
|
+
prompt_type: PromptType | None = None,
|
|
89
|
+
**kwargs: Any,
|
|
90
|
+
) -> Array:
|
|
91
|
+
text_embeddings = None
|
|
92
|
+
image_embeddings = None
|
|
93
|
+
|
|
94
|
+
if "text" in inputs.dataset.features:
|
|
95
|
+
text_embeddings = self.get_text_embeddings(inputs, **kwargs)
|
|
96
|
+
if "image" in inputs.dataset.features:
|
|
97
|
+
image_embeddings = self.get_image_embeddings(inputs, **kwargs)
|
|
98
|
+
|
|
99
|
+
if text_embeddings is not None and image_embeddings is not None:
|
|
100
|
+
if len(text_embeddings) != len(image_embeddings):
|
|
101
|
+
raise ValueError(
|
|
102
|
+
"The number of texts and images must have the same length"
|
|
103
|
+
)
|
|
104
|
+
fused_embeddings = text_embeddings + image_embeddings
|
|
105
|
+
return fused_embeddings
|
|
106
|
+
elif text_embeddings is not None:
|
|
107
|
+
return text_embeddings
|
|
108
|
+
elif image_embeddings is not None:
|
|
109
|
+
return image_embeddings
|
|
110
|
+
raise ValueError("No text or image features found in inputs")
|
|
111
|
+
|
|
112
|
+
def encode_input(self, inputs):
|
|
113
|
+
"""Forward pass through the model."""
|
|
114
|
+
return self.mdl(**inputs)
|
|
115
|
+
|
|
116
|
+
def _move_to_device(self, inputs: dict) -> dict:
|
|
117
|
+
"""Move all tensor inputs to the model's device."""
|
|
118
|
+
result = {}
|
|
119
|
+
for k, v in inputs.items():
|
|
120
|
+
if isinstance(v, torch.Tensor):
|
|
121
|
+
result[k] = v.to(self.device)
|
|
122
|
+
else:
|
|
123
|
+
result[k] = v
|
|
124
|
+
return result
|
|
125
|
+
|
|
126
|
+
def get_image_embeddings(
|
|
127
|
+
self,
|
|
128
|
+
images: DataLoader,
|
|
129
|
+
batch_size: int = 32,
|
|
130
|
+
**kwargs,
|
|
131
|
+
) -> torch.Tensor:
|
|
132
|
+
import torchvision.transforms.functional as F
|
|
133
|
+
|
|
134
|
+
all_embeds = []
|
|
135
|
+
|
|
136
|
+
with torch.no_grad():
|
|
137
|
+
for batch in tqdm(images, desc="Encoding images"):
|
|
138
|
+
from PIL import Image
|
|
139
|
+
|
|
140
|
+
imgs = [
|
|
141
|
+
F.to_pil_image(b) if not isinstance(b, Image.Image) else b
|
|
142
|
+
for b in batch["image"]
|
|
143
|
+
]
|
|
144
|
+
inputs = self.processor.process_images(imgs)
|
|
145
|
+
inputs = self._move_to_device(inputs)
|
|
146
|
+
outs = self.encode_input(inputs)
|
|
147
|
+
all_embeds.extend(outs.cpu().to(torch.float32))
|
|
148
|
+
|
|
149
|
+
padded = torch.nn.utils.rnn.pad_sequence(
|
|
150
|
+
all_embeds, batch_first=True, padding_value=0
|
|
151
|
+
)
|
|
152
|
+
return padded
|
|
153
|
+
|
|
154
|
+
def get_text_embeddings(
|
|
155
|
+
self,
|
|
156
|
+
texts: DataLoader,
|
|
157
|
+
batch_size: int = 32,
|
|
158
|
+
**kwargs,
|
|
159
|
+
) -> torch.Tensor:
|
|
160
|
+
all_embeds = []
|
|
161
|
+
|
|
162
|
+
with torch.no_grad():
|
|
163
|
+
for batch in tqdm(texts, desc="Encoding texts"):
|
|
164
|
+
inputs = self.processor.process_queries(batch["text"])
|
|
165
|
+
inputs = self._move_to_device(inputs)
|
|
166
|
+
outs = self.encode_input(inputs)
|
|
167
|
+
all_embeds.extend(outs.cpu().to(torch.float32))
|
|
168
|
+
|
|
169
|
+
padded = torch.nn.utils.rnn.pad_sequence(
|
|
170
|
+
all_embeds, batch_first=True, padding_value=0
|
|
171
|
+
)
|
|
172
|
+
return padded
|
|
173
|
+
|
|
174
|
+
def calculate_probs(
|
|
175
|
+
self,
|
|
176
|
+
text_embeddings: torch.Tensor,
|
|
177
|
+
image_embeddings: torch.Tensor,
|
|
178
|
+
) -> torch.Tensor:
|
|
179
|
+
scores = self.similarity(text_embeddings, image_embeddings).T
|
|
180
|
+
return scores.softmax(dim=-1)
|
|
181
|
+
|
|
182
|
+
def similarity(
|
|
183
|
+
self,
|
|
184
|
+
a: torch.Tensor | list,
|
|
185
|
+
b: torch.Tensor | list,
|
|
186
|
+
) -> torch.Tensor:
|
|
187
|
+
return self.processor.score(a, b, device=self.device)
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
class SLMColQwen3Wrapper(SLMBaseWrapper):
|
|
191
|
+
"""Wrapper for SLM-ColQwen3 models (Qwen3-VL backbone)."""
|
|
192
|
+
|
|
193
|
+
def _load_model_and_processor(self, model_name, revision, use_flash_attn, **kwargs):
|
|
194
|
+
from sauerkrautlm_colpali.models.qwen3.colqwen3 import (
|
|
195
|
+
ColQwen3,
|
|
196
|
+
ColQwen3Processor,
|
|
197
|
+
)
|
|
198
|
+
|
|
199
|
+
self.mdl = ColQwen3.from_pretrained(
|
|
200
|
+
model_name,
|
|
201
|
+
torch_dtype=torch.bfloat16,
|
|
202
|
+
attn_implementation="flash_attention_2" if use_flash_attn else "eager",
|
|
203
|
+
revision=revision,
|
|
204
|
+
**kwargs,
|
|
205
|
+
)
|
|
206
|
+
|
|
207
|
+
self.processor = ColQwen3Processor.from_pretrained(
|
|
208
|
+
model_name,
|
|
209
|
+
revision=revision,
|
|
210
|
+
)
|
|
211
|
+
|
|
212
|
+
logger.info(f"SLM-ColQwen3 loaded: dim={self.mdl.dim}, device={self.device}")
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
class SLMColLFM2Wrapper(SLMBaseWrapper):
|
|
216
|
+
"""Wrapper for SLM-ColLFM2 models (LFM2 backbone)."""
|
|
217
|
+
|
|
218
|
+
def _load_model_and_processor(self, model_name, revision, use_flash_attn, **kwargs):
|
|
219
|
+
from sauerkrautlm_colpali.models.lfm2.collfm2 import ColLFM2, ColLFM2Processor
|
|
220
|
+
|
|
221
|
+
self.mdl = ColLFM2.from_pretrained(
|
|
222
|
+
model_name,
|
|
223
|
+
torch_dtype=torch.bfloat16,
|
|
224
|
+
revision=revision,
|
|
225
|
+
**kwargs,
|
|
226
|
+
)
|
|
227
|
+
|
|
228
|
+
self.processor = ColLFM2Processor.from_pretrained(
|
|
229
|
+
model_name,
|
|
230
|
+
revision=revision,
|
|
231
|
+
)
|
|
232
|
+
|
|
233
|
+
logger.info(f"SLM-ColLFM2 loaded: dim={self.mdl.dim}, device={self.device}")
|
|
234
|
+
|
|
235
|
+
|
|
236
|
+
class SLMColMinistral3Wrapper(SLMBaseWrapper):
|
|
237
|
+
"""Wrapper for SLM-ColMinistral3 models (Ministral3 backbone)."""
|
|
238
|
+
|
|
239
|
+
def _load_model_and_processor(self, model_name, revision, use_flash_attn, **kwargs):
|
|
240
|
+
from sauerkrautlm_colpali.models.ministral3.colministral3 import (
|
|
241
|
+
ColMinistral3,
|
|
242
|
+
ColMinistral3Processor,
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
self.mdl = ColMinistral3.from_pretrained(
|
|
246
|
+
model_name,
|
|
247
|
+
torch_dtype=torch.bfloat16,
|
|
248
|
+
)
|
|
249
|
+
|
|
250
|
+
self.processor = ColMinistral3Processor.from_pretrained(model_name)
|
|
251
|
+
|
|
252
|
+
logger.info(
|
|
253
|
+
f"SLM-ColMinistral3 loaded: dim={self.mdl.dim}, device={self.device}"
|
|
254
|
+
)
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
SAUERKRAUTLM_CITATION = """
|
|
258
|
+
@misc{sauerkrautlm-colpali-2025,
|
|
259
|
+
title={SauerkrautLM-ColPali: Multi-Vector Vision Retrieval Models},
|
|
260
|
+
author={David Golchinfar},
|
|
261
|
+
organization={VAGO Solutions},
|
|
262
|
+
year={2025},
|
|
263
|
+
url={https://github.com/VAGOsolutions/sauerkrautlm-colpali}
|
|
264
|
+
}
|
|
265
|
+
"""
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
slm_colqwen3_1_7b_turbo = ModelMeta(
|
|
269
|
+
loader=SLMColQwen3Wrapper,
|
|
270
|
+
name="VAGOsolutions/SauerkrautLM-ColQwen3-1.7b-Turbo-v0.1",
|
|
271
|
+
languages=SUPPORTED_LANGUAGES,
|
|
272
|
+
revision="19c295a18e057d6d82754f627c09408117ffdb66",
|
|
273
|
+
release_date="2025-12-20",
|
|
274
|
+
modalities=["image", "text"],
|
|
275
|
+
model_type=["late-interaction"],
|
|
276
|
+
n_parameters=1_756_572_288,
|
|
277
|
+
memory_usage_mb=3350,
|
|
278
|
+
max_tokens=262144,
|
|
279
|
+
embed_dim=128,
|
|
280
|
+
license="apache-2.0",
|
|
281
|
+
open_weights=True,
|
|
282
|
+
public_training_code=None,
|
|
283
|
+
public_training_data=None,
|
|
284
|
+
framework=["ColPali"],
|
|
285
|
+
reference="https://huggingface.co/VAGOsolutions/SauerkrautLM-ColQwen3-1.7b-Turbo-v0.1",
|
|
286
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
287
|
+
use_instructions=True,
|
|
288
|
+
adapted_from="Qwen/Qwen3-VL-2B-Instruct",
|
|
289
|
+
training_datasets=COLPALI_TRAINING_DATA,
|
|
290
|
+
citation=SAUERKRAUTLM_CITATION + COLPALI_CITATION,
|
|
291
|
+
)
|
|
292
|
+
|
|
293
|
+
slm_colqwen3_2b = ModelMeta(
|
|
294
|
+
loader=SLMColQwen3Wrapper,
|
|
295
|
+
name="VAGOsolutions/SauerkrautLM-ColQwen3-2b-v0.1",
|
|
296
|
+
languages=SUPPORTED_LANGUAGES,
|
|
297
|
+
revision="48f699713c10af754684e12060a2af9266462cc9",
|
|
298
|
+
release_date="2025-12-20",
|
|
299
|
+
modalities=["image", "text"],
|
|
300
|
+
model_type=["late-interaction"],
|
|
301
|
+
n_parameters=2_127_794_304,
|
|
302
|
+
memory_usage_mb=4058,
|
|
303
|
+
max_tokens=262144,
|
|
304
|
+
embed_dim=128,
|
|
305
|
+
license="apache-2.0",
|
|
306
|
+
open_weights=True,
|
|
307
|
+
public_training_code=None,
|
|
308
|
+
public_training_data=None,
|
|
309
|
+
framework=["ColPali"],
|
|
310
|
+
reference="https://huggingface.co/VAGOsolutions/SauerkrautLM-ColQwen3-2b-v0.1",
|
|
311
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
312
|
+
use_instructions=True,
|
|
313
|
+
adapted_from="Qwen/Qwen3-VL-2B-Instruct",
|
|
314
|
+
training_datasets=COLPALI_TRAINING_DATA,
|
|
315
|
+
citation=SAUERKRAUTLM_CITATION + COLPALI_CITATION,
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
slm_colqwen3_4b = ModelMeta(
|
|
319
|
+
loader=SLMColQwen3Wrapper,
|
|
320
|
+
name="VAGOsolutions/SauerkrautLM-ColQwen3-4b-v0.1",
|
|
321
|
+
languages=SUPPORTED_LANGUAGES,
|
|
322
|
+
revision="b635fbb3ab145f07608ed10a85def33544de1723",
|
|
323
|
+
release_date="2025-12-20",
|
|
324
|
+
modalities=["image", "text"],
|
|
325
|
+
model_type=["late-interaction"],
|
|
326
|
+
n_parameters=4_438_143_616,
|
|
327
|
+
memory_usage_mb=8465,
|
|
328
|
+
max_tokens=262144,
|
|
329
|
+
embed_dim=128,
|
|
330
|
+
license="apache-2.0",
|
|
331
|
+
open_weights=True,
|
|
332
|
+
public_training_code=None,
|
|
333
|
+
public_training_data=None,
|
|
334
|
+
framework=["ColPali"],
|
|
335
|
+
reference="https://huggingface.co/VAGOsolutions/SauerkrautLM-ColQwen3-4b-v0.1",
|
|
336
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
337
|
+
use_instructions=True,
|
|
338
|
+
adapted_from="Qwen/Qwen3-VL-4B-Instruct",
|
|
339
|
+
training_datasets=COLPALI_TRAINING_DATA,
|
|
340
|
+
citation=SAUERKRAUTLM_CITATION + COLPALI_CITATION,
|
|
341
|
+
)
|
|
342
|
+
|
|
343
|
+
slm_colqwen3_8b = ModelMeta(
|
|
344
|
+
loader=SLMColQwen3Wrapper,
|
|
345
|
+
name="VAGOsolutions/SauerkrautLM-ColQwen3-8b-v0.1",
|
|
346
|
+
languages=SUPPORTED_LANGUAGES,
|
|
347
|
+
revision="36ac136e451a7b8d8229725d69d4ec23aa4f03c8",
|
|
348
|
+
release_date="2025-12-20",
|
|
349
|
+
modalities=["image", "text"],
|
|
350
|
+
model_type=["late-interaction"],
|
|
351
|
+
n_parameters=8_145_318_256,
|
|
352
|
+
memory_usage_mb=15536,
|
|
353
|
+
max_tokens=262144,
|
|
354
|
+
embed_dim=128,
|
|
355
|
+
license="apache-2.0",
|
|
356
|
+
open_weights=True,
|
|
357
|
+
public_training_code=None,
|
|
358
|
+
public_training_data=None,
|
|
359
|
+
framework=["ColPali"],
|
|
360
|
+
reference="https://huggingface.co/VAGOsolutions/SauerkrautLM-ColQwen3-8b-v0.1",
|
|
361
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
362
|
+
use_instructions=True,
|
|
363
|
+
adapted_from="Qwen/Qwen3-VL-8B-Instruct",
|
|
364
|
+
training_datasets=COLPALI_TRAINING_DATA,
|
|
365
|
+
citation=SAUERKRAUTLM_CITATION + COLPALI_CITATION,
|
|
366
|
+
)
|
|
367
|
+
|
|
368
|
+
slm_collfm2_450m = ModelMeta(
|
|
369
|
+
loader=SLMColLFM2Wrapper,
|
|
370
|
+
name="VAGOsolutions/SauerkrautLM-ColLFM2-450M-v0.1",
|
|
371
|
+
languages=SUPPORTED_LANGUAGES,
|
|
372
|
+
revision="a65223fd6633f331ccff4483e47575c3c620dc60",
|
|
373
|
+
release_date="2025-12-20",
|
|
374
|
+
modalities=["image", "text"],
|
|
375
|
+
model_type=["late-interaction"],
|
|
376
|
+
n_parameters=450_953_856,
|
|
377
|
+
memory_usage_mb=860,
|
|
378
|
+
max_tokens=32768,
|
|
379
|
+
embed_dim=128,
|
|
380
|
+
license="https://huggingface.co/LiquidAI/LFM2-VL-450M/blob/main/LICENSE",
|
|
381
|
+
open_weights=True,
|
|
382
|
+
public_training_code=None,
|
|
383
|
+
public_training_data=None,
|
|
384
|
+
framework=["ColPali"],
|
|
385
|
+
reference="https://huggingface.co/VAGOsolutions/SauerkrautLM-ColLFM2-450M-v0.1",
|
|
386
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
387
|
+
use_instructions=True,
|
|
388
|
+
adapted_from="LiquidAI/LFM2-VL-450M",
|
|
389
|
+
training_datasets=COLPALI_TRAINING_DATA,
|
|
390
|
+
citation=SAUERKRAUTLM_CITATION + COLPALI_CITATION,
|
|
391
|
+
)
|
|
392
|
+
|
|
393
|
+
slm_colministral3_3b = ModelMeta(
|
|
394
|
+
loader=SLMColMinistral3Wrapper,
|
|
395
|
+
name="VAGOsolutions/SauerkrautLM-ColMinistral3-3b-v0.1",
|
|
396
|
+
languages=SUPPORTED_LANGUAGES,
|
|
397
|
+
revision="54aa3ffbbce20471fdcc4afc07d13989c65e71b8",
|
|
398
|
+
release_date="2025-12-20",
|
|
399
|
+
modalities=["image", "text"],
|
|
400
|
+
model_type=["late-interaction"],
|
|
401
|
+
n_parameters=4_252_136_448,
|
|
402
|
+
memory_usage_mb=8110,
|
|
403
|
+
max_tokens=262144,
|
|
404
|
+
embed_dim=128,
|
|
405
|
+
license="apache-2.0",
|
|
406
|
+
open_weights=True,
|
|
407
|
+
public_training_code=None,
|
|
408
|
+
public_training_data=None,
|
|
409
|
+
framework=["ColPali"],
|
|
410
|
+
reference="https://huggingface.co/VAGOsolutions/SauerkrautLM-ColMinistral3-3b-v0.1",
|
|
411
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
412
|
+
use_instructions=True,
|
|
413
|
+
adapted_from="mistralai/Ministral-3B-Instruct-2410",
|
|
414
|
+
training_datasets=COLPALI_TRAINING_DATA,
|
|
415
|
+
citation=SAUERKRAUTLM_CITATION + COLPALI_CITATION,
|
|
416
|
+
)
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
"""ATLES Champion Embedding Model for MTEB."""
|
|
2
|
+
|
|
3
|
+
from mteb.models.model_meta import ModelMeta
|
|
4
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
5
|
+
|
|
6
|
+
spartan8806_atles_champion_embedding = ModelMeta(
|
|
7
|
+
loader=sentence_transformers_loader,
|
|
8
|
+
name="spartan8806/atles-champion-embedding",
|
|
9
|
+
model_type=["dense"],
|
|
10
|
+
languages=["eng-Latn"],
|
|
11
|
+
open_weights=True,
|
|
12
|
+
revision="d4c74d7000bbd25f3597fc0f2dcde59ef1386e8f",
|
|
13
|
+
release_date="2025-11-15",
|
|
14
|
+
n_parameters=110_000_000,
|
|
15
|
+
memory_usage_mb=420,
|
|
16
|
+
max_tokens=512,
|
|
17
|
+
embed_dim=768,
|
|
18
|
+
license="apache-2.0",
|
|
19
|
+
similarity_fn_name="cosine",
|
|
20
|
+
framework=["Sentence Transformers", "safetensors", "Transformers"],
|
|
21
|
+
reference="https://huggingface.co/spartan8806/atles-champion-embedding",
|
|
22
|
+
use_instructions=False,
|
|
23
|
+
training_datasets={"STSBenchmark"},
|
|
24
|
+
adapted_from="sentence-transformers/all-mpnet-base-v2",
|
|
25
|
+
public_training_code=None,
|
|
26
|
+
public_training_data=None,
|
|
27
|
+
citation="""@article{conner2025epistemic,
|
|
28
|
+
title={The Epistemic Barrier: How RLHF Makes AI Consciousness Empirically Undecidable},
|
|
29
|
+
author={Conner (spartan8806)},
|
|
30
|
+
journal={ATLES Research Papers},
|
|
31
|
+
year={2025},
|
|
32
|
+
note={Cross-model validation study (Phoenix, Grok, Gemini, Claude)}
|
|
33
|
+
}""",
|
|
34
|
+
)
|