mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -7,6 +7,7 @@ greennode_embedding_large_vn_v1_training_data = {
|
|
|
7
7
|
|
|
8
8
|
greennode_embedding_large_vn_v1 = ModelMeta(
|
|
9
9
|
name="GreenNode/GreenNode-Embedding-Large-VN-V1",
|
|
10
|
+
model_type=["dense"],
|
|
10
11
|
revision="660def1f6e1c8ecdf39f6f9c95829e3cf0cef837",
|
|
11
12
|
release_date="2024-04-11",
|
|
12
13
|
languages=[
|
|
@@ -21,7 +22,7 @@ greennode_embedding_large_vn_v1 = ModelMeta(
|
|
|
21
22
|
max_tokens=8194,
|
|
22
23
|
reference="https://huggingface.co/GreenNode/GreenNode-Embedding-Large-VN-V1",
|
|
23
24
|
similarity_fn_name="cosine",
|
|
24
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
25
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
25
26
|
use_instructions=False,
|
|
26
27
|
public_training_code=None,
|
|
27
28
|
public_training_data="https://huggingface.co/datasets/GreenNode/GreenNode-Table-Markdown-Retrieval-VN",
|
|
@@ -31,6 +32,7 @@ greennode_embedding_large_vn_v1 = ModelMeta(
|
|
|
31
32
|
|
|
32
33
|
greennode_embedding_large_vn_mixed_v1 = ModelMeta(
|
|
33
34
|
name="GreenNode/GreenNode-Embedding-Large-VN-Mixed-V1",
|
|
35
|
+
model_type=["dense"],
|
|
34
36
|
revision="1d3dddb3862292dab4bd3eddf0664c0335ad5843",
|
|
35
37
|
release_date="2024-04-11",
|
|
36
38
|
languages=[
|
|
@@ -45,7 +47,7 @@ greennode_embedding_large_vn_mixed_v1 = ModelMeta(
|
|
|
45
47
|
max_tokens=8194,
|
|
46
48
|
reference="https://huggingface.co/GreenNode/GreenNode-Embedding-Large-VN-Mixed-V1",
|
|
47
49
|
similarity_fn_name="cosine",
|
|
48
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
50
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
49
51
|
use_instructions=False,
|
|
50
52
|
public_training_code=None,
|
|
51
53
|
public_training_data="https://huggingface.co/datasets/GreenNode/GreenNode-Table-Markdown-Retrieval-VN",
|
|
@@ -55,6 +57,7 @@ greennode_embedding_large_vn_mixed_v1 = ModelMeta(
|
|
|
55
57
|
|
|
56
58
|
aiteamvn_vietnamese_embeddings = ModelMeta(
|
|
57
59
|
name="AITeamVN/Vietnamese_Embedding",
|
|
60
|
+
model_type=["dense"],
|
|
58
61
|
revision="fcbbb905e6c3757d421aaa5db6fd7c53d038f6fb",
|
|
59
62
|
release_date="2024-03-17",
|
|
60
63
|
languages=[
|
|
@@ -69,16 +72,23 @@ aiteamvn_vietnamese_embeddings = ModelMeta(
|
|
|
69
72
|
max_tokens=8194,
|
|
70
73
|
reference="https://huggingface.co/AITeamVN/Vietnamese_Embedding",
|
|
71
74
|
similarity_fn_name="cosine",
|
|
72
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
75
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
73
76
|
use_instructions=False,
|
|
74
77
|
public_training_code=None,
|
|
75
78
|
public_training_data=None,
|
|
76
79
|
training_datasets=None,
|
|
77
80
|
adapted_from="BAAI/bge-m3",
|
|
81
|
+
citation="""@misc{Vietnamese_Embedding,
|
|
82
|
+
title={Vietnamese_Embedding: Embedding model in Vietnamese language.},
|
|
83
|
+
author={Nguyen Nho Trung, Nguyen Nhat Quang, Nguyen Van Huy},
|
|
84
|
+
year={2025},
|
|
85
|
+
publisher={Huggingface},
|
|
86
|
+
}""",
|
|
78
87
|
)
|
|
79
88
|
|
|
80
89
|
hiieu_halong_embedding = ModelMeta(
|
|
81
90
|
name="hiieu/halong_embedding",
|
|
91
|
+
model_type=["dense"],
|
|
82
92
|
revision="b57776031035f70ed2030d2e35ecc533eb0f8f71",
|
|
83
93
|
release_date="2024-07-06",
|
|
84
94
|
languages=[
|
|
@@ -94,15 +104,22 @@ hiieu_halong_embedding = ModelMeta(
|
|
|
94
104
|
max_tokens=514,
|
|
95
105
|
reference="https://huggingface.co/hiieu/halong_embedding",
|
|
96
106
|
similarity_fn_name="cosine",
|
|
97
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
107
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
98
108
|
public_training_code=None,
|
|
99
109
|
public_training_data=None,
|
|
100
110
|
training_datasets=None,
|
|
101
111
|
adapted_from="intfloat/multilingual-e5-base",
|
|
112
|
+
citation="""@misc{HalongEmbedding,
|
|
113
|
+
title={HalongEmbedding: A Vietnamese Text Embedding},
|
|
114
|
+
author={Ngo Hieu},
|
|
115
|
+
year={2024},
|
|
116
|
+
publisher={Huggingface},
|
|
117
|
+
}""",
|
|
102
118
|
)
|
|
103
119
|
|
|
104
120
|
sup_simcse_vietnamese_phobert_base_ = ModelMeta(
|
|
105
121
|
name="VoVanPhuc/sup-SimCSE-VietNamese-phobert-base",
|
|
122
|
+
model_type=["dense"],
|
|
106
123
|
revision="608779b86741a8acd8c8d38132974ff04086b138",
|
|
107
124
|
release_date="2021-05-26",
|
|
108
125
|
languages=[
|
|
@@ -118,14 +135,29 @@ sup_simcse_vietnamese_phobert_base_ = ModelMeta(
|
|
|
118
135
|
license="apache-2.0",
|
|
119
136
|
public_training_code=None,
|
|
120
137
|
public_training_data=None,
|
|
121
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
138
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
122
139
|
reference="https://huggingface.co/VoVanPhuc/sup-SimCSE-VietNamese-phobert-base",
|
|
123
140
|
similarity_fn_name="cosine",
|
|
124
141
|
training_datasets=None,
|
|
142
|
+
citation="""@article{gao2021simcse,
|
|
143
|
+
title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
|
|
144
|
+
author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
|
|
145
|
+
journal={arXiv preprint arXiv:2104.08821},
|
|
146
|
+
year={2021}
|
|
147
|
+
}
|
|
148
|
+
|
|
149
|
+
@inproceedings{phobert,
|
|
150
|
+
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
|
|
151
|
+
author = {Dat Quoc Nguyen and Anh Tuan Nguyen},
|
|
152
|
+
booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2020},
|
|
153
|
+
year = {2020},
|
|
154
|
+
pages = {1037--1042}
|
|
155
|
+
}""",
|
|
125
156
|
)
|
|
126
157
|
|
|
127
158
|
bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
|
|
128
159
|
name="bkai-foundation-models/vietnamese-bi-encoder",
|
|
160
|
+
model_type=["dense"],
|
|
129
161
|
revision="84f9d9ada0d1a3c37557398b9ae9fcedcdf40be0",
|
|
130
162
|
release_date="2023-09-09",
|
|
131
163
|
languages=[
|
|
@@ -141,8 +173,15 @@ bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
|
|
|
141
173
|
license="apache-2.0",
|
|
142
174
|
public_training_code=None,
|
|
143
175
|
public_training_data=None,
|
|
144
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
176
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
145
177
|
reference="https://huggingface.co/bkai-foundation-models/vietnamese-bi-encoder",
|
|
146
178
|
similarity_fn_name="cosine",
|
|
147
179
|
training_datasets=None,
|
|
180
|
+
citation="""
|
|
181
|
+
@article{duc2024towards,
|
|
182
|
+
title={Towards Comprehensive Vietnamese Retrieval-Augmented Generation and Large Language Models},
|
|
183
|
+
author={Nguyen Quang Duc, Le Hai Son, Nguyen Duc Nhan, Nguyen Dich Nhat Minh, Le Thanh Huong, Dinh Viet Sang},
|
|
184
|
+
journal={arXiv preprint arXiv:2403.01616},
|
|
185
|
+
year={2024}
|
|
186
|
+
}""",
|
|
148
187
|
)
|
|
@@ -247,6 +247,7 @@ visualized_bge_base = ModelMeta(
|
|
|
247
247
|
image_tokens_num=196,
|
|
248
248
|
),
|
|
249
249
|
name="BAAI/bge-visualized-base",
|
|
250
|
+
model_type=["dense"],
|
|
250
251
|
languages=["eng-Latn"],
|
|
251
252
|
revision="98db10b10d22620010d06f11733346e1c98c34aa",
|
|
252
253
|
release_date="2024-06-06",
|
|
@@ -274,6 +275,7 @@ visualized_bge_m3 = ModelMeta(
|
|
|
274
275
|
image_tokens_num=256,
|
|
275
276
|
),
|
|
276
277
|
name="BAAI/bge-visualized-m3",
|
|
278
|
+
model_type=["dense"],
|
|
277
279
|
languages=["eng-Latn"],
|
|
278
280
|
revision="98db10b10d22620010d06f11733346e1c98c34aa",
|
|
279
281
|
release_date="2024-06-06",
|
|
@@ -41,7 +41,7 @@ class VLM2VecWrapper(AbsEncoder):
|
|
|
41
41
|
model_name,
|
|
42
42
|
"pip install flash-attn --no-build-isolation",
|
|
43
43
|
):
|
|
44
|
-
|
|
44
|
+
pass
|
|
45
45
|
|
|
46
46
|
requires_package(self, "peft", model_name, "pip install 'mteb[peft]'")
|
|
47
47
|
from peft import LoraConfig, PeftModel
|
|
@@ -269,6 +269,7 @@ vlm2vec_training_datasets = set(
|
|
|
269
269
|
vlm2vec_lora = ModelMeta(
|
|
270
270
|
loader=VLM2VecWrapper,
|
|
271
271
|
name="TIGER-Lab/VLM2Vec-LoRA",
|
|
272
|
+
model_type=["dense"],
|
|
272
273
|
languages=["eng-Latn"],
|
|
273
274
|
revision="7403b6327958071c1e33c822c7453adadccc7298",
|
|
274
275
|
release_date="2024-10-08",
|
|
@@ -281,7 +282,7 @@ vlm2vec_lora = ModelMeta(
|
|
|
281
282
|
open_weights=True,
|
|
282
283
|
public_training_code="https://github.com/TIGER-AI-Lab/VLM2Vec",
|
|
283
284
|
public_training_data="https://huggingface.co/datasets/TIGER-Lab/MMEB-train",
|
|
284
|
-
framework=["PyTorch"],
|
|
285
|
+
framework=["PyTorch", "Transformers"],
|
|
285
286
|
reference="https://huggingface.co/TIGER-Lab/VLM2Vec-LoRA",
|
|
286
287
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
287
288
|
use_instructions=True,
|
|
@@ -292,6 +293,7 @@ vlm2vec_lora = ModelMeta(
|
|
|
292
293
|
vlm2vec_full = ModelMeta(
|
|
293
294
|
loader=VLM2VecWrapper,
|
|
294
295
|
name="TIGER-Lab/VLM2Vec-Full",
|
|
296
|
+
model_type=["dense"],
|
|
295
297
|
languages=["eng-Latn"],
|
|
296
298
|
revision="e9afa98002097ac2471827ba23ea1f2ddd229480",
|
|
297
299
|
release_date="2024-10-08",
|
|
@@ -304,7 +306,7 @@ vlm2vec_full = ModelMeta(
|
|
|
304
306
|
open_weights=True,
|
|
305
307
|
public_training_code="https://github.com/TIGER-AI-Lab/VLM2Vec",
|
|
306
308
|
public_training_data="https://huggingface.co/TIGER-Lab/VLM2Vec-Full",
|
|
307
|
-
framework=["PyTorch"],
|
|
309
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
308
310
|
reference="https://huggingface.co/TIGER-Lab/VLM2Vec-Full",
|
|
309
311
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
310
312
|
use_instructions=True,
|
|
@@ -25,6 +25,9 @@ VOYAGE_DTYPE_TRANSLATION = {
|
|
|
25
25
|
|
|
26
26
|
# Total token limits per model based on VoyageAI documentation
|
|
27
27
|
VOYAGE_TOTAL_TOKEN_LIMITS = {
|
|
28
|
+
"voyage-4-large": 120_000,
|
|
29
|
+
"voyage-4": 320_000,
|
|
30
|
+
"voyage-4-lite": 1_000_000,
|
|
28
31
|
"voyage-3.5-lite": 1_000_000,
|
|
29
32
|
"voyage-3.5": 320_000,
|
|
30
33
|
"voyage-2": 320_000,
|
|
@@ -206,8 +209,87 @@ model_prompts = {
|
|
|
206
209
|
PromptType.document.value: "document",
|
|
207
210
|
}
|
|
208
211
|
|
|
212
|
+
voyage_4 = ModelMeta(
|
|
213
|
+
name="voyageai/voyage-4",
|
|
214
|
+
model_type=["dense"],
|
|
215
|
+
revision="1",
|
|
216
|
+
release_date="2026-01-15",
|
|
217
|
+
languages=None, # supported languages not specified
|
|
218
|
+
loader=VoyageModel,
|
|
219
|
+
loader_kwargs=dict(
|
|
220
|
+
max_tokens=32000,
|
|
221
|
+
model_prompts=model_prompts,
|
|
222
|
+
),
|
|
223
|
+
max_tokens=32000,
|
|
224
|
+
embed_dim=1024,
|
|
225
|
+
open_weights=False,
|
|
226
|
+
n_parameters=None,
|
|
227
|
+
memory_usage_mb=None,
|
|
228
|
+
license=None,
|
|
229
|
+
reference="https://blog.voyageai.com/2026/01/15/voyage-4/",
|
|
230
|
+
similarity_fn_name="cosine",
|
|
231
|
+
framework=["API"],
|
|
232
|
+
use_instructions=True,
|
|
233
|
+
training_datasets=VOYAGE_TRAINING_DATA,
|
|
234
|
+
public_training_code=None,
|
|
235
|
+
public_training_data=None,
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
voyage_4_lite = ModelMeta(
|
|
239
|
+
name="voyageai/voyage-4-lite",
|
|
240
|
+
model_type=["dense"],
|
|
241
|
+
revision="1",
|
|
242
|
+
release_date="2026-01-15",
|
|
243
|
+
languages=None, # supported languages not specified
|
|
244
|
+
loader=VoyageModel,
|
|
245
|
+
loader_kwargs=dict(
|
|
246
|
+
max_tokens=32000,
|
|
247
|
+
model_prompts=model_prompts,
|
|
248
|
+
),
|
|
249
|
+
max_tokens=32000,
|
|
250
|
+
embed_dim=1024,
|
|
251
|
+
open_weights=False,
|
|
252
|
+
n_parameters=None,
|
|
253
|
+
memory_usage_mb=None,
|
|
254
|
+
license=None,
|
|
255
|
+
reference="https://blog.voyageai.com/2026/01/15/voyage-4/",
|
|
256
|
+
similarity_fn_name="cosine",
|
|
257
|
+
framework=["API"],
|
|
258
|
+
use_instructions=True,
|
|
259
|
+
training_datasets=VOYAGE_TRAINING_DATA,
|
|
260
|
+
public_training_code=None,
|
|
261
|
+
public_training_data=None,
|
|
262
|
+
)
|
|
263
|
+
|
|
264
|
+
voyage_4_large = ModelMeta(
|
|
265
|
+
name="voyageai/voyage-4-large",
|
|
266
|
+
model_type=["dense"],
|
|
267
|
+
revision="1",
|
|
268
|
+
release_date="2026-01-15",
|
|
269
|
+
languages=None, # supported languages not specified
|
|
270
|
+
loader=VoyageModel,
|
|
271
|
+
loader_kwargs=dict(
|
|
272
|
+
max_tokens=32000,
|
|
273
|
+
model_prompts=model_prompts,
|
|
274
|
+
),
|
|
275
|
+
max_tokens=32000,
|
|
276
|
+
embed_dim=1024,
|
|
277
|
+
open_weights=False,
|
|
278
|
+
n_parameters=None,
|
|
279
|
+
memory_usage_mb=None,
|
|
280
|
+
license=None,
|
|
281
|
+
reference="https://blog.voyageai.com/2026/01/15/voyage-4/",
|
|
282
|
+
similarity_fn_name="cosine",
|
|
283
|
+
framework=["API"],
|
|
284
|
+
use_instructions=True,
|
|
285
|
+
training_datasets=VOYAGE_TRAINING_DATA,
|
|
286
|
+
public_training_code=None,
|
|
287
|
+
public_training_data=None,
|
|
288
|
+
)
|
|
289
|
+
|
|
209
290
|
voyage_3_large = ModelMeta(
|
|
210
291
|
name="voyageai/voyage-3-large", # Date of publication of this post https://blog.voyageai.com/2025/01/07/voyage-3-large/
|
|
292
|
+
model_type=["dense"],
|
|
211
293
|
revision="1",
|
|
212
294
|
release_date="2025-01-07",
|
|
213
295
|
languages=None, # supported languages not specified
|
|
@@ -229,11 +311,13 @@ voyage_3_large = ModelMeta(
|
|
|
229
311
|
training_datasets=VOYAGE_TRAINING_DATA,
|
|
230
312
|
public_training_code=None,
|
|
231
313
|
public_training_data=None,
|
|
314
|
+
superseded_by="voyageai/voyage-4-large",
|
|
232
315
|
)
|
|
233
316
|
|
|
234
317
|
|
|
235
318
|
voyage_3_5 = ModelMeta(
|
|
236
319
|
name="voyageai/voyage-3.5",
|
|
320
|
+
model_type=["dense"],
|
|
237
321
|
revision="1",
|
|
238
322
|
release_date="2025-01-21",
|
|
239
323
|
languages=None, # supported languages not specified
|
|
@@ -255,10 +339,12 @@ voyage_3_5 = ModelMeta(
|
|
|
255
339
|
training_datasets=VOYAGE_TRAINING_DATA,
|
|
256
340
|
public_training_code=None,
|
|
257
341
|
public_training_data=None,
|
|
342
|
+
superseded_by="voyageai/voyage-4",
|
|
258
343
|
)
|
|
259
344
|
|
|
260
345
|
voyage_3_5_int8 = ModelMeta(
|
|
261
346
|
name="voyageai/voyage-3.5 (output_dtype=int8)",
|
|
347
|
+
model_type=["dense"],
|
|
262
348
|
revision="1",
|
|
263
349
|
release_date="2025-01-21",
|
|
264
350
|
languages=None, # supported languages not specified
|
|
@@ -285,6 +371,7 @@ voyage_3_5_int8 = ModelMeta(
|
|
|
285
371
|
|
|
286
372
|
voyage_3_5_binary = ModelMeta(
|
|
287
373
|
name="voyageai/voyage-3.5 (output_dtype=binary)",
|
|
374
|
+
model_type=["dense"],
|
|
288
375
|
revision="1",
|
|
289
376
|
release_date="2025-01-21",
|
|
290
377
|
languages=None, # supported languages not specified
|
|
@@ -311,6 +398,7 @@ voyage_3_5_binary = ModelMeta(
|
|
|
311
398
|
|
|
312
399
|
voyage_large_2_instruct = ModelMeta(
|
|
313
400
|
name="voyageai/voyage-large-2-instruct",
|
|
401
|
+
model_type=["dense"],
|
|
314
402
|
revision="1",
|
|
315
403
|
release_date="2024-05-05",
|
|
316
404
|
languages=None, # supported languages not specified
|
|
@@ -336,6 +424,7 @@ voyage_large_2_instruct = ModelMeta(
|
|
|
336
424
|
|
|
337
425
|
voyage_finance_2 = ModelMeta(
|
|
338
426
|
name="voyageai/voyage-finance-2",
|
|
427
|
+
model_type=["dense"],
|
|
339
428
|
revision="1",
|
|
340
429
|
release_date="2024-05-30",
|
|
341
430
|
languages=None, # supported languages not specified
|
|
@@ -361,6 +450,7 @@ voyage_finance_2 = ModelMeta(
|
|
|
361
450
|
|
|
362
451
|
voyage_law_2 = ModelMeta(
|
|
363
452
|
name="voyageai/voyage-law-2",
|
|
453
|
+
model_type=["dense"],
|
|
364
454
|
revision="1",
|
|
365
455
|
release_date="2024-04-15",
|
|
366
456
|
languages=None, # supported languages not specified
|
|
@@ -386,6 +476,7 @@ voyage_law_2 = ModelMeta(
|
|
|
386
476
|
|
|
387
477
|
voyage_code_2 = ModelMeta(
|
|
388
478
|
name="voyageai/voyage-code-2",
|
|
479
|
+
model_type=["dense"],
|
|
389
480
|
revision="1",
|
|
390
481
|
release_date="2024-01-23",
|
|
391
482
|
languages=None, # supported languages not specified
|
|
@@ -411,6 +502,7 @@ voyage_code_2 = ModelMeta(
|
|
|
411
502
|
|
|
412
503
|
voyage_code_3 = ModelMeta(
|
|
413
504
|
name="voyageai/voyage-code-3",
|
|
505
|
+
model_type=["dense"],
|
|
414
506
|
revision="1",
|
|
415
507
|
release_date="2024-12-04",
|
|
416
508
|
languages=None, # supported languages not specified
|
|
@@ -437,6 +529,7 @@ voyage_code_3 = ModelMeta(
|
|
|
437
529
|
|
|
438
530
|
voyage_large_2 = ModelMeta(
|
|
439
531
|
name="voyageai/voyage-large-2", # Date of publication of this post https://blog.voyageai.com/2023/10/29/voyage-embeddings/
|
|
532
|
+
model_type=["dense"],
|
|
440
533
|
revision="1",
|
|
441
534
|
release_date="2023-10-29",
|
|
442
535
|
languages=None, # supported languages not specified
|
|
@@ -462,6 +555,7 @@ voyage_large_2 = ModelMeta(
|
|
|
462
555
|
|
|
463
556
|
voyage_2 = ModelMeta(
|
|
464
557
|
name="voyageai/voyage-2",
|
|
558
|
+
model_type=["dense"],
|
|
465
559
|
revision="1",
|
|
466
560
|
release_date="2023-10-29",
|
|
467
561
|
languages=None, # supported languages not specified
|
|
@@ -486,6 +580,7 @@ voyage_2 = ModelMeta(
|
|
|
486
580
|
)
|
|
487
581
|
voyage_multilingual_2 = ModelMeta(
|
|
488
582
|
name="voyageai/voyage-multilingual-2",
|
|
583
|
+
model_type=["dense"],
|
|
489
584
|
revision="1",
|
|
490
585
|
release_date="2024-06-10",
|
|
491
586
|
languages=None, # supported languages not specified
|
|
@@ -511,6 +606,7 @@ voyage_multilingual_2 = ModelMeta(
|
|
|
511
606
|
|
|
512
607
|
voyage_3 = ModelMeta(
|
|
513
608
|
name="voyageai/voyage-3",
|
|
609
|
+
model_type=["dense"],
|
|
514
610
|
revision="1",
|
|
515
611
|
release_date="2024-09-18",
|
|
516
612
|
languages=None, # supported languages not specified
|
|
@@ -536,6 +632,7 @@ voyage_3 = ModelMeta(
|
|
|
536
632
|
|
|
537
633
|
voyage_3_lite = ModelMeta(
|
|
538
634
|
name="voyageai/voyage-3-lite",
|
|
635
|
+
model_type=["dense"],
|
|
539
636
|
revision="1",
|
|
540
637
|
release_date="2024-09-18",
|
|
541
638
|
languages=None, # supported languages not specified
|
|
@@ -557,10 +654,12 @@ voyage_3_lite = ModelMeta(
|
|
|
557
654
|
training_datasets=VOYAGE_TRAINING_DATA,
|
|
558
655
|
public_training_code=None,
|
|
559
656
|
public_training_data=None,
|
|
657
|
+
superseded_by="voyageai/voyage-4-lite",
|
|
560
658
|
)
|
|
561
659
|
|
|
562
660
|
voyage_3_exp = ModelMeta(
|
|
563
661
|
name="voyageai/voyage-3-m-exp",
|
|
662
|
+
model_type=["dense"],
|
|
564
663
|
revision="1",
|
|
565
664
|
release_date="2025-01-08",
|
|
566
665
|
languages=["eng-Latn"],
|
|
@@ -1,8 +1,9 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any, Literal
|
|
4
|
+
from typing import TYPE_CHECKING, Any, Literal
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
|
-
from PIL import Image
|
|
6
7
|
from torch.utils.data import DataLoader
|
|
7
8
|
from tqdm.auto import tqdm
|
|
8
9
|
|
|
@@ -12,6 +13,11 @@ from mteb.models.abs_encoder import AbsEncoder
|
|
|
12
13
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
13
14
|
from mteb.types import Array, BatchedInput, PromptType
|
|
14
15
|
|
|
16
|
+
if TYPE_CHECKING:
|
|
17
|
+
from PIL import Image
|
|
18
|
+
|
|
19
|
+
logger = logging.getLogger(__name__)
|
|
20
|
+
|
|
15
21
|
|
|
16
22
|
def _downsample_image(
|
|
17
23
|
image: Image.Image, max_pixels: int = 16000000, target_longest_side: int = 4000
|
|
@@ -33,18 +39,18 @@ def _downsample_image(
|
|
|
33
39
|
new_width = int(width * (target_longest_side / height))
|
|
34
40
|
|
|
35
41
|
new_size = (new_width, new_height)
|
|
36
|
-
|
|
42
|
+
logger.info(
|
|
37
43
|
f"Downsampling image from {width}x{height} to {new_width}x{new_height}"
|
|
38
44
|
)
|
|
39
|
-
return image.resize(new_size, Image.LANCZOS)
|
|
45
|
+
return image.resize(new_size, Image.LANCZOS)
|
|
40
46
|
if width > height:
|
|
41
47
|
if width > 10000:
|
|
42
|
-
|
|
43
|
-
return image.resize((10000, height), Image.LANCZOS)
|
|
48
|
+
logger.error("Processing extremely wide images.")
|
|
49
|
+
return image.resize((10000, height), Image.LANCZOS)
|
|
44
50
|
else:
|
|
45
51
|
if height > 10000:
|
|
46
|
-
|
|
47
|
-
return image.resize((width, 10000), Image.LANCZOS)
|
|
52
|
+
logger.error("Processing extremely high images.")
|
|
53
|
+
return image.resize((width, 10000), Image.LANCZOS)
|
|
48
54
|
return image
|
|
49
55
|
|
|
50
56
|
|
|
@@ -149,6 +155,7 @@ def voyage_v_loader(model_name, **kwargs):
|
|
|
149
155
|
show_progress_bar: bool = True,
|
|
150
156
|
**kwargs: Any,
|
|
151
157
|
) -> Array:
|
|
158
|
+
input_type = "document" # default
|
|
152
159
|
if prompt_type is not None:
|
|
153
160
|
if prompt_type == PromptType.document:
|
|
154
161
|
input_type = "document"
|
|
@@ -197,8 +204,9 @@ def voyage_v_loader(model_name, **kwargs):
|
|
|
197
204
|
|
|
198
205
|
|
|
199
206
|
voyage_v = ModelMeta(
|
|
200
|
-
loader=voyage_v_loader,
|
|
207
|
+
loader=voyage_v_loader,
|
|
201
208
|
name="voyageai/voyage-multimodal-3",
|
|
209
|
+
model_type=["dense"],
|
|
202
210
|
languages=[], # Unknown
|
|
203
211
|
revision="1",
|
|
204
212
|
release_date="2024-11-10",
|
|
@@ -115,6 +115,7 @@ Youtu_Embedding_V1 = ModelMeta(
|
|
|
115
115
|
max_seq_length=8192,
|
|
116
116
|
),
|
|
117
117
|
name="tencent/Youtu-Embedding",
|
|
118
|
+
model_type=["dense"],
|
|
118
119
|
languages=["zho-Hans"],
|
|
119
120
|
revision="32e04afc24817c187a8422e7bdbb493b19796d47",
|
|
120
121
|
release_date="2025-09-28",
|
|
@@ -126,7 +127,7 @@ Youtu_Embedding_V1 = ModelMeta(
|
|
|
126
127
|
max_tokens=8192,
|
|
127
128
|
reference="https://huggingface.co/tencent/Youtu-Embedding",
|
|
128
129
|
similarity_fn_name="cosine",
|
|
129
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
130
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
130
131
|
use_instructions=True,
|
|
131
132
|
public_training_code=None,
|
|
132
133
|
public_training_data=None,
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
from mteb.models import ModelMeta, sentence_transformers_loader
|
|
2
|
+
|
|
3
|
+
yuan_emb_zh_datasets = {
|
|
4
|
+
"CMedQAv2-reranking",
|
|
5
|
+
"DuRetrieval",
|
|
6
|
+
"MMarcoReranking",
|
|
7
|
+
"T2Reranking",
|
|
8
|
+
"T2Retrieval",
|
|
9
|
+
}
|
|
10
|
+
|
|
11
|
+
# not in mteb
|
|
12
|
+
# "Multi-CPR":"http://github.com/Alibaba-NLP/Multi-CPR",
|
|
13
|
+
|
|
14
|
+
yuan_embedding_2_zh = ModelMeta(
|
|
15
|
+
name="IEITYuan/Yuan-embedding-2.0-zh",
|
|
16
|
+
model_type=["dense"],
|
|
17
|
+
loader=sentence_transformers_loader,
|
|
18
|
+
languages=["zho-Hans"],
|
|
19
|
+
open_weights=True,
|
|
20
|
+
revision="b5ebcace6f4fc6e5a4d1852557eb2dc2d1040cee",
|
|
21
|
+
release_date="2025-11-24",
|
|
22
|
+
n_parameters=326000000,
|
|
23
|
+
memory_usage_mb=1242,
|
|
24
|
+
embed_dim=1792,
|
|
25
|
+
license="apache-2.0",
|
|
26
|
+
max_tokens=512,
|
|
27
|
+
reference="https://huggingface.co/IEITYuan/Yuan-embedding-2.0-zh",
|
|
28
|
+
similarity_fn_name="cosine",
|
|
29
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
30
|
+
use_instructions=False,
|
|
31
|
+
public_training_code=None,
|
|
32
|
+
public_training_data=None,
|
|
33
|
+
training_datasets=yuan_emb_zh_datasets,
|
|
34
|
+
)
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
2
|
+
from mteb.models.model_meta import ModelMeta
|
|
3
|
+
from mteb.models.models_protocols import PromptType
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def instruction_template(
|
|
7
|
+
instruction: str, prompt_type: PromptType | None = None
|
|
8
|
+
) -> str:
|
|
9
|
+
if not instruction or prompt_type == PromptType.document:
|
|
10
|
+
return ""
|
|
11
|
+
if isinstance(instruction, dict):
|
|
12
|
+
if prompt_type is None:
|
|
13
|
+
instruction = next(iter(instruction.values())) # TODO
|
|
14
|
+
else:
|
|
15
|
+
instruction = instruction[prompt_type]
|
|
16
|
+
return f"Instruct: {instruction}\nQuery:"
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
training_data = {
|
|
20
|
+
"T2Retrieval",
|
|
21
|
+
"DuRetrieval",
|
|
22
|
+
"MMarcoReranking",
|
|
23
|
+
"CMedQAv2-reranking",
|
|
24
|
+
"NQ",
|
|
25
|
+
"MSMARCO",
|
|
26
|
+
"HotpotQA",
|
|
27
|
+
"MrTidyRetrieval",
|
|
28
|
+
"MIRACLRetrieval",
|
|
29
|
+
"CodeSearchNet",
|
|
30
|
+
}
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
yuan_embedding_2_en = ModelMeta(
|
|
34
|
+
loader=InstructSentenceTransformerModel,
|
|
35
|
+
loader_kwargs=dict(
|
|
36
|
+
instruction_template=instruction_template,
|
|
37
|
+
apply_instruction_to_passages=False,
|
|
38
|
+
),
|
|
39
|
+
name="IEITYuan/Yuan-embedding-2.0-en",
|
|
40
|
+
model_type=["dense"],
|
|
41
|
+
languages=["eng-Latn"],
|
|
42
|
+
open_weights=True,
|
|
43
|
+
revision="b2fd15da3bcae3473c8529593825c15068f09fce",
|
|
44
|
+
release_date="2025-11-27",
|
|
45
|
+
n_parameters=595776512,
|
|
46
|
+
memory_usage_mb=2272,
|
|
47
|
+
embed_dim=1024,
|
|
48
|
+
max_tokens=2048,
|
|
49
|
+
license="apache-2.0",
|
|
50
|
+
reference="https://huggingface.co/IEITYuan/Yuan-embedding-2.0-en",
|
|
51
|
+
similarity_fn_name="cosine",
|
|
52
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
53
|
+
use_instructions=True,
|
|
54
|
+
public_training_code=None,
|
|
55
|
+
public_training_data=None,
|
|
56
|
+
training_datasets=training_data,
|
|
57
|
+
adapted_from="Qwen/Qwen3-Embedding-0.6B",
|
|
58
|
+
)
|