mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -10,6 +10,17 @@ from mteb.models.abs_encoder import AbsEncoder
|
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
11
|
from mteb.types import Array, BatchedInput, PromptType
|
|
12
12
|
|
|
13
|
+
BLIP_CITATION = """@misc{https://doi.org/10.48550/arxiv.2201.12086,
|
|
14
|
+
doi = {10.48550/ARXIV.2201.12086},
|
|
15
|
+
url = {https://arxiv.org/abs/2201.12086},
|
|
16
|
+
author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
|
|
17
|
+
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
|
18
|
+
title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
|
|
19
|
+
publisher = {arXiv},
|
|
20
|
+
year = {2022},
|
|
21
|
+
copyright = {Creative Commons Attribution 4.0 International}
|
|
22
|
+
}"""
|
|
23
|
+
|
|
13
24
|
|
|
14
25
|
class BLIPModel(AbsEncoder):
|
|
15
26
|
def __init__(
|
|
@@ -117,8 +128,9 @@ class BLIPModel(AbsEncoder):
|
|
|
117
128
|
|
|
118
129
|
# in descending order of usage (downloads from huggingface)
|
|
119
130
|
blip_image_captioning_large = ModelMeta(
|
|
120
|
-
loader=BLIPModel,
|
|
131
|
+
loader=BLIPModel,
|
|
121
132
|
name="Salesforce/blip-image-captioning-large",
|
|
133
|
+
model_type=["dense"],
|
|
122
134
|
languages=["eng-Latn"],
|
|
123
135
|
revision="2227ac38c9f16105cb0412e7cab4759978a8fd90",
|
|
124
136
|
release_date="2023-12-07",
|
|
@@ -131,7 +143,7 @@ blip_image_captioning_large = ModelMeta(
|
|
|
131
143
|
open_weights=True,
|
|
132
144
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
133
145
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
134
|
-
framework=["PyTorch"],
|
|
146
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
135
147
|
reference="https://huggingface.co/Salesforce/blip-image-captioning-large",
|
|
136
148
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
137
149
|
use_instructions=False,
|
|
@@ -140,11 +152,13 @@ blip_image_captioning_large = ModelMeta(
|
|
|
140
152
|
# CC3M+CC12M+SBU
|
|
141
153
|
# LAION115M
|
|
142
154
|
),
|
|
155
|
+
citation=BLIP_CITATION,
|
|
143
156
|
)
|
|
144
157
|
|
|
145
158
|
blip_image_captioning_base = ModelMeta(
|
|
146
|
-
loader=BLIPModel,
|
|
159
|
+
loader=BLIPModel,
|
|
147
160
|
name="Salesforce/blip-image-captioning-base",
|
|
161
|
+
model_type=["dense"],
|
|
148
162
|
languages=["eng-Latn"],
|
|
149
163
|
revision="89b09ea1789f7addf2f6d6f0dfc4ce10ab58ef84",
|
|
150
164
|
release_date="2023-08-01",
|
|
@@ -157,7 +171,7 @@ blip_image_captioning_base = ModelMeta(
|
|
|
157
171
|
open_weights=True,
|
|
158
172
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
159
173
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
160
|
-
framework=["PyTorch"],
|
|
174
|
+
framework=["PyTorch", "Transformers"],
|
|
161
175
|
reference="https://huggingface.co/Salesforce/blip-image-captioning-base",
|
|
162
176
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
163
177
|
use_instructions=False,
|
|
@@ -166,12 +180,14 @@ blip_image_captioning_base = ModelMeta(
|
|
|
166
180
|
# CC3M+CC12M+SBU
|
|
167
181
|
# LAION115M
|
|
168
182
|
),
|
|
183
|
+
citation=BLIP_CITATION,
|
|
169
184
|
)
|
|
170
185
|
|
|
171
186
|
|
|
172
187
|
blip_vqa_base = ModelMeta(
|
|
173
|
-
loader=BLIPModel,
|
|
188
|
+
loader=BLIPModel,
|
|
174
189
|
name="Salesforce/blip-vqa-base",
|
|
190
|
+
model_type=["dense"],
|
|
175
191
|
languages=["eng-Latn"],
|
|
176
192
|
revision="c7df8e7cd7aa2ee9af18f56e2b29e59a92651b64",
|
|
177
193
|
release_date="2023-12-07",
|
|
@@ -184,7 +200,7 @@ blip_vqa_base = ModelMeta(
|
|
|
184
200
|
open_weights=True,
|
|
185
201
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
186
202
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
187
|
-
framework=["PyTorch"],
|
|
203
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
188
204
|
reference="https://huggingface.co/Salesforce/blip-vqa-base",
|
|
189
205
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
190
206
|
use_instructions=False,
|
|
@@ -192,11 +208,13 @@ blip_vqa_base = ModelMeta(
|
|
|
192
208
|
# CC3M+CC12M+SBU
|
|
193
209
|
# LAION115M
|
|
194
210
|
),
|
|
211
|
+
citation=BLIP_CITATION,
|
|
195
212
|
)
|
|
196
213
|
|
|
197
214
|
blip_vqa_capfilt_large = ModelMeta(
|
|
198
|
-
loader=BLIPModel,
|
|
215
|
+
loader=BLIPModel,
|
|
199
216
|
name="Salesforce/blip-vqa-capfilt-large",
|
|
217
|
+
model_type=["dense"],
|
|
200
218
|
languages=["eng-Latn"],
|
|
201
219
|
revision="e53f95265aeab69013fabb5380500ab984adbbb4",
|
|
202
220
|
release_date="2023-01-22",
|
|
@@ -209,7 +227,7 @@ blip_vqa_capfilt_large = ModelMeta(
|
|
|
209
227
|
open_weights=True,
|
|
210
228
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
211
229
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
212
|
-
framework=["PyTorch"],
|
|
230
|
+
framework=["PyTorch", "Transformers"],
|
|
213
231
|
reference="https://huggingface.co/Salesforce/blip-vqa-capfilt-large",
|
|
214
232
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
215
233
|
use_instructions=False,
|
|
@@ -217,11 +235,13 @@ blip_vqa_capfilt_large = ModelMeta(
|
|
|
217
235
|
# CC3M+CC12M+SBU
|
|
218
236
|
# LAION115M
|
|
219
237
|
),
|
|
238
|
+
citation=BLIP_CITATION,
|
|
220
239
|
)
|
|
221
240
|
|
|
222
241
|
blip_itm_base_coco = ModelMeta(
|
|
223
|
-
loader=BLIPModel,
|
|
242
|
+
loader=BLIPModel,
|
|
224
243
|
name="Salesforce/blip-itm-base-coco",
|
|
244
|
+
model_type=["dense"],
|
|
225
245
|
languages=["eng-Latn"],
|
|
226
246
|
revision="7eaa90c11850c0b17fc38c6a11e7d88bd6ac231f",
|
|
227
247
|
release_date="2023-08-01",
|
|
@@ -234,7 +254,7 @@ blip_itm_base_coco = ModelMeta(
|
|
|
234
254
|
open_weights=True,
|
|
235
255
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
236
256
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
237
|
-
framework=["PyTorch"],
|
|
257
|
+
framework=["PyTorch", "Transformers"],
|
|
238
258
|
reference="https://huggingface.co/Salesforce/blip-itm-base-coco",
|
|
239
259
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
240
260
|
use_instructions=False,
|
|
@@ -242,11 +262,13 @@ blip_itm_base_coco = ModelMeta(
|
|
|
242
262
|
# CC3M+CC12M+SBU
|
|
243
263
|
# LAION115M
|
|
244
264
|
),
|
|
265
|
+
citation=BLIP_CITATION,
|
|
245
266
|
)
|
|
246
267
|
|
|
247
268
|
blip_itm_large_coco = ModelMeta(
|
|
248
|
-
loader=BLIPModel,
|
|
269
|
+
loader=BLIPModel,
|
|
249
270
|
name="Salesforce/blip-itm-large-coco",
|
|
271
|
+
model_type=["dense"],
|
|
250
272
|
languages=["eng-Latn"],
|
|
251
273
|
revision="fef05cafc05298067cbbca00b125749394a77a6f",
|
|
252
274
|
release_date="2023-08-01",
|
|
@@ -259,7 +281,7 @@ blip_itm_large_coco = ModelMeta(
|
|
|
259
281
|
open_weights=True,
|
|
260
282
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
261
283
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
262
|
-
framework=["PyTorch"],
|
|
284
|
+
framework=["PyTorch", "Transformers"],
|
|
263
285
|
reference="https://huggingface.co/Salesforce/blip-itm-large-coco",
|
|
264
286
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
265
287
|
use_instructions=False,
|
|
@@ -268,11 +290,13 @@ blip_itm_large_coco = ModelMeta(
|
|
|
268
290
|
# CC3M+CC12M+SBU
|
|
269
291
|
# LAION115M
|
|
270
292
|
),
|
|
293
|
+
citation=BLIP_CITATION,
|
|
271
294
|
)
|
|
272
295
|
|
|
273
296
|
blip_itm_base_flickr = ModelMeta(
|
|
274
|
-
loader=BLIPModel,
|
|
297
|
+
loader=BLIPModel,
|
|
275
298
|
name="Salesforce/blip-itm-base-flickr",
|
|
299
|
+
model_type=["dense"],
|
|
276
300
|
languages=["eng-Latn"],
|
|
277
301
|
revision="1de29e660d91ae1786c1876212ea805a22eab251",
|
|
278
302
|
release_date="2023-08-01",
|
|
@@ -285,7 +309,7 @@ blip_itm_base_flickr = ModelMeta(
|
|
|
285
309
|
open_weights=True,
|
|
286
310
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
287
311
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
288
|
-
framework=["PyTorch"],
|
|
312
|
+
framework=["PyTorch", "Transformers"],
|
|
289
313
|
reference="https://huggingface.co/Salesforce/blip-itm-base-flickr",
|
|
290
314
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
291
315
|
use_instructions=False,
|
|
@@ -294,11 +318,13 @@ blip_itm_base_flickr = ModelMeta(
|
|
|
294
318
|
# LAION115M
|
|
295
319
|
# Flickr30k
|
|
296
320
|
),
|
|
321
|
+
citation=BLIP_CITATION,
|
|
297
322
|
)
|
|
298
323
|
|
|
299
324
|
blip_itm_large_flickr = ModelMeta(
|
|
300
|
-
loader=BLIPModel,
|
|
325
|
+
loader=BLIPModel,
|
|
301
326
|
name="Salesforce/blip-itm-large-flickr",
|
|
327
|
+
model_type=["dense"],
|
|
302
328
|
languages=["eng-Latn"],
|
|
303
329
|
revision="bda12e6506758f54261b5ab174b2c55a3ba143fb",
|
|
304
330
|
release_date="2023-08-01",
|
|
@@ -311,7 +337,7 @@ blip_itm_large_flickr = ModelMeta(
|
|
|
311
337
|
open_weights=True,
|
|
312
338
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
313
339
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
314
|
-
framework=["PyTorch"],
|
|
340
|
+
framework=["PyTorch", "Transformers"],
|
|
315
341
|
reference="https://huggingface.co/Salesforce/blip-itm-large-flickr",
|
|
316
342
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
317
343
|
use_instructions=False,
|
|
@@ -319,4 +345,5 @@ blip_itm_large_flickr = ModelMeta(
|
|
|
319
345
|
# CC3M+CC12M+SBU
|
|
320
346
|
# LAION115M
|
|
321
347
|
),
|
|
348
|
+
citation=BLIP_CITATION,
|
|
322
349
|
)
|
|
@@ -1,5 +1,4 @@
|
|
|
1
1
|
import logging
|
|
2
|
-
from typing import Any
|
|
3
2
|
|
|
4
3
|
from mteb._create_dataloaders import _create_text_queries_dataloader
|
|
5
4
|
from mteb._requires_package import requires_package
|
|
@@ -8,6 +7,7 @@ from mteb.models.model_meta import ModelMeta
|
|
|
8
7
|
from mteb.models.models_protocols import SearchProtocol
|
|
9
8
|
from mteb.types import (
|
|
10
9
|
CorpusDatasetType,
|
|
10
|
+
EncodeKwargs,
|
|
11
11
|
InstructionDatasetType,
|
|
12
12
|
QueryDatasetType,
|
|
13
13
|
RetrievalOutputType,
|
|
@@ -49,7 +49,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
49
49
|
task_metadata: TaskMetadata,
|
|
50
50
|
hf_split: str,
|
|
51
51
|
hf_subset: str,
|
|
52
|
-
encode_kwargs:
|
|
52
|
+
encode_kwargs: EncodeKwargs,
|
|
53
53
|
) -> None:
|
|
54
54
|
logger.info("Encoding Corpus...")
|
|
55
55
|
corpus_texts = [
|
|
@@ -74,7 +74,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
74
74
|
hf_split: str,
|
|
75
75
|
hf_subset: str,
|
|
76
76
|
top_k: int,
|
|
77
|
-
encode_kwargs:
|
|
77
|
+
encode_kwargs: EncodeKwargs,
|
|
78
78
|
instructions: InstructionDatasetType | None = None,
|
|
79
79
|
top_ranked: TopRankedDocumentsType | None = None,
|
|
80
80
|
) -> RetrievalOutputType:
|
|
@@ -113,7 +113,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
113
113
|
|
|
114
114
|
def encode(self, texts: list[str]):
|
|
115
115
|
"""Encode input text as term vectors"""
|
|
116
|
-
return bm25s.tokenize(texts, stopwords=self.stopwords, stemmer=self.stemmer)
|
|
116
|
+
return bm25s.tokenize(texts, stopwords=self.stopwords, stemmer=self.stemmer)
|
|
117
117
|
|
|
118
118
|
return BM25Search(**kwargs)
|
|
119
119
|
|
|
@@ -121,6 +121,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
121
121
|
bm25_s = ModelMeta(
|
|
122
122
|
loader=bm25_loader,
|
|
123
123
|
name="bm25s",
|
|
124
|
+
model_type=["dense"],
|
|
124
125
|
languages=["eng-Latn"],
|
|
125
126
|
open_weights=True,
|
|
126
127
|
revision="0_1_10",
|
|
@@ -25,6 +25,7 @@ class BMRetrieverWrapper(InstructSentenceTransformerModel):
|
|
|
25
25
|
self,
|
|
26
26
|
model_name: str,
|
|
27
27
|
revision: str,
|
|
28
|
+
device: str | None = None,
|
|
28
29
|
instruction_template: str
|
|
29
30
|
| Callable[[str, PromptType | None], str]
|
|
30
31
|
| None = None,
|
|
@@ -52,6 +53,7 @@ class BMRetrieverWrapper(InstructSentenceTransformerModel):
|
|
|
52
53
|
|
|
53
54
|
transformer = Transformer(
|
|
54
55
|
model_name,
|
|
56
|
+
device=device,
|
|
55
57
|
**kwargs,
|
|
56
58
|
)
|
|
57
59
|
pooling = Pooling(
|
|
@@ -90,6 +92,7 @@ BMRetriever_410M = ModelMeta(
|
|
|
90
92
|
apply_instruction_to_passages=True,
|
|
91
93
|
),
|
|
92
94
|
name="BMRetriever/BMRetriever-410M",
|
|
95
|
+
model_type=["dense"],
|
|
93
96
|
languages=["eng-Latn"],
|
|
94
97
|
open_weights=True,
|
|
95
98
|
revision="e3569bfbcfe3a1bc48c142e11a7b0f38e86065a3",
|
|
@@ -101,7 +104,7 @@ BMRetriever_410M = ModelMeta(
|
|
|
101
104
|
license="mit",
|
|
102
105
|
reference="https://huggingface.co/BMRetriever/BMRetriever-410M",
|
|
103
106
|
similarity_fn_name="cosine",
|
|
104
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
107
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
105
108
|
use_instructions=True,
|
|
106
109
|
public_training_code=None,
|
|
107
110
|
public_training_data=None,
|
|
@@ -119,6 +122,7 @@ BMRetriever_1B = ModelMeta(
|
|
|
119
122
|
apply_instruction_to_passages=True,
|
|
120
123
|
),
|
|
121
124
|
name="BMRetriever/BMRetriever-1B",
|
|
125
|
+
model_type=["dense"],
|
|
122
126
|
languages=["eng-Latn"],
|
|
123
127
|
open_weights=True,
|
|
124
128
|
revision="1b758c5f4d3af48ef6035cc4088bdbcd7df43ca6",
|
|
@@ -130,7 +134,7 @@ BMRetriever_1B = ModelMeta(
|
|
|
130
134
|
license="mit",
|
|
131
135
|
reference="https://huggingface.co/BMRetriever/BMRetriever-1B",
|
|
132
136
|
similarity_fn_name="cosine",
|
|
133
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
137
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
134
138
|
use_instructions=True,
|
|
135
139
|
public_training_code=None,
|
|
136
140
|
public_training_data=None,
|
|
@@ -148,6 +152,7 @@ BMRetriever_2B = ModelMeta(
|
|
|
148
152
|
apply_instruction_to_passages=True,
|
|
149
153
|
),
|
|
150
154
|
name="BMRetriever/BMRetriever-2B",
|
|
155
|
+
model_type=["dense"],
|
|
151
156
|
languages=["eng-Latn"],
|
|
152
157
|
open_weights=True,
|
|
153
158
|
revision="718179afd57926369c347f46eee616db81084941",
|
|
@@ -159,7 +164,7 @@ BMRetriever_2B = ModelMeta(
|
|
|
159
164
|
license="mit",
|
|
160
165
|
reference="https://huggingface.co/BMRetriever/BMRetriever-2B",
|
|
161
166
|
similarity_fn_name="cosine",
|
|
162
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
167
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
163
168
|
use_instructions=True,
|
|
164
169
|
public_training_code=None,
|
|
165
170
|
public_training_data=None,
|
|
@@ -177,6 +182,7 @@ BMRetriever_7B = ModelMeta(
|
|
|
177
182
|
apply_instruction_to_passages=True,
|
|
178
183
|
),
|
|
179
184
|
name="BMRetriever/BMRetriever-7B",
|
|
185
|
+
model_type=["dense"],
|
|
180
186
|
languages=["eng-Latn"],
|
|
181
187
|
open_weights=True,
|
|
182
188
|
revision="13e6adb9273c5f254e037987d6b44e9e4b005b9a",
|
|
@@ -188,7 +194,7 @@ BMRetriever_7B = ModelMeta(
|
|
|
188
194
|
license="mit",
|
|
189
195
|
reference="https://huggingface.co/BMRetriever/BMRetriever-7B",
|
|
190
196
|
similarity_fn_name="cosine",
|
|
191
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
197
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
192
198
|
use_instructions=True,
|
|
193
199
|
public_training_code=None,
|
|
194
200
|
public_training_data=None,
|
|
@@ -3,6 +3,13 @@ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loade
|
|
|
3
3
|
|
|
4
4
|
from .bge_models import bge_m3_training_data
|
|
5
5
|
|
|
6
|
+
CADET_CITATION = """@article{tamber2025conventionalcontrastivelearningfalls,
|
|
7
|
+
title={Conventional Contrastive Learning Often Falls Short: Improving Dense Retrieval with Cross-Encoder Listwise Distillation and Synthetic Data},
|
|
8
|
+
author={Manveer Singh Tamber and Suleman Kazi and Vivek Sourabh and Jimmy Lin},
|
|
9
|
+
journal={arXiv:2505.19274},
|
|
10
|
+
year={2025}
|
|
11
|
+
}"""
|
|
12
|
+
|
|
6
13
|
cadet_training_data = {
|
|
7
14
|
# we train with the corpora of FEVER, MSMARCO, and DBPEDIA. We only train with synthetic generated queries.
|
|
8
15
|
# However, we do use queries from MSMARCO as examples for synthetic query generation.
|
|
@@ -28,6 +35,7 @@ cadet_embed = ModelMeta(
|
|
|
28
35
|
},
|
|
29
36
|
),
|
|
30
37
|
name="manveertamber/cadet-embed-base-v1",
|
|
38
|
+
model_type=["dense"],
|
|
31
39
|
languages=["eng-Latn"],
|
|
32
40
|
revision="8056d118be37a566f20972a5f35cda815f6bc47e",
|
|
33
41
|
open_weights=True,
|
|
@@ -39,11 +47,12 @@ cadet_embed = ModelMeta(
|
|
|
39
47
|
max_tokens=512,
|
|
40
48
|
reference="https://huggingface.co/manveertamber/cadet-embed-base-v1",
|
|
41
49
|
similarity_fn_name="cosine",
|
|
42
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
50
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
43
51
|
use_instructions=True,
|
|
44
52
|
public_training_code="https://github.com/manveertamber/cadet-dense-retrieval",
|
|
45
53
|
# we provide the code to generate the training data
|
|
46
54
|
public_training_data="https://github.com/manveertamber/cadet-dense-retrieval",
|
|
47
55
|
training_datasets=cadet_training_data,
|
|
48
56
|
adapted_from="intfloat/e5-base-unsupervised",
|
|
57
|
+
citation=CADET_CITATION,
|
|
49
58
|
)
|
|
@@ -24,6 +24,16 @@ if TYPE_CHECKING:
|
|
|
24
24
|
)
|
|
25
25
|
logger = logging.getLogger(__name__)
|
|
26
26
|
|
|
27
|
+
CDE_CITATION = """@misc{morris2024contextualdocumentembeddings,
|
|
28
|
+
title={Contextual Document Embeddings},
|
|
29
|
+
author={John X. Morris and Alexander M. Rush},
|
|
30
|
+
year={2024},
|
|
31
|
+
eprint={2410.02525},
|
|
32
|
+
archivePrefix={arXiv},
|
|
33
|
+
primaryClass={cs.CL},
|
|
34
|
+
url={https://arxiv.org/abs/2410.02525},
|
|
35
|
+
}"""
|
|
36
|
+
|
|
27
37
|
|
|
28
38
|
class CDEWrapper(SentenceTransformerEncoderWrapper):
|
|
29
39
|
dataset_embeddings: torch.Tensor | None = None
|
|
@@ -39,10 +49,17 @@ class CDEWrapper(SentenceTransformerEncoderWrapper):
|
|
|
39
49
|
"InstructionReranking",
|
|
40
50
|
)
|
|
41
51
|
|
|
42
|
-
def __init__(
|
|
52
|
+
def __init__(
|
|
53
|
+
self,
|
|
54
|
+
model: str,
|
|
55
|
+
revision: str | None = None,
|
|
56
|
+
device: str | None = None,
|
|
57
|
+
*args,
|
|
58
|
+
**kwargs: Any,
|
|
59
|
+
) -> None:
|
|
43
60
|
from transformers import AutoConfig
|
|
44
61
|
|
|
45
|
-
super().__init__(model, *args, **kwargs)
|
|
62
|
+
super().__init__(model, revision=revision, device=device, *args, **kwargs)
|
|
46
63
|
model_config = AutoConfig.from_pretrained(model, trust_remote_code=True)
|
|
47
64
|
self.max_sentences = model_config.transductive_corpus_size
|
|
48
65
|
|
|
@@ -199,6 +216,7 @@ cde_small_v1 = ModelMeta(
|
|
|
199
216
|
trust_remote_code=True,
|
|
200
217
|
),
|
|
201
218
|
name="jxm/cde-small-v1",
|
|
219
|
+
model_type=["dense"],
|
|
202
220
|
languages=["eng-Latn"],
|
|
203
221
|
open_weights=True,
|
|
204
222
|
revision="e151df18af0d7f1d1c37b074fee58406ececf19f",
|
|
@@ -209,7 +227,7 @@ cde_small_v1 = ModelMeta(
|
|
|
209
227
|
embed_dim=768,
|
|
210
228
|
license="mit",
|
|
211
229
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
212
|
-
framework=["Sentence Transformers"],
|
|
230
|
+
framework=["Sentence Transformers", "safetensors", "Transformers"],
|
|
213
231
|
reference="https://huggingface.co/jxm/cde-small-v1",
|
|
214
232
|
use_instructions=True,
|
|
215
233
|
adapted_from="nomic-ai/nomic-bert-2048",
|
|
@@ -217,6 +235,7 @@ cde_small_v1 = ModelMeta(
|
|
|
217
235
|
training_datasets=bge_full_data,
|
|
218
236
|
public_training_code="https://github.com/jxmorris12/cde",
|
|
219
237
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
238
|
+
citation=CDE_CITATION,
|
|
220
239
|
)
|
|
221
240
|
|
|
222
241
|
cde_small_v2 = ModelMeta(
|
|
@@ -226,6 +245,7 @@ cde_small_v2 = ModelMeta(
|
|
|
226
245
|
trust_remote_code=True,
|
|
227
246
|
),
|
|
228
247
|
name="jxm/cde-small-v2",
|
|
248
|
+
model_type=["dense"],
|
|
229
249
|
languages=["eng-Latn"],
|
|
230
250
|
open_weights=True,
|
|
231
251
|
revision="4e1d021a6c3fd7ce8aa0a7204057eee5ae61d390",
|
|
@@ -236,7 +256,7 @@ cde_small_v2 = ModelMeta(
|
|
|
236
256
|
embed_dim=768,
|
|
237
257
|
license="mit",
|
|
238
258
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
239
|
-
framework=["Sentence Transformers"],
|
|
259
|
+
framework=["Sentence Transformers", "safetensors", "Transformers"],
|
|
240
260
|
reference="https://huggingface.co/jxm/cde-small-v1",
|
|
241
261
|
use_instructions=True,
|
|
242
262
|
adapted_from="answerdotai/ModernBERT-base",
|
|
@@ -244,4 +264,5 @@ cde_small_v2 = ModelMeta(
|
|
|
244
264
|
training_datasets=bge_full_data,
|
|
245
265
|
public_training_code="https://github.com/jxmorris12/cde",
|
|
246
266
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
267
|
+
citation=CDE_CITATION,
|
|
247
268
|
)
|
|
@@ -115,8 +115,9 @@ CLIP_CITATION = """
|
|
|
115
115
|
|
|
116
116
|
|
|
117
117
|
clip_vit_large_patch14 = ModelMeta(
|
|
118
|
-
loader=CLIPModel,
|
|
118
|
+
loader=CLIPModel,
|
|
119
119
|
name="openai/clip-vit-large-patch14",
|
|
120
|
+
model_type=["dense"],
|
|
120
121
|
languages=["eng-Latn"],
|
|
121
122
|
revision="32bd64288804d66eefd0ccbe215aa642df71cc41",
|
|
122
123
|
release_date="2021-02-26",
|
|
@@ -129,7 +130,7 @@ clip_vit_large_patch14 = ModelMeta(
|
|
|
129
130
|
open_weights=True,
|
|
130
131
|
public_training_code=None,
|
|
131
132
|
public_training_data=None,
|
|
132
|
-
framework=["PyTorch"],
|
|
133
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
133
134
|
reference="https://huggingface.co/openai/clip-vit-large-patch14",
|
|
134
135
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
135
136
|
use_instructions=False,
|
|
@@ -138,8 +139,9 @@ clip_vit_large_patch14 = ModelMeta(
|
|
|
138
139
|
)
|
|
139
140
|
|
|
140
141
|
clip_vit_base_patch32 = ModelMeta(
|
|
141
|
-
loader=CLIPModel,
|
|
142
|
+
loader=CLIPModel,
|
|
142
143
|
name="openai/clip-vit-base-patch32",
|
|
144
|
+
model_type=["dense"],
|
|
143
145
|
languages=["eng-Latn"],
|
|
144
146
|
revision="3d74acf9a28c67741b2f4f2ea7635f0aaf6f0268",
|
|
145
147
|
release_date="2021-02-26",
|
|
@@ -152,7 +154,7 @@ clip_vit_base_patch32 = ModelMeta(
|
|
|
152
154
|
open_weights=True,
|
|
153
155
|
public_training_code=None,
|
|
154
156
|
public_training_data=None,
|
|
155
|
-
framework=["PyTorch"],
|
|
157
|
+
framework=["PyTorch", "Transformers"],
|
|
156
158
|
reference="https://huggingface.co/openai/clip-vit-base-patch32",
|
|
157
159
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
158
160
|
use_instructions=False,
|
|
@@ -161,8 +163,9 @@ clip_vit_base_patch32 = ModelMeta(
|
|
|
161
163
|
)
|
|
162
164
|
|
|
163
165
|
clip_vit_base_patch16 = ModelMeta(
|
|
164
|
-
loader=CLIPModel,
|
|
166
|
+
loader=CLIPModel,
|
|
165
167
|
name="openai/clip-vit-base-patch16",
|
|
168
|
+
model_type=["dense"],
|
|
166
169
|
languages=["eng-Latn"],
|
|
167
170
|
revision="57c216476eefef5ab752ec549e440a49ae4ae5f3",
|
|
168
171
|
release_date="2021-02-26",
|
|
@@ -175,7 +178,7 @@ clip_vit_base_patch16 = ModelMeta(
|
|
|
175
178
|
open_weights=True,
|
|
176
179
|
public_training_code=None,
|
|
177
180
|
public_training_data=None,
|
|
178
|
-
framework=["PyTorch"],
|
|
181
|
+
framework=["PyTorch", "Transformers"],
|
|
179
182
|
reference="https://huggingface.co/openai/clip-vit-base-patch16",
|
|
180
183
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
181
184
|
use_instructions=False,
|
|
@@ -0,0 +1,100 @@
|
|
|
1
|
+
from mteb.models.model_meta import (
|
|
2
|
+
ModelMeta,
|
|
3
|
+
ScoringFunction,
|
|
4
|
+
)
|
|
5
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
6
|
+
|
|
7
|
+
from .e5_models import ME5_TRAINING_DATA, model_prompts
|
|
8
|
+
|
|
9
|
+
E5_NL_CITATION = """
|
|
10
|
+
@misc{banar2025mtebnle5nlembeddingbenchmark,
|
|
11
|
+
archiveprefix = {arXiv},
|
|
12
|
+
author = {Nikolay Banar and Ehsan Lotfi and Jens Van Nooten and Cristina Arhiliuc and Marija Kliocaite and Walter Daelemans},
|
|
13
|
+
eprint = {2509.12340},
|
|
14
|
+
primaryclass = {cs.CL},
|
|
15
|
+
title = {MTEB-NL and E5-NL: Embedding Benchmark and Models for Dutch},
|
|
16
|
+
url = {https://arxiv.org/abs/2509.12340},
|
|
17
|
+
year = {2025},
|
|
18
|
+
}
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
e5_nl_small = ModelMeta(
|
|
22
|
+
loader=sentence_transformers_loader,
|
|
23
|
+
loader_kwargs=dict(
|
|
24
|
+
model_prompts=model_prompts,
|
|
25
|
+
),
|
|
26
|
+
name="clips/e5-small-trm-nl",
|
|
27
|
+
model_type=["dense"],
|
|
28
|
+
languages=["nld-Latn"],
|
|
29
|
+
open_weights=True,
|
|
30
|
+
revision="0243664a6c5e12eef854b091eb283e51833c3e9f",
|
|
31
|
+
release_date="2025-09-23",
|
|
32
|
+
n_parameters=40_800_000,
|
|
33
|
+
memory_usage_mb=78,
|
|
34
|
+
embed_dim=384,
|
|
35
|
+
license="mit",
|
|
36
|
+
max_tokens=512,
|
|
37
|
+
reference="https://huggingface.co/clips/e5-small-trm-nl",
|
|
38
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
39
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
40
|
+
use_instructions=True,
|
|
41
|
+
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
42
|
+
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
43
|
+
training_datasets=ME5_TRAINING_DATA, # mMARCO-NL, HotpotQA-NL, FEVER-NL, and LLM generated data
|
|
44
|
+
adapted_from="intfloat/multilingual-e5-small",
|
|
45
|
+
citation=E5_NL_CITATION,
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
e5_nl_base = ModelMeta(
|
|
49
|
+
loader=sentence_transformers_loader,
|
|
50
|
+
loader_kwargs=dict(
|
|
51
|
+
model_prompts=model_prompts,
|
|
52
|
+
),
|
|
53
|
+
name="clips/e5-base-trm-nl",
|
|
54
|
+
model_type=["dense"],
|
|
55
|
+
languages=["nld-Latn"],
|
|
56
|
+
open_weights=True,
|
|
57
|
+
revision="6bd5722f236da48b4b8bcb28cc1fc478f7089956",
|
|
58
|
+
release_date="2025-09-23",
|
|
59
|
+
n_parameters=124_400_000,
|
|
60
|
+
memory_usage_mb=237,
|
|
61
|
+
embed_dim=768,
|
|
62
|
+
license="mit",
|
|
63
|
+
max_tokens=514,
|
|
64
|
+
reference="https://huggingface.co/clips/e5-base-trm-nl",
|
|
65
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
66
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
67
|
+
use_instructions=True,
|
|
68
|
+
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
69
|
+
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
70
|
+
adapted_from="intfloat/multilingual-e5-base",
|
|
71
|
+
training_datasets=ME5_TRAINING_DATA, # mMARCO-NL, HotpotQA-NL, FEVER-NL, and LLM generated data
|
|
72
|
+
citation=E5_NL_CITATION,
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
e5_nl_large = ModelMeta(
|
|
76
|
+
loader=sentence_transformers_loader,
|
|
77
|
+
loader_kwargs=dict(
|
|
78
|
+
model_prompts=model_prompts,
|
|
79
|
+
),
|
|
80
|
+
name="clips/e5-large-trm-nl",
|
|
81
|
+
model_type=["dense"],
|
|
82
|
+
languages=["nld-Latn"],
|
|
83
|
+
open_weights=True,
|
|
84
|
+
revision="683333f86ed9eb3699b5567f0fdabeb958d412b0",
|
|
85
|
+
release_date="2025-09-23",
|
|
86
|
+
n_parameters=355_000_000,
|
|
87
|
+
memory_usage_mb=1355,
|
|
88
|
+
embed_dim=1024,
|
|
89
|
+
license="mit",
|
|
90
|
+
max_tokens=514,
|
|
91
|
+
reference="https://huggingface.co/clips/e5-large-trm-nl",
|
|
92
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
93
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
94
|
+
use_instructions=True,
|
|
95
|
+
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
96
|
+
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
97
|
+
training_datasets=ME5_TRAINING_DATA, # mMARCO-NL, HotpotQA-NL, FEVER-NL, and LLM generated data
|
|
98
|
+
adapted_from="intfloat/multilingual-e5-large",
|
|
99
|
+
citation=E5_NL_CITATION,
|
|
100
|
+
)
|