mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -12,8 +12,7 @@ _LANGS = {
|
|
|
12
12
|
class ScalaClassification(AbsTaskClassification):
|
|
13
13
|
metadata = TaskMetadata(
|
|
14
14
|
name="ScalaClassification",
|
|
15
|
-
description="
|
|
16
|
-
Published as part of 'ScandEval: A Benchmark for Scandinavian Natural Language Processing'""",
|
|
15
|
+
description="ScaLa a linguistic acceptability dataset for the mainland Scandinavian languages automatically constructed from dependency annotations in Universal Dependencies Treebanks. Published as part of 'ScandEval: A Benchmark for Scandinavian Natural Language Processing'",
|
|
17
16
|
reference="https://aclanthology.org/2023.nodalida-1.20/",
|
|
18
17
|
dataset={
|
|
19
18
|
"path": "mteb/multilingual-scala-classification",
|
|
@@ -58,7 +57,7 @@ Fishel, Mark},
|
|
|
58
57
|
def dataset_transform(self):
|
|
59
58
|
for lang in self.dataset.keys():
|
|
60
59
|
# convert label to a 0/1 label
|
|
61
|
-
labels = self.dataset[lang]["train"]["label"]
|
|
60
|
+
labels = self.dataset[lang]["train"]["label"]
|
|
62
61
|
lab2idx = {lab: idx for idx, lab in enumerate(set(labels))}
|
|
63
62
|
self.dataset[lang] = self.dataset[lang].map(
|
|
64
63
|
lambda x: {"label": lab2idx[x["label"]]}, remove_columns=["label"]
|
|
@@ -205,12 +205,7 @@ _LANGS = {
|
|
|
205
205
|
class SIB200Classification(AbsTaskClassification):
|
|
206
206
|
metadata = TaskMetadata(
|
|
207
207
|
name="SIB200Classification",
|
|
208
|
-
description="
|
|
209
|
-
dataset based on Flores-200 covering 205 languages and dialects annotated. The dataset is
|
|
210
|
-
annotated in English for the topics, science/technology, travel, politics, sports,
|
|
211
|
-
health, entertainment, and geography. The labels are then transferred to the other languages
|
|
212
|
-
in Flores-200 which are human-translated.
|
|
213
|
-
""",
|
|
208
|
+
description="SIB-200 is the largest publicly available topic classification dataset based on Flores-200 covering 205 languages and dialects annotated. The dataset is annotated in English for the topics, science/technology, travel, politics, sports, health, entertainment, and geography. The labels are then transferred to the other languages in Flores-200 which are human-translated.",
|
|
214
209
|
reference="https://arxiv.org/abs/2309.07445",
|
|
215
210
|
dataset={
|
|
216
211
|
"path": "mteb/sib200",
|
|
@@ -45,8 +45,7 @@ class MyanmarNewsV2(AbsTaskClassification):
|
|
|
45
45
|
"path": "mteb/myanmar_news",
|
|
46
46
|
"revision": "475b43ffbdb5138ad67a01a2c860bc7db502f3c5",
|
|
47
47
|
},
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="The Myanmar News dataset on Hugging Face contains news articles in Burmese. It is designed for tasks such as text classification, sentiment analysis, and language modeling. The dataset includes a variety of news topics in 4 categories, providing a rich resource for natural language processing applications involving Burmese which is a low resource language. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
reference="https://huggingface.co/datasets/myanmar_news",
|
|
51
50
|
type="Classification",
|
|
52
51
|
category="t2c",
|
|
@@ -57,8 +57,7 @@ Tan, Liling},
|
|
|
57
57
|
class NepaliNewsClassificationV2(AbsTaskClassification):
|
|
58
58
|
metadata = TaskMetadata(
|
|
59
59
|
name="NepaliNewsClassification.v2",
|
|
60
|
-
description="
|
|
61
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
60
|
+
description="A Nepali dataset for 7500 news articles This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
62
61
|
reference="https://github.com/goru001/nlp-for-nepali",
|
|
63
62
|
dataset={
|
|
64
63
|
"path": "mteb/nepali_news",
|
|
@@ -48,8 +48,7 @@ Suzan, Verberne},
|
|
|
48
48
|
class DutchBookReviewSentimentClassificationV2(AbsTaskClassification):
|
|
49
49
|
metadata = TaskMetadata(
|
|
50
50
|
name="DutchBookReviewSentimentClassification.v2",
|
|
51
|
-
description="
|
|
52
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
51
|
+
description="A Dutch book review for sentiment classification. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900). Additionally, a Dutch prompt was included.",
|
|
53
52
|
reference="https://github.com/benjaminvdb/DBRD",
|
|
54
53
|
dataset={
|
|
55
54
|
"path": "mteb/dutch_book_review_sentiment",
|
|
@@ -86,4 +85,7 @@ Suzan, Verberne},
|
|
|
86
85
|
}
|
|
87
86
|
""",
|
|
88
87
|
adapted_from=["DutchBookReviewSentimentClassification"],
|
|
88
|
+
prompt={
|
|
89
|
+
"query": "Classificeer de gegeven boekrecensie als positieve of negatieve sentiment"
|
|
90
|
+
},
|
|
89
91
|
)
|
|
@@ -27,6 +27,9 @@ class DutchSarcasticHeadlinesClassification(AbsTaskClassification):
|
|
|
27
27
|
dialect=[],
|
|
28
28
|
sample_creation="found",
|
|
29
29
|
bibtex_citation="""""",
|
|
30
|
+
prompt={
|
|
31
|
+
"query": "Classificeer de gegeven krantenkop als sarcastisch of niet sarcastisch"
|
|
32
|
+
},
|
|
30
33
|
)
|
|
31
34
|
|
|
32
35
|
def dataset_transform(self):
|
|
@@ -64,8 +64,7 @@ Tokunaga, Takenobu},
|
|
|
64
64
|
class NoRecClassificationV2(AbsTaskClassification):
|
|
65
65
|
metadata = TaskMetadata(
|
|
66
66
|
name="NoRecClassification.v2",
|
|
67
|
-
description="
|
|
68
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
67
|
+
description="A Norwegian dataset for sentiment classification on review This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
69
68
|
reference="https://aclanthology.org/L18-1661/",
|
|
70
69
|
dataset={
|
|
71
70
|
# using the mini version to keep results ~comparable to the ScandEval benchmark
|
|
@@ -51,8 +51,7 @@ Brygfjeld, Svein Arne},
|
|
|
51
51
|
class NorwegianParliamentClassificationV2(AbsTaskClassification):
|
|
52
52
|
metadata = TaskMetadata(
|
|
53
53
|
name="NorwegianParliamentClassification.v2",
|
|
54
|
-
description="
|
|
55
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
54
|
+
description="Norwegian parliament speeches annotated for sentiment This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
56
55
|
reference="https://huggingface.co/datasets/NbAiLab/norwegian_parliament",
|
|
57
56
|
dataset={
|
|
58
57
|
"path": "mteb/norwegian_parliament",
|
|
@@ -43,8 +43,7 @@ class OdiaNewsClassification(AbsTaskClassification):
|
|
|
43
43
|
class OdiaNewsClassificationV2(AbsTaskClassification):
|
|
44
44
|
metadata = TaskMetadata(
|
|
45
45
|
name="OdiaNewsClassification.v2",
|
|
46
|
-
description="
|
|
47
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
46
|
+
description="A Odia dataset for 3-class classification of Odia news articles This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
48
47
|
reference="https://github.com/goru001/nlp-for-odia",
|
|
49
48
|
dataset={
|
|
50
49
|
"path": "mteb/odia_news",
|
|
@@ -42,8 +42,7 @@ class CbdClassification(AbsTaskClassification):
|
|
|
42
42
|
class CbdClassificationV2(AbsTaskClassification):
|
|
43
43
|
metadata = TaskMetadata(
|
|
44
44
|
name="CBD.v2",
|
|
45
|
-
description="
|
|
46
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
45
|
+
description="Polish Tweets annotated for cyberbullying detection. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
47
46
|
reference="http://2019.poleval.pl/files/poleval2019.pdf",
|
|
48
47
|
dataset={
|
|
49
48
|
"path": "mteb/cbd",
|
|
@@ -274,8 +273,7 @@ Tetreault, Joel},
|
|
|
274
273
|
class AllegroReviewsClassificationV2(AbsTaskClassification):
|
|
275
274
|
metadata = TaskMetadata(
|
|
276
275
|
name="AllegroReviews.v2",
|
|
277
|
-
description="
|
|
278
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
276
|
+
description="A Polish dataset for sentiment classification on reviews from e-commerce marketplace Allegro. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
279
277
|
reference="https://aclanthology.org/2020.acl-main.111.pdf",
|
|
280
278
|
dataset={
|
|
281
279
|
"path": "mteb/allegro_reviews",
|
|
@@ -362,8 +360,7 @@ class PacClassification(AbsTaskClassification):
|
|
|
362
360
|
class PacClassificationV2(AbsTaskClassification):
|
|
363
361
|
metadata = TaskMetadata(
|
|
364
362
|
name="PAC.v2",
|
|
365
|
-
description="
|
|
366
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
363
|
+
description="Polish Paraphrase Corpus This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
367
364
|
reference="https://arxiv.org/pdf/2211.13112.pdf",
|
|
368
365
|
dataset={
|
|
369
366
|
"path": "mteb/pac",
|
|
@@ -47,8 +47,7 @@ class MorocoV2(AbsTaskClassification):
|
|
|
47
47
|
"path": "mteb/moroco",
|
|
48
48
|
"revision": "6e70588dbd3d583da8b85989c1c3ab3d4bd2e7c4",
|
|
49
49
|
},
|
|
50
|
-
description="
|
|
51
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
50
|
+
description="The Moldavian and Romanian Dialectal Corpus. The MOROCO data set contains Moldavian and Romanian samples of text collected from the news domain. The samples belong to one of the following six topics: (0) culture, (1) finance, (2) politics, (3) science, (4) sports, (5) tech This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
52
51
|
reference="https://huggingface.co/datasets/moroco",
|
|
53
52
|
type="Classification",
|
|
54
53
|
category="t2c",
|
|
@@ -39,8 +39,7 @@ class RomanianReviewsSentiment(AbsTaskClassification):
|
|
|
39
39
|
class RomanianReviewsSentimentV2(AbsTaskClassification):
|
|
40
40
|
metadata = TaskMetadata(
|
|
41
41
|
name="RomanianReviewsSentiment.v2",
|
|
42
|
-
description="
|
|
43
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
42
|
+
description="LaRoSeDa (A Large Romanian Sentiment Data Set) contains 15,000 reviews written in Romanian This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
44
43
|
reference="https://arxiv.org/abs/2101.04197",
|
|
45
44
|
dataset={
|
|
46
45
|
"path": "mteb/romanian_reviews_sentiment",
|
|
@@ -41,8 +41,7 @@ class RomanianSentimentClassification(AbsTaskClassification):
|
|
|
41
41
|
class RomanianSentimentClassificationV2(AbsTaskClassification):
|
|
42
42
|
metadata = TaskMetadata(
|
|
43
43
|
name="RomanianSentimentClassification.v2",
|
|
44
|
-
description="
|
|
45
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
44
|
+
description="An Romanian dataset for sentiment classification. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
46
45
|
reference="https://arxiv.org/abs/2009.08712",
|
|
47
46
|
dataset={
|
|
48
47
|
"path": "mteb/romanian_sentiment",
|
|
@@ -37,8 +37,7 @@ class GeoreviewClassificationV2(AbsTaskClassification):
|
|
|
37
37
|
"path": "mteb/georeview",
|
|
38
38
|
"revision": "5194395f82217bc31212fd6a275002fb405f9dfb",
|
|
39
39
|
},
|
|
40
|
-
description="
|
|
41
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
40
|
+
description="Review classification (5-point scale) based on Yandex Georeview dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
42
41
|
reference="https://github.com/yandex/geo-reviews-dataset-2023",
|
|
43
42
|
type="Classification",
|
|
44
43
|
category="t2c",
|
|
@@ -66,8 +66,7 @@ class HeadlineClassificationV2(AbsTaskClassification):
|
|
|
66
66
|
"path": "mteb/headline",
|
|
67
67
|
"revision": "6bd88e7778ee2e3bd8d0ade1be3ad5b6d969145a",
|
|
68
68
|
},
|
|
69
|
-
description="
|
|
70
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
69
|
+
description="Headline rubric classification based on the paraphraser plus dataset. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
71
70
|
reference="https://aclanthology.org/2020.ngt-1.6/",
|
|
72
71
|
type="Classification",
|
|
73
72
|
category="t2c",
|
|
@@ -70,8 +70,7 @@ class InappropriatenessClassificationV2(AbsTaskClassification):
|
|
|
70
70
|
"path": "mteb/inappropriateness",
|
|
71
71
|
"revision": "2bdbb71d9b972709173f1477d7dd33c3d67f51ac",
|
|
72
72
|
},
|
|
73
|
-
description="
|
|
74
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
73
|
+
description="Inappropriateness identification in the form of binary classification This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
75
74
|
reference="https://aclanthology.org/2021.bsnlp-1.4",
|
|
76
75
|
type="Classification",
|
|
77
76
|
category="t2c",
|
|
@@ -55,8 +55,7 @@ class RuReviewsClassificationV2(AbsTaskClassification):
|
|
|
55
55
|
"path": "mteb/ru_reviews",
|
|
56
56
|
"revision": "46d80ee5ac51be8234725558677e59050b9c418e",
|
|
57
57
|
},
|
|
58
|
-
description="
|
|
59
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
58
|
+
description="Product review classification (3-point scale) based on RuRevies dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
60
59
|
reference="https://github.com/sismetanin/rureviews",
|
|
61
60
|
type="Classification",
|
|
62
61
|
category="t2c",
|
|
@@ -39,8 +39,7 @@ class RuToxicOKMLCUPClassificationV2(AbsTaskClassification):
|
|
|
39
39
|
"path": "mteb/ru_toxic_okmlcup",
|
|
40
40
|
"revision": "729025d2cfa68fcbc587ea80014a42d569cd9048",
|
|
41
41
|
},
|
|
42
|
-
description="
|
|
43
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
42
|
+
description="On the Odnoklassniki social network, users post a huge number of comments of various directions and nature every day. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
44
43
|
reference="https://cups.online/ru/contests/okmlcup2020",
|
|
45
44
|
type="Classification",
|
|
46
45
|
category="t2t",
|
|
@@ -46,8 +46,7 @@ class SentiRuEval2016ClassificationV2(AbsTaskClassification):
|
|
|
46
46
|
"path": "mteb/senti_ru_eval2016",
|
|
47
47
|
"revision": "bfa4cbec1753ffed29a8244a4ec208cc9e6c09a0",
|
|
48
48
|
},
|
|
49
|
-
description="
|
|
50
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
49
|
+
description="Russian sentiment analysis evaluation SentiRuEval-2016 devoted to reputation monitoring of banks and telecom companies in Twitter. We describe the task, data, the procedure of data preparation, and participants’ results. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
51
50
|
reference="https://github.com/mokoron/sentirueval",
|
|
52
51
|
type="Classification",
|
|
53
52
|
category="t2t",
|
|
@@ -54,8 +54,7 @@ class SinhalaNewsClassification(AbsTaskClassification):
|
|
|
54
54
|
class SinhalaNewsClassificationV2(AbsTaskClassification):
|
|
55
55
|
metadata = TaskMetadata(
|
|
56
56
|
name="SinhalaNewsClassification.v2",
|
|
57
|
-
description="
|
|
58
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
57
|
+
description="This file contains news texts (sentences) belonging to 5 different news categories (political, business, technology, sports and Entertainment). The original dataset was released by Nisansa de Silva (Sinhala Text Classification: Observations from the Perspective of a Resource Poor Language, 2015). This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
59
58
|
dataset={
|
|
60
59
|
"path": "mteb/sinhala_news",
|
|
61
60
|
"revision": "e0b6e93ed5f086fe358595dff1aaad9eb877667a",
|
|
@@ -45,8 +45,7 @@ class SinhalaNewsSourceClassification(AbsTaskClassification):
|
|
|
45
45
|
class SinhalaNewsSourceClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="SinhalaNewsSourceClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="This dataset contains Sinhala news headlines extracted from 9 news sources (websites) (Sri Lanka Army, Dinamina, GossipLanka, Hiru, ITN, Lankapuwath, NewsLK, Newsfirst, World Socialist Web Site-Sinhala). This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
dataset={
|
|
51
50
|
"path": "mteb/sinhala_news_source",
|
|
52
51
|
"revision": "6902767dbfa6189cbe5f5b5b56ee6300b1702d33",
|
|
@@ -54,8 +54,7 @@ class CSFDSKMovieReviewSentimentClassification(AbsTaskClassification):
|
|
|
54
54
|
class CSFDSKMovieReviewSentimentClassificationV2(AbsTaskClassification):
|
|
55
55
|
metadata = TaskMetadata(
|
|
56
56
|
name="CSFDSKMovieReviewSentimentClassification.v2",
|
|
57
|
-
description="
|
|
58
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
57
|
+
description="The dataset contains 30k user reviews from csfd.cz in Slovak. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
59
58
|
reference="https://arxiv.org/abs/2304.01922",
|
|
60
59
|
dataset={
|
|
61
60
|
"path": "mteb/csfdsk_movie_review_sentiment",
|
|
@@ -32,8 +32,7 @@ class SlovakHateSpeechClassification(AbsTaskClassification):
|
|
|
32
32
|
class SlovakHateSpeechClassificationV2(AbsTaskClassification):
|
|
33
33
|
metadata = TaskMetadata(
|
|
34
34
|
name="SlovakHateSpeechClassification.v2",
|
|
35
|
-
description="
|
|
36
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
35
|
+
description="The dataset contains posts from a social network with human annotations for hateful or offensive language in Slovak. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
37
36
|
reference="https://huggingface.co/datasets/TUKE-KEMT/hate_speech_slovak",
|
|
38
37
|
dataset={
|
|
39
38
|
"path": "mteb/slovak_hate_speech",
|
|
@@ -46,8 +46,7 @@ class SlovakMovieReviewSentimentClassification(AbsTaskClassification):
|
|
|
46
46
|
class SlovakMovieReviewSentimentClassificationV2(AbsTaskClassification):
|
|
47
47
|
metadata = TaskMetadata(
|
|
48
48
|
name="SlovakMovieReviewSentimentClassification.v2",
|
|
49
|
-
description="
|
|
50
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
49
|
+
description="User reviews of movies on the CSFD movie database, with 2 sentiment classes (positive, negative) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
51
50
|
reference="https://arxiv.org/pdf/2304.01922",
|
|
52
51
|
dataset={
|
|
53
52
|
"path": "mteb/slovak_movie_review_sentiment",
|
|
@@ -42,8 +42,7 @@ class FrenkSlClassification(AbsTaskClassification):
|
|
|
42
42
|
class FrenkSlClassificationV2(AbsTaskClassification):
|
|
43
43
|
metadata = TaskMetadata(
|
|
44
44
|
name="FrenkSlClassification.v2",
|
|
45
|
-
description="
|
|
46
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
45
|
+
description="Slovenian subset of the FRENK dataset. Also available on HuggingFace dataset hub: English subset, Croatian subset. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
47
46
|
dataset={
|
|
48
47
|
"path": "mteb/frenk_sl",
|
|
49
48
|
"revision": "3b69facc14651fbd152fda173683a7ecf9125b82",
|
|
@@ -39,8 +39,7 @@ class SpanishNewsClassification(AbsTaskClassification):
|
|
|
39
39
|
class SpanishNewsClassificationV2(AbsTaskClassification):
|
|
40
40
|
metadata = TaskMetadata(
|
|
41
41
|
name="SpanishNewsClassification.v2",
|
|
42
|
-
description="
|
|
43
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
42
|
+
description="A Spanish dataset for news classification. The dataset includes articles from reputable Spanish news sources spanning 12 different categories. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
44
43
|
reference="https://huggingface.co/datasets/MarcOrfilaCarreras/spanish-news",
|
|
45
44
|
dataset={
|
|
46
45
|
"path": "mteb/spanish_news",
|
|
@@ -56,8 +56,7 @@ Vylomova, Ekaterina},
|
|
|
56
56
|
class SpanishSentimentClassificationV2(AbsTaskClassification):
|
|
57
57
|
metadata = TaskMetadata(
|
|
58
58
|
name="SpanishSentimentClassification.v2",
|
|
59
|
-
description="
|
|
60
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
59
|
+
description="A Spanish dataset for sentiment classification. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
61
60
|
reference="https://huggingface.co/datasets/sepidmnorozy/Spanish_sentiment",
|
|
62
61
|
dataset={
|
|
63
62
|
"path": "mteb/spanish_sentiment",
|
|
@@ -45,8 +45,7 @@ class SiswatiNewsClassification(AbsTaskClassification):
|
|
|
45
45
|
class SiswatiNewsClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="SiswatiNewsClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="Siswati News Classification Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
reference="https://huggingface.co/datasets/dsfsi/za-isizulu-siswati-news",
|
|
51
50
|
dataset={
|
|
52
51
|
"path": "mteb/siswati_news",
|
|
@@ -49,8 +49,7 @@ class SwahiliNewsClassification(AbsTaskClassification):
|
|
|
49
49
|
class SwahiliNewsClassificationV2(AbsTaskClassification):
|
|
50
50
|
metadata = TaskMetadata(
|
|
51
51
|
name="SwahiliNewsClassification.v2",
|
|
52
|
-
description="
|
|
53
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
52
|
+
description="Dataset for Swahili News Classification, categorized with 6 domains (Local News (Kitaifa), International News (Kimataifa), Finance News (Uchumi), Health News (Afya), Sports News (Michezo), and Entertainment News (Burudani)). Building and Optimizing Swahili Language Models: Techniques, Embeddings, and Datasets This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
54
53
|
reference="https://huggingface.co/datasets/Mollel/SwahiliNewsClassification",
|
|
55
54
|
dataset={
|
|
56
55
|
"path": "mteb/swahili_news",
|
|
@@ -50,8 +50,7 @@ class DalajClassificationV2(AbsTaskClassification):
|
|
|
50
50
|
"revision": "ecf6f2d83e8e85816ec3974896557a4aafce4f3e",
|
|
51
51
|
"name": "dalaj",
|
|
52
52
|
},
|
|
53
|
-
description="
|
|
54
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
53
|
+
description="A Swedish dataset for linguistic acceptability. Available as a part of Superlim. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
55
54
|
reference="https://spraakbanken.gu.se/en/resources/superlim",
|
|
56
55
|
type="Classification",
|
|
57
56
|
category="t2c",
|
|
@@ -47,8 +47,7 @@ Fishel, Mark},
|
|
|
47
47
|
class SweRecClassificationV2(AbsTaskClassification):
|
|
48
48
|
metadata = TaskMetadata(
|
|
49
49
|
name="SweRecClassification.v2",
|
|
50
|
-
description="
|
|
51
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
50
|
+
description="A Swedish dataset for sentiment classification on review This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
52
51
|
reference="https://aclanthology.org/2023.nodalida-1.20/",
|
|
53
52
|
dataset={
|
|
54
53
|
"path": "mteb/swe_rec",
|
|
@@ -32,8 +32,7 @@ class SwedishSentimentClassification(AbsTaskClassification):
|
|
|
32
32
|
class SwedishSentimentClassificationV2(AbsTaskClassification):
|
|
33
33
|
metadata = TaskMetadata(
|
|
34
34
|
name="SwedishSentimentClassification.v2",
|
|
35
|
-
description="
|
|
36
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
35
|
+
description="Dataset of Swedish reviews scarped from various public available websites This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
37
36
|
reference="https://huggingface.co/datasets/swedish_reviews",
|
|
38
37
|
dataset={
|
|
39
38
|
"path": "mteb/swedish_sentiment",
|
|
@@ -45,8 +45,7 @@ class TamilNewsClassification(AbsTaskClassification):
|
|
|
45
45
|
class TamilNewsClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="TamilNewsClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="A Tamil dataset for 6-class classification of Tamil news articles This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
reference="https://github.com/vanangamudi/tamil-news-classification",
|
|
51
50
|
dataset={
|
|
52
51
|
"path": "mteb/tamil_news",
|
|
@@ -36,8 +36,7 @@ class TeluguAndhraJyotiNewsClassification(AbsTaskClassification):
|
|
|
36
36
|
class TeluguAndhraJyotiNewsClassificationV2(AbsTaskClassification):
|
|
37
37
|
metadata = TaskMetadata(
|
|
38
38
|
name="TeluguAndhraJyotiNewsClassification.v2",
|
|
39
|
-
description="
|
|
40
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
39
|
+
description="A Telugu dataset for 5-class classification of Telugu news articles This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
41
40
|
reference="https://github.com/AnushaMotamarri/Telugu-Newspaper-Article-Dataset",
|
|
42
41
|
dataset={
|
|
43
42
|
"path": "mteb/telugu_andhra_jyoti_news",
|
|
@@ -46,8 +46,7 @@ Polpanumas, Charin},
|
|
|
46
46
|
class WisesightSentimentClassificationV2(AbsTaskClassification):
|
|
47
47
|
metadata = TaskMetadata(
|
|
48
48
|
name="WisesightSentimentClassification.v2",
|
|
49
|
-
description="
|
|
50
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
49
|
+
description="Wisesight Sentiment Corpus: Social media messages in Thai language with sentiment label (positive, neutral, negative, question) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
51
50
|
reference="https://github.com/PyThaiNLP/wisesight-sentiment",
|
|
52
51
|
dataset={
|
|
53
52
|
"path": "mteb/wisesight_sentiment",
|
|
@@ -43,8 +43,7 @@ class TswanaNewsClassification(AbsTaskClassification):
|
|
|
43
43
|
class TswanaNewsClassificationV2(AbsTaskClassification):
|
|
44
44
|
metadata = TaskMetadata(
|
|
45
45
|
name="TswanaNewsClassification.v2",
|
|
46
|
-
description="
|
|
47
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
46
|
+
description="Tswana News Classification Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
48
47
|
reference="https://link.springer.com/chapter/10.1007/978-3-031-49002-6_17",
|
|
49
48
|
dataset={
|
|
50
49
|
"path": "mteb/tswana_news",
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
from .turkish_constitutional_court import (
|
|
2
|
+
TurkishConstitutionalCourtViolation,
|
|
3
|
+
)
|
|
1
4
|
from .turkish_movie_sentiment_classification import (
|
|
2
5
|
TurkishMovieSentimentClassification,
|
|
3
6
|
TurkishMovieSentimentClassificationV2,
|
|
@@ -8,6 +11,7 @@ from .turkish_product_sentiment_classification import (
|
|
|
8
11
|
)
|
|
9
12
|
|
|
10
13
|
__all__ = [
|
|
14
|
+
"TurkishConstitutionalCourtViolation",
|
|
11
15
|
"TurkishMovieSentimentClassification",
|
|
12
16
|
"TurkishMovieSentimentClassificationV2",
|
|
13
17
|
"TurkishProductSentimentClassification",
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class TurkishConstitutionalCourtViolation(AbsTaskClassification):
|
|
6
|
+
# Normalize column names after load_data renames them.
|
|
7
|
+
label_column_name = "label"
|
|
8
|
+
input_column_name = "text"
|
|
9
|
+
|
|
10
|
+
metadata = TaskMetadata(
|
|
11
|
+
name="TurkishConstitutionalCourtViolation",
|
|
12
|
+
description="Binary classification of Turkish constitutional court decisions: Violation vs No violation.",
|
|
13
|
+
reference="https://huggingface.co/datasets/KocLab-Bilkent/turkish-constitutional-court",
|
|
14
|
+
type="Classification",
|
|
15
|
+
category="t2c",
|
|
16
|
+
modalities=["text"],
|
|
17
|
+
eval_splits=["test"],
|
|
18
|
+
eval_langs=["tur-Latn"],
|
|
19
|
+
main_score="f1",
|
|
20
|
+
dataset={
|
|
21
|
+
"path": "denizgulal/turkish-constitutional-court-violation-clean",
|
|
22
|
+
"revision": "333f49b7ddc72fa4a86ec5bd756a28c585311c74",
|
|
23
|
+
},
|
|
24
|
+
date=("2000-01-01", "2023-02-20"), # dataset card last updated Feb 20, 2023
|
|
25
|
+
domains=["Legal", "Non-fiction"],
|
|
26
|
+
task_subtypes=["Political classification"],
|
|
27
|
+
license="cc-by-4.0",
|
|
28
|
+
annotations_creators="human-annotated",
|
|
29
|
+
dialect=[],
|
|
30
|
+
sample_creation="found",
|
|
31
|
+
bibtex_citation=r"""
|
|
32
|
+
@article{mumcuoglu2021natural,
|
|
33
|
+
author = {Mumcuoglu, Emre and Ozturk, Ceyhun E. and Ozaktas, Haldun M. and Koc, Aykut},
|
|
34
|
+
journal = {Information Processing and Management},
|
|
35
|
+
number = {5},
|
|
36
|
+
title = {Natural language processing in law: Prediction of outcomes in the higher courts of Turkey},
|
|
37
|
+
volume = {58},
|
|
38
|
+
year = {2021},
|
|
39
|
+
}
|
|
40
|
+
""",
|
|
41
|
+
)
|
|
@@ -45,8 +45,7 @@ class TurkishMovieSentimentClassification(AbsTaskClassification):
|
|
|
45
45
|
class TurkishMovieSentimentClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="TurkishMovieSentimentClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="Turkish Movie Review Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
reference="https://www.win.tue.nl/~mpechen/publications/pubs/MT_WISDOM2013.pdf",
|
|
51
50
|
dataset={
|
|
52
51
|
"path": "mteb/turkish_movie_sentiment",
|
|
@@ -40,8 +40,7 @@ class TurkishProductSentimentClassification(AbsTaskClassification):
|
|
|
40
40
|
class TurkishProductSentimentClassificationV2(AbsTaskClassification):
|
|
41
41
|
metadata = TaskMetadata(
|
|
42
42
|
name="TurkishProductSentimentClassification.v2",
|
|
43
|
-
description="
|
|
44
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
43
|
+
description="Turkish Product Review Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
45
44
|
reference="https://www.win.tue.nl/~mpechen/publications/pubs/MT_WISDOM2013.pdf",
|
|
46
45
|
dataset={
|
|
47
46
|
"path": "mteb/turkish_product_sentiment",
|