mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -315,6 +315,7 @@ monot5_small = ModelMeta(
|
|
|
315
315
|
fp_options="float16",
|
|
316
316
|
),
|
|
317
317
|
name="castorini/monot5-small-msmarco-10k",
|
|
318
|
+
model_type=["cross-encoder"],
|
|
318
319
|
languages=["eng-Latn"],
|
|
319
320
|
open_weights=True,
|
|
320
321
|
revision="77f8e3f7b1eb1afe353aa21a7c3a2fc8feca702e",
|
|
@@ -329,8 +330,7 @@ monot5_small = ModelMeta(
|
|
|
329
330
|
similarity_fn_name=None,
|
|
330
331
|
use_instructions=None,
|
|
331
332
|
training_datasets=None,
|
|
332
|
-
framework=["PyTorch"],
|
|
333
|
-
is_cross_encoder=True,
|
|
333
|
+
framework=["PyTorch", "Transformers"],
|
|
334
334
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
335
335
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
336
336
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -343,11 +343,12 @@ monot5_small = ModelMeta(
|
|
|
343
343
|
)
|
|
344
344
|
|
|
345
345
|
monot5_base = ModelMeta(
|
|
346
|
-
loader=MonoT5Reranker,
|
|
346
|
+
loader=MonoT5Reranker,
|
|
347
347
|
loader_kwargs=dict(
|
|
348
348
|
fp_options="float16",
|
|
349
349
|
),
|
|
350
350
|
name="castorini/monot5-base-msmarco-10k",
|
|
351
|
+
model_type=["cross-encoder"],
|
|
351
352
|
languages=["eng-Latn"],
|
|
352
353
|
open_weights=True,
|
|
353
354
|
revision="f15657ab3d2a5dd0b9a30c8c0b6a0a73c9cb5884",
|
|
@@ -371,8 +372,7 @@ monot5_base = ModelMeta(
|
|
|
371
372
|
similarity_fn_name=None,
|
|
372
373
|
use_instructions=None,
|
|
373
374
|
training_datasets=None,
|
|
374
|
-
framework=["PyTorch"],
|
|
375
|
-
is_cross_encoder=True,
|
|
375
|
+
framework=["PyTorch", "Transformers"],
|
|
376
376
|
)
|
|
377
377
|
|
|
378
378
|
monot5_large = ModelMeta(
|
|
@@ -381,6 +381,7 @@ monot5_large = ModelMeta(
|
|
|
381
381
|
fp_options="float16",
|
|
382
382
|
),
|
|
383
383
|
name="castorini/monot5-large-msmarco-10k",
|
|
384
|
+
model_type=["cross-encoder"],
|
|
384
385
|
languages=["eng-Latn"],
|
|
385
386
|
open_weights=True,
|
|
386
387
|
revision="48cfad1d8dd587670393f27ee8ec41fde63e3d98",
|
|
@@ -395,8 +396,7 @@ monot5_large = ModelMeta(
|
|
|
395
396
|
similarity_fn_name=None,
|
|
396
397
|
use_instructions=None,
|
|
397
398
|
training_datasets=None,
|
|
398
|
-
framework=["PyTorch"],
|
|
399
|
-
is_cross_encoder=True,
|
|
399
|
+
framework=["PyTorch", "Transformers"],
|
|
400
400
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
401
401
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
402
402
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -414,6 +414,7 @@ monot5_3b = ModelMeta(
|
|
|
414
414
|
fp_options="float16",
|
|
415
415
|
),
|
|
416
416
|
name="castorini/monot5-3b-msmarco-10k",
|
|
417
|
+
model_type=["cross-encoder"],
|
|
417
418
|
languages=["eng-Latn"],
|
|
418
419
|
open_weights=True,
|
|
419
420
|
revision="bc0c419a438c81f592f878ce32430a1823f5db6c",
|
|
@@ -428,8 +429,7 @@ monot5_3b = ModelMeta(
|
|
|
428
429
|
similarity_fn_name=None,
|
|
429
430
|
use_instructions=None,
|
|
430
431
|
training_datasets=None,
|
|
431
|
-
framework=["PyTorch"],
|
|
432
|
-
is_cross_encoder=True,
|
|
432
|
+
framework=["PyTorch", "Transformers"],
|
|
433
433
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
434
434
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
435
435
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -442,11 +442,12 @@ monot5_3b = ModelMeta(
|
|
|
442
442
|
)
|
|
443
443
|
|
|
444
444
|
flant5_base = ModelMeta(
|
|
445
|
-
loader=FLANT5Reranker,
|
|
445
|
+
loader=FLANT5Reranker,
|
|
446
446
|
loader_kwargs=dict(
|
|
447
447
|
fp_options="float16",
|
|
448
448
|
),
|
|
449
449
|
name="google/flan-t5-base",
|
|
450
|
+
model_type=["cross-encoder"],
|
|
450
451
|
languages=["eng-Latn"],
|
|
451
452
|
open_weights=True,
|
|
452
453
|
revision="7bcac572ce56db69c1ea7c8af255c5d7c9672fc2",
|
|
@@ -483,8 +484,7 @@ flant5_base = ModelMeta(
|
|
|
483
484
|
public_training_data=None,
|
|
484
485
|
similarity_fn_name=None,
|
|
485
486
|
use_instructions=None,
|
|
486
|
-
framework=["PyTorch"],
|
|
487
|
-
is_cross_encoder=True,
|
|
487
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
488
488
|
)
|
|
489
489
|
|
|
490
490
|
flant5_large = ModelMeta(
|
|
@@ -493,6 +493,7 @@ flant5_large = ModelMeta(
|
|
|
493
493
|
fp_options="float16",
|
|
494
494
|
),
|
|
495
495
|
name="google/flan-t5-large",
|
|
496
|
+
model_type=["cross-encoder"],
|
|
496
497
|
languages=["eng-Latn"],
|
|
497
498
|
open_weights=True,
|
|
498
499
|
revision="0613663d0d48ea86ba8cb3d7a44f0f65dc596a2a",
|
|
@@ -529,8 +530,7 @@ flant5_large = ModelMeta(
|
|
|
529
530
|
public_training_data=None,
|
|
530
531
|
similarity_fn_name=None,
|
|
531
532
|
use_instructions=None,
|
|
532
|
-
framework=["PyTorch"],
|
|
533
|
-
is_cross_encoder=True,
|
|
533
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
534
534
|
)
|
|
535
535
|
|
|
536
536
|
flant5_xl = ModelMeta(
|
|
@@ -539,6 +539,7 @@ flant5_xl = ModelMeta(
|
|
|
539
539
|
fp_options="float16",
|
|
540
540
|
),
|
|
541
541
|
name="google/flan-t5-xl",
|
|
542
|
+
model_type=["cross-encoder"],
|
|
542
543
|
languages=["eng-Latn"],
|
|
543
544
|
open_weights=True,
|
|
544
545
|
revision="7d6315df2c2fb742f0f5b556879d730926ca9001",
|
|
@@ -575,8 +576,7 @@ flant5_xl = ModelMeta(
|
|
|
575
576
|
public_training_data=None,
|
|
576
577
|
similarity_fn_name=None,
|
|
577
578
|
use_instructions=None,
|
|
578
|
-
framework=["PyTorch"],
|
|
579
|
-
is_cross_encoder=True,
|
|
579
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
580
580
|
)
|
|
581
581
|
|
|
582
582
|
flant5_xxl = ModelMeta(
|
|
@@ -585,6 +585,7 @@ flant5_xxl = ModelMeta(
|
|
|
585
585
|
fp_options="float16",
|
|
586
586
|
),
|
|
587
587
|
name="google/flan-t5-xxl",
|
|
588
|
+
model_type=["cross-encoder"],
|
|
588
589
|
languages=["eng-Latn"],
|
|
589
590
|
open_weights=True,
|
|
590
591
|
revision="ae7c9136adc7555eeccc78cdd960dfd60fb346ce",
|
|
@@ -621,8 +622,7 @@ flant5_xxl = ModelMeta(
|
|
|
621
622
|
public_training_data=None,
|
|
622
623
|
similarity_fn_name=None,
|
|
623
624
|
use_instructions=None,
|
|
624
|
-
framework=["PyTorch"],
|
|
625
|
-
is_cross_encoder=True,
|
|
625
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
626
626
|
)
|
|
627
627
|
|
|
628
628
|
|
|
@@ -632,6 +632,7 @@ llama2_7b = ModelMeta(
|
|
|
632
632
|
fp_options="float16",
|
|
633
633
|
),
|
|
634
634
|
name="meta-llama/Llama-2-7b-hf",
|
|
635
|
+
model_type=["cross-encoder"],
|
|
635
636
|
languages=["eng-Latn"],
|
|
636
637
|
open_weights=True,
|
|
637
638
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9",
|
|
@@ -646,7 +647,7 @@ llama2_7b = ModelMeta(
|
|
|
646
647
|
similarity_fn_name=None,
|
|
647
648
|
use_instructions=None,
|
|
648
649
|
training_datasets=None,
|
|
649
|
-
framework=["PyTorch"],
|
|
650
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
650
651
|
citation="""@misc{touvron2023llama2openfoundation,
|
|
651
652
|
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
|
|
652
653
|
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
|
|
@@ -656,7 +657,6 @@ llama2_7b = ModelMeta(
|
|
|
656
657
|
primaryClass={cs.CL},
|
|
657
658
|
url={https://arxiv.org/abs/2307.09288},
|
|
658
659
|
}""",
|
|
659
|
-
is_cross_encoder=True,
|
|
660
660
|
)
|
|
661
661
|
|
|
662
662
|
llama2_7b_chat = ModelMeta(
|
|
@@ -665,6 +665,7 @@ llama2_7b_chat = ModelMeta(
|
|
|
665
665
|
fp_options="float16",
|
|
666
666
|
),
|
|
667
667
|
name="meta-llama/Llama-2-7b-chat-hf",
|
|
668
|
+
model_type=["cross-encoder"],
|
|
668
669
|
languages=["eng-Latn"],
|
|
669
670
|
open_weights=True,
|
|
670
671
|
revision="f5db02db724555f92da89c216ac04704f23d4590",
|
|
@@ -688,8 +689,7 @@ llama2_7b_chat = ModelMeta(
|
|
|
688
689
|
similarity_fn_name=None,
|
|
689
690
|
use_instructions=None,
|
|
690
691
|
training_datasets=None,
|
|
691
|
-
framework=["PyTorch"],
|
|
692
|
-
is_cross_encoder=True,
|
|
692
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
693
693
|
)
|
|
694
694
|
|
|
695
695
|
mistral_7b = ModelMeta(
|
|
@@ -698,6 +698,7 @@ mistral_7b = ModelMeta(
|
|
|
698
698
|
fp_options="float16",
|
|
699
699
|
),
|
|
700
700
|
name="mistralai/Mistral-7B-Instruct-v0.2",
|
|
701
|
+
model_type=["cross-encoder"],
|
|
701
702
|
languages=["eng-Latn"],
|
|
702
703
|
open_weights=True,
|
|
703
704
|
revision="3ad372fc79158a2148299e3318516c786aeded6c",
|
|
@@ -712,7 +713,7 @@ mistral_7b = ModelMeta(
|
|
|
712
713
|
similarity_fn_name=None,
|
|
713
714
|
use_instructions=None,
|
|
714
715
|
training_datasets=None,
|
|
715
|
-
framework=["PyTorch"],
|
|
716
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
716
717
|
citation="""@misc{jiang2023mistral7b,
|
|
717
718
|
title={Mistral 7B},
|
|
718
719
|
author={Albert Q. Jiang and Alexandre Sablayrolles and Arthur Mensch and Chris Bamford and Devendra Singh Chaplot and Diego de las Casas and Florian Bressand and Gianna Lengyel and Guillaume Lample and Lucile Saulnier and Lélio Renard Lavaud and Marie-Anne Lachaux and Pierre Stock and Teven Le Scao and Thibaut Lavril and Thomas Wang and Timothée Lacroix and William El Sayed},
|
|
@@ -722,7 +723,6 @@ mistral_7b = ModelMeta(
|
|
|
722
723
|
primaryClass={cs.CL},
|
|
723
724
|
url={https://arxiv.org/abs/2310.06825},
|
|
724
725
|
}""",
|
|
725
|
-
is_cross_encoder=True,
|
|
726
726
|
)
|
|
727
727
|
|
|
728
728
|
followir_7b = ModelMeta(
|
|
@@ -731,6 +731,7 @@ followir_7b = ModelMeta(
|
|
|
731
731
|
fp_options="float16",
|
|
732
732
|
),
|
|
733
733
|
name="jhu-clsp/FollowIR-7B",
|
|
734
|
+
model_type=["cross-encoder"],
|
|
734
735
|
languages=["eng-Latn"],
|
|
735
736
|
open_weights=True,
|
|
736
737
|
revision="4d25d437e38b510c01852070c0731e8f6e1875d1",
|
|
@@ -747,7 +748,7 @@ followir_7b = ModelMeta(
|
|
|
747
748
|
public_training_data=None,
|
|
748
749
|
similarity_fn_name=None,
|
|
749
750
|
use_instructions=None,
|
|
750
|
-
framework=["PyTorch"],
|
|
751
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
751
752
|
citation="""
|
|
752
753
|
@misc{weller2024followir,
|
|
753
754
|
title={FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions},
|
|
@@ -758,7 +759,6 @@ followir_7b = ModelMeta(
|
|
|
758
759
|
primaryClass={cs.IR}
|
|
759
760
|
}
|
|
760
761
|
""",
|
|
761
|
-
is_cross_encoder=True,
|
|
762
762
|
)
|
|
763
763
|
|
|
764
764
|
|
|
@@ -874,6 +874,7 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
874
874
|
fp_options="float16",
|
|
875
875
|
),
|
|
876
876
|
name="unicamp-dl/mt5-base-mmarco-v2",
|
|
877
|
+
model_type=["cross-encoder"],
|
|
877
878
|
languages=mt5_languages,
|
|
878
879
|
open_weights=True,
|
|
879
880
|
revision="cc0a949b9f21efcaba45c8cabb998ad02ce8d4e7",
|
|
@@ -897,16 +898,16 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
897
898
|
public_training_data=None,
|
|
898
899
|
similarity_fn_name=None,
|
|
899
900
|
use_instructions=None,
|
|
900
|
-
framework=["PyTorch"],
|
|
901
|
-
is_cross_encoder=True,
|
|
901
|
+
framework=["PyTorch", "Transformers"],
|
|
902
902
|
)
|
|
903
903
|
|
|
904
904
|
mt5_13b_mmarco_100k = ModelMeta(
|
|
905
|
-
loader=MonoT5Reranker,
|
|
905
|
+
loader=MonoT5Reranker,
|
|
906
906
|
loader_kwargs=dict(
|
|
907
907
|
fp_options="float16",
|
|
908
908
|
),
|
|
909
909
|
name="unicamp-dl/mt5-13b-mmarco-100k",
|
|
910
|
+
model_type=["cross-encoder"],
|
|
910
911
|
languages=mt5_languages,
|
|
911
912
|
open_weights=True,
|
|
912
913
|
revision="e1a4317e102a525ea9e16745ad21394a4f1bffbc",
|
|
@@ -921,6 +922,5 @@ mt5_13b_mmarco_100k = ModelMeta(
|
|
|
921
922
|
similarity_fn_name=None,
|
|
922
923
|
use_instructions=None,
|
|
923
924
|
training_datasets=None,
|
|
924
|
-
framework=["PyTorch"],
|
|
925
|
-
is_cross_encoder=True,
|
|
925
|
+
framework=["PyTorch", "Transformers"],
|
|
926
926
|
)
|
|
@@ -9,6 +9,7 @@ from .stella_models import stella_zh_datasets
|
|
|
9
9
|
ritrieve_zh_v1 = ModelMeta(
|
|
10
10
|
loader=SentenceTransformerEncoderWrapper,
|
|
11
11
|
name="richinfoai/ritrieve_zh_v1",
|
|
12
|
+
model_type=["dense"],
|
|
12
13
|
languages=["zho-Hans"],
|
|
13
14
|
open_weights=True,
|
|
14
15
|
revision="f8d5a707656c55705027678e311f9202c8ced12c",
|
|
@@ -20,7 +21,7 @@ ritrieve_zh_v1 = ModelMeta(
|
|
|
20
21
|
max_tokens=512,
|
|
21
22
|
reference="https://huggingface.co/richinfoai/ritrieve_zh_v1",
|
|
22
23
|
similarity_fn_name="cosine",
|
|
23
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
24
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
24
25
|
use_instructions=False,
|
|
25
26
|
superseded_by=None,
|
|
26
27
|
adapted_from=None,
|
|
@@ -43,6 +43,10 @@ GIGA_task_prompts = {
|
|
|
43
43
|
"query": "Given a news title, retrieve relevant news article",
|
|
44
44
|
"document": "",
|
|
45
45
|
},
|
|
46
|
+
"RiaNewsRetrievalHardNegatives.v2": {
|
|
47
|
+
"query": "Given a news title, retrieve relevant news article",
|
|
48
|
+
"document": "",
|
|
49
|
+
},
|
|
46
50
|
"MIRACLReranking": {
|
|
47
51
|
"query": "Given a question, retrieve Wikipedia passages that answer the question",
|
|
48
52
|
"document": "",
|
|
@@ -51,6 +55,10 @@ GIGA_task_prompts = {
|
|
|
51
55
|
"query": "Given a question, retrieve Wikipedia passages that answer the question",
|
|
52
56
|
"document": "",
|
|
53
57
|
},
|
|
58
|
+
"MIRACLRetrievalHardNegatives.v2": {
|
|
59
|
+
"query": "Given a question, retrieve Wikipedia passages that answer the question",
|
|
60
|
+
"document": "",
|
|
61
|
+
},
|
|
54
62
|
"ArguAna": {
|
|
55
63
|
"query": "Given a search query, retrieve passages that answer the question",
|
|
56
64
|
"document": "Given a search query, retrieve passages that answer the question",
|
|
@@ -230,6 +238,7 @@ GIGA_task_prompts = {
|
|
|
230
238
|
rubert_tiny = ModelMeta(
|
|
231
239
|
loader=sentence_transformers_loader,
|
|
232
240
|
name="cointegrated/rubert-tiny",
|
|
241
|
+
model_type=["dense"],
|
|
233
242
|
languages=["rus-Cyrl"],
|
|
234
243
|
open_weights=True,
|
|
235
244
|
revision="5441c5ea8026d4f6d7505ec004845409f1259fb1",
|
|
@@ -241,7 +250,7 @@ rubert_tiny = ModelMeta(
|
|
|
241
250
|
max_tokens=512,
|
|
242
251
|
reference="https://huggingface.co/cointegrated/rubert-tiny",
|
|
243
252
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
244
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
253
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
245
254
|
use_instructions=False,
|
|
246
255
|
public_training_code="https://gist.github.com/avidale/7bc6350f26196918bf339c01261f5c60",
|
|
247
256
|
training_datasets={
|
|
@@ -255,6 +264,7 @@ rubert_tiny = ModelMeta(
|
|
|
255
264
|
rubert_tiny2 = ModelMeta(
|
|
256
265
|
loader=sentence_transformers_loader,
|
|
257
266
|
name="cointegrated/rubert-tiny2",
|
|
267
|
+
model_type=["dense"],
|
|
258
268
|
languages=["rus-Cyrl"],
|
|
259
269
|
open_weights=True,
|
|
260
270
|
revision="dad72b8f77c5eef6995dd3e4691b758ba56b90c3",
|
|
@@ -266,7 +276,7 @@ rubert_tiny2 = ModelMeta(
|
|
|
266
276
|
max_tokens=2048,
|
|
267
277
|
reference="https://huggingface.co/cointegrated/rubert-tiny2",
|
|
268
278
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
269
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
279
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
270
280
|
use_instructions=False,
|
|
271
281
|
public_training_code="https://colab.research.google.com/drive/1mSWfIQ6PIlteLVZ9DKKpcorycgLIKZLf?usp=sharing",
|
|
272
282
|
training_datasets=set(
|
|
@@ -281,6 +291,7 @@ rubert_tiny2 = ModelMeta(
|
|
|
281
291
|
sbert_large_nlu_ru = ModelMeta(
|
|
282
292
|
loader=sentence_transformers_loader,
|
|
283
293
|
name="ai-forever/sbert_large_nlu_ru",
|
|
294
|
+
model_type=["dense"],
|
|
284
295
|
languages=["rus-Cyrl"],
|
|
285
296
|
open_weights=True,
|
|
286
297
|
revision="af977d5dfa46a3635e29bf0ef383f2df2a08d47a",
|
|
@@ -292,7 +303,7 @@ sbert_large_nlu_ru = ModelMeta(
|
|
|
292
303
|
max_tokens=512, # best guess
|
|
293
304
|
reference="https://huggingface.co/ai-forever/sbert_large_nlu_ru",
|
|
294
305
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
295
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
306
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
296
307
|
use_instructions=False,
|
|
297
308
|
public_training_code=None,
|
|
298
309
|
public_training_data=None,
|
|
@@ -306,6 +317,7 @@ sbert_large_nlu_ru = ModelMeta(
|
|
|
306
317
|
sbert_large_mt_nlu_ru = ModelMeta(
|
|
307
318
|
loader=sentence_transformers_loader,
|
|
308
319
|
name="ai-forever/sbert_large_mt_nlu_ru",
|
|
320
|
+
model_type=["dense"],
|
|
309
321
|
languages=["rus-Cyrl"],
|
|
310
322
|
open_weights=True,
|
|
311
323
|
revision="05300876c2b83f46d3ddd422a7f17e45cf633bb0",
|
|
@@ -317,7 +329,7 @@ sbert_large_mt_nlu_ru = ModelMeta(
|
|
|
317
329
|
max_tokens=512, # best guess
|
|
318
330
|
reference="https://huggingface.co/ai-forever/sbert_large_mt_nlu_ru",
|
|
319
331
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
320
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
332
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
321
333
|
use_instructions=False,
|
|
322
334
|
public_training_code=None,
|
|
323
335
|
public_training_data=None,
|
|
@@ -333,6 +345,7 @@ user_base_ru = ModelMeta(
|
|
|
333
345
|
model_prompts={"query": "query: ", "document": "passage: "},
|
|
334
346
|
),
|
|
335
347
|
name="deepvk/USER-base",
|
|
348
|
+
model_type=["dense"],
|
|
336
349
|
languages=["rus-Cyrl"],
|
|
337
350
|
open_weights=True,
|
|
338
351
|
revision="436a489a2087d61aa670b3496a9915f84e46c861",
|
|
@@ -344,7 +357,7 @@ user_base_ru = ModelMeta(
|
|
|
344
357
|
max_tokens=512,
|
|
345
358
|
reference="https://huggingface.co/deepvk/USER-base",
|
|
346
359
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
347
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
360
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
348
361
|
adapted_from="https://huggingface.co/deepvk/deberta-v1-base",
|
|
349
362
|
use_instructions=True,
|
|
350
363
|
citation="""@misc{deepvk2024user,
|
|
@@ -393,6 +406,7 @@ user_base_ru = ModelMeta(
|
|
|
393
406
|
user_bge_m3 = ModelMeta(
|
|
394
407
|
loader=sentence_transformers_loader,
|
|
395
408
|
name="deepvk/USER-bge-m3",
|
|
409
|
+
model_type=["dense"],
|
|
396
410
|
languages=["rus-Cyrl"],
|
|
397
411
|
open_weights=True,
|
|
398
412
|
revision="0cc6cfe48e260fb0474c753087a69369e88709ae",
|
|
@@ -404,7 +418,7 @@ user_bge_m3 = ModelMeta(
|
|
|
404
418
|
max_tokens=8194,
|
|
405
419
|
reference="https://huggingface.co/deepvk/USER-base",
|
|
406
420
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
407
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
421
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
408
422
|
adapted_from="BAAI/bge-m3",
|
|
409
423
|
use_instructions=False,
|
|
410
424
|
training_datasets={
|
|
@@ -431,11 +445,19 @@ user_bge_m3 = ModelMeta(
|
|
|
431
445
|
},
|
|
432
446
|
public_training_code=None,
|
|
433
447
|
public_training_data=None,
|
|
448
|
+
citation="""@misc{deepvk2024user,
|
|
449
|
+
title={USER: Universal Sentence Encoder for Russian},
|
|
450
|
+
author={Malashenko, Boris and Zemerov, Anton and Spirin, Egor},
|
|
451
|
+
url={https://huggingface.co/datasets/deepvk/USER-base},
|
|
452
|
+
publisher={Hugging Face},
|
|
453
|
+
year={2024},
|
|
454
|
+
}""",
|
|
434
455
|
)
|
|
435
456
|
|
|
436
457
|
deberta_v1_ru = ModelMeta(
|
|
437
458
|
loader=sentence_transformers_loader,
|
|
438
459
|
name="deepvk/deberta-v1-base",
|
|
460
|
+
model_type=["dense"],
|
|
439
461
|
languages=["rus-Cyrl"],
|
|
440
462
|
open_weights=True,
|
|
441
463
|
revision="bdd30b0e19757e6940c92c7aff19e8fc0a60dff4",
|
|
@@ -447,7 +469,7 @@ deberta_v1_ru = ModelMeta(
|
|
|
447
469
|
max_tokens=512,
|
|
448
470
|
reference="https://huggingface.co/deepvk/deberta-v1-base",
|
|
449
471
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
450
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
472
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
451
473
|
use_instructions=False,
|
|
452
474
|
# Wikipedia, Books, Twitter comments, Pikabu, Proza.ru, Film subtitles, News websites, and Social corpus
|
|
453
475
|
public_training_code=None,
|
|
@@ -466,6 +488,7 @@ deberta_v1_ru = ModelMeta(
|
|
|
466
488
|
rubert_base_cased = ModelMeta(
|
|
467
489
|
loader=sentence_transformers_loader,
|
|
468
490
|
name="DeepPavlov/rubert-base-cased",
|
|
491
|
+
model_type=["dense"],
|
|
469
492
|
languages=["rus-Cyrl"],
|
|
470
493
|
open_weights=True,
|
|
471
494
|
revision="4036cab694767a299f2b9e6492909664d9414229",
|
|
@@ -477,7 +500,7 @@ rubert_base_cased = ModelMeta(
|
|
|
477
500
|
max_tokens=512,
|
|
478
501
|
reference="https://huggingface.co/DeepPavlov/rubert-base-cased",
|
|
479
502
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
480
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
503
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
481
504
|
use_instructions=False,
|
|
482
505
|
public_training_code=None,
|
|
483
506
|
public_training_data=None,
|
|
@@ -501,6 +524,7 @@ rubert_base_cased = ModelMeta(
|
|
|
501
524
|
distilrubert_small_cased_conversational = ModelMeta(
|
|
502
525
|
loader=sentence_transformers_loader,
|
|
503
526
|
name="DeepPavlov/distilrubert-small-cased-conversational",
|
|
527
|
+
model_type=["dense"],
|
|
504
528
|
languages=["rus-Cyrl"],
|
|
505
529
|
open_weights=True,
|
|
506
530
|
revision="e348066b4a7279b97138038299bddc6580a9169a",
|
|
@@ -512,7 +536,7 @@ distilrubert_small_cased_conversational = ModelMeta(
|
|
|
512
536
|
max_tokens=512,
|
|
513
537
|
reference="https://huggingface.co/DeepPavlov/distilrubert-small-cased-conversational",
|
|
514
538
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
515
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
539
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
516
540
|
use_instructions=False,
|
|
517
541
|
public_training_code=None,
|
|
518
542
|
public_training_data=None,
|
|
@@ -535,6 +559,7 @@ distilrubert_small_cased_conversational = ModelMeta(
|
|
|
535
559
|
rubert_base_cased_sentence = ModelMeta(
|
|
536
560
|
loader=sentence_transformers_loader,
|
|
537
561
|
name="DeepPavlov/rubert-base-cased-sentence",
|
|
562
|
+
model_type=["dense"],
|
|
538
563
|
languages=["rus-Cyrl"],
|
|
539
564
|
open_weights=True,
|
|
540
565
|
revision="78b5122d6365337dd4114281b0d08cd1edbb3bc8",
|
|
@@ -546,7 +571,7 @@ rubert_base_cased_sentence = ModelMeta(
|
|
|
546
571
|
max_tokens=512,
|
|
547
572
|
reference="https://huggingface.co/DeepPavlov/rubert-base-cased-sentence",
|
|
548
573
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
549
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
574
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
550
575
|
use_instructions=False,
|
|
551
576
|
public_training_code=None,
|
|
552
577
|
public_training_data=None,
|
|
@@ -559,6 +584,7 @@ rubert_base_cased_sentence = ModelMeta(
|
|
|
559
584
|
labse_en_ru = ModelMeta(
|
|
560
585
|
loader=sentence_transformers_loader,
|
|
561
586
|
name="cointegrated/LaBSE-en-ru",
|
|
587
|
+
model_type=["dense"],
|
|
562
588
|
languages=["rus-Cyrl"],
|
|
563
589
|
open_weights=True,
|
|
564
590
|
revision="cf0714e606d4af551e14ad69a7929cd6b0da7f7e",
|
|
@@ -570,7 +596,7 @@ labse_en_ru = ModelMeta(
|
|
|
570
596
|
max_tokens=512,
|
|
571
597
|
reference="https://huggingface.co/cointegrated/LaBSE-en-ru",
|
|
572
598
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
573
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
599
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
574
600
|
use_instructions=False,
|
|
575
601
|
public_training_code="https://colab.research.google.com/drive/1dnPRn0-ugj3vZgSpyCC9sgslM2SuSfHy?usp=sharing",
|
|
576
602
|
public_training_data=None,
|
|
@@ -586,6 +612,7 @@ turbo_models_datasets = set(
|
|
|
586
612
|
rubert_tiny_turbo = ModelMeta(
|
|
587
613
|
loader=sentence_transformers_loader,
|
|
588
614
|
name="sergeyzh/rubert-tiny-turbo",
|
|
615
|
+
model_type=["dense"],
|
|
589
616
|
languages=["rus-Cyrl"],
|
|
590
617
|
open_weights=True,
|
|
591
618
|
revision="8ce0cf757446ce9bb2d5f5a4ac8103c7a1049054",
|
|
@@ -597,7 +624,7 @@ rubert_tiny_turbo = ModelMeta(
|
|
|
597
624
|
max_tokens=2048,
|
|
598
625
|
reference="https://huggingface.co/sergeyzh/rubert-tiny-turbo",
|
|
599
626
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
600
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
627
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
601
628
|
use_instructions=False,
|
|
602
629
|
public_training_code=None,
|
|
603
630
|
public_training_data=None,
|
|
@@ -608,6 +635,7 @@ rubert_tiny_turbo = ModelMeta(
|
|
|
608
635
|
rubert_mini_frida = ModelMeta(
|
|
609
636
|
loader=sentence_transformers_loader,
|
|
610
637
|
name="sergeyzh/rubert-mini-frida",
|
|
638
|
+
model_type=["dense"],
|
|
611
639
|
languages=["rus-Cyrl"],
|
|
612
640
|
open_weights=True,
|
|
613
641
|
revision="19b279b78afd945b5ccae78f63e284909814adc2",
|
|
@@ -619,7 +647,7 @@ rubert_mini_frida = ModelMeta(
|
|
|
619
647
|
max_tokens=2048,
|
|
620
648
|
reference="https://huggingface.co/sergeyzh/rubert-mini-frida",
|
|
621
649
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
622
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
650
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
623
651
|
use_instructions=True,
|
|
624
652
|
public_training_code=None,
|
|
625
653
|
public_training_data=None,
|
|
@@ -635,6 +663,7 @@ rubert_mini_frida = ModelMeta(
|
|
|
635
663
|
labse_ru_turbo = ModelMeta(
|
|
636
664
|
loader=sentence_transformers_loader,
|
|
637
665
|
name="sergeyzh/LaBSE-ru-turbo",
|
|
666
|
+
model_type=["dense"],
|
|
638
667
|
languages=["rus-Cyrl"],
|
|
639
668
|
open_weights=True,
|
|
640
669
|
revision="1940b046c6b5e125df11722b899130329d0a46da",
|
|
@@ -646,7 +675,7 @@ labse_ru_turbo = ModelMeta(
|
|
|
646
675
|
max_tokens=512,
|
|
647
676
|
reference="https://huggingface.co/sergeyzh/LaBSE-ru-turbo",
|
|
648
677
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
649
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
678
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
650
679
|
use_instructions=False,
|
|
651
680
|
training_datasets=turbo_models_datasets,
|
|
652
681
|
public_training_code=None,
|
|
@@ -683,6 +712,7 @@ rosberta_ru_en = ModelMeta(
|
|
|
683
712
|
model_prompts=rosberta_prompts,
|
|
684
713
|
),
|
|
685
714
|
name="ai-forever/ru-en-RoSBERTa",
|
|
715
|
+
model_type=["dense"],
|
|
686
716
|
languages=["rus-Cyrl"],
|
|
687
717
|
open_weights=True,
|
|
688
718
|
revision="89fb1651989adbb1cfcfdedafd7d102951ad0555",
|
|
@@ -715,7 +745,7 @@ rosberta_ru_en = ModelMeta(
|
|
|
715
745
|
},
|
|
716
746
|
public_training_data=None,
|
|
717
747
|
public_training_code=None,
|
|
718
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
748
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
719
749
|
citation="""@misc{snegirev2024russianfocusedembeddersexplorationrumteb,
|
|
720
750
|
title={The Russian-focused embedders' exploration: ruMTEB benchmark and Russian embedding model design},
|
|
721
751
|
author={Artem Snegirev and Maria Tikhonova and Anna Maksimova and Alena Fenogenova and Alexander Abramov},
|
|
@@ -755,6 +785,7 @@ frida_prompts = {
|
|
|
755
785
|
"SensitiveTopicsClassification": "categorize_topic: ",
|
|
756
786
|
"TERRa": "categorize_entailment: ",
|
|
757
787
|
"RiaNewsRetrieval": "categorize: ",
|
|
788
|
+
"RiaNewsRetrievalHardNegatives.v2": "",
|
|
758
789
|
}
|
|
759
790
|
|
|
760
791
|
frida_training_datasets = {
|
|
@@ -847,6 +878,7 @@ frida = ModelMeta(
|
|
|
847
878
|
model_prompts=frida_prompts,
|
|
848
879
|
),
|
|
849
880
|
name="ai-forever/FRIDA",
|
|
881
|
+
model_type=["dense"],
|
|
850
882
|
languages=["rus-Cyrl"],
|
|
851
883
|
open_weights=True,
|
|
852
884
|
revision="7292217af9a9e6dbf07048f76b434ad1e2aa8b76",
|
|
@@ -863,7 +895,8 @@ frida = ModelMeta(
|
|
|
863
895
|
training_datasets=frida_training_datasets,
|
|
864
896
|
public_training_data=None,
|
|
865
897
|
public_training_code=None,
|
|
866
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
898
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
899
|
+
citation=None,
|
|
867
900
|
)
|
|
868
901
|
|
|
869
902
|
giga_embeddings = ModelMeta(
|
|
@@ -879,6 +912,7 @@ giga_embeddings = ModelMeta(
|
|
|
879
912
|
},
|
|
880
913
|
),
|
|
881
914
|
name="ai-sage/Giga-Embeddings-instruct",
|
|
915
|
+
model_type=["dense"],
|
|
882
916
|
languages=["eng-Latn", "rus-Cyrl"],
|
|
883
917
|
open_weights=True,
|
|
884
918
|
revision="0ad5b29bfecd806cecc9d66b927d828a736594dc",
|
|
@@ -890,7 +924,7 @@ giga_embeddings = ModelMeta(
|
|
|
890
924
|
max_tokens=4096,
|
|
891
925
|
reference="https://huggingface.co/ai-sage/Giga-Embeddings-instruct",
|
|
892
926
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
893
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
927
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
894
928
|
use_instructions=True,
|
|
895
929
|
public_training_code=None,
|
|
896
930
|
public_training_data=None,
|
|
@@ -910,6 +944,7 @@ berta_training_datasets = (
|
|
|
910
944
|
berta = ModelMeta(
|
|
911
945
|
loader=sentence_transformers_loader,
|
|
912
946
|
name="sergeyzh/BERTA",
|
|
947
|
+
model_type=["dense"],
|
|
913
948
|
languages=["rus-Cyrl"],
|
|
914
949
|
open_weights=True,
|
|
915
950
|
revision="914c8c8aed14042ed890fc2c662d5e9e66b2faa7",
|
|
@@ -921,7 +956,7 @@ berta = ModelMeta(
|
|
|
921
956
|
max_tokens=512,
|
|
922
957
|
reference="https://huggingface.co/sergeyzh/BERTA",
|
|
923
958
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
924
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
959
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
925
960
|
use_instructions=True,
|
|
926
961
|
training_datasets=berta_training_datasets,
|
|
927
962
|
public_training_code=None,
|
|
@@ -982,6 +1017,7 @@ user2_small = ModelMeta(
|
|
|
982
1017
|
model_prompts=user2_prompts,
|
|
983
1018
|
),
|
|
984
1019
|
name="deepvk/USER2-small",
|
|
1020
|
+
model_type=["dense"],
|
|
985
1021
|
languages=["rus-Cyrl"],
|
|
986
1022
|
open_weights=True,
|
|
987
1023
|
revision="23f65b34cf7632032061f5cc66c14714e6d4cee4",
|
|
@@ -998,7 +1034,14 @@ user2_small = ModelMeta(
|
|
|
998
1034
|
training_datasets=user2_training_data,
|
|
999
1035
|
public_training_data=None,
|
|
1000
1036
|
public_training_code="https://github.com/BlessedTatonka/some_code/tree/2899f27d51efdf4217fc6453799ff197e9792f1e",
|
|
1001
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
1037
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
1038
|
+
citation="""@misc{deepvk2025user,
|
|
1039
|
+
title={USER2},
|
|
1040
|
+
author={Malashenko, Boris and Spirin, Egor and Sokolov Andrey},
|
|
1041
|
+
url={https://huggingface.co/deepvk/USER2-small},
|
|
1042
|
+
publisher={Hugging Face},
|
|
1043
|
+
year={2025},
|
|
1044
|
+
}""",
|
|
1002
1045
|
)
|
|
1003
1046
|
|
|
1004
1047
|
user2_base = ModelMeta(
|
|
@@ -1007,6 +1050,7 @@ user2_base = ModelMeta(
|
|
|
1007
1050
|
model_prompts=user2_prompts,
|
|
1008
1051
|
),
|
|
1009
1052
|
name="deepvk/USER2-base",
|
|
1053
|
+
model_type=["dense"],
|
|
1010
1054
|
languages=["rus-Cyrl"],
|
|
1011
1055
|
open_weights=True,
|
|
1012
1056
|
revision="0942cf96909b6d52e61f79a01e2d30c7be640b27",
|
|
@@ -1023,5 +1067,12 @@ user2_base = ModelMeta(
|
|
|
1023
1067
|
training_datasets=user2_training_data,
|
|
1024
1068
|
public_training_data=None,
|
|
1025
1069
|
public_training_code="https://github.com/BlessedTatonka/some_code/tree/2899f27d51efdf4217fc6453799ff197e9792f1e",
|
|
1026
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
1070
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
1071
|
+
citation="""@misc{deepvk2025user,
|
|
1072
|
+
title={USER2},
|
|
1073
|
+
author={Malashenko, Boris and Spirin, Egor and Sokolov Andrey},
|
|
1074
|
+
url={https://huggingface.co/deepvk/USER2-base},
|
|
1075
|
+
publisher={Hugging Face},
|
|
1076
|
+
year={2025},
|
|
1077
|
+
}""",
|
|
1027
1078
|
)
|