mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (527) hide show
  1. mteb/__init__.py +6 -0
  2. mteb/_create_dataloaders.py +22 -20
  3. mteb/_evaluators/any_sts_evaluator.py +23 -14
  4. mteb/_evaluators/classification_metrics.py +54 -0
  5. mteb/_evaluators/clustering_evaluator.py +3 -3
  6. mteb/_evaluators/evaluator.py +4 -2
  7. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
  8. mteb/_evaluators/pair_classification_evaluator.py +34 -40
  9. mteb/_evaluators/retrieval_evaluator.py +2 -2
  10. mteb/_evaluators/retrieval_metrics.py +18 -17
  11. mteb/_evaluators/sklearn_evaluator.py +25 -37
  12. mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
  13. mteb/_evaluators/text/summarization_evaluator.py +27 -20
  14. mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
  15. mteb/abstasks/_data_filter/__init__.py +0 -0
  16. mteb/abstasks/_data_filter/filters.py +125 -0
  17. mteb/abstasks/_data_filter/task_pipelines.py +105 -0
  18. mteb/abstasks/_statistics_calculation.py +23 -11
  19. mteb/abstasks/_stratification.py +18 -18
  20. mteb/abstasks/abstask.py +35 -28
  21. mteb/abstasks/aggregate_task_metadata.py +1 -9
  22. mteb/abstasks/aggregated_task.py +10 -29
  23. mteb/abstasks/classification.py +15 -12
  24. mteb/abstasks/clustering.py +20 -16
  25. mteb/abstasks/clustering_legacy.py +13 -10
  26. mteb/abstasks/image/image_text_pair_classification.py +7 -4
  27. mteb/abstasks/multilabel_classification.py +33 -22
  28. mteb/abstasks/pair_classification.py +27 -11
  29. mteb/abstasks/regression.py +4 -4
  30. mteb/abstasks/retrieval.py +28 -24
  31. mteb/abstasks/retrieval_dataset_loaders.py +2 -2
  32. mteb/abstasks/sts.py +14 -4
  33. mteb/abstasks/task_metadata.py +32 -33
  34. mteb/abstasks/text/bitext_mining.py +39 -28
  35. mteb/abstasks/text/reranking.py +8 -6
  36. mteb/abstasks/text/summarization.py +10 -5
  37. mteb/abstasks/zeroshot_classification.py +8 -4
  38. mteb/benchmarks/_create_table.py +84 -37
  39. mteb/benchmarks/benchmark.py +77 -16
  40. mteb/benchmarks/benchmarks/__init__.py +12 -0
  41. mteb/benchmarks/benchmarks/benchmarks.py +361 -16
  42. mteb/benchmarks/get_benchmark.py +14 -53
  43. mteb/cache.py +227 -37
  44. mteb/cli/_display_tasks.py +2 -2
  45. mteb/cli/build_cli.py +110 -14
  46. mteb/cli/generate_model_card.py +43 -23
  47. mteb/deprecated_evaluator.py +71 -62
  48. mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
  49. mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
  50. mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
  51. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
  52. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
  53. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
  54. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
  55. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
  56. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
  57. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
  58. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
  59. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
  60. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
  61. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
  62. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
  63. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
  64. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
  65. mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
  66. mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
  67. mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
  68. mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
  69. mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
  70. mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
  71. mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
  72. mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
  73. mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
  74. mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
  75. mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
  76. mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
  77. mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
  78. mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
  79. mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
  80. mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
  81. mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
  82. mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
  83. mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
  84. mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
  85. mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
  86. mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
  87. mteb/evaluate.py +106 -75
  88. mteb/filter_tasks.py +25 -26
  89. mteb/get_tasks.py +29 -30
  90. mteb/languages/language_scripts.py +5 -3
  91. mteb/leaderboard/app.py +414 -151
  92. mteb/leaderboard/benchmark_selector.py +14 -5
  93. mteb/leaderboard/figures.py +13 -15
  94. mteb/leaderboard/table.py +82 -17
  95. mteb/load_results.py +12 -12
  96. mteb/models/__init__.py +4 -1
  97. mteb/models/abs_encoder.py +31 -23
  98. mteb/models/cache_wrappers/__init__.py +2 -1
  99. mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
  100. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
  101. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
  102. mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
  103. mteb/models/cache_wrappers/cache_wrapper.py +3 -3
  104. mteb/models/get_model_meta.py +25 -118
  105. mteb/models/instruct_wrapper.py +33 -9
  106. mteb/models/model_implementations/align_models.py +8 -1
  107. mteb/models/model_implementations/amazon_models.py +1 -0
  108. mteb/models/model_implementations/andersborges.py +65 -0
  109. mteb/models/model_implementations/ara_models.py +9 -1
  110. mteb/models/model_implementations/arctic_models.py +16 -8
  111. mteb/models/model_implementations/b1ade_models.py +2 -1
  112. mteb/models/model_implementations/bedrock_models.py +4 -0
  113. mteb/models/model_implementations/bge_models.py +101 -17
  114. mteb/models/model_implementations/bica_model.py +35 -0
  115. mteb/models/model_implementations/blip2_models.py +13 -2
  116. mteb/models/model_implementations/blip_models.py +43 -16
  117. mteb/models/model_implementations/bm25.py +5 -4
  118. mteb/models/model_implementations/bmretriever_models.py +10 -4
  119. mteb/models/model_implementations/cadet_models.py +10 -1
  120. mteb/models/model_implementations/cde_models.py +25 -4
  121. mteb/models/model_implementations/clip_models.py +9 -6
  122. mteb/models/model_implementations/clips_models.py +100 -0
  123. mteb/models/model_implementations/codefuse_models.py +165 -3
  124. mteb/models/model_implementations/codesage_models.py +18 -3
  125. mteb/models/model_implementations/cohere_models.py +13 -6
  126. mteb/models/model_implementations/cohere_v.py +7 -2
  127. mteb/models/model_implementations/colpali_models.py +17 -9
  128. mteb/models/model_implementations/colqwen_models.py +275 -5
  129. mteb/models/model_implementations/colsmol_models.py +4 -2
  130. mteb/models/model_implementations/conan_models.py +2 -1
  131. mteb/models/model_implementations/dino_models.py +194 -23
  132. mteb/models/model_implementations/e5_instruct.py +27 -4
  133. mteb/models/model_implementations/e5_models.py +21 -110
  134. mteb/models/model_implementations/e5_v.py +7 -6
  135. mteb/models/model_implementations/eagerworks_models.py +164 -0
  136. mteb/models/model_implementations/emillykkejensen_models.py +91 -0
  137. mteb/models/model_implementations/en_code_retriever.py +2 -1
  138. mteb/models/model_implementations/euler_models.py +32 -0
  139. mteb/models/model_implementations/evaclip_models.py +4 -0
  140. mteb/models/model_implementations/fa_models.py +67 -9
  141. mteb/models/model_implementations/facebookai.py +205 -0
  142. mteb/models/model_implementations/geogpt_models.py +2 -1
  143. mteb/models/model_implementations/gme_v_models.py +17 -10
  144. mteb/models/model_implementations/google_models.py +17 -6
  145. mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
  146. mteb/models/model_implementations/gritlm_models.py +4 -2
  147. mteb/models/model_implementations/gte_models.py +99 -9
  148. mteb/models/model_implementations/hinvec_models.py +2 -1
  149. mteb/models/model_implementations/human.py +1 -0
  150. mteb/models/model_implementations/ibm_granite_models.py +36 -6
  151. mteb/models/model_implementations/inf_models.py +4 -2
  152. mteb/models/model_implementations/jasper_models.py +256 -3
  153. mteb/models/model_implementations/jina_clip.py +49 -10
  154. mteb/models/model_implementations/jina_models.py +222 -11
  155. mteb/models/model_implementations/kalm_models.py +203 -25
  156. mteb/models/model_implementations/kblab.py +37 -0
  157. mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
  158. mteb/models/model_implementations/kfst.py +25 -0
  159. mteb/models/model_implementations/kowshik24_models.py +32 -0
  160. mteb/models/model_implementations/lens_models.py +2 -0
  161. mteb/models/model_implementations/lgai_embedding_models.py +2 -1
  162. mteb/models/model_implementations/linq_models.py +4 -3
  163. mteb/models/model_implementations/listconranker.py +2 -2
  164. mteb/models/model_implementations/llm2clip_models.py +9 -6
  165. mteb/models/model_implementations/llm2vec_models.py +16 -8
  166. mteb/models/model_implementations/mcinext_models.py +7 -1
  167. mteb/models/model_implementations/mdbr_models.py +19 -3
  168. mteb/models/model_implementations/misc_models.py +422 -60
  169. mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
  170. mteb/models/model_implementations/mme5_models.py +2 -1
  171. mteb/models/model_implementations/moco_models.py +15 -4
  172. mteb/models/model_implementations/mod_models.py +191 -0
  173. mteb/models/model_implementations/model2vec_models.py +27 -14
  174. mteb/models/model_implementations/moka_models.py +4 -1
  175. mteb/models/model_implementations/nbailab.py +70 -0
  176. mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
  177. mteb/models/model_implementations/nomic_models.py +173 -6
  178. mteb/models/model_implementations/nomic_models_vision.py +8 -3
  179. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
  180. mteb/models/model_implementations/nvidia_models.py +155 -20
  181. mteb/models/model_implementations/octen_models.py +254 -0
  182. mteb/models/model_implementations/openai_models.py +20 -16
  183. mteb/models/model_implementations/openclip_models.py +37 -13
  184. mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
  185. mteb/models/model_implementations/ops_moa_models.py +5 -3
  186. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  187. mteb/models/model_implementations/pawan_models.py +39 -0
  188. mteb/models/model_implementations/piccolo_models.py +9 -1
  189. mteb/models/model_implementations/pixie_models.py +56 -0
  190. mteb/models/model_implementations/promptriever_models.py +12 -8
  191. mteb/models/model_implementations/pylate_models.py +46 -12
  192. mteb/models/model_implementations/qodo_models.py +4 -2
  193. mteb/models/model_implementations/qtack_models.py +2 -1
  194. mteb/models/model_implementations/qwen3_models.py +9 -6
  195. mteb/models/model_implementations/qzhou_models.py +5 -3
  196. mteb/models/model_implementations/random_baseline.py +19 -24
  197. mteb/models/model_implementations/rasgaard_models.py +34 -0
  198. mteb/models/model_implementations/reasonir_model.py +2 -1
  199. mteb/models/model_implementations/repllama_models.py +5 -3
  200. mteb/models/model_implementations/rerankers_custom.py +15 -9
  201. mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
  202. mteb/models/model_implementations/richinfoai_models.py +2 -1
  203. mteb/models/model_implementations/ru_sentence_models.py +71 -20
  204. mteb/models/model_implementations/ruri_models.py +322 -0
  205. mteb/models/model_implementations/salesforce_models.py +6 -3
  206. mteb/models/model_implementations/samilpwc_models.py +2 -1
  207. mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
  208. mteb/models/model_implementations/searchmap_models.py +2 -1
  209. mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
  210. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
  211. mteb/models/model_implementations/seed_models.py +1 -0
  212. mteb/models/model_implementations/sentence_transformers_models.py +177 -18
  213. mteb/models/model_implementations/shuu_model.py +32 -31
  214. mteb/models/model_implementations/siglip_models.py +30 -20
  215. mteb/models/model_implementations/slm_models.py +416 -0
  216. mteb/models/model_implementations/sonar_models.py +1 -0
  217. mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
  218. mteb/models/model_implementations/stella_models.py +23 -4
  219. mteb/models/model_implementations/tarka_models.py +376 -0
  220. mteb/models/model_implementations/text2vec_models.py +9 -3
  221. mteb/models/model_implementations/ua_sentence_models.py +11 -1
  222. mteb/models/model_implementations/uae_models.py +8 -1
  223. mteb/models/model_implementations/vdr_models.py +3 -1
  224. mteb/models/model_implementations/vi_vn_models.py +45 -6
  225. mteb/models/model_implementations/vista_models.py +2 -0
  226. mteb/models/model_implementations/vlm2vec_models.py +5 -3
  227. mteb/models/model_implementations/voyage_models.py +99 -0
  228. mteb/models/model_implementations/voyage_v.py +17 -9
  229. mteb/models/model_implementations/xyz_models.py +1 -0
  230. mteb/models/model_implementations/youtu_models.py +2 -1
  231. mteb/models/model_implementations/yuan_models.py +34 -0
  232. mteb/models/model_implementations/yuan_models_en.py +58 -0
  233. mteb/models/model_meta.py +498 -29
  234. mteb/models/models_protocols.py +22 -6
  235. mteb/models/search_encoder_index/__init__.py +7 -0
  236. mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
  237. mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
  238. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
  239. mteb/models/search_wrappers.py +197 -65
  240. mteb/models/sentence_transformer_wrapper.py +52 -32
  241. mteb/models/vllm_wrapper.py +327 -0
  242. mteb/py.typed +0 -0
  243. mteb/results/benchmark_results.py +114 -65
  244. mteb/results/model_result.py +63 -26
  245. mteb/results/task_result.py +117 -77
  246. mteb/similarity_functions.py +60 -7
  247. mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
  248. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
  249. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
  250. mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
  251. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
  252. mteb/tasks/classification/ara/ajgt.py +1 -2
  253. mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
  254. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
  255. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
  256. mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
  257. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
  258. mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
  259. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
  260. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
  261. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
  262. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
  263. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
  264. mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
  265. mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
  266. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
  267. mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
  268. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
  269. mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
  270. mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
  271. mteb/tasks/classification/eng/arxiv_classification.py +1 -2
  272. mteb/tasks/classification/eng/banking77_classification.py +1 -2
  273. mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
  274. mteb/tasks/classification/eng/emotion_classification.py +1 -2
  275. mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
  276. mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
  277. mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
  278. mteb/tasks/classification/eng/imdb_classification.py +1 -2
  279. mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
  280. mteb/tasks/classification/eng/news_classification.py +1 -2
  281. mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
  282. mteb/tasks/classification/eng/patent_classification.py +1 -2
  283. mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
  284. mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
  285. mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
  286. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
  287. mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
  288. mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
  289. mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
  290. mteb/tasks/classification/eng/ucf101_classification.py +1 -5
  291. mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
  292. mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
  293. mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
  294. mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
  295. mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
  296. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
  297. mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
  298. mteb/tasks/classification/est/estonian_valence.py +2 -3
  299. mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
  300. mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
  301. mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
  302. mteb/tasks/classification/fra/french_book_reviews.py +1 -2
  303. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
  304. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
  305. mteb/tasks/classification/heb/__init__.py +6 -1
  306. mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
  307. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
  308. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
  309. mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
  310. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
  311. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
  312. mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
  313. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
  314. mteb/tasks/classification/jpn/wrime_classification.py +1 -2
  315. mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
  316. mteb/tasks/classification/kor/klue_tc.py +1 -2
  317. mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
  318. mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
  319. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
  320. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
  321. mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
  322. mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
  323. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
  324. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
  325. mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
  326. mteb/tasks/classification/multilingual/scala_classification.py +2 -3
  327. mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
  328. mteb/tasks/classification/mya/myanmar_news.py +1 -2
  329. mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
  330. mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
  331. mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
  332. mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
  333. mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
  334. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
  335. mteb/tasks/classification/nld/iconclass_classification.py +3 -0
  336. mteb/tasks/classification/nld/open_tender_classification.py +3 -0
  337. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
  338. mteb/tasks/classification/nob/no_rec_classification.py +1 -2
  339. mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
  340. mteb/tasks/classification/ory/odia_news_classification.py +1 -2
  341. mteb/tasks/classification/pol/polish_classification.py +3 -6
  342. mteb/tasks/classification/ron/moroco.py +1 -2
  343. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
  344. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
  345. mteb/tasks/classification/rus/georeview_classification.py +1 -2
  346. mteb/tasks/classification/rus/headline_classification.py +1 -2
  347. mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
  348. mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
  349. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
  350. mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
  351. mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
  352. mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
  353. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
  354. mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
  355. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
  356. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
  357. mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
  358. mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
  359. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
  360. mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
  361. mteb/tasks/classification/swe/dalaj_classification.py +1 -2
  362. mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
  363. mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
  364. mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
  365. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
  366. mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
  367. mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
  368. mteb/tasks/classification/tur/__init__.py +4 -0
  369. mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
  370. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
  371. mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
  372. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
  373. mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
  374. mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
  375. mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
  376. mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
  377. mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
  378. mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
  379. mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
  380. mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
  381. mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
  382. mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
  383. mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
  384. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
  385. mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
  386. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
  387. mteb/tasks/classification/zho/cmteb_classification.py +5 -10
  388. mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
  389. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
  390. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  391. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  392. mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
  393. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
  394. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
  395. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
  396. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
  397. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
  398. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
  399. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
  400. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
  401. mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
  402. mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
  403. mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
  404. mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
  405. mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
  406. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  407. mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
  408. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
  409. mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
  410. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
  411. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
  412. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
  413. mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
  414. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  415. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
  416. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
  417. mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
  418. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
  419. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
  420. mteb/tasks/pair_classification/rus/__init__.py +2 -2
  421. mteb/tasks/pair_classification/rus/terra.py +51 -25
  422. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
  423. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
  424. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
  425. mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
  426. mteb/tasks/reranking/jpn/__init__.py +9 -1
  427. mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
  428. mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
  429. mteb/tasks/reranking/multilingual/__init__.py +2 -0
  430. mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
  431. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  432. mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
  433. mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
  434. mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
  435. mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
  436. mteb/tasks/retrieval/code/code_rag.py +12 -12
  437. mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
  438. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  439. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  440. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  441. mteb/tasks/retrieval/eng/__init__.py +2 -0
  442. mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
  443. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  444. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
  445. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
  446. mteb/tasks/retrieval/jpn/__init__.py +8 -0
  447. mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
  448. mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
  449. mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
  450. mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
  451. mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
  452. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
  453. mteb/tasks/retrieval/kor/__init__.py +16 -1
  454. mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
  455. mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
  456. mteb/tasks/retrieval/multilingual/__init__.py +24 -0
  457. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
  458. mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
  459. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
  460. mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
  461. mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
  462. mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
  463. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
  464. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
  465. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
  466. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
  467. mteb/tasks/retrieval/nld/__init__.py +8 -4
  468. mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
  469. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
  470. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
  471. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
  472. mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
  473. mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
  474. mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
  475. mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
  476. mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
  477. mteb/tasks/retrieval/nob/norquad.py +2 -2
  478. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  479. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
  480. mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
  481. mteb/tasks/retrieval/vie/__init__.py +14 -6
  482. mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
  483. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
  484. mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
  485. mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
  486. mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
  487. mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
  488. mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
  489. mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
  490. mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
  491. mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
  492. mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
  493. mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
  494. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
  495. mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
  496. mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
  497. mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
  498. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
  499. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
  500. mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
  501. mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
  502. mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
  503. mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
  504. mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
  505. mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
  506. mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
  507. mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
  508. mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
  509. mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
  510. mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
  511. mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
  512. mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
  513. mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
  514. mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
  515. mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
  516. mteb/types/__init__.py +2 -0
  517. mteb/types/_encoder_io.py +19 -2
  518. mteb/types/_result.py +2 -1
  519. mteb/types/statistics.py +9 -3
  520. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
  521. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
  522. mteb/models/model_implementations/mxbai_models.py +0 -102
  523. mteb/models/model_implementations/nb_sbert.py +0 -25
  524. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
  525. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
  526. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
  527. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,332 @@
1
+ from mteb.models.model_implementations.pylate_models import MultiVectorModel
2
+ from mteb.models.model_meta import (
3
+ ModelMeta,
4
+ ScoringFunction,
5
+ )
6
+ from mteb.models.sentence_transformer_wrapper import (
7
+ CrossEncoderWrapper,
8
+ sentence_transformers_loader,
9
+ )
10
+
11
+ mixedbread_training_data = {
12
+ # from correspondence:
13
+ # as mentioned in our blog post
14
+ # (https://www.mixedbread.com/blog/mxbai-embed-large-v1#built-for-rag-and-real-world-use-cases:~:text=During%20the%20whole,related%20use%20cases.)
15
+ # We do not train on any data (except the MSMarco training split) of MTEB. We have a strong filtering process to ensure the OOD setting. That's true
16
+ # for all of our models. Keep up the good work and let me know if you have any questions.
17
+ "MSMARCO",
18
+ }
19
+
20
+ mxbai_embed_large_v1 = ModelMeta(
21
+ loader=sentence_transformers_loader,
22
+ loader_kwargs=dict(
23
+ model_prompts={
24
+ "query": "Represent this sentence for searching relevant passages: "
25
+ },
26
+ ),
27
+ name="mixedbread-ai/mxbai-embed-large-v1",
28
+ model_type=["dense"],
29
+ languages=["eng-Latn"],
30
+ open_weights=True,
31
+ revision="990580e27d329c7408b3741ecff85876e128e203",
32
+ release_date="2024-03-07", # initial commit of hf model.
33
+ n_parameters=335_000_000,
34
+ memory_usage_mb=639,
35
+ max_tokens=512,
36
+ embed_dim=1024,
37
+ license="apache-2.0",
38
+ reference="https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1",
39
+ similarity_fn_name=ScoringFunction.COSINE,
40
+ framework=[
41
+ "Sentence Transformers",
42
+ "PyTorch",
43
+ "ONNX",
44
+ "safetensors",
45
+ "GGUF",
46
+ "Transformers",
47
+ ],
48
+ use_instructions=True,
49
+ citation="""
50
+ @online{emb2024mxbai,
51
+ title={Open Source Strikes Bread - New Fluffy Embeddings Model},
52
+ author={Sean Lee and Aamir Shakir and Darius Koenig and Julius Lipp},
53
+ year={2024},
54
+ url={https://www.mixedbread.ai/blog/mxbai-embed-large-v1},
55
+ }
56
+
57
+ @article{li2023angle,
58
+ title={AnglE-optimized Text Embeddings},
59
+ author={Li, Xianming and Li, Jing},
60
+ journal={arXiv preprint arXiv:2309.12871},
61
+ year={2023}
62
+ }
63
+ """,
64
+ public_training_code=None,
65
+ public_training_data=None,
66
+ training_datasets=mixedbread_training_data,
67
+ )
68
+
69
+ mxbai_embed_2d_large_v1 = ModelMeta(
70
+ loader=sentence_transformers_loader,
71
+ name="mixedbread-ai/mxbai-embed-2d-large-v1",
72
+ model_type=["dense"],
73
+ languages=["eng-Latn"],
74
+ open_weights=True,
75
+ revision="7e639ca8e344af398876ead3b19ec3c0b9068f49",
76
+ release_date="2024-03-04", # initial commit of hf model.
77
+ n_parameters=335_000_000,
78
+ memory_usage_mb=None,
79
+ max_tokens=512,
80
+ embed_dim=768,
81
+ license="apache-2.0",
82
+ reference="https://huggingface.co/mixedbread-ai/mxbai-embed-2d-large-v1",
83
+ similarity_fn_name=ScoringFunction.COSINE,
84
+ framework=[
85
+ "Sentence Transformers",
86
+ "PyTorch",
87
+ "ONNX",
88
+ "safetensors",
89
+ "Transformers",
90
+ ],
91
+ use_instructions=True,
92
+ adapted_from=None,
93
+ superseded_by=None,
94
+ public_training_code=None,
95
+ public_training_data=None,
96
+ training_datasets=None,
97
+ )
98
+
99
+
100
+ mxbai_embed_xsmall_v1 = ModelMeta(
101
+ loader=sentence_transformers_loader,
102
+ name="mixedbread-ai/mxbai-embed-xsmall-v1",
103
+ model_type=["dense"],
104
+ languages=["eng-Latn"],
105
+ open_weights=True,
106
+ revision="2f741ec33328bb57e4704e1238fc59a4a5745705",
107
+ release_date="2024-08-13", # initial commit of hf model.
108
+ n_parameters=24_100_000,
109
+ memory_usage_mb=None,
110
+ max_tokens=512,
111
+ embed_dim=384,
112
+ license="apache-2.0",
113
+ reference="https://huggingface.co/mixedbread-ai/mxbai-embed-xsmall-v1",
114
+ similarity_fn_name=ScoringFunction.COSINE,
115
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors", "GGUF"],
116
+ use_instructions=True,
117
+ adapted_from="sentence-transformers/all-MiniLM-L6-v2",
118
+ superseded_by=None,
119
+ public_training_code=None,
120
+ public_training_data=None,
121
+ training_datasets=mixedbread_training_data,
122
+ citation="""@online{xsmall2024mxbai,
123
+ title={Every Byte Matters: Introducing mxbai-embed-xsmall-v1},
124
+ author={Sean Lee and Julius Lipp and Rui Huang and Darius Koenig},
125
+ year={2024},
126
+ url={https://www.mixedbread.ai/blog/mxbai-embed-xsmall-v1},
127
+ }""",
128
+ )
129
+
130
+ mxbai_rerank_xsmall_v1 = ModelMeta(
131
+ loader=CrossEncoderWrapper,
132
+ name="mixedbread-ai/mxbai-rerank-xsmall-v1",
133
+ revision="b5c6e9da73abc3711f593f705371cdbe9e0fe422",
134
+ release_date="2024-02-29",
135
+ languages=["eng-Latn"],
136
+ n_parameters=70830337,
137
+ memory_usage_mb=135.0,
138
+ max_tokens=512,
139
+ embed_dim=None,
140
+ license="apache-2.0",
141
+ open_weights=True,
142
+ public_training_code=None,
143
+ public_training_data=None,
144
+ framework=[
145
+ "PyTorch",
146
+ "Sentence Transformers",
147
+ "Transformers",
148
+ "ONNX",
149
+ "safetensors",
150
+ ],
151
+ reference="https://huggingface.co/mixedbread-ai/mxbai-rerank-xsmall-v1",
152
+ similarity_fn_name=None,
153
+ use_instructions=None,
154
+ training_datasets=None,
155
+ adapted_from=None,
156
+ superseded_by=None,
157
+ modalities=["text"],
158
+ model_type=["cross-encoder"],
159
+ citation="""@online{rerank2024mxbai,
160
+ title={Boost Your Search With The Crispy Mixedbread Rerank Models},
161
+ author={Aamir Shakir and Darius Koenig and Julius Lipp and Sean Lee},
162
+ year={2024},
163
+ url={https://www.mixedbread.ai/blog/mxbai-rerank-v1},
164
+ }""",
165
+ contacts=None,
166
+ )
167
+
168
+ mxbai_rerank_base_v1 = ModelMeta(
169
+ loader=CrossEncoderWrapper,
170
+ name="mixedbread-ai/mxbai-rerank-base-v1",
171
+ revision="800f24c113213a187e65bde9db00c15a2bb12738",
172
+ release_date="2024-02-29",
173
+ languages=["eng-Latn"],
174
+ n_parameters=184422913,
175
+ memory_usage_mb=352.0,
176
+ max_tokens=512,
177
+ embed_dim=None,
178
+ license="apache-2.0",
179
+ open_weights=True,
180
+ public_training_code=None,
181
+ public_training_data=None,
182
+ framework=[
183
+ "PyTorch",
184
+ "Sentence Transformers",
185
+ "Transformers",
186
+ "ONNX",
187
+ "safetensors",
188
+ ],
189
+ reference="https://huggingface.co/mixedbread-ai/mxbai-rerank-base-v1",
190
+ similarity_fn_name=None,
191
+ use_instructions=None,
192
+ training_datasets=None,
193
+ adapted_from=None,
194
+ superseded_by=None,
195
+ modalities=["text"],
196
+ model_type=["cross-encoder"],
197
+ citation="""@online{rerank2024mxbai,
198
+ title={Boost Your Search With The Crispy Mixedbread Rerank Models},
199
+ author={Aamir Shakir and Darius Koenig and Julius Lipp and Sean Lee},
200
+ year={2024},
201
+ url={https://www.mixedbread.ai/blog/mxbai-rerank-v1},
202
+ }""",
203
+ contacts=None,
204
+ )
205
+
206
+ mxbai_rerank_large_v1 = ModelMeta(
207
+ loader=CrossEncoderWrapper,
208
+ name="mixedbread-ai/mxbai-rerank-large-v1",
209
+ revision="98f655841d5caf0b16eaff79c2b4ca109d920d17",
210
+ release_date="2024-02-29",
211
+ languages=["eng-Latn"],
212
+ n_parameters=435062785,
213
+ memory_usage_mb=830.0,
214
+ max_tokens=512,
215
+ embed_dim=None,
216
+ license="apache-2.0",
217
+ open_weights=True,
218
+ public_training_code=None,
219
+ public_training_data=None,
220
+ framework=[
221
+ "PyTorch",
222
+ "Sentence Transformers",
223
+ "Transformers",
224
+ "ONNX",
225
+ "safetensors",
226
+ ],
227
+ reference="https://huggingface.co/mixedbread-ai/mxbai-rerank-large-v1",
228
+ similarity_fn_name=None,
229
+ use_instructions=None,
230
+ training_datasets=None,
231
+ adapted_from=None,
232
+ superseded_by=None,
233
+ modalities=["text"],
234
+ model_type=["cross-encoder"],
235
+ citation="""@online{rerank2024mxbai,
236
+ title={Boost Your Search With The Crispy Mixedbread Rerank Models},
237
+ author={Aamir Shakir and Darius Koenig and Julius Lipp and Sean Lee},
238
+ year={2024},
239
+ url={https://www.mixedbread.ai/blog/mxbai-rerank-v1},
240
+ }""",
241
+ contacts=None,
242
+ )
243
+
244
+ mxbai_edge_colbert_v0_17m = ModelMeta(
245
+ loader=MultiVectorModel,
246
+ name="mixedbread-ai/mxbai-edge-colbert-v0-17m",
247
+ model_type=["late-interaction"],
248
+ languages=["eng-Latn"],
249
+ open_weights=True,
250
+ revision="23ae07f5bf028bc0d1f80c82e6e2dd2311f13a46",
251
+ public_training_code=None,
252
+ public_training_data=None,
253
+ release_date="2025-10-16",
254
+ n_parameters=int(17 * 1e6),
255
+ memory_usage_mb=64,
256
+ max_tokens=7999,
257
+ embed_dim=None,
258
+ license="apache-2.0",
259
+ similarity_fn_name=ScoringFunction.MAX_SIM,
260
+ framework=["PyLate", "ColBERT", "Transformers", "safetensors"],
261
+ reference="https://huggingface.co/mixedbread-ai/mxbai-edge-colbert-v0-17m",
262
+ use_instructions=False,
263
+ adapted_from="https://huggingface.co/jhu-clsp/ettin-encoder-17m",
264
+ superseded_by=None,
265
+ training_datasets={
266
+ "CornStack",
267
+ "MSMARCO",
268
+ "NQ",
269
+ "HotpotQA",
270
+ "AmazonQA",
271
+ "LoTTE",
272
+ "MultiLongDocRetrieval",
273
+ # "FineWeb",
274
+ # "PubMedQA",
275
+ # "TriviaQA",
276
+ },
277
+ citation="""@misc{takehi2025fantasticsmallretrieverstrain,
278
+ title={Fantastic (small) Retrievers and How to Train Them: mxbai-edge-colbert-v0 Tech Report},
279
+ author={Rikiya Takehi and Benjamin Clavié and Sean Lee and Aamir Shakir},
280
+ year={2025},
281
+ eprint={2510.14880},
282
+ archivePrefix={arXiv},
283
+ primaryClass={cs.IR},
284
+ url={https://arxiv.org/abs/2510.14880},
285
+ }""",
286
+ contacts=None,
287
+ )
288
+
289
+ mxbai_edge_colbert_v0_32m = ModelMeta(
290
+ loader=MultiVectorModel,
291
+ name="mixedbread-ai/mxbai-edge-colbert-v0-32m",
292
+ model_type=["late-interaction"],
293
+ languages=["eng-Latn"],
294
+ open_weights=True,
295
+ revision="2f12870a85dae80680b9babc59992c9a2bc59e4a",
296
+ public_training_code=None,
297
+ public_training_data=None,
298
+ release_date="2025-10-16",
299
+ n_parameters=int(32 * 1e6),
300
+ memory_usage_mb=122,
301
+ max_tokens=511,
302
+ embed_dim=None,
303
+ license="apache-2.0",
304
+ similarity_fn_name=ScoringFunction.MAX_SIM,
305
+ framework=["PyLate", "ColBERT", "Transformers", "safetensors"],
306
+ reference="https://huggingface.co/mixedbread-ai/mxbai-edge-colbert-v0-32m",
307
+ use_instructions=False,
308
+ adapted_from="https://huggingface.co/jhu-clsp/ettin-encoder-32m",
309
+ superseded_by=None,
310
+ training_datasets={
311
+ "CornStack",
312
+ "MSMARCO",
313
+ "NQ",
314
+ "HotpotQA",
315
+ "AmazonQA",
316
+ "LoTTE",
317
+ "MultiLongDocRetrieval",
318
+ # "FineWeb",
319
+ # "PubMedQA",
320
+ # "TriviaQA",
321
+ },
322
+ citation="""@misc{takehi2025fantasticsmallretrieverstrain,
323
+ title={Fantastic (small) Retrievers and How to Train Them: mxbai-edge-colbert-v0 Tech Report},
324
+ author={Rikiya Takehi and Benjamin Clavié and Sean Lee and Aamir Shakir},
325
+ year={2025},
326
+ eprint={2510.14880},
327
+ archivePrefix={arXiv},
328
+ primaryClass={cs.IR},
329
+ url={https://arxiv.org/abs/2510.14880},
330
+ }""",
331
+ contacts=None,
332
+ )
@@ -12,6 +12,7 @@ mme5_mllama = ModelMeta(
12
12
  "trust_remote_code": True,
13
13
  },
14
14
  name="intfloat/mmE5-mllama-11b-instruct",
15
+ model_type=["dense"],
15
16
  revision="cbb328b9bf9ff5362c852c3166931903226d46f1",
16
17
  release_date="2025-02-12",
17
18
  languages=["eng-Latn"],
@@ -24,7 +25,7 @@ mme5_mllama = ModelMeta(
24
25
  open_weights=True,
25
26
  public_training_code=None,
26
27
  public_training_data="https://huggingface.co/datasets/intfloat/mmE5-MMEB-hardneg, https://huggingface.co/datasets/intfloat/mmE5-synthetic",
27
- framework=["Sentence Transformers", "PyTorch"],
28
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
28
29
  reference="https://huggingface.co/intfloat/mmE5-mllama-11b-instruct",
29
30
  similarity_fn_name=ScoringFunction.COSINE,
30
31
  use_instructions=True,
@@ -10,6 +10,13 @@ from mteb.models.abs_encoder import AbsEncoder
10
10
  from mteb.models.model_meta import ModelMeta, ScoringFunction
11
11
  from mteb.types import Array, BatchedInput, PromptType
12
12
 
13
+ MOCOV3_CITATION = """@Article{chen2021mocov3,
14
+ author = {Xinlei Chen* and Saining Xie* and Kaiming He},
15
+ title = {An Empirical Study of Training Self-Supervised Vision Transformers},
16
+ journal = {arXiv preprint arXiv:2104.02057},
17
+ year = {2021},
18
+ }"""
19
+
13
20
 
14
21
  def mocov3_loader(model_name, **kwargs):
15
22
  requires_package(mocov3_loader, "timm", model_name, "pip install 'mteb[timm]'")
@@ -110,8 +117,9 @@ mocov3_training_datasets = set(
110
117
  )
111
118
 
112
119
  mocov3_vit_base = ModelMeta(
113
- loader=mocov3_loader, # type: ignore
120
+ loader=mocov3_loader,
114
121
  name="nyu-visionx/moco-v3-vit-b",
122
+ model_type=["dense"],
115
123
  languages=["eng-Latn"],
116
124
  revision="7d091cd70772c5c0ecf7f00b5f12ca609a99d69d",
117
125
  release_date="2024-06-03",
@@ -124,16 +132,18 @@ mocov3_vit_base = ModelMeta(
124
132
  open_weights=True,
125
133
  public_training_code="https://github.com/facebookresearch/moco-v3",
126
134
  public_training_data=None,
127
- framework=["PyTorch"],
135
+ framework=["PyTorch", "Transformers", "safetensors"],
128
136
  reference="https://github.com/facebookresearch/moco-v3",
129
137
  similarity_fn_name=ScoringFunction.COSINE,
130
138
  use_instructions=False,
131
139
  training_datasets=mocov3_training_datasets,
140
+ citation=MOCOV3_CITATION,
132
141
  )
133
142
 
134
143
  mocov3_vit_large = ModelMeta(
135
- loader=mocov3_loader, # type: ignore
144
+ loader=mocov3_loader,
136
145
  name="nyu-visionx/moco-v3-vit-l",
146
+ model_type=["dense"],
137
147
  languages=["eng-Latn"],
138
148
  revision="7bf75358d616f39b9716148bf4e3425f3bd35b47",
139
149
  release_date="2024-06-03",
@@ -146,9 +156,10 @@ mocov3_vit_large = ModelMeta(
146
156
  open_weights=True,
147
157
  public_training_code="https://github.com/facebookresearch/moco-v3",
148
158
  public_training_data=None,
149
- framework=["PyTorch"],
159
+ framework=["PyTorch", "Transformers", "safetensors"],
150
160
  reference="https://github.com/facebookresearch/moco-v3",
151
161
  similarity_fn_name=ScoringFunction.COSINE,
152
162
  use_instructions=False,
153
163
  training_datasets=mocov3_training_datasets,
164
+ citation=MOCOV3_CITATION,
154
165
  )
@@ -0,0 +1,191 @@
1
+ from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
2
+ from mteb.models.model_meta import ModelMeta
3
+ from mteb.models.models_protocols import PromptType
4
+
5
+
6
+ def instruction_template(
7
+ instruction: str, prompt_type: PromptType | None = None
8
+ ) -> str:
9
+ if not instruction or prompt_type == PromptType.document:
10
+ return ""
11
+ if isinstance(instruction, dict):
12
+ if prompt_type is None:
13
+ instruction = next(iter(instruction.values())) # TODO
14
+ else:
15
+ instruction = instruction[prompt_type]
16
+ return f"Instruct: {instruction}\nQuery:"
17
+
18
+
19
+ multilingual_langs = [
20
+ "afr-Latn",
21
+ "ara-Arab",
22
+ "aze-Latn",
23
+ "bel-Cyrl",
24
+ "bul-Cyrl",
25
+ "ben-Beng",
26
+ "cat-Latn",
27
+ "ceb-Latn",
28
+ "ces-Latn",
29
+ "cym-Latn",
30
+ "dan-Latn",
31
+ "deu-Latn",
32
+ "ell-Grek",
33
+ "eng-Latn",
34
+ "spa-Latn",
35
+ "est-Latn",
36
+ "eus-Latn",
37
+ "fas-Arab",
38
+ "fin-Latn",
39
+ "fra-Latn",
40
+ "glg-Latn",
41
+ "guj-Gujr",
42
+ "heb-Hebr",
43
+ "hin-Deva",
44
+ "hrv-Latn",
45
+ "hat-Latn",
46
+ "hun-Latn",
47
+ "hye-Armn",
48
+ "ind-Latn",
49
+ "isl-Latn",
50
+ "ita-Latn",
51
+ "jpn-Jpan",
52
+ "jav-Latn",
53
+ "kat-Geor",
54
+ "kaz-Cyrl",
55
+ "khm-Khmr",
56
+ "kan-Knda",
57
+ "kor-Hang",
58
+ "kir-Cyrl",
59
+ "lao-Laoo",
60
+ "lit-Latn",
61
+ "lav-Latn",
62
+ "mkd-Cyrl",
63
+ "mal-Mlym",
64
+ "mon-Cyrl",
65
+ "mar-Deva",
66
+ "msa-Latn",
67
+ "mya-Mymr",
68
+ "nep-Deva",
69
+ "nld-Latn",
70
+ "nor-Latn",
71
+ "nob-Latn",
72
+ "nno-Latn",
73
+ "pan-Guru",
74
+ "pol-Latn",
75
+ "por-Latn",
76
+ "que-Latn",
77
+ "ron-Latn",
78
+ "rus-Cyrl",
79
+ "sin-Sinh",
80
+ "slk-Latn",
81
+ "slv-Latn",
82
+ "swa-Latn",
83
+ "tam-Taml",
84
+ "tel-Telu",
85
+ "tha-Thai",
86
+ "tgl-Latn",
87
+ "tur-Latn",
88
+ "ukr-Cyrl",
89
+ "urd-Arab",
90
+ "vie-Latn",
91
+ "yor-Latn",
92
+ "zho-Hans",
93
+ ]
94
+
95
+ MOD_CITATION = """@misc{mod-embedding-2025,
96
+ title={MoD-Embedding: A Fine-tuned Multilingual Text Embedding Model},
97
+ author={MoD Team},
98
+ year={2025},
99
+ url={https://huggingface.co/bflhc/MoD-Embedding}
100
+ }"""
101
+
102
+ training_data = {
103
+ "T2Retrieval",
104
+ "DuRetrieval",
105
+ "MMarcoReranking",
106
+ "CMedQAv2-reranking",
107
+ "NQ",
108
+ "MSMARCO",
109
+ "HotpotQA",
110
+ "FEVER",
111
+ "MrTidyRetrieval",
112
+ "MIRACLRetrieval",
113
+ "CodeSearchNet",
114
+ }
115
+
116
+ # Predefined prompts for various RTEB tasks
117
+ _PREDEFINED_PROMPTS = {
118
+ # ========== Open Datasets ==========
119
+ # Legal domain
120
+ "AILACasedocs": "Given a legal case scenario, retrieve the most relevant case documents",
121
+ "AILAStatutes": "Given a legal scenario, retrieve the most relevant statute documents",
122
+ "LegalQuAD": "Given a legal question, retrieve relevant legal documents that answer the question",
123
+ "LegalSummarization": "Given a query, retrieve relevant legal documents for summarization",
124
+ # Code domain
125
+ "AppsRetrieval": "Given a query about mobile applications, retrieve relevant app information",
126
+ "HumanEvalRetrieval": "Given a code problem description, retrieve relevant code examples",
127
+ "MBPPRetrieval": "Given a programming problem description, retrieve relevant code solutions",
128
+ "DS1000Retrieval": "Given a data science problem, retrieve relevant code snippets",
129
+ "FreshStackRetrieval": "Given a programming question, retrieve relevant Stack Overflow posts",
130
+ # Finance domain
131
+ "FinQARetrieval": "Given a financial question, retrieve relevant financial documents",
132
+ "FinanceBenchRetrieval": "Given a financial query, retrieve relevant financial information",
133
+ "HC3FinanceRetrieval": "Given a finance-related query, retrieve relevant documents",
134
+ # Medical domain
135
+ "CUREv1": "Given a medical query, retrieve relevant clinical documents",
136
+ "ChatDoctorRetrieval": "Given a medical question, retrieve relevant medical information",
137
+ # SQL domain
138
+ "WikiSQLRetrieval": "Given a natural language query, retrieve relevant SQL examples",
139
+ # Multilingual
140
+ "MIRACLRetrievalHardNegatives": "Given a question, retrieve Wikipedia passages that answer the question",
141
+ # ========== Private/Closed Datasets ==========
142
+ # Code domain (Private)
143
+ "Code1Retrieval": "Given a code problem description, retrieve relevant code examples",
144
+ "JapaneseCode1Retrieval": "Given a code problem description, retrieve relevant code examples",
145
+ # Finance domain (Private)
146
+ "EnglishFinance1Retrieval": "Given a financial query, retrieve relevant financial documents",
147
+ "EnglishFinance2Retrieval": "Given a financial query, retrieve relevant financial documents",
148
+ "EnglishFinance3Retrieval": "Given a financial query, retrieve relevant financial documents",
149
+ "EnglishFinance4Retrieval": "Given a financial query, retrieve relevant financial documents",
150
+ # Healthcare domain (Private)
151
+ "EnglishHealthcare1Retrieval": "Given a medical question, retrieve relevant medical information",
152
+ "GermanHealthcare1Retrieval": "Given a medical question, retrieve relevant medical information",
153
+ # Legal domain (Private)
154
+ "FrenchLegal1Retrieval": "Given a legal query, retrieve relevant legal documents",
155
+ "GermanLegal1Retrieval": "Given a legal query, retrieve relevant legal documents",
156
+ "JapaneseLegal1Retrieval": "Given a legal query, retrieve relevant legal documents",
157
+ # General/Multilingual (Private)
158
+ "French1Retrieval": "Given a query, retrieve relevant passages",
159
+ "German1Retrieval": "Given a query, retrieve relevant passages",
160
+ }
161
+
162
+
163
+ MoD_Embedding = ModelMeta(
164
+ loader=InstructSentenceTransformerModel,
165
+ loader_kwargs=dict(
166
+ instruction_template=instruction_template,
167
+ apply_instruction_to_passages=False,
168
+ prompts_dict=_PREDEFINED_PROMPTS,
169
+ max_seq_length=18480,
170
+ model_kwargs={"torch_dtype": "bfloat16"},
171
+ ),
172
+ name="bflhc/MoD-Embedding",
173
+ languages=multilingual_langs,
174
+ open_weights=True,
175
+ revision="acbb5b70fdab262226a6af2bc62001de8021b05c",
176
+ release_date="2025-12-14",
177
+ n_parameters=4021774336,
178
+ memory_usage_mb=7671,
179
+ embed_dim=2560,
180
+ max_tokens=32768,
181
+ license="apache-2.0",
182
+ reference="https://huggingface.co/bflhc/MoD-Embedding",
183
+ similarity_fn_name="cosine",
184
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
185
+ use_instructions=True,
186
+ public_training_code=None,
187
+ public_training_data=None,
188
+ training_datasets=training_data,
189
+ citation=MOD_CITATION,
190
+ adapted_from="Qwen/Qwen3-Embedding-4B",
191
+ )