mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,9 @@
|
|
|
1
|
-
from mteb.benchmarks.benchmark import
|
|
1
|
+
from mteb.benchmarks.benchmark import (
|
|
2
|
+
Benchmark,
|
|
3
|
+
HUMEBenchmark,
|
|
4
|
+
MIEBBenchmark,
|
|
5
|
+
VidoreBenchmark,
|
|
6
|
+
)
|
|
2
7
|
from mteb.get_tasks import MTEBTasks, get_task, get_tasks
|
|
3
8
|
|
|
4
9
|
MMTEB_CITATION = r"""@article{enevoldsen2025mmtebmassivemultilingualtext,
|
|
@@ -13,6 +18,7 @@ MMTEB_CITATION = r"""@article{enevoldsen2025mmtebmassivemultilingualtext,
|
|
|
13
18
|
|
|
14
19
|
MTEB_EN = Benchmark(
|
|
15
20
|
name="MTEB(eng, v2)",
|
|
21
|
+
aliases=["MTEB(eng)"],
|
|
16
22
|
display_name="English",
|
|
17
23
|
icon="https://github.com/lipis/flag-icons/raw/refs/heads/main/flags/4x3/us.svg",
|
|
18
24
|
tasks=MTEBTasks(
|
|
@@ -84,6 +90,7 @@ The original MTEB leaderboard is available under the [MTEB(eng, v1)](http://mteb
|
|
|
84
90
|
|
|
85
91
|
MTEB_ENG_CLASSIC = Benchmark(
|
|
86
92
|
name="MTEB(eng, v1)",
|
|
93
|
+
aliases=["MTEB(eng, classic)", "MTEB"],
|
|
87
94
|
display_name="English Legacy",
|
|
88
95
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/gb.svg",
|
|
89
96
|
tasks=MTEBTasks(
|
|
@@ -180,7 +187,8 @@ We recommend that you use [MTEB(eng, v2)](http://mteb-leaderboard.hf.space/?benc
|
|
|
180
187
|
|
|
181
188
|
MTEB_MAIN_RU = Benchmark(
|
|
182
189
|
name="MTEB(rus, v1)",
|
|
183
|
-
|
|
190
|
+
aliases=["MTEB(rus)"],
|
|
191
|
+
display_name="Russian legacy",
|
|
184
192
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/ru.svg",
|
|
185
193
|
tasks=MTEBTasks(
|
|
186
194
|
get_tasks(
|
|
@@ -235,6 +243,67 @@ MTEB_MAIN_RU = Benchmark(
|
|
|
235
243
|
year = {2024},
|
|
236
244
|
}
|
|
237
245
|
""",
|
|
246
|
+
contacts=["Samoed", "artemsnegirev", "Drozhzhinastya"],
|
|
247
|
+
)
|
|
248
|
+
|
|
249
|
+
MTEB_MAIN_RU_v1_1 = Benchmark(
|
|
250
|
+
name="MTEB(rus, v1.1)",
|
|
251
|
+
display_name="Russian",
|
|
252
|
+
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/ru.svg",
|
|
253
|
+
tasks=MTEBTasks(
|
|
254
|
+
get_tasks(
|
|
255
|
+
languages=["rus"],
|
|
256
|
+
tasks=[
|
|
257
|
+
# Classification
|
|
258
|
+
"GeoreviewClassification",
|
|
259
|
+
"HeadlineClassification",
|
|
260
|
+
"InappropriatenessClassification",
|
|
261
|
+
"KinopoiskClassification",
|
|
262
|
+
"MassiveIntentClassification",
|
|
263
|
+
"MassiveScenarioClassification",
|
|
264
|
+
"RuReviewsClassification",
|
|
265
|
+
"RuSciBenchGRNTIClassification",
|
|
266
|
+
"RuSciBenchOECDClassification",
|
|
267
|
+
# Clustering
|
|
268
|
+
"GeoreviewClusteringP2P",
|
|
269
|
+
"RuSciBenchGRNTIClusteringP2P",
|
|
270
|
+
"RuSciBenchOECDClusteringP2P",
|
|
271
|
+
# MultiLabelClassification
|
|
272
|
+
"CEDRClassification",
|
|
273
|
+
"SensitiveTopicsClassification",
|
|
274
|
+
# PairClassification
|
|
275
|
+
"TERRa",
|
|
276
|
+
# Reranking
|
|
277
|
+
"MIRACLReranking",
|
|
278
|
+
"RuBQReranking",
|
|
279
|
+
# Retrieval
|
|
280
|
+
"MIRACLRetrievalHardNegatives.v2",
|
|
281
|
+
"RiaNewsRetrievalHardNegatives.v2",
|
|
282
|
+
"RuBQRetrieval",
|
|
283
|
+
# STS
|
|
284
|
+
"RUParaPhraserSTS",
|
|
285
|
+
"STS22",
|
|
286
|
+
],
|
|
287
|
+
)
|
|
288
|
+
+ get_tasks(
|
|
289
|
+
tasks=["RuSTSBenchmarkSTS"],
|
|
290
|
+
eval_splits=["test"],
|
|
291
|
+
)
|
|
292
|
+
),
|
|
293
|
+
description="A Russian version of the Massive Text Embedding Benchmark covering the task categories of classification, clustering, reranking, pair classification, retrieval, and semantic similarity. In v1.1, MIRACLRetrieval and RiaNewsRetrieval were replaced with their HardNegatives variants for improved time-optimization measurement. MIRACLRetrievalHardNegatives and RiaNewsRetrievalHardNegatives are used in their updated versions (v2), both of which include improved default prompts.",
|
|
294
|
+
reference="https://aclanthology.org/2023.eacl-main.148/",
|
|
295
|
+
citation=r"""
|
|
296
|
+
@misc{snegirev2024russianfocusedembeddersexplorationrumteb,
|
|
297
|
+
archiveprefix = {arXiv},
|
|
298
|
+
author = {Artem Snegirev and Maria Tikhonova and Anna Maksimova and Alena Fenogenova and Alexander Abramov},
|
|
299
|
+
eprint = {2408.12503},
|
|
300
|
+
primaryclass = {cs.CL},
|
|
301
|
+
title = {The Russian-focused embedders' exploration: ruMTEB benchmark and Russian embedding model design},
|
|
302
|
+
url = {https://arxiv.org/abs/2408.12503},
|
|
303
|
+
year = {2024},
|
|
304
|
+
}
|
|
305
|
+
""",
|
|
306
|
+
contacts=["Samoed", "artemsnegirev", "Drozhzhinastya"],
|
|
238
307
|
)
|
|
239
308
|
|
|
240
309
|
|
|
@@ -243,7 +312,7 @@ RU_SCI_BENCH = Benchmark(
|
|
|
243
312
|
tasks=get_tasks(
|
|
244
313
|
tasks=[
|
|
245
314
|
# BitextMining
|
|
246
|
-
"RuSciBenchBitextMining",
|
|
315
|
+
"RuSciBenchBitextMining.v2",
|
|
247
316
|
# Classification
|
|
248
317
|
"RuSciBenchCoreRiscClassification",
|
|
249
318
|
"RuSciBenchGRNTIClassification.v2",
|
|
@@ -278,6 +347,7 @@ RU_SCI_BENCH = Benchmark(
|
|
|
278
347
|
|
|
279
348
|
MTEB_RETRIEVAL_WITH_INSTRUCTIONS = Benchmark(
|
|
280
349
|
name="FollowIR",
|
|
350
|
+
aliases=["MTEB(Retrieval w/Instructions)"],
|
|
281
351
|
display_name="Instruction Following",
|
|
282
352
|
tasks=get_tasks(
|
|
283
353
|
tasks=[
|
|
@@ -328,7 +398,9 @@ MTEB_RETRIEVAL_WITH_DOMAIN_INSTRUCTIONS = Benchmark(
|
|
|
328
398
|
)
|
|
329
399
|
|
|
330
400
|
MTEB_RETRIEVAL_LAW = Benchmark(
|
|
331
|
-
|
|
401
|
+
# This benchmark is likely in the need of an update
|
|
402
|
+
name="MTEB(Law, v1)",
|
|
403
|
+
aliases=["MTEB(law)"],
|
|
332
404
|
display_name="Legal",
|
|
333
405
|
icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-map-library.svg",
|
|
334
406
|
tasks=get_tasks(
|
|
@@ -350,6 +422,7 @@ MTEB_RETRIEVAL_LAW = Benchmark(
|
|
|
350
422
|
|
|
351
423
|
MTEB_RETRIEVAL_MEDICAL = Benchmark(
|
|
352
424
|
name="MTEB(Medical, v1)",
|
|
425
|
+
aliases=["MTEB(Medical)"],
|
|
353
426
|
display_name="Medical",
|
|
354
427
|
icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-map-hospital.svg",
|
|
355
428
|
tasks=get_tasks(
|
|
@@ -369,7 +442,7 @@ MTEB_RETRIEVAL_MEDICAL = Benchmark(
|
|
|
369
442
|
],
|
|
370
443
|
),
|
|
371
444
|
description="A curated set of MTEB tasks designed to evaluate systems in the context of medical information retrieval.",
|
|
372
|
-
reference=
|
|
445
|
+
reference=None,
|
|
373
446
|
citation=None,
|
|
374
447
|
)
|
|
375
448
|
|
|
@@ -403,8 +476,10 @@ MTEB_MINERS_BITEXT_MINING = Benchmark(
|
|
|
403
476
|
|
|
404
477
|
SEB = Benchmark(
|
|
405
478
|
name="MTEB(Scandinavian, v1)",
|
|
479
|
+
aliases=["MTEB(Scandinavian)", "SEB"],
|
|
406
480
|
display_name="Scandinavian",
|
|
407
481
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/dk.svg",
|
|
482
|
+
language_view=["dan-Latn", "swe-Latn", "nno-Latn", "nob-Latn"],
|
|
408
483
|
tasks=get_tasks(
|
|
409
484
|
tasks=[
|
|
410
485
|
# Bitext
|
|
@@ -528,6 +603,7 @@ RAR_b = Benchmark(
|
|
|
528
603
|
|
|
529
604
|
MTEB_FRA = Benchmark(
|
|
530
605
|
name="MTEB(fra, v1)",
|
|
606
|
+
aliases=["MTEB(fra)"],
|
|
531
607
|
display_name="French",
|
|
532
608
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/fr.svg",
|
|
533
609
|
tasks=MTEBTasks(
|
|
@@ -586,6 +662,7 @@ MTEB_FRA = Benchmark(
|
|
|
586
662
|
|
|
587
663
|
MTEB_DEU = Benchmark(
|
|
588
664
|
name="MTEB(deu, v1)",
|
|
665
|
+
aliases=["MTEB(deu)"],
|
|
589
666
|
display_name="German",
|
|
590
667
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/de.svg",
|
|
591
668
|
tasks=get_tasks(
|
|
@@ -637,6 +714,7 @@ MTEB_DEU = Benchmark(
|
|
|
637
714
|
|
|
638
715
|
MTEB_KOR = Benchmark(
|
|
639
716
|
name="MTEB(kor, v1)",
|
|
717
|
+
aliases=["MTEB(kor)"],
|
|
640
718
|
display_name="Korean",
|
|
641
719
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/kr.svg",
|
|
642
720
|
tasks=get_tasks(
|
|
@@ -661,6 +739,7 @@ MTEB_KOR = Benchmark(
|
|
|
661
739
|
|
|
662
740
|
MTEB_POL = Benchmark(
|
|
663
741
|
name="MTEB(pol, v1)",
|
|
742
|
+
aliases=["MTEB(pol)"],
|
|
664
743
|
display_name="Polish",
|
|
665
744
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/pl.svg",
|
|
666
745
|
tasks=MTEBTasks(
|
|
@@ -710,6 +789,7 @@ two novel clustering tasks.""", # Rephrased from the abstract
|
|
|
710
789
|
|
|
711
790
|
MTEB_code = Benchmark(
|
|
712
791
|
name="MTEB(Code, v1)",
|
|
792
|
+
aliases=["MTEB(code)"],
|
|
713
793
|
display_name="Code",
|
|
714
794
|
icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-tech-electronics.svg",
|
|
715
795
|
tasks=get_tasks(
|
|
@@ -886,7 +966,30 @@ MTEB_multilingual_v1 = Benchmark(
|
|
|
886
966
|
|
|
887
967
|
MTEB_multilingual_v2 = Benchmark(
|
|
888
968
|
name="MTEB(Multilingual, v2)",
|
|
969
|
+
aliases=["MTEB(Multilingual)", "MMTEB"],
|
|
889
970
|
display_name="Multilingual",
|
|
971
|
+
language_view=[
|
|
972
|
+
"eng-Latn", # English
|
|
973
|
+
"zho-Hans", # Chinese (Simplified)
|
|
974
|
+
"hin-Deva", # Hindi
|
|
975
|
+
"spa-Latn", # Spanish
|
|
976
|
+
"fra-Latn", # French
|
|
977
|
+
"ara-Arab", # Arabic
|
|
978
|
+
"ben-Beng", # Bengali
|
|
979
|
+
"rus-Cyrl", # Russian
|
|
980
|
+
"por-Latn", # Portuguese
|
|
981
|
+
"urd-Arab", # Urdu
|
|
982
|
+
"ind-Latn", # Indonesian
|
|
983
|
+
"deu-Latn", # German
|
|
984
|
+
"jpn-Jpan", # Japanese
|
|
985
|
+
"swa-Latn", # Swahili
|
|
986
|
+
"mar-Deva", # Marathi
|
|
987
|
+
"tel-Telu", # Telugu
|
|
988
|
+
"tur-Latn", # Turkish
|
|
989
|
+
"tam-Taml", # Tamil
|
|
990
|
+
"vie-Latn", # Vietnamese
|
|
991
|
+
"kor-Hang", # Korean
|
|
992
|
+
],
|
|
890
993
|
icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-gui-globe.svg",
|
|
891
994
|
tasks=mteb_multilingual_tasks,
|
|
892
995
|
description="A large-scale multilingual expansion of MTEB, driven mainly by highly-curated community contributions covering 250+ languages. ",
|
|
@@ -897,7 +1000,8 @@ MTEB_multilingual_v2 = Benchmark(
|
|
|
897
1000
|
|
|
898
1001
|
MTEB_JPN = Benchmark(
|
|
899
1002
|
name="MTEB(jpn, v1)",
|
|
900
|
-
|
|
1003
|
+
aliases=["MTEB(jpn)"],
|
|
1004
|
+
display_name="Japanese Legacy",
|
|
901
1005
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/jp.svg",
|
|
902
1006
|
tasks=get_tasks(
|
|
903
1007
|
languages=["jpn"],
|
|
@@ -967,6 +1071,7 @@ indic_languages = [
|
|
|
967
1071
|
|
|
968
1072
|
MTEB_INDIC = Benchmark(
|
|
969
1073
|
name="MTEB(Indic, v1)",
|
|
1074
|
+
aliases=["MTEB(Indic)"],
|
|
970
1075
|
display_name="Indic",
|
|
971
1076
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/in.svg",
|
|
972
1077
|
tasks=MTEBTasks(
|
|
@@ -1057,6 +1162,7 @@ eu_languages = [
|
|
|
1057
1162
|
|
|
1058
1163
|
MTEB_EU = Benchmark(
|
|
1059
1164
|
name="MTEB(Europe, v1)",
|
|
1165
|
+
aliases=["MTEB(Europe)"],
|
|
1060
1166
|
display_name="European",
|
|
1061
1167
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/eu.svg",
|
|
1062
1168
|
tasks=get_tasks(
|
|
@@ -1196,6 +1302,7 @@ BRIGHT = Benchmark(
|
|
|
1196
1302
|
|
|
1197
1303
|
BRIGHT_LONG = Benchmark(
|
|
1198
1304
|
name="BRIGHT (long)",
|
|
1305
|
+
aliases=["BRIGHT(long)"],
|
|
1199
1306
|
tasks=MTEBTasks(
|
|
1200
1307
|
(
|
|
1201
1308
|
get_task(
|
|
@@ -1311,6 +1418,7 @@ NANOBEIR = Benchmark(
|
|
|
1311
1418
|
|
|
1312
1419
|
C_MTEB = Benchmark(
|
|
1313
1420
|
name="MTEB(cmn, v1)",
|
|
1421
|
+
aliases=["MTEB(Chinese)", "CMTEB"],
|
|
1314
1422
|
display_name="Chinese",
|
|
1315
1423
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/cn.svg",
|
|
1316
1424
|
tasks=MTEBTasks(
|
|
@@ -1377,6 +1485,7 @@ C_MTEB = Benchmark(
|
|
|
1377
1485
|
|
|
1378
1486
|
FA_MTEB = Benchmark(
|
|
1379
1487
|
name="MTEB(fas, v1)",
|
|
1488
|
+
aliases=["FaMTEB(fas, beta)"],
|
|
1380
1489
|
display_name="Farsi Legacy",
|
|
1381
1490
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/ir.svg",
|
|
1382
1491
|
tasks=get_tasks(
|
|
@@ -1547,6 +1656,7 @@ FA_MTEB_2 = Benchmark(
|
|
|
1547
1656
|
|
|
1548
1657
|
CHEMTEB = Benchmark(
|
|
1549
1658
|
name="ChemTEB",
|
|
1659
|
+
aliases=["ChemTEB(v1)"],
|
|
1550
1660
|
display_name="Chemical",
|
|
1551
1661
|
icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-gui-purge.svg",
|
|
1552
1662
|
tasks=get_tasks(
|
|
@@ -1592,6 +1702,62 @@ CHEMTEB = Benchmark(
|
|
|
1592
1702
|
""",
|
|
1593
1703
|
)
|
|
1594
1704
|
|
|
1705
|
+
CHEMTEB_V1_1 = Benchmark(
|
|
1706
|
+
name="ChemTEB(v1.1)",
|
|
1707
|
+
aliases=["ChemTEB(latest)"],
|
|
1708
|
+
display_name="Chemical",
|
|
1709
|
+
icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-gui-purge.svg",
|
|
1710
|
+
tasks=get_tasks(
|
|
1711
|
+
tasks=[
|
|
1712
|
+
"PubChemSMILESBitextMining",
|
|
1713
|
+
"SDSEyeProtectionClassification",
|
|
1714
|
+
"SDSGlovesClassification",
|
|
1715
|
+
"WikipediaBioMetChemClassification",
|
|
1716
|
+
"WikipediaGreenhouseEnantiopureClassification",
|
|
1717
|
+
"WikipediaSolidStateColloidalClassification",
|
|
1718
|
+
"WikipediaOrganicInorganicClassification",
|
|
1719
|
+
"WikipediaCryobiologySeparationClassification",
|
|
1720
|
+
"WikipediaChemistryTopicsClassification",
|
|
1721
|
+
"WikipediaTheoreticalAppliedClassification",
|
|
1722
|
+
"WikipediaChemFieldsClassification",
|
|
1723
|
+
"WikipediaLuminescenceClassification",
|
|
1724
|
+
"WikipediaIsotopesFissionClassification",
|
|
1725
|
+
"WikipediaSaltsSemiconductorsClassification",
|
|
1726
|
+
"WikipediaBiolumNeurochemClassification",
|
|
1727
|
+
"WikipediaCrystallographyAnalyticalClassification",
|
|
1728
|
+
"WikipediaCompChemSpectroscopyClassification",
|
|
1729
|
+
"WikipediaChemEngSpecialtiesClassification",
|
|
1730
|
+
"WikipediaChemistryTopicsClustering",
|
|
1731
|
+
"WikipediaSpecialtiesInChemistryClustering",
|
|
1732
|
+
"PubChemAISentenceParaphrasePC",
|
|
1733
|
+
"PubChemSMILESPC",
|
|
1734
|
+
"PubChemSynonymPC",
|
|
1735
|
+
"PubChemWikiParagraphsPC",
|
|
1736
|
+
"PubChemWikiPairClassification",
|
|
1737
|
+
"ChemNQRetrieval",
|
|
1738
|
+
"ChemHotpotQARetrieval",
|
|
1739
|
+
"ChemRxivRetrieval",
|
|
1740
|
+
],
|
|
1741
|
+
),
|
|
1742
|
+
description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version adds the ChemRxivRetrieval task.",
|
|
1743
|
+
reference="https://arxiv.org/abs/2412.00532",
|
|
1744
|
+
citation=r"""
|
|
1745
|
+
@article{kasmaee2024chemteb,
|
|
1746
|
+
author = {Kasmaee, Ali Shiraee and Khodadad, Mohammad and Saloot, Mohammad Arshi and Sherck, Nick and Dokas, Stephen and Mahyar, Hamidreza and Samiee, Soheila},
|
|
1747
|
+
journal = {arXiv preprint arXiv:2412.00532},
|
|
1748
|
+
title = {ChemTEB: Chemical Text Embedding Benchmark, an Overview of Embedding Models Performance \\& Efficiency on a Specific Domain},
|
|
1749
|
+
year = {2024},
|
|
1750
|
+
}
|
|
1751
|
+
|
|
1752
|
+
@article{kasmaee2025chembed,
|
|
1753
|
+
author = {Kasmaee, Ali Shiraee and Khodadad, Mohammad and Astaraki, Mahdi and Saloot, Mohammad Arshi and Sherck, Nicholas and Mahyar, Hamidreza and Samiee, Soheila},
|
|
1754
|
+
journal = {arXiv preprint arXiv:2508.01643},
|
|
1755
|
+
title = {Chembed: Enhancing chemical literature search through domain-specific text embeddings},
|
|
1756
|
+
year = {2025},
|
|
1757
|
+
}
|
|
1758
|
+
""",
|
|
1759
|
+
)
|
|
1760
|
+
|
|
1595
1761
|
BEIR_NL = Benchmark(
|
|
1596
1762
|
name="BEIR-NL",
|
|
1597
1763
|
display_name="BEIR-NL",
|
|
@@ -1642,7 +1808,7 @@ MTEB_NL = Benchmark(
|
|
|
1642
1808
|
exclusive_language_filter=True,
|
|
1643
1809
|
tasks=[
|
|
1644
1810
|
# Classification
|
|
1645
|
-
"DutchBookReviewSentimentClassification",
|
|
1811
|
+
"DutchBookReviewSentimentClassification.v2",
|
|
1646
1812
|
"MassiveIntentClassification",
|
|
1647
1813
|
"MassiveScenarioClassification",
|
|
1648
1814
|
"SIB200Classification",
|
|
@@ -1673,10 +1839,10 @@ MTEB_NL = Benchmark(
|
|
|
1673
1839
|
# # Reranking
|
|
1674
1840
|
"WikipediaRerankingMultilingual",
|
|
1675
1841
|
# # Retrieval
|
|
1676
|
-
"ArguAna-NL",
|
|
1677
|
-
"SCIDOCS-NL",
|
|
1678
|
-
"SciFact-NL",
|
|
1679
|
-
"NFCorpus-NL",
|
|
1842
|
+
"ArguAna-NL.v2",
|
|
1843
|
+
"SCIDOCS-NL.v2",
|
|
1844
|
+
"SciFact-NL.v2",
|
|
1845
|
+
"NFCorpus-NL.v2",
|
|
1680
1846
|
"BelebeleRetrieval",
|
|
1681
1847
|
"WebFAQRetrieval",
|
|
1682
1848
|
"DutchNewsArticlesRetrieval",
|
|
@@ -2214,10 +2380,51 @@ VIDORE_V2 = Benchmark(
|
|
|
2214
2380
|
""",
|
|
2215
2381
|
)
|
|
2216
2382
|
|
|
2217
|
-
|
|
2218
|
-
name="
|
|
2219
|
-
display_name="
|
|
2220
|
-
|
|
2383
|
+
VIDORE_V3 = VidoreBenchmark(
|
|
2384
|
+
name="ViDoRe(v3)",
|
|
2385
|
+
display_name="ViDoRe V3",
|
|
2386
|
+
language_view=[
|
|
2387
|
+
"deu-Latn",
|
|
2388
|
+
"eng-Latn",
|
|
2389
|
+
"fra-Latn",
|
|
2390
|
+
"ita-Latn",
|
|
2391
|
+
"por-Latn",
|
|
2392
|
+
"spa-Latn",
|
|
2393
|
+
],
|
|
2394
|
+
icon="https://cdn-uploads.huggingface.co/production/uploads/66e16a677c2eb2da5109fb5c/x99xqw__fl2UaPbiIdC_f.png",
|
|
2395
|
+
tasks=get_tasks(
|
|
2396
|
+
tasks=[
|
|
2397
|
+
"Vidore3FinanceEnRetrieval",
|
|
2398
|
+
"Vidore3IndustrialRetrieval",
|
|
2399
|
+
"Vidore3ComputerScienceRetrieval",
|
|
2400
|
+
"Vidore3PharmaceuticalsRetrieval",
|
|
2401
|
+
"Vidore3HrRetrieval",
|
|
2402
|
+
"Vidore3FinanceFrRetrieval",
|
|
2403
|
+
"Vidore3PhysicsRetrieval",
|
|
2404
|
+
"Vidore3EnergyRetrieval",
|
|
2405
|
+
"Vidore3TelecomRetrieval",
|
|
2406
|
+
"Vidore3NuclearRetrieval",
|
|
2407
|
+
]
|
|
2408
|
+
),
|
|
2409
|
+
description="ViDoRe V3 sets a new industry gold standard for multi-modal, enterprise document visual retrieval evaluation. It addresses a critical challenge in production RAG systems: retrieving accurate information from complex, visually-rich documents. The benchmark includes both open and closed datasets: to submit results on private tasks, please [open an issue](https://github.com/embeddings-benchmark/mteb/issues?template=eval_request.yaml).",
|
|
2410
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
2411
|
+
citation=r"""
|
|
2412
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
2413
|
+
archiveprefix = {arXiv},
|
|
2414
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
2415
|
+
eprint = {2601.08620},
|
|
2416
|
+
primaryclass = {cs.AI},
|
|
2417
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
2418
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
2419
|
+
year = {2026},
|
|
2420
|
+
}
|
|
2421
|
+
""",
|
|
2422
|
+
)
|
|
2423
|
+
|
|
2424
|
+
VISUAL_DOCUMENT_RETRIEVAL = VidoreBenchmark(
|
|
2425
|
+
name="ViDoRe(v1&v2)",
|
|
2426
|
+
aliases=["VisualDocumentRetrieval"],
|
|
2427
|
+
display_name="ViDoRe (V1&V2)",
|
|
2221
2428
|
tasks=get_tasks(
|
|
2222
2429
|
tasks=[
|
|
2223
2430
|
# v1
|
|
@@ -2459,7 +2666,145 @@ HUME = HUMEBenchmark(
|
|
|
2459
2666
|
],
|
|
2460
2667
|
),
|
|
2461
2668
|
description="The HUME benchmark is designed to evaluate the performance of text embedding models and humans on a comparable set of tasks. This captures areas where models perform better than human annotators and the reverse. In the paper, we go further into the analysis and what conclusions can be drawn.",
|
|
2462
|
-
reference=
|
|
2669
|
+
reference=None,
|
|
2463
2670
|
citation=None,
|
|
2464
2671
|
contacts=["AdnanElAssadi56", "KennethEnevoldsen", "isaac-chung", "Samoed"],
|
|
2465
2672
|
)
|
|
2673
|
+
|
|
2674
|
+
JMTEB_V2 = Benchmark(
|
|
2675
|
+
name="JMTEB(v2)",
|
|
2676
|
+
display_name="Japanese",
|
|
2677
|
+
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/jp.svg",
|
|
2678
|
+
tasks=get_tasks(
|
|
2679
|
+
languages=["jpn"],
|
|
2680
|
+
tasks=[
|
|
2681
|
+
# Clustering (3)
|
|
2682
|
+
"LivedoorNewsClustering.v2",
|
|
2683
|
+
"MewsC16JaClustering",
|
|
2684
|
+
"SIB200ClusteringS2S",
|
|
2685
|
+
# Classification (7)
|
|
2686
|
+
"AmazonReviewsClassification",
|
|
2687
|
+
"AmazonCounterfactualClassification",
|
|
2688
|
+
"MassiveIntentClassification",
|
|
2689
|
+
"MassiveScenarioClassification",
|
|
2690
|
+
"JapaneseSentimentClassification",
|
|
2691
|
+
"SIB200Classification",
|
|
2692
|
+
"WRIMEClassification",
|
|
2693
|
+
# STS (2)
|
|
2694
|
+
"JSTS",
|
|
2695
|
+
"JSICK",
|
|
2696
|
+
# Retrieval (11)
|
|
2697
|
+
"JaqketRetrieval",
|
|
2698
|
+
"MrTidyRetrieval",
|
|
2699
|
+
"JaGovFaqsRetrieval",
|
|
2700
|
+
"NLPJournalTitleAbsRetrieval.V2",
|
|
2701
|
+
"NLPJournalTitleIntroRetrieval.V2",
|
|
2702
|
+
"NLPJournalAbsIntroRetrieval.V2",
|
|
2703
|
+
"NLPJournalAbsArticleRetrieval.V2",
|
|
2704
|
+
"JaCWIRRetrieval",
|
|
2705
|
+
"MIRACLRetrieval",
|
|
2706
|
+
"MintakaRetrieval",
|
|
2707
|
+
"MultiLongDocRetrieval",
|
|
2708
|
+
# Reranking (5)
|
|
2709
|
+
"ESCIReranking",
|
|
2710
|
+
"JQaRAReranking",
|
|
2711
|
+
"JaCWIRReranking",
|
|
2712
|
+
"MIRACLReranking",
|
|
2713
|
+
"MultiLongDocReranking",
|
|
2714
|
+
],
|
|
2715
|
+
),
|
|
2716
|
+
description="JMTEB is a benchmark for evaluating Japanese text embedding models. In v2, we have extended the benchmark to 28 datasets, enabling more comprehensive evaluation compared with v1 (MTEB(jpn, v1)).",
|
|
2717
|
+
reference="https://github.com/sbintuitions/JMTEB",
|
|
2718
|
+
citation=r"""
|
|
2719
|
+
@article{li2025jmteb,
|
|
2720
|
+
author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide and Kawahara, Daisuke},
|
|
2721
|
+
issue = {3},
|
|
2722
|
+
journal = {Vol.2025-NL-265,No.3,1-15},
|
|
2723
|
+
month = {sep},
|
|
2724
|
+
title = {{JMTEB and JMTEB-lite: Japanese Massive Text Embedding Benchmark and Its Lightweight Version}},
|
|
2725
|
+
year = {2025},
|
|
2726
|
+
}
|
|
2727
|
+
""",
|
|
2728
|
+
contacts=["lsz05"],
|
|
2729
|
+
)
|
|
2730
|
+
|
|
2731
|
+
JMTEB_LITE_V1 = Benchmark(
|
|
2732
|
+
name="JMTEB-lite(v1)",
|
|
2733
|
+
display_name="Japanese",
|
|
2734
|
+
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/jp.svg",
|
|
2735
|
+
tasks=get_tasks(
|
|
2736
|
+
languages=["jpn"],
|
|
2737
|
+
tasks=[
|
|
2738
|
+
# Clustering (3)
|
|
2739
|
+
"LivedoorNewsClustering.v2",
|
|
2740
|
+
"MewsC16JaClustering",
|
|
2741
|
+
"SIB200ClusteringS2S",
|
|
2742
|
+
# Classification (7)
|
|
2743
|
+
"AmazonReviewsClassification",
|
|
2744
|
+
"AmazonCounterfactualClassification",
|
|
2745
|
+
"MassiveIntentClassification",
|
|
2746
|
+
"MassiveScenarioClassification",
|
|
2747
|
+
"JapaneseSentimentClassification",
|
|
2748
|
+
"SIB200Classification",
|
|
2749
|
+
"WRIMEClassification",
|
|
2750
|
+
# STS (2)
|
|
2751
|
+
"JSTS",
|
|
2752
|
+
"JSICK",
|
|
2753
|
+
# Retrieval (11)
|
|
2754
|
+
"JaqketRetrievalLite",
|
|
2755
|
+
"MrTyDiJaRetrievalLite",
|
|
2756
|
+
"JaGovFaqsRetrieval",
|
|
2757
|
+
"NLPJournalTitleAbsRetrieval.V2",
|
|
2758
|
+
"NLPJournalTitleIntroRetrieval.V2",
|
|
2759
|
+
"NLPJournalAbsIntroRetrieval.V2",
|
|
2760
|
+
"NLPJournalAbsArticleRetrieval.V2",
|
|
2761
|
+
"JaCWIRRetrievalLite",
|
|
2762
|
+
"MIRACLJaRetrievalLite",
|
|
2763
|
+
"MintakaRetrieval",
|
|
2764
|
+
"MultiLongDocRetrieval",
|
|
2765
|
+
# Reranking (5)
|
|
2766
|
+
"ESCIReranking",
|
|
2767
|
+
"JQaRARerankingLite",
|
|
2768
|
+
"JaCWIRRerankingLite",
|
|
2769
|
+
"MIRACLReranking",
|
|
2770
|
+
"MultiLongDocReranking",
|
|
2771
|
+
],
|
|
2772
|
+
),
|
|
2773
|
+
description="JMTEB-lite is a lightweight version of JMTEB. It makes agile evaluation possible by reaching an average of 5x faster evaluation comparing with JMTEB, as 6 heavy datasets in JMTEB are optimized with hard negative pooling strategy, making them much smaller. The result of JMTEB-lite is proved to be highly relevant with that of JMTEB, making it a faithful preview of JMTEB.",
|
|
2774
|
+
reference="https://huggingface.co/datasets/sbintuitions/JMTEB-lite",
|
|
2775
|
+
citation=r"""
|
|
2776
|
+
@article{li2025jmteb,
|
|
2777
|
+
author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide and Kawahara, Daisuke},
|
|
2778
|
+
issue = {3},
|
|
2779
|
+
journal = {Vol.2025-NL-265,No.3,1-15},
|
|
2780
|
+
month = {sep},
|
|
2781
|
+
title = {{JMTEB and JMTEB-lite: Japanese Massive Text Embedding Benchmark and Its Lightweight Version}},
|
|
2782
|
+
year = {2025},
|
|
2783
|
+
}
|
|
2784
|
+
""",
|
|
2785
|
+
contacts=["lsz05"],
|
|
2786
|
+
)
|
|
2787
|
+
|
|
2788
|
+
KOVIDORE_V2 = Benchmark(
|
|
2789
|
+
name="KoViDoRe(v2)",
|
|
2790
|
+
display_name="KoViDoRe v2",
|
|
2791
|
+
tasks=get_tasks(
|
|
2792
|
+
tasks=[
|
|
2793
|
+
"KoVidore2CybersecurityRetrieval",
|
|
2794
|
+
"KoVidore2EconomicRetrieval",
|
|
2795
|
+
"KoVidore2EnergyRetrieval",
|
|
2796
|
+
"KoVidore2HrRetrieval",
|
|
2797
|
+
]
|
|
2798
|
+
),
|
|
2799
|
+
description="KoViDoRe v2 sets a new industry gold standard for multi-modal, enterprise document visual retrieval evaluation. It addresses a critical challenge in production RAG systems: retrieving accurate information from complex, visually-rich documents.",
|
|
2800
|
+
reference="https://github.com/whybe-choi/kovidore-data-generator",
|
|
2801
|
+
citation=r"""
|
|
2802
|
+
@misc{choi2026kovidorev2,
|
|
2803
|
+
author = {Yongbin Choi},
|
|
2804
|
+
note = {A benchmark for evaluating Korean vision document retrieval with multi-page reasoning queries in practical domains},
|
|
2805
|
+
title = {KoViDoRe v2: a comprehensive evaluation of vision document retrieval for enterprise use-cases},
|
|
2806
|
+
url = {https://github.com/whybe-choi/kovidore-data-generator},
|
|
2807
|
+
year = {2026},
|
|
2808
|
+
}
|
|
2809
|
+
""",
|
|
2810
|
+
)
|
mteb/benchmarks/get_benchmark.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
|
1
1
|
import difflib
|
|
2
2
|
import logging
|
|
3
|
-
import warnings
|
|
4
3
|
from functools import lru_cache
|
|
5
4
|
|
|
6
5
|
from .benchmark import Benchmark
|
|
@@ -20,51 +19,16 @@ def _build_registry() -> dict[str, Benchmark]:
|
|
|
20
19
|
return benchmark_registry
|
|
21
20
|
|
|
22
21
|
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
MTEB_INDIC,
|
|
34
|
-
MTEB_JPN,
|
|
35
|
-
MTEB_KOR,
|
|
36
|
-
MTEB_MAIN_RU,
|
|
37
|
-
MTEB_POL,
|
|
38
|
-
MTEB_RETRIEVAL_LAW,
|
|
39
|
-
MTEB_RETRIEVAL_MEDICAL,
|
|
40
|
-
MTEB_RETRIEVAL_WITH_INSTRUCTIONS,
|
|
41
|
-
SEB,
|
|
42
|
-
MTEB_code,
|
|
43
|
-
MTEB_multilingual_v2,
|
|
44
|
-
)
|
|
45
|
-
|
|
46
|
-
previous_benchmark_names = {
|
|
47
|
-
"MTEB(eng)": MTEB_EN.name,
|
|
48
|
-
"MTEB(eng, classic)": MTEB_ENG_CLASSIC.name,
|
|
49
|
-
"MTEB(rus)": MTEB_MAIN_RU.name,
|
|
50
|
-
"MTEB(Retrieval w/Instructions)": MTEB_RETRIEVAL_WITH_INSTRUCTIONS.name,
|
|
51
|
-
"MTEB(law)": MTEB_RETRIEVAL_LAW.name,
|
|
52
|
-
"MTEB(Medical)": MTEB_RETRIEVAL_MEDICAL.name,
|
|
53
|
-
"MTEB(Scandinavian)": SEB.name,
|
|
54
|
-
"MTEB(fra)": MTEB_FRA.name,
|
|
55
|
-
"MTEB(deu)": MTEB_DEU.name,
|
|
56
|
-
"MTEB(kor)": MTEB_KOR.name,
|
|
57
|
-
"MTEB(pol)": MTEB_POL.name,
|
|
58
|
-
"MTEB(code)": MTEB_code.name,
|
|
59
|
-
"MTEB(Multilingual)": MTEB_multilingual_v2.name,
|
|
60
|
-
"MTEB(jpn)": MTEB_JPN.name,
|
|
61
|
-
"MTEB(Indic)": MTEB_INDIC.name,
|
|
62
|
-
"MTEB(Europe)": MTEB_EU.name,
|
|
63
|
-
"MTEB(Chinese)": C_MTEB.name,
|
|
64
|
-
"FaMTEB(fas, beta)": FA_MTEB.name,
|
|
65
|
-
"BRIGHT(long)": BRIGHT_LONG.name,
|
|
66
|
-
}
|
|
67
|
-
return previous_benchmark_names
|
|
22
|
+
@lru_cache
|
|
23
|
+
def _build_aliases_registry() -> dict[str, Benchmark]:
|
|
24
|
+
import mteb.benchmarks.benchmarks as benchmark_module
|
|
25
|
+
|
|
26
|
+
aliases: dict[str, Benchmark] = {}
|
|
27
|
+
for _, inst in benchmark_module.__dict__.items():
|
|
28
|
+
if isinstance(inst, Benchmark) and inst.aliases is not None:
|
|
29
|
+
for alias in inst.aliases:
|
|
30
|
+
aliases[alias] = inst
|
|
31
|
+
return aliases
|
|
68
32
|
|
|
69
33
|
|
|
70
34
|
def get_benchmark(
|
|
@@ -78,14 +42,11 @@ def get_benchmark(
|
|
|
78
42
|
Returns:
|
|
79
43
|
The Benchmark instance corresponding to the given name.
|
|
80
44
|
"""
|
|
81
|
-
previous_benchmark_names = _get_previous_benchmark_names()
|
|
82
45
|
benchmark_registry = _build_registry()
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
)
|
|
88
|
-
benchmark_name = previous_benchmark_names[benchmark_name]
|
|
46
|
+
aliases_registry = _build_aliases_registry()
|
|
47
|
+
|
|
48
|
+
if benchmark_name in aliases_registry:
|
|
49
|
+
return aliases_registry[benchmark_name]
|
|
89
50
|
if benchmark_name not in benchmark_registry:
|
|
90
51
|
close_matches = difflib.get_close_matches(
|
|
91
52
|
benchmark_name, benchmark_registry.keys()
|