mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -1,8 +1,10 @@
|
|
|
1
1
|
import logging
|
|
2
|
+
from collections import defaultdict
|
|
2
3
|
from typing import Any, ClassVar
|
|
3
4
|
|
|
4
5
|
import numpy as np
|
|
5
6
|
import torch
|
|
7
|
+
from sentence_transformers import CrossEncoder
|
|
6
8
|
from torch.utils.data import DataLoader
|
|
7
9
|
|
|
8
10
|
from mteb._requires_package import requires_package
|
|
@@ -10,13 +12,92 @@ from mteb.abstasks.task_metadata import TaskMetadata
|
|
|
10
12
|
from mteb.languages import PROGRAMMING_LANGS
|
|
11
13
|
from mteb.models.abs_encoder import AbsEncoder
|
|
12
14
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
13
|
-
from mteb.models.sentence_transformer_wrapper import
|
|
15
|
+
from mteb.models.sentence_transformer_wrapper import (
|
|
16
|
+
CrossEncoderWrapper,
|
|
17
|
+
SentenceTransformerEncoderWrapper,
|
|
18
|
+
)
|
|
14
19
|
from mteb.types import Array, BatchedInput, PromptType
|
|
15
20
|
|
|
16
21
|
logger = logging.getLogger(__name__)
|
|
17
22
|
|
|
18
23
|
MIN_SENTENCE_TRANSFORMERS_VERSION = (3, 1, 0)
|
|
19
24
|
|
|
25
|
+
multilingual_langs = [
|
|
26
|
+
"afr-Latn",
|
|
27
|
+
"ara-Arab",
|
|
28
|
+
"aze-Latn",
|
|
29
|
+
"bel-Cyrl",
|
|
30
|
+
"bul-Cyrl",
|
|
31
|
+
"ben-Beng",
|
|
32
|
+
"cat-Latn",
|
|
33
|
+
"ceb-Latn",
|
|
34
|
+
"ces-Latn",
|
|
35
|
+
"cym-Latn",
|
|
36
|
+
"dan-Latn",
|
|
37
|
+
"deu-Latn",
|
|
38
|
+
"ell-Grek",
|
|
39
|
+
"eng-Latn",
|
|
40
|
+
"spa-Latn",
|
|
41
|
+
"est-Latn",
|
|
42
|
+
"eus-Latn",
|
|
43
|
+
"fas-Arab",
|
|
44
|
+
"fin-Latn",
|
|
45
|
+
"fra-Latn",
|
|
46
|
+
"glg-Latn",
|
|
47
|
+
"guj-Gujr",
|
|
48
|
+
"heb-Hebr",
|
|
49
|
+
"hin-Deva",
|
|
50
|
+
"hrv-Latn",
|
|
51
|
+
"hat-Latn",
|
|
52
|
+
"hun-Latn",
|
|
53
|
+
"hye-Armn",
|
|
54
|
+
"ind-Latn",
|
|
55
|
+
"isl-Latn",
|
|
56
|
+
"ita-Latn",
|
|
57
|
+
"jpn-Jpan",
|
|
58
|
+
"jav-Latn",
|
|
59
|
+
"kat-Geor",
|
|
60
|
+
"kaz-Cyrl",
|
|
61
|
+
"khm-Khmr",
|
|
62
|
+
"kan-Knda",
|
|
63
|
+
"kor-Hang",
|
|
64
|
+
"kir-Cyrl",
|
|
65
|
+
"lao-Laoo",
|
|
66
|
+
"lit-Latn",
|
|
67
|
+
"lav-Latn",
|
|
68
|
+
"mkd-Cyrl",
|
|
69
|
+
"mal-Mlym",
|
|
70
|
+
"mon-Cyrl",
|
|
71
|
+
"mar-Deva",
|
|
72
|
+
"msa-Latn",
|
|
73
|
+
"mya-Mymr",
|
|
74
|
+
"nep-Deva",
|
|
75
|
+
"nld-Latn",
|
|
76
|
+
"nor-Latn",
|
|
77
|
+
"nob-Latn",
|
|
78
|
+
"nno-Latn",
|
|
79
|
+
"pan-Guru",
|
|
80
|
+
"pol-Latn",
|
|
81
|
+
"por-Latn",
|
|
82
|
+
"que-Latn",
|
|
83
|
+
"ron-Latn",
|
|
84
|
+
"rus-Cyrl",
|
|
85
|
+
"sin-Sinh",
|
|
86
|
+
"slk-Latn",
|
|
87
|
+
"slv-Latn",
|
|
88
|
+
"swa-Latn",
|
|
89
|
+
"tam-Taml",
|
|
90
|
+
"tel-Telu",
|
|
91
|
+
"tha-Thai",
|
|
92
|
+
"tgl-Latn",
|
|
93
|
+
"tur-Latn",
|
|
94
|
+
"ukr-Cyrl",
|
|
95
|
+
"urd-Arab",
|
|
96
|
+
"vie-Latn",
|
|
97
|
+
"yor-Latn",
|
|
98
|
+
"zho-Hans",
|
|
99
|
+
]
|
|
100
|
+
|
|
20
101
|
XLMR_LANGUAGES = [
|
|
21
102
|
"afr-Latn",
|
|
22
103
|
"amh-Latn",
|
|
@@ -119,6 +200,28 @@ XLMR_LANGUAGES = [
|
|
|
119
200
|
"zho-Hans",
|
|
120
201
|
]
|
|
121
202
|
|
|
203
|
+
JINARerankerV3_TRAINING_DATA = {
|
|
204
|
+
"MIRACLRetrieval",
|
|
205
|
+
"MIRACLRetrievalHardNegatives",
|
|
206
|
+
"MIRACLReranking",
|
|
207
|
+
"CMedQAv1-reranking",
|
|
208
|
+
"CMedQAv2-reranking",
|
|
209
|
+
"MrTidyRetrieval",
|
|
210
|
+
"T2Reranking",
|
|
211
|
+
"MSMARCO",
|
|
212
|
+
"MSMARCOHardNegatives",
|
|
213
|
+
"NQ",
|
|
214
|
+
"NQHardNegatives",
|
|
215
|
+
"HotpotQA",
|
|
216
|
+
"HotpotQAHardNegatives",
|
|
217
|
+
"T2Retrieval",
|
|
218
|
+
"DuRetrieval",
|
|
219
|
+
"MMarcoReranking",
|
|
220
|
+
"CornStack",
|
|
221
|
+
"MultiLongDocRetrieval",
|
|
222
|
+
"StackOverflowQA",
|
|
223
|
+
}
|
|
224
|
+
|
|
122
225
|
JinaV4_TRAINING_DATA = {
|
|
123
226
|
"MSMARCO",
|
|
124
227
|
"MSMARCOHardNegatives",
|
|
@@ -139,14 +242,70 @@ JinaV4_TRAINING_DATA = {
|
|
|
139
242
|
"CornStack",
|
|
140
243
|
"VDRMultilingualRetrieval",
|
|
141
244
|
# from https://huggingface.co/datasets/vidore/colpali_train_set
|
|
142
|
-
"
|
|
143
|
-
"
|
|
144
|
-
"
|
|
145
|
-
"
|
|
245
|
+
"VidoreDocVQARetrieval",
|
|
246
|
+
"VidoreInfoVQARetrieval",
|
|
247
|
+
"VidoreTatdqaRetrieval",
|
|
248
|
+
"VidoreArxivQARetrieval",
|
|
146
249
|
# "other", # inhouse dataset including synthetic datasets
|
|
147
250
|
}
|
|
148
251
|
|
|
149
252
|
|
|
253
|
+
class JinaRerankerV3Wrapper(CrossEncoderWrapper):
|
|
254
|
+
"""Wrapper integration for MTEB."""
|
|
255
|
+
|
|
256
|
+
def __init__(
|
|
257
|
+
self,
|
|
258
|
+
model: CrossEncoder | str,
|
|
259
|
+
revision: str | None = None,
|
|
260
|
+
device: str | None = None,
|
|
261
|
+
trust_remote_code: bool = True,
|
|
262
|
+
**kwargs: Any,
|
|
263
|
+
) -> None:
|
|
264
|
+
from sentence_transformers.util import get_device_name
|
|
265
|
+
from transformers import AutoModel
|
|
266
|
+
|
|
267
|
+
self.model = AutoModel.from_pretrained(
|
|
268
|
+
model, trust_remote_code=trust_remote_code, dtype="auto"
|
|
269
|
+
)
|
|
270
|
+
|
|
271
|
+
device = device or get_device_name()
|
|
272
|
+
|
|
273
|
+
self.model.to(device)
|
|
274
|
+
self.model.eval()
|
|
275
|
+
|
|
276
|
+
def predict(
|
|
277
|
+
self,
|
|
278
|
+
inputs1: DataLoader[BatchedInput],
|
|
279
|
+
inputs2: DataLoader[BatchedInput],
|
|
280
|
+
*,
|
|
281
|
+
task_metadata: TaskMetadata,
|
|
282
|
+
hf_split: str,
|
|
283
|
+
hf_subset: str,
|
|
284
|
+
prompt_type: PromptType | None = None,
|
|
285
|
+
**kwargs: Any,
|
|
286
|
+
) -> Array:
|
|
287
|
+
all_corpus = [text for batch in inputs2 for text in batch["text"]]
|
|
288
|
+
all_queries = [text for batch in inputs1 for text in batch["text"]]
|
|
289
|
+
|
|
290
|
+
sentences_count = len(all_corpus)
|
|
291
|
+
query_groups: dict[str, list[tuple[int, str]]] = defaultdict(list)
|
|
292
|
+
for idx, (query, doc) in enumerate(zip(all_queries, all_corpus)):
|
|
293
|
+
query_groups[query].append((idx, doc))
|
|
294
|
+
|
|
295
|
+
results = np.zeros(sentences_count, dtype=np.float32)
|
|
296
|
+
for query, doc_infos in query_groups.items():
|
|
297
|
+
original_indices, docs = zip(*doc_infos)
|
|
298
|
+
|
|
299
|
+
scores = self.model.rerank(
|
|
300
|
+
query, list(docs), max_query_length=3072, max_doc_length=2048
|
|
301
|
+
)
|
|
302
|
+
for scr in scores:
|
|
303
|
+
original_idx = original_indices[scr["index"]]
|
|
304
|
+
results[original_idx] = float(scr["relevance_score"])
|
|
305
|
+
|
|
306
|
+
return results
|
|
307
|
+
|
|
308
|
+
|
|
150
309
|
class JinaWrapper(SentenceTransformerEncoderWrapper):
|
|
151
310
|
"""following the hf model card documentation."""
|
|
152
311
|
|
|
@@ -159,6 +318,7 @@ class JinaWrapper(SentenceTransformerEncoderWrapper):
|
|
|
159
318
|
self,
|
|
160
319
|
model: str,
|
|
161
320
|
revision: str,
|
|
321
|
+
device: str | None = None,
|
|
162
322
|
model_prompts: dict[str, str] | None = None,
|
|
163
323
|
**kwargs,
|
|
164
324
|
) -> None:
|
|
@@ -178,7 +338,9 @@ class JinaWrapper(SentenceTransformerEncoderWrapper):
|
|
|
178
338
|
)
|
|
179
339
|
import flash_attn # noqa: F401
|
|
180
340
|
|
|
181
|
-
super().__init__(
|
|
341
|
+
super().__init__(
|
|
342
|
+
model, revision, device=device, model_prompts=model_prompts, **kwargs
|
|
343
|
+
)
|
|
182
344
|
|
|
183
345
|
def encode(
|
|
184
346
|
self,
|
|
@@ -553,6 +715,43 @@ def get_programming_task_override(
|
|
|
553
715
|
return current_task_name
|
|
554
716
|
|
|
555
717
|
|
|
718
|
+
jina_reranker_v3 = ModelMeta(
|
|
719
|
+
loader=JinaRerankerV3Wrapper,
|
|
720
|
+
loader_kwargs=dict(
|
|
721
|
+
trust_remote_code=True,
|
|
722
|
+
),
|
|
723
|
+
name="jinaai/jina-reranker-v3",
|
|
724
|
+
model_type=["cross-encoder"],
|
|
725
|
+
languages=multilingual_langs,
|
|
726
|
+
open_weights=True,
|
|
727
|
+
revision="050e171c4f75dfec5b648ed8470a2475e5a30f30",
|
|
728
|
+
release_date="2025-09-18", # official release date
|
|
729
|
+
modalities=["text"],
|
|
730
|
+
n_parameters=int(0.6 * 1e9),
|
|
731
|
+
memory_usage_mb=1138,
|
|
732
|
+
max_tokens=131072,
|
|
733
|
+
embed_dim=None,
|
|
734
|
+
license="cc-by-nc-4.0",
|
|
735
|
+
similarity_fn_name=None,
|
|
736
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
737
|
+
use_instructions=None,
|
|
738
|
+
reference="https://huggingface.co/jinaai/jina-reranker-v3",
|
|
739
|
+
public_training_code=None,
|
|
740
|
+
public_training_data=None,
|
|
741
|
+
training_datasets=JINARerankerV3_TRAINING_DATA,
|
|
742
|
+
adapted_from="Qwen/Qwen3-0.6B",
|
|
743
|
+
citation="""@misc{wang2025jinarerankerv3lateinteractionlistwise,
|
|
744
|
+
title={jina-reranker-v3: Last but Not Late Interaction for Listwise Document Reranking},
|
|
745
|
+
author={Feng Wang and Yuqing Li and Han Xiao},
|
|
746
|
+
year={2025},
|
|
747
|
+
eprint={2509.25085},
|
|
748
|
+
archivePrefix={arXiv},
|
|
749
|
+
primaryClass={cs.CL},
|
|
750
|
+
url={https://arxiv.org/abs/2509.25085},}
|
|
751
|
+
""",
|
|
752
|
+
)
|
|
753
|
+
|
|
754
|
+
|
|
556
755
|
jina_embeddings_v4 = ModelMeta(
|
|
557
756
|
loader=JinaV4Wrapper,
|
|
558
757
|
loader_kwargs=dict(
|
|
@@ -565,6 +764,7 @@ jina_embeddings_v4 = ModelMeta(
|
|
|
565
764
|
},
|
|
566
765
|
),
|
|
567
766
|
name="jinaai/jina-embeddings-v4",
|
|
767
|
+
model_type=["dense"],
|
|
568
768
|
languages=XLMR_LANGUAGES,
|
|
569
769
|
open_weights=True,
|
|
570
770
|
revision="4a58ca57710c49f51896e4bc820e202fbf64904b",
|
|
@@ -576,7 +776,7 @@ jina_embeddings_v4 = ModelMeta(
|
|
|
576
776
|
embed_dim=2048,
|
|
577
777
|
license="cc-by-nc-4.0",
|
|
578
778
|
similarity_fn_name="cosine",
|
|
579
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
779
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
580
780
|
use_instructions=True,
|
|
581
781
|
reference="https://huggingface.co/jinaai/jina-embeddings-v4",
|
|
582
782
|
public_training_code=None,
|
|
@@ -596,7 +796,7 @@ jina_embeddings_v4 = ModelMeta(
|
|
|
596
796
|
|
|
597
797
|
|
|
598
798
|
jina_embeddings_v3 = ModelMeta(
|
|
599
|
-
loader=JinaWrapper,
|
|
799
|
+
loader=JinaWrapper,
|
|
600
800
|
loader_kwargs=dict(
|
|
601
801
|
trust_remote_code=True,
|
|
602
802
|
model_prompts={
|
|
@@ -613,6 +813,7 @@ jina_embeddings_v3 = ModelMeta(
|
|
|
613
813
|
},
|
|
614
814
|
),
|
|
615
815
|
name="jinaai/jina-embeddings-v3",
|
|
816
|
+
model_type=["dense"],
|
|
616
817
|
languages=XLMR_LANGUAGES,
|
|
617
818
|
open_weights=True,
|
|
618
819
|
revision="215a6e121fa0183376388ac6b1ae230326bfeaed",
|
|
@@ -623,7 +824,13 @@ jina_embeddings_v3 = ModelMeta(
|
|
|
623
824
|
embed_dim=1024,
|
|
624
825
|
license="cc-by-nc-4.0",
|
|
625
826
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
626
|
-
framework=[
|
|
827
|
+
framework=[
|
|
828
|
+
"Sentence Transformers",
|
|
829
|
+
"PyTorch",
|
|
830
|
+
"Transformers",
|
|
831
|
+
"ONNX",
|
|
832
|
+
"safetensors",
|
|
833
|
+
],
|
|
627
834
|
use_instructions=True,
|
|
628
835
|
reference="https://huggingface.co/jinaai/jina-embeddings-v3",
|
|
629
836
|
public_training_code=None,
|
|
@@ -666,6 +873,7 @@ jina_embeddings_v2_base_en = ModelMeta(
|
|
|
666
873
|
trust_remote_code=True,
|
|
667
874
|
),
|
|
668
875
|
name="jinaai/jina-embeddings-v2-base-en",
|
|
876
|
+
model_type=["dense"],
|
|
669
877
|
languages=["eng-Latn"],
|
|
670
878
|
open_weights=True,
|
|
671
879
|
revision="6e85f575bc273f1fd840a658067d0157933c83f0",
|
|
@@ -677,7 +885,7 @@ jina_embeddings_v2_base_en = ModelMeta(
|
|
|
677
885
|
max_tokens=8192,
|
|
678
886
|
reference="https://huggingface.co/jinaai/jina-embeddings-v2-base-en",
|
|
679
887
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
680
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
888
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
681
889
|
use_instructions=False,
|
|
682
890
|
superseded_by=None,
|
|
683
891
|
adapted_from="jina-bert-base-en-v1", # pretrained on C4 with Alibi to support longer context.
|
|
@@ -729,6 +937,7 @@ jina_embeddings_v2_small_en = ModelMeta(
|
|
|
729
937
|
trust_remote_code=True,
|
|
730
938
|
),
|
|
731
939
|
name="jinaai/jina-embeddings-v2-small-en",
|
|
940
|
+
model_type=["dense"],
|
|
732
941
|
languages=["eng-Latn"],
|
|
733
942
|
open_weights=True,
|
|
734
943
|
revision="44e7d1d6caec8c883c2d4b207588504d519788d0",
|
|
@@ -740,7 +949,7 @@ jina_embeddings_v2_small_en = ModelMeta(
|
|
|
740
949
|
max_tokens=8192,
|
|
741
950
|
reference="https://huggingface.co/jinaai/jina-embeddings-v2-small-en",
|
|
742
951
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
743
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
952
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
744
953
|
use_instructions=False,
|
|
745
954
|
superseded_by=None,
|
|
746
955
|
adapted_from="jina-bert-smalll-en-v1", # pretrained on C4 with Alibi to support longer context
|
|
@@ -789,6 +998,7 @@ jina_embeddings_v2_small_en = ModelMeta(
|
|
|
789
998
|
jina_embedding_b_en_v1 = ModelMeta(
|
|
790
999
|
loader=SentenceTransformerEncoderWrapper,
|
|
791
1000
|
name="jinaai/jina-embedding-b-en-v1",
|
|
1001
|
+
model_type=["dense"],
|
|
792
1002
|
languages=["eng-Latn"],
|
|
793
1003
|
open_weights=True,
|
|
794
1004
|
revision="32aa658e5ceb90793454d22a57d8e3a14e699516",
|
|
@@ -845,6 +1055,7 @@ jina_embedding_b_en_v1 = ModelMeta(
|
|
|
845
1055
|
jina_embedding_s_en_v1 = ModelMeta(
|
|
846
1056
|
loader=SentenceTransformerEncoderWrapper,
|
|
847
1057
|
name="jinaai/jina-embedding-s-en-v1",
|
|
1058
|
+
model_type=["dense"],
|
|
848
1059
|
languages=["eng-Latn"],
|
|
849
1060
|
open_weights=True,
|
|
850
1061
|
revision="5ac6cd473e2324c6d5f9e558a6a9f65abb57143e",
|