mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (527) hide show
  1. mteb/__init__.py +6 -0
  2. mteb/_create_dataloaders.py +22 -20
  3. mteb/_evaluators/any_sts_evaluator.py +23 -14
  4. mteb/_evaluators/classification_metrics.py +54 -0
  5. mteb/_evaluators/clustering_evaluator.py +3 -3
  6. mteb/_evaluators/evaluator.py +4 -2
  7. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
  8. mteb/_evaluators/pair_classification_evaluator.py +34 -40
  9. mteb/_evaluators/retrieval_evaluator.py +2 -2
  10. mteb/_evaluators/retrieval_metrics.py +18 -17
  11. mteb/_evaluators/sklearn_evaluator.py +25 -37
  12. mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
  13. mteb/_evaluators/text/summarization_evaluator.py +27 -20
  14. mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
  15. mteb/abstasks/_data_filter/__init__.py +0 -0
  16. mteb/abstasks/_data_filter/filters.py +125 -0
  17. mteb/abstasks/_data_filter/task_pipelines.py +105 -0
  18. mteb/abstasks/_statistics_calculation.py +23 -11
  19. mteb/abstasks/_stratification.py +18 -18
  20. mteb/abstasks/abstask.py +35 -28
  21. mteb/abstasks/aggregate_task_metadata.py +1 -9
  22. mteb/abstasks/aggregated_task.py +10 -29
  23. mteb/abstasks/classification.py +15 -12
  24. mteb/abstasks/clustering.py +20 -16
  25. mteb/abstasks/clustering_legacy.py +13 -10
  26. mteb/abstasks/image/image_text_pair_classification.py +7 -4
  27. mteb/abstasks/multilabel_classification.py +33 -22
  28. mteb/abstasks/pair_classification.py +27 -11
  29. mteb/abstasks/regression.py +4 -4
  30. mteb/abstasks/retrieval.py +28 -24
  31. mteb/abstasks/retrieval_dataset_loaders.py +2 -2
  32. mteb/abstasks/sts.py +14 -4
  33. mteb/abstasks/task_metadata.py +32 -33
  34. mteb/abstasks/text/bitext_mining.py +39 -28
  35. mteb/abstasks/text/reranking.py +8 -6
  36. mteb/abstasks/text/summarization.py +10 -5
  37. mteb/abstasks/zeroshot_classification.py +8 -4
  38. mteb/benchmarks/_create_table.py +84 -37
  39. mteb/benchmarks/benchmark.py +77 -16
  40. mteb/benchmarks/benchmarks/__init__.py +12 -0
  41. mteb/benchmarks/benchmarks/benchmarks.py +361 -16
  42. mteb/benchmarks/get_benchmark.py +14 -53
  43. mteb/cache.py +227 -37
  44. mteb/cli/_display_tasks.py +2 -2
  45. mteb/cli/build_cli.py +110 -14
  46. mteb/cli/generate_model_card.py +43 -23
  47. mteb/deprecated_evaluator.py +71 -62
  48. mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
  49. mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
  50. mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
  51. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
  52. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
  53. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
  54. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
  55. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
  56. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
  57. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
  58. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
  59. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
  60. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
  61. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
  62. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
  63. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
  64. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
  65. mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
  66. mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
  67. mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
  68. mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
  69. mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
  70. mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
  71. mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
  72. mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
  73. mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
  74. mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
  75. mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
  76. mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
  77. mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
  78. mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
  79. mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
  80. mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
  81. mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
  82. mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
  83. mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
  84. mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
  85. mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
  86. mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
  87. mteb/evaluate.py +106 -75
  88. mteb/filter_tasks.py +25 -26
  89. mteb/get_tasks.py +29 -30
  90. mteb/languages/language_scripts.py +5 -3
  91. mteb/leaderboard/app.py +414 -151
  92. mteb/leaderboard/benchmark_selector.py +14 -5
  93. mteb/leaderboard/figures.py +13 -15
  94. mteb/leaderboard/table.py +82 -17
  95. mteb/load_results.py +12 -12
  96. mteb/models/__init__.py +4 -1
  97. mteb/models/abs_encoder.py +31 -23
  98. mteb/models/cache_wrappers/__init__.py +2 -1
  99. mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
  100. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
  101. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
  102. mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
  103. mteb/models/cache_wrappers/cache_wrapper.py +3 -3
  104. mteb/models/get_model_meta.py +25 -118
  105. mteb/models/instruct_wrapper.py +33 -9
  106. mteb/models/model_implementations/align_models.py +8 -1
  107. mteb/models/model_implementations/amazon_models.py +1 -0
  108. mteb/models/model_implementations/andersborges.py +65 -0
  109. mteb/models/model_implementations/ara_models.py +9 -1
  110. mteb/models/model_implementations/arctic_models.py +16 -8
  111. mteb/models/model_implementations/b1ade_models.py +2 -1
  112. mteb/models/model_implementations/bedrock_models.py +4 -0
  113. mteb/models/model_implementations/bge_models.py +101 -17
  114. mteb/models/model_implementations/bica_model.py +35 -0
  115. mteb/models/model_implementations/blip2_models.py +13 -2
  116. mteb/models/model_implementations/blip_models.py +43 -16
  117. mteb/models/model_implementations/bm25.py +5 -4
  118. mteb/models/model_implementations/bmretriever_models.py +10 -4
  119. mteb/models/model_implementations/cadet_models.py +10 -1
  120. mteb/models/model_implementations/cde_models.py +25 -4
  121. mteb/models/model_implementations/clip_models.py +9 -6
  122. mteb/models/model_implementations/clips_models.py +100 -0
  123. mteb/models/model_implementations/codefuse_models.py +165 -3
  124. mteb/models/model_implementations/codesage_models.py +18 -3
  125. mteb/models/model_implementations/cohere_models.py +13 -6
  126. mteb/models/model_implementations/cohere_v.py +7 -2
  127. mteb/models/model_implementations/colpali_models.py +17 -9
  128. mteb/models/model_implementations/colqwen_models.py +275 -5
  129. mteb/models/model_implementations/colsmol_models.py +4 -2
  130. mteb/models/model_implementations/conan_models.py +2 -1
  131. mteb/models/model_implementations/dino_models.py +194 -23
  132. mteb/models/model_implementations/e5_instruct.py +27 -4
  133. mteb/models/model_implementations/e5_models.py +21 -110
  134. mteb/models/model_implementations/e5_v.py +7 -6
  135. mteb/models/model_implementations/eagerworks_models.py +164 -0
  136. mteb/models/model_implementations/emillykkejensen_models.py +91 -0
  137. mteb/models/model_implementations/en_code_retriever.py +2 -1
  138. mteb/models/model_implementations/euler_models.py +32 -0
  139. mteb/models/model_implementations/evaclip_models.py +4 -0
  140. mteb/models/model_implementations/fa_models.py +67 -9
  141. mteb/models/model_implementations/facebookai.py +205 -0
  142. mteb/models/model_implementations/geogpt_models.py +2 -1
  143. mteb/models/model_implementations/gme_v_models.py +17 -10
  144. mteb/models/model_implementations/google_models.py +17 -6
  145. mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
  146. mteb/models/model_implementations/gritlm_models.py +4 -2
  147. mteb/models/model_implementations/gte_models.py +99 -9
  148. mteb/models/model_implementations/hinvec_models.py +2 -1
  149. mteb/models/model_implementations/human.py +1 -0
  150. mteb/models/model_implementations/ibm_granite_models.py +36 -6
  151. mteb/models/model_implementations/inf_models.py +4 -2
  152. mteb/models/model_implementations/jasper_models.py +256 -3
  153. mteb/models/model_implementations/jina_clip.py +49 -10
  154. mteb/models/model_implementations/jina_models.py +222 -11
  155. mteb/models/model_implementations/kalm_models.py +203 -25
  156. mteb/models/model_implementations/kblab.py +37 -0
  157. mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
  158. mteb/models/model_implementations/kfst.py +25 -0
  159. mteb/models/model_implementations/kowshik24_models.py +32 -0
  160. mteb/models/model_implementations/lens_models.py +2 -0
  161. mteb/models/model_implementations/lgai_embedding_models.py +2 -1
  162. mteb/models/model_implementations/linq_models.py +4 -3
  163. mteb/models/model_implementations/listconranker.py +2 -2
  164. mteb/models/model_implementations/llm2clip_models.py +9 -6
  165. mteb/models/model_implementations/llm2vec_models.py +16 -8
  166. mteb/models/model_implementations/mcinext_models.py +7 -1
  167. mteb/models/model_implementations/mdbr_models.py +19 -3
  168. mteb/models/model_implementations/misc_models.py +422 -60
  169. mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
  170. mteb/models/model_implementations/mme5_models.py +2 -1
  171. mteb/models/model_implementations/moco_models.py +15 -4
  172. mteb/models/model_implementations/mod_models.py +191 -0
  173. mteb/models/model_implementations/model2vec_models.py +27 -14
  174. mteb/models/model_implementations/moka_models.py +4 -1
  175. mteb/models/model_implementations/nbailab.py +70 -0
  176. mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
  177. mteb/models/model_implementations/nomic_models.py +173 -6
  178. mteb/models/model_implementations/nomic_models_vision.py +8 -3
  179. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
  180. mteb/models/model_implementations/nvidia_models.py +155 -20
  181. mteb/models/model_implementations/octen_models.py +254 -0
  182. mteb/models/model_implementations/openai_models.py +20 -16
  183. mteb/models/model_implementations/openclip_models.py +37 -13
  184. mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
  185. mteb/models/model_implementations/ops_moa_models.py +5 -3
  186. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  187. mteb/models/model_implementations/pawan_models.py +39 -0
  188. mteb/models/model_implementations/piccolo_models.py +9 -1
  189. mteb/models/model_implementations/pixie_models.py +56 -0
  190. mteb/models/model_implementations/promptriever_models.py +12 -8
  191. mteb/models/model_implementations/pylate_models.py +46 -12
  192. mteb/models/model_implementations/qodo_models.py +4 -2
  193. mteb/models/model_implementations/qtack_models.py +2 -1
  194. mteb/models/model_implementations/qwen3_models.py +9 -6
  195. mteb/models/model_implementations/qzhou_models.py +5 -3
  196. mteb/models/model_implementations/random_baseline.py +19 -24
  197. mteb/models/model_implementations/rasgaard_models.py +34 -0
  198. mteb/models/model_implementations/reasonir_model.py +2 -1
  199. mteb/models/model_implementations/repllama_models.py +5 -3
  200. mteb/models/model_implementations/rerankers_custom.py +15 -9
  201. mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
  202. mteb/models/model_implementations/richinfoai_models.py +2 -1
  203. mteb/models/model_implementations/ru_sentence_models.py +71 -20
  204. mteb/models/model_implementations/ruri_models.py +322 -0
  205. mteb/models/model_implementations/salesforce_models.py +6 -3
  206. mteb/models/model_implementations/samilpwc_models.py +2 -1
  207. mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
  208. mteb/models/model_implementations/searchmap_models.py +2 -1
  209. mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
  210. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
  211. mteb/models/model_implementations/seed_models.py +1 -0
  212. mteb/models/model_implementations/sentence_transformers_models.py +177 -18
  213. mteb/models/model_implementations/shuu_model.py +32 -31
  214. mteb/models/model_implementations/siglip_models.py +30 -20
  215. mteb/models/model_implementations/slm_models.py +416 -0
  216. mteb/models/model_implementations/sonar_models.py +1 -0
  217. mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
  218. mteb/models/model_implementations/stella_models.py +23 -4
  219. mteb/models/model_implementations/tarka_models.py +376 -0
  220. mteb/models/model_implementations/text2vec_models.py +9 -3
  221. mteb/models/model_implementations/ua_sentence_models.py +11 -1
  222. mteb/models/model_implementations/uae_models.py +8 -1
  223. mteb/models/model_implementations/vdr_models.py +3 -1
  224. mteb/models/model_implementations/vi_vn_models.py +45 -6
  225. mteb/models/model_implementations/vista_models.py +2 -0
  226. mteb/models/model_implementations/vlm2vec_models.py +5 -3
  227. mteb/models/model_implementations/voyage_models.py +99 -0
  228. mteb/models/model_implementations/voyage_v.py +17 -9
  229. mteb/models/model_implementations/xyz_models.py +1 -0
  230. mteb/models/model_implementations/youtu_models.py +2 -1
  231. mteb/models/model_implementations/yuan_models.py +34 -0
  232. mteb/models/model_implementations/yuan_models_en.py +58 -0
  233. mteb/models/model_meta.py +498 -29
  234. mteb/models/models_protocols.py +22 -6
  235. mteb/models/search_encoder_index/__init__.py +7 -0
  236. mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
  237. mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
  238. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
  239. mteb/models/search_wrappers.py +197 -65
  240. mteb/models/sentence_transformer_wrapper.py +52 -32
  241. mteb/models/vllm_wrapper.py +327 -0
  242. mteb/py.typed +0 -0
  243. mteb/results/benchmark_results.py +114 -65
  244. mteb/results/model_result.py +63 -26
  245. mteb/results/task_result.py +117 -77
  246. mteb/similarity_functions.py +60 -7
  247. mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
  248. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
  249. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
  250. mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
  251. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
  252. mteb/tasks/classification/ara/ajgt.py +1 -2
  253. mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
  254. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
  255. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
  256. mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
  257. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
  258. mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
  259. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
  260. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
  261. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
  262. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
  263. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
  264. mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
  265. mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
  266. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
  267. mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
  268. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
  269. mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
  270. mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
  271. mteb/tasks/classification/eng/arxiv_classification.py +1 -2
  272. mteb/tasks/classification/eng/banking77_classification.py +1 -2
  273. mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
  274. mteb/tasks/classification/eng/emotion_classification.py +1 -2
  275. mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
  276. mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
  277. mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
  278. mteb/tasks/classification/eng/imdb_classification.py +1 -2
  279. mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
  280. mteb/tasks/classification/eng/news_classification.py +1 -2
  281. mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
  282. mteb/tasks/classification/eng/patent_classification.py +1 -2
  283. mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
  284. mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
  285. mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
  286. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
  287. mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
  288. mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
  289. mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
  290. mteb/tasks/classification/eng/ucf101_classification.py +1 -5
  291. mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
  292. mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
  293. mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
  294. mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
  295. mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
  296. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
  297. mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
  298. mteb/tasks/classification/est/estonian_valence.py +2 -3
  299. mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
  300. mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
  301. mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
  302. mteb/tasks/classification/fra/french_book_reviews.py +1 -2
  303. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
  304. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
  305. mteb/tasks/classification/heb/__init__.py +6 -1
  306. mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
  307. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
  308. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
  309. mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
  310. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
  311. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
  312. mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
  313. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
  314. mteb/tasks/classification/jpn/wrime_classification.py +1 -2
  315. mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
  316. mteb/tasks/classification/kor/klue_tc.py +1 -2
  317. mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
  318. mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
  319. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
  320. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
  321. mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
  322. mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
  323. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
  324. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
  325. mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
  326. mteb/tasks/classification/multilingual/scala_classification.py +2 -3
  327. mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
  328. mteb/tasks/classification/mya/myanmar_news.py +1 -2
  329. mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
  330. mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
  331. mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
  332. mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
  333. mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
  334. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
  335. mteb/tasks/classification/nld/iconclass_classification.py +3 -0
  336. mteb/tasks/classification/nld/open_tender_classification.py +3 -0
  337. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
  338. mteb/tasks/classification/nob/no_rec_classification.py +1 -2
  339. mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
  340. mteb/tasks/classification/ory/odia_news_classification.py +1 -2
  341. mteb/tasks/classification/pol/polish_classification.py +3 -6
  342. mteb/tasks/classification/ron/moroco.py +1 -2
  343. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
  344. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
  345. mteb/tasks/classification/rus/georeview_classification.py +1 -2
  346. mteb/tasks/classification/rus/headline_classification.py +1 -2
  347. mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
  348. mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
  349. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
  350. mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
  351. mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
  352. mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
  353. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
  354. mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
  355. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
  356. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
  357. mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
  358. mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
  359. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
  360. mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
  361. mteb/tasks/classification/swe/dalaj_classification.py +1 -2
  362. mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
  363. mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
  364. mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
  365. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
  366. mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
  367. mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
  368. mteb/tasks/classification/tur/__init__.py +4 -0
  369. mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
  370. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
  371. mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
  372. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
  373. mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
  374. mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
  375. mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
  376. mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
  377. mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
  378. mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
  379. mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
  380. mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
  381. mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
  382. mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
  383. mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
  384. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
  385. mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
  386. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
  387. mteb/tasks/classification/zho/cmteb_classification.py +5 -10
  388. mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
  389. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
  390. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  391. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  392. mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
  393. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
  394. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
  395. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
  396. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
  397. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
  398. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
  399. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
  400. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
  401. mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
  402. mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
  403. mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
  404. mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
  405. mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
  406. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  407. mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
  408. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
  409. mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
  410. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
  411. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
  412. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
  413. mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
  414. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  415. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
  416. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
  417. mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
  418. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
  419. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
  420. mteb/tasks/pair_classification/rus/__init__.py +2 -2
  421. mteb/tasks/pair_classification/rus/terra.py +51 -25
  422. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
  423. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
  424. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
  425. mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
  426. mteb/tasks/reranking/jpn/__init__.py +9 -1
  427. mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
  428. mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
  429. mteb/tasks/reranking/multilingual/__init__.py +2 -0
  430. mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
  431. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  432. mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
  433. mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
  434. mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
  435. mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
  436. mteb/tasks/retrieval/code/code_rag.py +12 -12
  437. mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
  438. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  439. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  440. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  441. mteb/tasks/retrieval/eng/__init__.py +2 -0
  442. mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
  443. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  444. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
  445. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
  446. mteb/tasks/retrieval/jpn/__init__.py +8 -0
  447. mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
  448. mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
  449. mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
  450. mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
  451. mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
  452. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
  453. mteb/tasks/retrieval/kor/__init__.py +16 -1
  454. mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
  455. mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
  456. mteb/tasks/retrieval/multilingual/__init__.py +24 -0
  457. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
  458. mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
  459. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
  460. mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
  461. mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
  462. mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
  463. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
  464. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
  465. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
  466. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
  467. mteb/tasks/retrieval/nld/__init__.py +8 -4
  468. mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
  469. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
  470. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
  471. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
  472. mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
  473. mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
  474. mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
  475. mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
  476. mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
  477. mteb/tasks/retrieval/nob/norquad.py +2 -2
  478. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  479. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
  480. mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
  481. mteb/tasks/retrieval/vie/__init__.py +14 -6
  482. mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
  483. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
  484. mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
  485. mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
  486. mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
  487. mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
  488. mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
  489. mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
  490. mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
  491. mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
  492. mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
  493. mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
  494. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
  495. mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
  496. mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
  497. mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
  498. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
  499. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
  500. mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
  501. mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
  502. mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
  503. mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
  504. mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
  505. mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
  506. mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
  507. mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
  508. mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
  509. mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
  510. mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
  511. mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
  512. mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
  513. mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
  514. mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
  515. mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
  516. mteb/types/__init__.py +2 -0
  517. mteb/types/_encoder_io.py +19 -2
  518. mteb/types/_result.py +2 -1
  519. mteb/types/statistics.py +9 -3
  520. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
  521. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
  522. mteb/models/model_implementations/mxbai_models.py +0 -102
  523. mteb/models/model_implementations/nb_sbert.py +0 -25
  524. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
  525. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
  526. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
  527. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
@@ -165,7 +165,7 @@ def load_data(self) -> None:
165
165
  class JinaVDRMedicalPrescriptionsRetrieval(AbsTaskRetrieval):
166
166
  metadata = TaskMetadata(
167
167
  name="JinaVDRMedicalPrescriptionsRetrieval",
168
- description="Retrieve medical prescriptions based on templated queries.",
168
+ description="Retrieve medical prescriptions based on templated queries. Source dataset https://huggingface.co/datasets/Technoculture/medical-prescriptions",
169
169
  reference="https://huggingface.co/datasets/jinaai/medical-prescriptions_beir",
170
170
  dataset={
171
171
  "path": "jinaai/medical-prescriptions_beir",
@@ -186,7 +186,7 @@ class JinaVDRMedicalPrescriptionsRetrieval(AbsTaskRetrieval):
186
186
  class JinaVDRStanfordSlideRetrieval(AbsTaskRetrieval):
187
187
  metadata = TaskMetadata(
188
188
  name="JinaVDRStanfordSlideRetrieval",
189
- description="Retrieve scientific and engineering slides based on human annotated queries.",
189
+ description="Retrieve scientific and engineering slides based on human annotated queries. Source dataset https://exhibits.stanford.edu/data/catalog/mv327tb8364",
190
190
  reference="https://huggingface.co/datasets/jinaai/stanford_slide_beir",
191
191
  dataset={
192
192
  "path": "jinaai/stanford_slide_beir",
@@ -207,7 +207,7 @@ class JinaVDRStanfordSlideRetrieval(AbsTaskRetrieval):
207
207
  class JinaVDRDonutVQAISynHMPRetrieval(AbsTaskRetrieval):
208
208
  metadata = TaskMetadata(
209
209
  name="JinaVDRDonutVQAISynHMPRetrieval",
210
- description="Retrieve medical records based on templated queries.",
210
+ description="Retrieve medical records based on templated queries. Source dataset https://huggingface.co/datasets/warshakhan/donut_vqa_ISynHMP",
211
211
  reference="https://huggingface.co/datasets/jinaai/donut_vqa_beir",
212
212
  dataset={
213
213
  "path": "jinaai/donut_vqa_beir",
@@ -228,7 +228,7 @@ class JinaVDRDonutVQAISynHMPRetrieval(AbsTaskRetrieval):
228
228
  class JinaVDRTableVQARetrieval(AbsTaskRetrieval):
229
229
  metadata = TaskMetadata(
230
230
  name="JinaVDRTableVQARetrieval",
231
- description="Retrieve scientific tables based on LLM generated queries.",
231
+ description="Retrieve scientific tables based on LLM generated queries. Source datasets https://huggingface.co/datasets/HuggingFaceM4/ChartQA or https://huggingface.co/datasets/cmarkea/aftdb",
232
232
  reference="https://huggingface.co/datasets/jinaai/table-vqa_beir",
233
233
  dataset={
234
234
  "path": "jinaai/table-vqa_beir",
@@ -249,7 +249,7 @@ class JinaVDRTableVQARetrieval(AbsTaskRetrieval):
249
249
  class JinaVDRChartQARetrieval(AbsTaskRetrieval):
250
250
  metadata = TaskMetadata(
251
251
  name="JinaVDRChartQARetrieval",
252
- description="Retrieve charts based on LLM generated queries.",
252
+ description="Retrieve charts based on LLM generated queries. Source datasets https://huggingface.co/datasets/HuggingFaceM4/ChartQA",
253
253
  reference="https://huggingface.co/datasets/jinaai/ChartQA_beir",
254
254
  dataset={
255
255
  "path": "jinaai/ChartQA_beir",
@@ -270,7 +270,7 @@ class JinaVDRChartQARetrieval(AbsTaskRetrieval):
270
270
  class JinaVDRTQARetrieval(AbsTaskRetrieval):
271
271
  metadata = TaskMetadata(
272
272
  name="JinaVDRTQARetrieval",
273
- description="Retrieve textbook pages (images and text) based on LLM generated queries from the text.",
273
+ description="Retrieve textbook pages (images and text) based on LLM generated queries from the text. Source datasets https://prior.allenai.org/projects/tqa",
274
274
  reference="https://huggingface.co/datasets/jinaai/tqa_beir",
275
275
  dataset={
276
276
  "path": "jinaai/tqa_beir",
@@ -291,7 +291,7 @@ class JinaVDRTQARetrieval(AbsTaskRetrieval):
291
291
  class JinaVDROpenAINewsRetrieval(AbsTaskRetrieval):
292
292
  metadata = TaskMetadata(
293
293
  name="JinaVDROpenAINewsRetrieval",
294
- description="Retrieve news articles from the OpenAI news website based on human annotated queries.",
294
+ description="Retrieve news articles from the OpenAI news website based on human annotated queries. News taken from https://openai.com/news/",
295
295
  reference="https://huggingface.co/datasets/jinaai/openai-news_beir",
296
296
  dataset={
297
297
  "path": "jinaai/openai-news_beir",
@@ -312,7 +312,7 @@ class JinaVDROpenAINewsRetrieval(AbsTaskRetrieval):
312
312
  class JinaVDREuropeanaDeNewsRetrieval(AbsTaskRetrieval):
313
313
  metadata = TaskMetadata(
314
314
  name="JinaVDREuropeanaDeNewsRetrieval",
315
- description="Retrieve German news articles based on LLM generated queries.",
315
+ description="Retrieve German news articles based on LLM generated queries. This dataset was created from records of the [Europeana](https://europeana.eu/) online collection by selecting scans of German news articles",
316
316
  reference="https://huggingface.co/datasets/jinaai/europeana-de-news_beir",
317
317
  dataset={
318
318
  "path": "jinaai/europeana-de-news_beir",
@@ -333,7 +333,7 @@ class JinaVDREuropeanaDeNewsRetrieval(AbsTaskRetrieval):
333
333
  class JinaVDREuropeanaEsNewsRetrieval(AbsTaskRetrieval):
334
334
  metadata = TaskMetadata(
335
335
  name="JinaVDREuropeanaEsNewsRetrieval",
336
- description="Retrieve Spanish news articles based on LLM generated queries.",
336
+ description="Retrieve Spanish news articles based on LLM generated queries. This dataset was created from records of the [Europeana](https://europeana.eu/) online collection by selecting scans of Spanish news articles",
337
337
  reference="https://huggingface.co/datasets/jinaai/europeana-es-news_beir",
338
338
  dataset={
339
339
  "path": "jinaai/europeana-es-news_beir",
@@ -354,7 +354,7 @@ class JinaVDREuropeanaEsNewsRetrieval(AbsTaskRetrieval):
354
354
  class JinaVDREuropeanaItScansRetrieval(AbsTaskRetrieval):
355
355
  metadata = TaskMetadata(
356
356
  name="JinaVDREuropeanaItScansRetrieval",
357
- description="Retrieve Italian historical articles based on LLM generated queries.",
357
+ description="Retrieve Italian historical articles based on LLM generated queries. This dataset was created from records of the [Europeana](https://europeana.eu/) online collection by selecting scans of Italian news articles",
358
358
  reference="https://huggingface.co/datasets/jinaai/europeana-it-scans_beir",
359
359
  dataset={
360
360
  "path": "jinaai/europeana-it-scans_beir",
@@ -375,7 +375,7 @@ class JinaVDREuropeanaItScansRetrieval(AbsTaskRetrieval):
375
375
  class JinaVDREuropeanaNlLegalRetrieval(AbsTaskRetrieval):
376
376
  metadata = TaskMetadata(
377
377
  name="JinaVDREuropeanaNlLegalRetrieval",
378
- description="Retrieve Dutch historical legal documents based on LLM generated queries.",
378
+ description="Retrieve Dutch historical legal documents based on LLM generated queries. This dataset was created from records of the [Europeana](https://europeana.eu/) online collection by selecting scans of Dutch news articles",
379
379
  reference="https://huggingface.co/datasets/jinaai/europeana-nl-legal_beir",
380
380
  dataset={
381
381
  "path": "jinaai/europeana-nl-legal_beir",
@@ -417,7 +417,7 @@ class JinaVDRHindiGovVQARetrieval(AbsTaskRetrieval):
417
417
  class JinaVDRAutomobileCatelogRetrieval(AbsTaskRetrieval):
418
418
  metadata = TaskMetadata(
419
419
  name="JinaVDRAutomobileCatelogRetrieval",
420
- description="Retrieve automobile marketing documents based on LLM generated queries.",
420
+ description="Retrieve automobile marketing documents based on LLM generated queries. Marketing document from Toyota Japanese website featuring [RAV4](https://toyota.jp/pages/contents/request/webcatalog/rav4/rav4_special1_202310.pdf) and [Corolla](https://toyota.jp/pages/contents/request/webcatalog/corolla/corolla_special1_202407.pdf). The `text_description` column contains OCR text extracted from the images using EasyOCR.",
421
421
  reference="https://huggingface.co/datasets/jinaai/automobile_catalogue_jp_beir",
422
422
  dataset={
423
423
  "path": "jinaai/automobile_catalogue_jp_beir",
@@ -438,7 +438,7 @@ class JinaVDRAutomobileCatelogRetrieval(AbsTaskRetrieval):
438
438
  class JinaVDRBeveragesCatalogueRetrieval(AbsTaskRetrieval):
439
439
  metadata = TaskMetadata(
440
440
  name="JinaVDRBeveragesCatalogueRetrieval",
441
- description="Retrieve beverages marketing documents based on LLM generated queries.",
441
+ description="Retrieve beverages marketing documents based on LLM generated queries. This dataset was self-curated by searching beverage catalogs on Google search and downloading PDFs.",
442
442
  reference="https://huggingface.co/datasets/jinaai/beverages_catalogue_ru_beir",
443
443
  dataset={
444
444
  "path": "jinaai/beverages_catalogue_ru_beir",
@@ -459,7 +459,7 @@ class JinaVDRBeveragesCatalogueRetrieval(AbsTaskRetrieval):
459
459
  class JinaVDRRamensBenchmarkRetrieval(AbsTaskRetrieval):
460
460
  metadata = TaskMetadata(
461
461
  name="JinaVDRRamensBenchmarkRetrieval",
462
- description="Retrieve ramen restaurant marketing documents based on LLM generated queries.",
462
+ description="Retrieve ramen restaurant marketing documents based on LLM generated queries. Marketing document from Ramen [restaurants](https://www.city.niigata.lg.jp/kanko/kanko/oshirase/ramen.files/guidebook.pdf).",
463
463
  reference="https://huggingface.co/datasets/jinaai/ramen_benchmark_jp_beir",
464
464
  dataset={
465
465
  "path": "jinaai/ramen_benchmark_jp_beir",
@@ -480,7 +480,7 @@ class JinaVDRRamensBenchmarkRetrieval(AbsTaskRetrieval):
480
480
  class JinaVDRJDocQARetrieval(AbsTaskRetrieval):
481
481
  metadata = TaskMetadata(
482
482
  name="JinaVDRJDocQARetrieval",
483
- description="Retrieve Japanese documents in various formats based on human annotated queries.",
483
+ description="Retrieve Japanese documents in various formats based on human annotated queries. Document Question answering from [JDocQAJP dataset](https://huggingface.co/datasets/jlli/JDocQA-nonbinary), test split.",
484
484
  reference="https://huggingface.co/datasets/jinaai/jdocqa_beir",
485
485
  dataset={
486
486
  "path": "jinaai/jdocqa_beir",
@@ -501,7 +501,7 @@ class JinaVDRJDocQARetrieval(AbsTaskRetrieval):
501
501
  class JinaVDRHungarianDocQARetrieval(AbsTaskRetrieval):
502
502
  metadata = TaskMetadata(
503
503
  name="JinaVDRHungarianDocQARetrieval",
504
- description="Retrieve Hungarian documents in various formats based on human annotated queries.",
504
+ description="Retrieve Hungarian documents in various formats based on human annotated queries. Document Question answering from [Hungurian doc qa dataset](https://huggingface.co/datasets/jlli/HungarianDocQA-OCR), test split.",
505
505
  reference="https://huggingface.co/datasets/jinaai/hungarian_doc_qa_beir",
506
506
  dataset={
507
507
  "path": "jinaai/hungarian_doc_qa_beir",
@@ -522,7 +522,7 @@ class JinaVDRHungarianDocQARetrieval(AbsTaskRetrieval):
522
522
  class JinaVDRArabicChartQARetrieval(AbsTaskRetrieval):
523
523
  metadata = TaskMetadata(
524
524
  name="JinaVDRArabicChartQARetrieval",
525
- description="Retrieve Arabic charts based on queries.",
525
+ description="Retrieve Arabic charts based on queries. This dataset is derived from the [Arabic ChartQA dataset](https://huggingface.co/datasets/ahmedheakl/arabic_chartqa), reformatting the train split as a test split with modified field names such that it is compatible with the ViDoRe evaluation benchmark.",
526
526
  reference="https://huggingface.co/datasets/jinaai/arabic_chartqa_ar_beir",
527
527
  dataset={
528
528
  "path": "jinaai/arabic_chartqa_ar_beir",
@@ -543,7 +543,7 @@ class JinaVDRArabicChartQARetrieval(AbsTaskRetrieval):
543
543
  class JinaVDRArabicInfographicsVQARetrieval(AbsTaskRetrieval):
544
544
  metadata = TaskMetadata(
545
545
  name="JinaVDRArabicInfographicsVQARetrieval",
546
- description="Retrieve Arabic infographics based on queries.",
546
+ description="Retrieve Arabic infographics based on queries. This dataset is derived from the [Arabic Infographics VQA dataset](https://huggingface.co/datasets/ahmedheakl/arabic_infographicsvqa), reformatting the train split as a test split with modified field names so it can be used in the ViDoRe evaluation benchmark.",
547
547
  reference="https://huggingface.co/datasets/jinaai/arabic_infographicsvqa_ar_beir",
548
548
  dataset={
549
549
  "path": "jinaai/arabic_infographicsvqa_ar_beir",
@@ -564,7 +564,7 @@ class JinaVDRArabicInfographicsVQARetrieval(AbsTaskRetrieval):
564
564
  class JinaVDROWIDChartsRetrieval(AbsTaskRetrieval):
565
565
  metadata = TaskMetadata(
566
566
  name="JinaVDROWIDChartsRetrieval",
567
- description="Retrieve charts from the OWID dataset based on accompanied text snippets.",
567
+ description="Retrieve charts from the OWID dataset based on accompanied text snippets. We sampled a set of ~5k charts and articles from [Our World In Data](https://ourworldindata.org) to produce this evaluation set. This particular dataset is a subsample of 1000 random charts from the full dataset which can be found [here](https://huggingface.co/datasets/jjinaai/owid_charts).",
568
568
  reference="https://huggingface.co/datasets/jinaai/owid_charts_en_beir",
569
569
  dataset={
570
570
  "path": "jinaai/owid_charts_en_beir",
@@ -585,7 +585,7 @@ class JinaVDROWIDChartsRetrieval(AbsTaskRetrieval):
585
585
  class JinaVDRMPMQARetrieval(AbsTaskRetrieval):
586
586
  metadata = TaskMetadata(
587
587
  name="JinaVDRMPMQARetrieval",
588
- description="Retrieve product manuals based on human annotated queries.",
588
+ description="Retrieve product manuals based on human annotated queries. 155 questions and 782 document images cleaned from [jinaai/MPMQA](https://huggingface.co/datasets/jinaai/MPMQA), test set.", # MPMQA not exists on HF
589
589
  reference="https://huggingface.co/datasets/jinaai/mpmqa_small_beir",
590
590
  dataset={
591
591
  "path": "jinaai/mpmqa_small_beir",
@@ -606,7 +606,7 @@ class JinaVDRMPMQARetrieval(AbsTaskRetrieval):
606
606
  class JinaVDRJina2024YearlyBookRetrieval(AbsTaskRetrieval):
607
607
  metadata = TaskMetadata(
608
608
  name="JinaVDRJina2024YearlyBookRetrieval",
609
- description="Retrieve pages from the 2024 Jina yearbook based on human annotated questions.",
609
+ description="Retrieve pages from the 2024 Jina yearbook based on human annotated questions. 75 human annotated questions created from digital version of Jina AI yearly book 2024, 166 pages in total. ",
610
610
  reference="https://huggingface.co/datasets/jinaai/jina_2024_yearly_book_beir",
611
611
  dataset={
612
612
  "path": "jinaai/jina_2024_yearly_book_beir",
@@ -627,7 +627,7 @@ class JinaVDRJina2024YearlyBookRetrieval(AbsTaskRetrieval):
627
627
  class JinaVDRWikimediaCommonsMapsRetrieval(AbsTaskRetrieval):
628
628
  metadata = TaskMetadata(
629
629
  name="JinaVDRWikimediaCommonsMapsRetrieval",
630
- description="Retrieve maps from Wikimedia Commons based on their description.",
630
+ description="Retrieve maps from Wikimedia Commons based on their description. It contains images of (mostly historic) maps which should be identified based on their description. We extracted those descriptions from [Wikimedia Commons](https://commons.wikimedia.org/). We have included the license type and a link (license_text) to the original Wikimedia Commons page for each extracted image.",
631
631
  reference="https://huggingface.co/datasets/jinaai/wikimedia-commons-maps_beir",
632
632
  dataset={
633
633
  "path": "jinaai/wikimedia-commons-maps_beir",
@@ -648,7 +648,7 @@ class JinaVDRWikimediaCommonsMapsRetrieval(AbsTaskRetrieval):
648
648
  class JinaVDRPlotQARetrieval(AbsTaskRetrieval):
649
649
  metadata = TaskMetadata(
650
650
  name="JinaVDRPlotQARetrieval",
651
- description="Retrieve plots from the PlotQA dataset based on LLM generated queries.",
651
+ description="Retrieve plots from the PlotQA dataset based on LLM generated queries. Questions subsampled from [PlotQA](https://github.com/NiteshMethani/PlotQA) test set. It is following a subsample + LLM-based classification process, using LLM to verify the question quality, e.g. queries like `How many different coloured dotlines are there` will be filtered out.",
652
652
  reference="https://huggingface.co/datasets/jinaai/plotqa_beir",
653
653
  dataset={
654
654
  "path": "jinaai/plotqa_beir",
@@ -669,7 +669,7 @@ class JinaVDRPlotQARetrieval(AbsTaskRetrieval):
669
669
  class JinaVDRMMTabRetrieval(AbsTaskRetrieval):
670
670
  metadata = TaskMetadata(
671
671
  name="JinaVDRMMTabRetrieval",
672
- description="Retrieve tables from the MMTab dataset based on queries.",
672
+ description="Retrieve tables from the MMTab dataset based on queries. This dataset is a copy of the original test split from MMTab, taking only items where an 'original_query' is present, and removing the 'input' and 'output' columns, as they are unnecessary for retrieval tasks.",
673
673
  reference="https://huggingface.co/datasets/jinaai/MMTab_beir",
674
674
  dataset={
675
675
  "path": "jinaai/MMTab_beir",
@@ -690,7 +690,7 @@ class JinaVDRMMTabRetrieval(AbsTaskRetrieval):
690
690
  class JinaVDRCharXivOCRRetrieval(AbsTaskRetrieval):
691
691
  metadata = TaskMetadata(
692
692
  name="JinaVDRCharXivOCRRetrieval",
693
- description="Retrieve charts from scientific papers based on human annotated queries.",
693
+ description="Retrieve charts from scientific papers based on human annotated queries. This dataset is derived from the [CharXiv dataset](https://huggingface.co/datasets/princeton-nlp/CharXiv), reformatting the test split with modified field names, so that it can be used in the ViDoRe benchmark.",
694
694
  reference="https://huggingface.co/datasets/jinaai/CharXiv-en_beir",
695
695
  dataset={
696
696
  "path": "jinaai/CharXiv-en_beir",
@@ -711,7 +711,7 @@ class JinaVDRCharXivOCRRetrieval(AbsTaskRetrieval):
711
711
  class JinaVDRStudentEnrollmentSyntheticRetrieval(AbsTaskRetrieval):
712
712
  metadata = TaskMetadata(
713
713
  name="JinaVDRStudentEnrollmentSyntheticRetrieval",
714
- description="Retrieve student enrollment data based on templated queries.",
714
+ description="Retrieve student enrollment data based on templated queries. This dataset is created from the original Kaggle [Delaware Student Enrollment](https://www.kaggle.com/datasets/noeyislearning/delaware-student-enrollment) dataset. The charts are rendered and queries created using templates.",
715
715
  reference="https://huggingface.co/datasets/jinaai/student-enrollment_beir",
716
716
  dataset={
717
717
  "path": "jinaai/student-enrollment_beir",
@@ -732,7 +732,11 @@ class JinaVDRStudentEnrollmentSyntheticRetrieval(AbsTaskRetrieval):
732
732
  class JinaVDRGitHubReadmeRetrieval(AbsTaskRetrieval):
733
733
  metadata = TaskMetadata(
734
734
  name="JinaVDRGitHubReadmeRetrieval",
735
- description="Retrieve GitHub readme files based their description.",
735
+ description=(
736
+ "Retrieve GitHub readme files based their description. "
737
+ "This dataset consists of rendered GitHub readmes in a variety of different languages, together with their accompanying descriptions as queries and their license in the `license_type` and `license_text` columns. "
738
+ "This particular dataset is a subsample of 1000 random rows per language from the full dataset which can be found [here](https://huggingface.co/datasets/jinaai/github-readme-retrieval-ml-filtered)."
739
+ ),
736
740
  reference="https://huggingface.co/datasets/jinaai/github-readme-retrieval-multilingual_beir",
737
741
  dataset={
738
742
  "path": "jinaai/github-readme-retrieval-multilingual_beir",
@@ -773,7 +777,7 @@ class JinaVDRGitHubReadmeRetrieval(AbsTaskRetrieval):
773
777
  class JinaVDRTweetStockSyntheticsRetrieval(AbsTaskRetrieval):
774
778
  metadata = TaskMetadata(
775
779
  name="JinaVDRTweetStockSyntheticsRetrieval",
776
- description="Retrieve rendered tables of stock prices based on templated queries.",
780
+ description="Retrieve rendered tables of stock prices based on templated queries. This dataset is created from the original Kaggle [Tweet Sentiment's Impact on Stock Returns](https://www.kaggle.com/datasets/thedevastator/tweet-sentiment-s-impact-on-stock-returns) dataset.",
777
781
  reference="https://huggingface.co/datasets/jinaai/tweet-stock-synthetic-retrieval_beir",
778
782
  dataset={
779
783
  "path": "jinaai/tweet-stock-synthetic-retrieval_beir",
@@ -796,7 +800,7 @@ class JinaVDRTweetStockSyntheticsRetrieval(AbsTaskRetrieval):
796
800
  class JinaVDRAirbnbSyntheticRetrieval(AbsTaskRetrieval):
797
801
  metadata = TaskMetadata(
798
802
  name="JinaVDRAirbnbSyntheticRetrieval",
799
- description="Retrieve rendered tables from Airbnb listings based on templated queries.",
803
+ description="Retrieve rendered tables from Airbnb listings based on templated queries. This dataset is created from the original Kaggle [New York City Airbnb Open Data dataset](https://www.kaggle.com/datasets/dgomonov/new-york-city-airbnb-open-data).",
800
804
  reference="https://huggingface.co/datasets/jinaai/airbnb-synthetic-retrieval_beir",
801
805
  dataset={
802
806
  "path": "jinaai/airbnb-synthetic-retrieval_beir",
@@ -819,7 +823,7 @@ class JinaVDRAirbnbSyntheticRetrieval(AbsTaskRetrieval):
819
823
  class JinaVDRShanghaiMasterPlanRetrieval(AbsTaskRetrieval):
820
824
  metadata = TaskMetadata(
821
825
  name="JinaVDRShanghaiMasterPlanRetrieval",
822
- description="Retrieve pages from the Shanghai Master Plan based on human annotated queries.",
826
+ description="Retrieve pages from the Shanghai Master Plan based on human annotated queries. The master plan document is taken from [here](https://www.shanghai.gov.cn/newshanghai/xxgkfj/2035004.pdf).",
823
827
  reference="https://huggingface.co/datasets/jinaai/shanghai_master_plan_beir",
824
828
  dataset={
825
829
  "path": "jinaai/shanghai_master_plan_beir",
@@ -840,7 +844,7 @@ class JinaVDRShanghaiMasterPlanRetrieval(AbsTaskRetrieval):
840
844
  class JinaVDRWikimediaCommonsDocumentsRetrieval(AbsTaskRetrieval):
841
845
  metadata = TaskMetadata(
842
846
  name="JinaVDRWikimediaCommonsDocumentsRetrieval",
843
- description="Retrieve historical documents from Wikimedia Commons based on their description.",
847
+ description="Retrieve historical documents from Wikimedia Commons based on their description. Wikimedia Commons Documents. It contains images of (mostly historic) documents which should be identified based on their description. We extracted those descriptions from Wikimedia Commons. We have included the license type and a link (`license_text`) to the original Wikimedia Commons page for each extracted image.",
844
848
  reference="https://huggingface.co/datasets/jinaai/wikimedia-commons-documents-ml_beir",
845
849
  dataset={
846
850
  "path": "jinaai/wikimedia-commons-documents-ml_beir",
@@ -884,7 +888,7 @@ class JinaVDRWikimediaCommonsDocumentsRetrieval(AbsTaskRetrieval):
884
888
  class JinaVDREuropeanaFrNewsRetrieval(AbsTaskRetrieval):
885
889
  metadata = TaskMetadata(
886
890
  name="JinaVDREuropeanaFrNewsRetrieval",
887
- description="Retrieve French news articles from Europeana based on LLM generated queries.",
891
+ description="Retrieve French news articles from Europeana based on LLM generated queries. This dataset was created from records of the [Europeana online collection](https://europeana.eu) by selecting scans of French news articles.",
888
892
  reference="https://huggingface.co/datasets/jinaai/europeana-fr-news_beir",
889
893
  dataset={
890
894
  "path": "jinaai/europeana-fr-news_beir",
@@ -905,7 +909,7 @@ class JinaVDREuropeanaFrNewsRetrieval(AbsTaskRetrieval):
905
909
  class JinaVDRDocQAHealthcareIndustryRetrieval(AbsTaskRetrieval):
906
910
  metadata = TaskMetadata(
907
911
  name="JinaVDRDocQAHealthcareIndustryRetrieval",
908
- description="Retrieve healthcare industry documents based on LLM generated queries.",
912
+ description="Retrieve healthcare industry documents based on LLM generated queries. This dataset is build upon the corresponding dataset from the [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d). For more information regarding the filtering please read [our paper](https://arxiv.org/abs/2506.18902) or [this discussion on github](https://github.com/embeddings-benchmark/mteb/pull/2942#discussion_r2240711654).",
909
913
  reference="https://huggingface.co/datasets/jinaai/docqa_healthcare_industry_beir",
910
914
  dataset={
911
915
  "path": "jinaai/docqa_healthcare_industry_beir",
@@ -917,6 +921,7 @@ class JinaVDRDocQAHealthcareIndustryRetrieval(AbsTaskRetrieval):
917
921
  license="mit",
918
922
  annotations_creators="derived",
919
923
  sample_creation="found",
924
+ adapted_from=["VidoreDocVQARetrieval"],
920
925
  **COMMON_METADATA,
921
926
  )
922
927
 
@@ -926,7 +931,7 @@ class JinaVDRDocQAHealthcareIndustryRetrieval(AbsTaskRetrieval):
926
931
  class JinaVDRDocQAAI(AbsTaskRetrieval):
927
932
  metadata = TaskMetadata(
928
933
  name="JinaVDRDocQAAI",
929
- description="Retrieve AI documents based on LLM generated queries.",
934
+ description="Retrieve AI documents based on LLM generated queries. This dataset is build upon the corresponding dataset from the [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).",
930
935
  reference="https://huggingface.co/datasets/jinaai/docqa_artificial_intelligence_beir",
931
936
  dataset={
932
937
  "path": "jinaai/docqa_artificial_intelligence_beir",
@@ -938,6 +943,7 @@ class JinaVDRDocQAAI(AbsTaskRetrieval):
938
943
  license="mit",
939
944
  annotations_creators="derived",
940
945
  sample_creation="found",
946
+ adapted_from=["VidoreDocVQARetrieval"],
941
947
  **COMMON_METADATA,
942
948
  )
943
949
 
@@ -947,7 +953,7 @@ class JinaVDRDocQAAI(AbsTaskRetrieval):
947
953
  class JinaVDRShiftProjectRetrieval(AbsTaskRetrieval):
948
954
  metadata = TaskMetadata(
949
955
  name="JinaVDRShiftProjectRetrieval",
950
- description="Retrieve documents with graphs from the Shift Project based on LLM generated queries.",
956
+ description="Retrieve documents with graphs from the Shift Project based on LLM generated queries. This dataset is build upon the corresponding dataset from the [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).",
951
957
  reference="https://huggingface.co/datasets/jinaai/shiftproject_beir",
952
958
  dataset={
953
959
  "path": "jinaai/shiftproject_beir",
@@ -959,6 +965,7 @@ class JinaVDRShiftProjectRetrieval(AbsTaskRetrieval):
959
965
  license="mit",
960
966
  annotations_creators="derived",
961
967
  sample_creation="found",
968
+ adapted_from=["VidoreShiftProjectRetrieval"],
962
969
  **COMMON_METADATA,
963
970
  )
964
971
 
@@ -968,7 +975,7 @@ class JinaVDRShiftProjectRetrieval(AbsTaskRetrieval):
968
975
  class JinaVDRTatQARetrieval(AbsTaskRetrieval):
969
976
  metadata = TaskMetadata(
970
977
  name="JinaVDRTatQARetrieval",
971
- description="Retrieve financial reports based on human annotated queries.",
978
+ description="Retrieve financial reports based on human annotated queries. This dataset is build upon the corresponding dataset from the [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).",
972
979
  reference="https://huggingface.co/datasets/jinaai/tatqa_beir",
973
980
  dataset={
974
981
  "path": "jinaai/tatqa_beir",
@@ -980,6 +987,7 @@ class JinaVDRTatQARetrieval(AbsTaskRetrieval):
980
987
  license="mit",
981
988
  annotations_creators="derived",
982
989
  sample_creation="found",
990
+ adapted_from=["VidoreTatdqaRetrieval"],
983
991
  **COMMON_METADATA,
984
992
  )
985
993
 
@@ -989,7 +997,7 @@ class JinaVDRTatQARetrieval(AbsTaskRetrieval):
989
997
  class JinaVDRInfovqaRetrieval(AbsTaskRetrieval):
990
998
  metadata = TaskMetadata(
991
999
  name="JinaVDRInfovqaRetrieval",
992
- description="Retrieve infographics based on human annotated queries.",
1000
+ description="Retrieve infographics based on human annotated queries. This dataset is build upon the corresponding dataset from the [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).",
993
1001
  reference="https://huggingface.co/datasets/jinaai/infovqa_beir",
994
1002
  dataset={
995
1003
  "path": "jinaai/infovqa_beir",
@@ -1001,6 +1009,7 @@ class JinaVDRInfovqaRetrieval(AbsTaskRetrieval):
1001
1009
  license="mit",
1002
1010
  annotations_creators="derived",
1003
1011
  sample_creation="found",
1012
+ adapted_from=["VidoreInfoVQARetrieval"],
1004
1013
  **COMMON_METADATA,
1005
1014
  )
1006
1015
 
@@ -1010,7 +1019,7 @@ class JinaVDRInfovqaRetrieval(AbsTaskRetrieval):
1010
1019
  class JinaVDRDocVQARetrieval(AbsTaskRetrieval):
1011
1020
  metadata = TaskMetadata(
1012
1021
  name="JinaVDRDocVQARetrieval",
1013
- description="Retrieve industry documents based on human annotated queries.",
1022
+ description="Retrieve industry documents based on human annotated queries. This dataset is build upon the corresponding dataset from the [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).",
1014
1023
  reference="https://huggingface.co/datasets/jinaai/docvqa_beir",
1015
1024
  dataset={
1016
1025
  "path": "jinaai/docvqa_beir",
@@ -1022,6 +1031,7 @@ class JinaVDRDocVQARetrieval(AbsTaskRetrieval):
1022
1031
  license="cc-by-4.0",
1023
1032
  annotations_creators="LM-generated",
1024
1033
  sample_creation="found",
1034
+ adapted_from=["VidoreDocVQARetrieval"],
1025
1035
  **COMMON_METADATA,
1026
1036
  )
1027
1037
 
@@ -1031,7 +1041,7 @@ class JinaVDRDocVQARetrieval(AbsTaskRetrieval):
1031
1041
  class JinaVDRDocQAGovReportRetrieval(AbsTaskRetrieval):
1032
1042
  metadata = TaskMetadata(
1033
1043
  name="JinaVDRDocQAGovReportRetrieval",
1034
- description="Retrieve government reports based on LLM generated queries.",
1044
+ description="Retrieve government reports based on LLM generated queries. This dataset is build upon the corresponding dataset from the [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).",
1035
1045
  reference="https://huggingface.co/datasets/jinaai/docqa_gov_report_beir",
1036
1046
  dataset={
1037
1047
  "path": "jinaai/docqa_gov_report_beir",
@@ -1043,6 +1053,7 @@ class JinaVDRDocQAGovReportRetrieval(AbsTaskRetrieval):
1043
1053
  license="mit",
1044
1054
  annotations_creators="derived",
1045
1055
  sample_creation="found",
1056
+ adapted_from=["VidoreDocVQARetrieval"],
1046
1057
  **COMMON_METADATA,
1047
1058
  )
1048
1059
 
@@ -1052,7 +1063,7 @@ class JinaVDRDocQAGovReportRetrieval(AbsTaskRetrieval):
1052
1063
  class JinaVDRTabFQuadRetrieval(AbsTaskRetrieval):
1053
1064
  metadata = TaskMetadata(
1054
1065
  name="JinaVDRTabFQuadRetrieval",
1055
- description="Retrieve tables from industry documents based on LLM generated queries.",
1066
+ description="Retrieve tables from industry documents based on LLM generated queries. This dataset is build upon the corresponding dataset from the [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).",
1056
1067
  reference="https://huggingface.co/datasets/jinaai/tabfquad_beir",
1057
1068
  dataset={
1058
1069
  "path": "jinaai/tabfquad_beir",
@@ -1064,6 +1075,7 @@ class JinaVDRTabFQuadRetrieval(AbsTaskRetrieval):
1064
1075
  license="mit",
1065
1076
  annotations_creators="derived",
1066
1077
  sample_creation="found",
1078
+ adapted_from=["VidoreTabfquadRetrieval"],
1067
1079
  **COMMON_METADATA,
1068
1080
  )
1069
1081
 
@@ -1073,7 +1085,7 @@ class JinaVDRTabFQuadRetrieval(AbsTaskRetrieval):
1073
1085
  class JinaVDRDocQAEnergyRetrieval(AbsTaskRetrieval):
1074
1086
  metadata = TaskMetadata(
1075
1087
  name="JinaVDRDocQAEnergyRetrieval",
1076
- description="Retrieve energy industry documents based on LLM generated queries.",
1088
+ description="Retrieve energy industry documents based on LLM generated queries. This dataset is build upon the corresponding dataset from the [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).",
1077
1089
  reference="https://huggingface.co/datasets/jinaai/docqa_energy_beir",
1078
1090
  dataset={
1079
1091
  "path": "jinaai/docqa_energy_beir",
@@ -1085,6 +1097,7 @@ class JinaVDRDocQAEnergyRetrieval(AbsTaskRetrieval):
1085
1097
  license="mit",
1086
1098
  annotations_creators="derived",
1087
1099
  sample_creation="found",
1100
+ adapted_from=["VidoreDocVQARetrieval"],
1088
1101
  **COMMON_METADATA,
1089
1102
  )
1090
1103
 
@@ -1094,7 +1107,7 @@ class JinaVDRDocQAEnergyRetrieval(AbsTaskRetrieval):
1094
1107
  class JinaVDRArxivQARetrieval(AbsTaskRetrieval):
1095
1108
  metadata = TaskMetadata(
1096
1109
  name="JinaVDRArxivQARetrieval",
1097
- description="Retrieve figures from scientific papers from arXiv based on LLM generated queries.",
1110
+ description="Retrieve figures from scientific papers from arXiv based on LLM generated queries. This dataset is build upon the corresponding dataset from the [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).",
1098
1111
  reference="https://huggingface.co/datasets/jinaai/arxivqa_beir",
1099
1112
  dataset={
1100
1113
  "path": "jinaai/arxivqa_beir",
@@ -1106,6 +1119,7 @@ class JinaVDRArxivQARetrieval(AbsTaskRetrieval):
1106
1119
  license="cc-by-4.0",
1107
1120
  annotations_creators="LM-generated",
1108
1121
  sample_creation="found",
1122
+ adapted_from=["VidoreArxivQARetrieval"],
1109
1123
  **COMMON_METADATA,
1110
1124
  )
1111
1125
 
@@ -34,8 +34,7 @@ _EVAL_LANGS = {
34
34
  class MKQARetrieval(AbsTaskRetrieval):
35
35
  metadata = TaskMetadata(
36
36
  name="MKQARetrieval",
37
- description="""Multilingual Knowledge Questions & Answers (MKQA)contains 10,000 queries sampled from the Google Natural Questions dataset.
38
- For each query we collect new passage-independent answers. These queries and answers are then human translated into 25 Non-English languages.""",
37
+ description="Multilingual Knowledge Questions & Answers (MKQA)contains 10,000 queries sampled from the Google Natural Questions dataset. For each query we collect new passage-independent answers. These queries and answers are then human translated into 25 Non-English languages.",
39
38
  reference="https://github.com/apple/ml-mkqa",
40
39
  dataset={
41
40
  "path": "mteb/MKQARetrieval",
@@ -75,10 +75,7 @@ _EVAL_LANGS = extend_lang_pairs()
75
75
  class MLQARetrieval(AbsTaskRetrieval):
76
76
  metadata = TaskMetadata(
77
77
  name="MLQARetrieval",
78
- description="""MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
79
- MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
80
- German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
81
- 4 different languages on average.""",
78
+ description="MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance. MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between 4 different languages on average.",
82
79
  reference="https://huggingface.co/datasets/mlqa",
83
80
  dataset={
84
81
  "path": "mteb/MLQARetrieval",
@@ -21,8 +21,7 @@ _LANGUAGES = {
21
21
  class MultiLongDocRetrieval(AbsTaskRetrieval):
22
22
  metadata = TaskMetadata(
23
23
  name="MultiLongDocRetrieval",
24
- description="""Multi Long Doc Retrieval (MLDR) 'is curated by the multilingual articles from Wikipedia, Wudao and mC4 (see Table 7), and NarrativeQA (Kocˇisky ́ et al., 2018; Gu ̈nther et al., 2023), which is only for English.' (Chen et al., 2024).
25
- It is constructed by sampling lengthy articles from Wikipedia, Wudao and mC4 datasets and randomly choose paragraphs from them. Then we use GPT-3.5 to generate questions based on these paragraphs. The generated question and the sampled article constitute a new text pair to the dataset.""",
24
+ description="Multi Long Doc Retrieval (MLDR) 'is curated by the multilingual articles from Wikipedia, Wudao and mC4 (see Table 7), and NarrativeQA (Kocˇisky ́ et al., 2018; Gu ̈nther et al., 2023), which is only for English.' (Chen et al., 2024). It is constructed by sampling lengthy articles from Wikipedia, Wudao and mC4 datasets and randomly choose paragraphs from them. Then we use GPT-3.5 to generate questions based on these paragraphs. The generated question and the sampled article constitute a new text pair to the dataset.",
26
25
  reference="https://arxiv.org/abs/2402.03216", # also: https://huggingface.co/datasets/Shitao/MLDR
27
26
  dataset={
28
27
  "path": "mteb/MultiLongDocRetrieval",
@@ -32,10 +32,15 @@ def _load_publichealthqa_data(
32
32
  split=split,
33
33
  revision=revision,
34
34
  )
35
- question_ids = {
36
- question: _id for _id, question in enumerate(set(data["question"]))
37
- }
38
- answer_ids = {answer: _id for _id, answer in enumerate(set(data["answer"]))}
35
+
36
+ question_ids = {}
37
+ answer_ids = {}
38
+
39
+ for row in data:
40
+ if row["question"] is not None and row["question"] not in question_ids:
41
+ question_ids[row["question"]] = len(question_ids)
42
+ if row["answer"] is not None and row["answer"] not in answer_ids:
43
+ answer_ids[row["answer"]] = len(answer_ids)
39
44
 
40
45
  for row in data:
41
46
  if row["question"] is None or row["answer"] is None:
@@ -68,11 +68,7 @@ class RuSciBenchCiteRetrieval(AbsTaskRetrieval):
68
68
  "path": "mlsa-iai-msu-lab/ru_sci_bench_cite_retrieval",
69
69
  "revision": "6cb447d02f41b8b775d5d9df7faf472f44d2f1db",
70
70
  },
71
- description="""This task is focused on Direct Citation Prediction for scientific papers from eLibrary,
72
- Russia's largest electronic library of scientific publications. Given a query paper (title and abstract),
73
- the goal is to retrieve papers that are directly cited by it from a larger corpus of papers.
74
- The dataset for this task consists of 3,000 query papers, 15,000 relevant (cited) papers,
75
- and 75,000 irrelevant papers. The task is available for both Russian and English scientific texts.""",
71
+ description="This task is focused on Direct Citation Prediction for scientific papers from eLibrary, Russia's largest electronic library of scientific publications. Given a query paper (title and abstract), the goal is to retrieve papers that are directly cited by it from a larger corpus of papers. The dataset for this task consists of 3,000 query papers, 15,000 relevant (cited) papers, and 75,000 irrelevant papers. The task is available for both Russian and English scientific texts.",
76
72
  reference="https://github.com/mlsa-iai-msu-lab/ru_sci_bench_mteb",
77
73
  type="Retrieval",
78
74
  category="t2t",
@@ -130,13 +126,7 @@ class RuSciBenchCociteRetrieval(AbsTaskRetrieval):
130
126
  "path": "mlsa-iai-msu-lab/ru_sci_bench_cocite_retrieval",
131
127
  "revision": "a5da47a245275669d2b6ddf8f96c5338dd2428b4",
132
128
  },
133
- description="""This task focuses on Co-citation Prediction for scientific papers from eLibrary,
134
- Russia's largest electronic library of scientific publications. Given a query paper (title and abstract),
135
- the goal is to retrieve other papers that are co-cited with it. Two papers are considered co-cited
136
- if they are both cited by at least 5 of the same other papers. Similar to the Direct Citation task,
137
- this task employs a retrieval setup: for a given query paper, all other papers in the corpus that
138
- are not co-cited with it are considered negative examples. The task is available for both Russian
139
- and English scientific texts.""",
129
+ description="This task focuses on Co-citation Prediction for scientific papers from eLibrary, Russia's largest electronic library of scientific publications. Given a query paper (title and abstract), the goal is to retrieve other papers that are co-cited with it. Two papers are considered co-cited if they are both cited by at least 5 of the same other papers. Similar to the Direct Citation task, this task employs a retrieval setup: for a given query paper, all other papers in the corpus that are not co-cited with it are considered negative examples. The task is available for both Russian and English scientific texts.",
140
130
  reference="https://github.com/mlsa-iai-msu-lab/ru_sci_bench_mteb",
141
131
  type="Retrieval",
142
132
  category="t2t",
@@ -55,6 +55,7 @@ def _load_data(
55
55
  },
56
56
  remove_columns=["corpus-id"],
57
57
  )
58
+ corpus_ds = corpus_ds.select_columns(["id", "image"])
58
59
 
59
60
  qrels_ds = load_dataset(
60
61
  path,
@@ -64,7 +65,7 @@ def _load_data(
64
65
  )
65
66
 
66
67
  if langs is None:
67
- queries[split] = query_ds
68
+ queries[split] = query_ds.select_columns(["id", "text"])
68
69
  corpus[split] = corpus_ds
69
70
  relevant_docs[split] = {}
70
71
  for row in qrels_ds:
@@ -75,7 +76,8 @@ def _load_data(
75
76
  relevant_docs[split][qid][did] = int(row["score"])
76
77
  else:
77
78
  for lang in langs:
78
- queries[lang][split] = query_ds.filter(lambda x: x["language"] == lang)
79
+ filtered_query_ds = query_ds.filter(lambda x: x["language"] == lang)
80
+ queries[lang][split] = filtered_query_ds.select_columns(["id", "text"])
79
81
 
80
82
  corpus[lang][split] = corpus_ds
81
83