mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (527) hide show
  1. mteb/__init__.py +6 -0
  2. mteb/_create_dataloaders.py +22 -20
  3. mteb/_evaluators/any_sts_evaluator.py +23 -14
  4. mteb/_evaluators/classification_metrics.py +54 -0
  5. mteb/_evaluators/clustering_evaluator.py +3 -3
  6. mteb/_evaluators/evaluator.py +4 -2
  7. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
  8. mteb/_evaluators/pair_classification_evaluator.py +34 -40
  9. mteb/_evaluators/retrieval_evaluator.py +2 -2
  10. mteb/_evaluators/retrieval_metrics.py +18 -17
  11. mteb/_evaluators/sklearn_evaluator.py +25 -37
  12. mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
  13. mteb/_evaluators/text/summarization_evaluator.py +27 -20
  14. mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
  15. mteb/abstasks/_data_filter/__init__.py +0 -0
  16. mteb/abstasks/_data_filter/filters.py +125 -0
  17. mteb/abstasks/_data_filter/task_pipelines.py +105 -0
  18. mteb/abstasks/_statistics_calculation.py +23 -11
  19. mteb/abstasks/_stratification.py +18 -18
  20. mteb/abstasks/abstask.py +35 -28
  21. mteb/abstasks/aggregate_task_metadata.py +1 -9
  22. mteb/abstasks/aggregated_task.py +10 -29
  23. mteb/abstasks/classification.py +15 -12
  24. mteb/abstasks/clustering.py +20 -16
  25. mteb/abstasks/clustering_legacy.py +13 -10
  26. mteb/abstasks/image/image_text_pair_classification.py +7 -4
  27. mteb/abstasks/multilabel_classification.py +33 -22
  28. mteb/abstasks/pair_classification.py +27 -11
  29. mteb/abstasks/regression.py +4 -4
  30. mteb/abstasks/retrieval.py +28 -24
  31. mteb/abstasks/retrieval_dataset_loaders.py +2 -2
  32. mteb/abstasks/sts.py +14 -4
  33. mteb/abstasks/task_metadata.py +32 -33
  34. mteb/abstasks/text/bitext_mining.py +39 -28
  35. mteb/abstasks/text/reranking.py +8 -6
  36. mteb/abstasks/text/summarization.py +10 -5
  37. mteb/abstasks/zeroshot_classification.py +8 -4
  38. mteb/benchmarks/_create_table.py +84 -37
  39. mteb/benchmarks/benchmark.py +77 -16
  40. mteb/benchmarks/benchmarks/__init__.py +12 -0
  41. mteb/benchmarks/benchmarks/benchmarks.py +361 -16
  42. mteb/benchmarks/get_benchmark.py +14 -53
  43. mteb/cache.py +227 -37
  44. mteb/cli/_display_tasks.py +2 -2
  45. mteb/cli/build_cli.py +110 -14
  46. mteb/cli/generate_model_card.py +43 -23
  47. mteb/deprecated_evaluator.py +71 -62
  48. mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
  49. mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
  50. mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
  51. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
  52. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
  53. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
  54. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
  55. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
  56. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
  57. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
  58. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
  59. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
  60. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
  61. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
  62. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
  63. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
  64. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
  65. mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
  66. mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
  67. mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
  68. mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
  69. mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
  70. mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
  71. mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
  72. mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
  73. mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
  74. mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
  75. mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
  76. mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
  77. mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
  78. mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
  79. mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
  80. mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
  81. mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
  82. mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
  83. mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
  84. mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
  85. mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
  86. mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
  87. mteb/evaluate.py +106 -75
  88. mteb/filter_tasks.py +25 -26
  89. mteb/get_tasks.py +29 -30
  90. mteb/languages/language_scripts.py +5 -3
  91. mteb/leaderboard/app.py +414 -151
  92. mteb/leaderboard/benchmark_selector.py +14 -5
  93. mteb/leaderboard/figures.py +13 -15
  94. mteb/leaderboard/table.py +82 -17
  95. mteb/load_results.py +12 -12
  96. mteb/models/__init__.py +4 -1
  97. mteb/models/abs_encoder.py +31 -23
  98. mteb/models/cache_wrappers/__init__.py +2 -1
  99. mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
  100. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
  101. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
  102. mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
  103. mteb/models/cache_wrappers/cache_wrapper.py +3 -3
  104. mteb/models/get_model_meta.py +25 -118
  105. mteb/models/instruct_wrapper.py +33 -9
  106. mteb/models/model_implementations/align_models.py +8 -1
  107. mteb/models/model_implementations/amazon_models.py +1 -0
  108. mteb/models/model_implementations/andersborges.py +65 -0
  109. mteb/models/model_implementations/ara_models.py +9 -1
  110. mteb/models/model_implementations/arctic_models.py +16 -8
  111. mteb/models/model_implementations/b1ade_models.py +2 -1
  112. mteb/models/model_implementations/bedrock_models.py +4 -0
  113. mteb/models/model_implementations/bge_models.py +101 -17
  114. mteb/models/model_implementations/bica_model.py +35 -0
  115. mteb/models/model_implementations/blip2_models.py +13 -2
  116. mteb/models/model_implementations/blip_models.py +43 -16
  117. mteb/models/model_implementations/bm25.py +5 -4
  118. mteb/models/model_implementations/bmretriever_models.py +10 -4
  119. mteb/models/model_implementations/cadet_models.py +10 -1
  120. mteb/models/model_implementations/cde_models.py +25 -4
  121. mteb/models/model_implementations/clip_models.py +9 -6
  122. mteb/models/model_implementations/clips_models.py +100 -0
  123. mteb/models/model_implementations/codefuse_models.py +165 -3
  124. mteb/models/model_implementations/codesage_models.py +18 -3
  125. mteb/models/model_implementations/cohere_models.py +13 -6
  126. mteb/models/model_implementations/cohere_v.py +7 -2
  127. mteb/models/model_implementations/colpali_models.py +17 -9
  128. mteb/models/model_implementations/colqwen_models.py +275 -5
  129. mteb/models/model_implementations/colsmol_models.py +4 -2
  130. mteb/models/model_implementations/conan_models.py +2 -1
  131. mteb/models/model_implementations/dino_models.py +194 -23
  132. mteb/models/model_implementations/e5_instruct.py +27 -4
  133. mteb/models/model_implementations/e5_models.py +21 -110
  134. mteb/models/model_implementations/e5_v.py +7 -6
  135. mteb/models/model_implementations/eagerworks_models.py +164 -0
  136. mteb/models/model_implementations/emillykkejensen_models.py +91 -0
  137. mteb/models/model_implementations/en_code_retriever.py +2 -1
  138. mteb/models/model_implementations/euler_models.py +32 -0
  139. mteb/models/model_implementations/evaclip_models.py +4 -0
  140. mteb/models/model_implementations/fa_models.py +67 -9
  141. mteb/models/model_implementations/facebookai.py +205 -0
  142. mteb/models/model_implementations/geogpt_models.py +2 -1
  143. mteb/models/model_implementations/gme_v_models.py +17 -10
  144. mteb/models/model_implementations/google_models.py +17 -6
  145. mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
  146. mteb/models/model_implementations/gritlm_models.py +4 -2
  147. mteb/models/model_implementations/gte_models.py +99 -9
  148. mteb/models/model_implementations/hinvec_models.py +2 -1
  149. mteb/models/model_implementations/human.py +1 -0
  150. mteb/models/model_implementations/ibm_granite_models.py +36 -6
  151. mteb/models/model_implementations/inf_models.py +4 -2
  152. mteb/models/model_implementations/jasper_models.py +256 -3
  153. mteb/models/model_implementations/jina_clip.py +49 -10
  154. mteb/models/model_implementations/jina_models.py +222 -11
  155. mteb/models/model_implementations/kalm_models.py +203 -25
  156. mteb/models/model_implementations/kblab.py +37 -0
  157. mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
  158. mteb/models/model_implementations/kfst.py +25 -0
  159. mteb/models/model_implementations/kowshik24_models.py +32 -0
  160. mteb/models/model_implementations/lens_models.py +2 -0
  161. mteb/models/model_implementations/lgai_embedding_models.py +2 -1
  162. mteb/models/model_implementations/linq_models.py +4 -3
  163. mteb/models/model_implementations/listconranker.py +2 -2
  164. mteb/models/model_implementations/llm2clip_models.py +9 -6
  165. mteb/models/model_implementations/llm2vec_models.py +16 -8
  166. mteb/models/model_implementations/mcinext_models.py +7 -1
  167. mteb/models/model_implementations/mdbr_models.py +19 -3
  168. mteb/models/model_implementations/misc_models.py +422 -60
  169. mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
  170. mteb/models/model_implementations/mme5_models.py +2 -1
  171. mteb/models/model_implementations/moco_models.py +15 -4
  172. mteb/models/model_implementations/mod_models.py +191 -0
  173. mteb/models/model_implementations/model2vec_models.py +27 -14
  174. mteb/models/model_implementations/moka_models.py +4 -1
  175. mteb/models/model_implementations/nbailab.py +70 -0
  176. mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
  177. mteb/models/model_implementations/nomic_models.py +173 -6
  178. mteb/models/model_implementations/nomic_models_vision.py +8 -3
  179. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
  180. mteb/models/model_implementations/nvidia_models.py +155 -20
  181. mteb/models/model_implementations/octen_models.py +254 -0
  182. mteb/models/model_implementations/openai_models.py +20 -16
  183. mteb/models/model_implementations/openclip_models.py +37 -13
  184. mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
  185. mteb/models/model_implementations/ops_moa_models.py +5 -3
  186. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  187. mteb/models/model_implementations/pawan_models.py +39 -0
  188. mteb/models/model_implementations/piccolo_models.py +9 -1
  189. mteb/models/model_implementations/pixie_models.py +56 -0
  190. mteb/models/model_implementations/promptriever_models.py +12 -8
  191. mteb/models/model_implementations/pylate_models.py +46 -12
  192. mteb/models/model_implementations/qodo_models.py +4 -2
  193. mteb/models/model_implementations/qtack_models.py +2 -1
  194. mteb/models/model_implementations/qwen3_models.py +9 -6
  195. mteb/models/model_implementations/qzhou_models.py +5 -3
  196. mteb/models/model_implementations/random_baseline.py +19 -24
  197. mteb/models/model_implementations/rasgaard_models.py +34 -0
  198. mteb/models/model_implementations/reasonir_model.py +2 -1
  199. mteb/models/model_implementations/repllama_models.py +5 -3
  200. mteb/models/model_implementations/rerankers_custom.py +15 -9
  201. mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
  202. mteb/models/model_implementations/richinfoai_models.py +2 -1
  203. mteb/models/model_implementations/ru_sentence_models.py +71 -20
  204. mteb/models/model_implementations/ruri_models.py +322 -0
  205. mteb/models/model_implementations/salesforce_models.py +6 -3
  206. mteb/models/model_implementations/samilpwc_models.py +2 -1
  207. mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
  208. mteb/models/model_implementations/searchmap_models.py +2 -1
  209. mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
  210. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
  211. mteb/models/model_implementations/seed_models.py +1 -0
  212. mteb/models/model_implementations/sentence_transformers_models.py +177 -18
  213. mteb/models/model_implementations/shuu_model.py +32 -31
  214. mteb/models/model_implementations/siglip_models.py +30 -20
  215. mteb/models/model_implementations/slm_models.py +416 -0
  216. mteb/models/model_implementations/sonar_models.py +1 -0
  217. mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
  218. mteb/models/model_implementations/stella_models.py +23 -4
  219. mteb/models/model_implementations/tarka_models.py +376 -0
  220. mteb/models/model_implementations/text2vec_models.py +9 -3
  221. mteb/models/model_implementations/ua_sentence_models.py +11 -1
  222. mteb/models/model_implementations/uae_models.py +8 -1
  223. mteb/models/model_implementations/vdr_models.py +3 -1
  224. mteb/models/model_implementations/vi_vn_models.py +45 -6
  225. mteb/models/model_implementations/vista_models.py +2 -0
  226. mteb/models/model_implementations/vlm2vec_models.py +5 -3
  227. mteb/models/model_implementations/voyage_models.py +99 -0
  228. mteb/models/model_implementations/voyage_v.py +17 -9
  229. mteb/models/model_implementations/xyz_models.py +1 -0
  230. mteb/models/model_implementations/youtu_models.py +2 -1
  231. mteb/models/model_implementations/yuan_models.py +34 -0
  232. mteb/models/model_implementations/yuan_models_en.py +58 -0
  233. mteb/models/model_meta.py +498 -29
  234. mteb/models/models_protocols.py +22 -6
  235. mteb/models/search_encoder_index/__init__.py +7 -0
  236. mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
  237. mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
  238. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
  239. mteb/models/search_wrappers.py +197 -65
  240. mteb/models/sentence_transformer_wrapper.py +52 -32
  241. mteb/models/vllm_wrapper.py +327 -0
  242. mteb/py.typed +0 -0
  243. mteb/results/benchmark_results.py +114 -65
  244. mteb/results/model_result.py +63 -26
  245. mteb/results/task_result.py +117 -77
  246. mteb/similarity_functions.py +60 -7
  247. mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
  248. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
  249. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
  250. mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
  251. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
  252. mteb/tasks/classification/ara/ajgt.py +1 -2
  253. mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
  254. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
  255. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
  256. mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
  257. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
  258. mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
  259. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
  260. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
  261. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
  262. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
  263. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
  264. mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
  265. mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
  266. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
  267. mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
  268. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
  269. mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
  270. mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
  271. mteb/tasks/classification/eng/arxiv_classification.py +1 -2
  272. mteb/tasks/classification/eng/banking77_classification.py +1 -2
  273. mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
  274. mteb/tasks/classification/eng/emotion_classification.py +1 -2
  275. mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
  276. mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
  277. mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
  278. mteb/tasks/classification/eng/imdb_classification.py +1 -2
  279. mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
  280. mteb/tasks/classification/eng/news_classification.py +1 -2
  281. mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
  282. mteb/tasks/classification/eng/patent_classification.py +1 -2
  283. mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
  284. mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
  285. mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
  286. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
  287. mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
  288. mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
  289. mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
  290. mteb/tasks/classification/eng/ucf101_classification.py +1 -5
  291. mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
  292. mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
  293. mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
  294. mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
  295. mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
  296. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
  297. mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
  298. mteb/tasks/classification/est/estonian_valence.py +2 -3
  299. mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
  300. mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
  301. mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
  302. mteb/tasks/classification/fra/french_book_reviews.py +1 -2
  303. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
  304. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
  305. mteb/tasks/classification/heb/__init__.py +6 -1
  306. mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
  307. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
  308. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
  309. mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
  310. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
  311. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
  312. mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
  313. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
  314. mteb/tasks/classification/jpn/wrime_classification.py +1 -2
  315. mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
  316. mteb/tasks/classification/kor/klue_tc.py +1 -2
  317. mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
  318. mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
  319. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
  320. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
  321. mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
  322. mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
  323. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
  324. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
  325. mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
  326. mteb/tasks/classification/multilingual/scala_classification.py +2 -3
  327. mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
  328. mteb/tasks/classification/mya/myanmar_news.py +1 -2
  329. mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
  330. mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
  331. mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
  332. mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
  333. mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
  334. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
  335. mteb/tasks/classification/nld/iconclass_classification.py +3 -0
  336. mteb/tasks/classification/nld/open_tender_classification.py +3 -0
  337. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
  338. mteb/tasks/classification/nob/no_rec_classification.py +1 -2
  339. mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
  340. mteb/tasks/classification/ory/odia_news_classification.py +1 -2
  341. mteb/tasks/classification/pol/polish_classification.py +3 -6
  342. mteb/tasks/classification/ron/moroco.py +1 -2
  343. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
  344. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
  345. mteb/tasks/classification/rus/georeview_classification.py +1 -2
  346. mteb/tasks/classification/rus/headline_classification.py +1 -2
  347. mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
  348. mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
  349. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
  350. mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
  351. mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
  352. mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
  353. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
  354. mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
  355. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
  356. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
  357. mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
  358. mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
  359. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
  360. mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
  361. mteb/tasks/classification/swe/dalaj_classification.py +1 -2
  362. mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
  363. mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
  364. mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
  365. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
  366. mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
  367. mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
  368. mteb/tasks/classification/tur/__init__.py +4 -0
  369. mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
  370. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
  371. mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
  372. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
  373. mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
  374. mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
  375. mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
  376. mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
  377. mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
  378. mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
  379. mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
  380. mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
  381. mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
  382. mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
  383. mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
  384. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
  385. mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
  386. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
  387. mteb/tasks/classification/zho/cmteb_classification.py +5 -10
  388. mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
  389. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
  390. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  391. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  392. mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
  393. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
  394. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
  395. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
  396. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
  397. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
  398. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
  399. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
  400. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
  401. mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
  402. mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
  403. mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
  404. mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
  405. mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
  406. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  407. mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
  408. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
  409. mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
  410. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
  411. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
  412. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
  413. mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
  414. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  415. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
  416. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
  417. mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
  418. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
  419. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
  420. mteb/tasks/pair_classification/rus/__init__.py +2 -2
  421. mteb/tasks/pair_classification/rus/terra.py +51 -25
  422. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
  423. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
  424. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
  425. mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
  426. mteb/tasks/reranking/jpn/__init__.py +9 -1
  427. mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
  428. mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
  429. mteb/tasks/reranking/multilingual/__init__.py +2 -0
  430. mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
  431. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  432. mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
  433. mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
  434. mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
  435. mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
  436. mteb/tasks/retrieval/code/code_rag.py +12 -12
  437. mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
  438. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  439. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  440. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  441. mteb/tasks/retrieval/eng/__init__.py +2 -0
  442. mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
  443. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  444. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
  445. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
  446. mteb/tasks/retrieval/jpn/__init__.py +8 -0
  447. mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
  448. mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
  449. mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
  450. mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
  451. mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
  452. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
  453. mteb/tasks/retrieval/kor/__init__.py +16 -1
  454. mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
  455. mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
  456. mteb/tasks/retrieval/multilingual/__init__.py +24 -0
  457. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
  458. mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
  459. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
  460. mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
  461. mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
  462. mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
  463. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
  464. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
  465. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
  466. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
  467. mteb/tasks/retrieval/nld/__init__.py +8 -4
  468. mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
  469. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
  470. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
  471. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
  472. mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
  473. mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
  474. mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
  475. mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
  476. mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
  477. mteb/tasks/retrieval/nob/norquad.py +2 -2
  478. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  479. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
  480. mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
  481. mteb/tasks/retrieval/vie/__init__.py +14 -6
  482. mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
  483. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
  484. mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
  485. mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
  486. mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
  487. mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
  488. mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
  489. mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
  490. mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
  491. mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
  492. mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
  493. mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
  494. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
  495. mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
  496. mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
  497. mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
  498. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
  499. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
  500. mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
  501. mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
  502. mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
  503. mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
  504. mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
  505. mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
  506. mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
  507. mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
  508. mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
  509. mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
  510. mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
  511. mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
  512. mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
  513. mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
  514. mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
  515. mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
  516. mteb/types/__init__.py +2 -0
  517. mteb/types/_encoder_io.py +19 -2
  518. mteb/types/_result.py +2 -1
  519. mteb/types/statistics.py +9 -3
  520. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
  521. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
  522. mteb/models/model_implementations/mxbai_models.py +0 -102
  523. mteb/models/model_implementations/nb_sbert.py +0 -25
  524. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
  525. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
  526. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
  527. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
@@ -5,13 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class UkrFormalityClassification(AbsTaskClassification):
6
6
  metadata = TaskMetadata(
7
7
  name="UkrFormalityClassification",
8
- description="""
9
- This dataset contains Ukrainian Formality Classification dataset obtained by
10
- trainslating English GYAFC data.
11
- English data source: https://aclanthology.org/N18-1012/
12
- Translation into Ukrainian language using model: https://huggingface.co/facebook/nllb-200-distilled-600M
13
- Additionally, the dataset was balanced, with labels: 0 - informal, 1 - formal.
14
- """,
8
+ description="This dataset contains Ukrainian Formality Classification dataset obtained by trainslating English GYAFC data. English data source: https://aclanthology.org/N18-1012/ Translation into Ukrainian language using model: https://huggingface.co/facebook/nllb-200-distilled-600M Additionally, the dataset was balanced, with labels: 0 - informal, 1 - formal.",
15
9
  dataset={
16
10
  "path": "ukr-detect/ukr-formality-dataset-translated-gyafc",
17
11
  "revision": "671d1e6bbf45a74ef21af351fd4ef7b32b7856f8",
@@ -56,14 +50,7 @@ Tetreault, Joel},
56
50
  class UkrFormalityClassificationV2(AbsTaskClassification):
57
51
  metadata = TaskMetadata(
58
52
  name="UkrFormalityClassification.v2",
59
- description="""
60
- This dataset contains Ukrainian Formality Classification dataset obtained by
61
- trainslating English GYAFC data.
62
- English data source: https://aclanthology.org/N18-1012/
63
- Translation into Ukrainian language using model: https://huggingface.co/facebook/nllb-200-distilled-600M
64
- Additionally, the dataset was balanced, with labels: 0 - informal, 1 - formal.
65
-
66
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
53
+ description="This dataset contains Ukrainian Formality Classification dataset obtained by trainslating English GYAFC data. English data source: https://aclanthology.org/N18-1012/ Translation into Ukrainian language using model: https://huggingface.co/facebook/nllb-200-distilled-600M Additionally, the dataset was balanced, with labels: 0 - informal, 1 - formal. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
67
54
  dataset={
68
55
  "path": "mteb/ukr_formality",
69
56
  "revision": "e0b2dfa57d505f207deb571e58b0bd0b81180bd4",
@@ -40,8 +40,7 @@ class UrduRomanSentimentClassification(AbsTaskClassification):
40
40
  class UrduRomanSentimentClassificationV2(AbsTaskClassification):
41
41
  metadata = TaskMetadata(
42
42
  name="UrduRomanSentimentClassification.v2",
43
- description="""The Roman Urdu dataset is a data corpus comprising of more than 20000 records tagged for sentiment (Positive, Negative, Neutral)
44
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
43
+ description="The Roman Urdu dataset is a data corpus comprising of more than 20000 records tagged for sentiment (Positive, Negative, Neutral) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
45
44
  reference="https://archive.ics.uci.edu/dataset/458/roman+urdu+data+set",
46
45
  dataset={
47
46
  "path": "mteb/urdu_roman_sentiment",
@@ -11,12 +11,7 @@ class AmazonCounterfactualVNClassification(AbsTaskClassification):
11
11
  "path": "GreenNode/amazon-counterfactual-vn",
12
12
  "revision": "b48bc27d383cfca5b6a47135a52390fa5f66b253",
13
13
  },
14
- description="""A collection of translated Amazon customer reviews annotated for counterfactual detection pair classification.
15
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
16
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
17
- - Applies advanced embedding models to filter the translations.
18
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.
19
- """,
14
+ description="A collection of translated Amazon customer reviews annotated for counterfactual detection pair classification. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
20
15
  reference="https://arxiv.org/abs/2104.06893",
21
16
  category="t2c",
22
17
  type="Classification",
@@ -5,12 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class AmazonPolarityVNClassification(AbsTaskClassification):
6
6
  metadata = TaskMetadata(
7
7
  name="AmazonPolarityVNClassification",
8
- description="""A collection of translated Amazon customer reviews annotated for polarity classification.
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.
13
- """,
8
+ description="A collection of translated Amazon customer reviews annotated for polarity classification. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
14
9
  reference="https://huggingface.co/datasets/amazon_polarity",
15
10
  dataset={
16
11
  "path": "GreenNode/amazon-polarity-vn",
@@ -9,11 +9,7 @@ class AmazonReviewsVNClassification(AbsTaskClassification):
9
9
  "path": "GreenNode/amazon-reviews-multi-vn",
10
10
  "revision": "27da94deb6d4f44af789a3d70750fa506b79f189",
11
11
  },
12
- description="""A collection of translated Amazon reviews specifically designed to aid research in multilingual text classification.
13
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
14
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
15
- - Applies advanced embedding models to filter the translations.
16
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
12
+ description="A collection of translated Amazon reviews specifically designed to aid research in multilingual text classification. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
17
13
  reference="https://arxiv.org/abs/2010.02573",
18
14
  category="t2c",
19
15
  type="Classification",
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class Banking77VNClassification(AbsTaskClassification):
6
6
  metadata = TaskMetadata(
7
7
  name="Banking77VNClassification",
8
- description="""A translated dataset composed of online banking queries annotated with their corresponding intents.
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated dataset composed of online banking queries annotated with their corresponding intents. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  reference="https://arxiv.org/abs/2003.04807",
14
10
  dataset={
15
11
  "path": "GreenNode/banking77-vn",
@@ -7,11 +7,7 @@ class EmotionVNClassification(AbsTaskClassification):
7
7
 
8
8
  metadata = TaskMetadata(
9
9
  name="EmotionVNClassification",
10
- description="""Emotion is a translated dataset of Vietnamese from English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise.
11
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
12
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
13
- - Applies advanced embedding models to filter the translations.
14
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
10
+ description="Emotion is a translated dataset of Vietnamese from English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
15
11
  reference="https://www.aclweb.org/anthology/D18-1404",
16
12
  dataset={
17
13
  "path": "GreenNode/emotion-vn",
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class ImdbVNClassification(AbsTaskClassification):
6
6
  metadata = TaskMetadata(
7
7
  name="ImdbVNClassification",
8
- description="""A translated dataset of large movie reviews annotated for sentiment classification.
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated dataset of large movie reviews annotated for sentiment classification. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  dataset={
14
10
  "path": "GreenNode/imdb-vn",
15
11
  "revision": "0dccb383ee26c90c99d03c8674cf40de642f099a",
@@ -9,11 +9,7 @@ class MassiveIntentVNClassification(AbsTaskClassification):
9
9
  "path": "GreenNode/amazon-massive-intent-vn",
10
10
  "revision": "35c7ced69f958dbbaa24f792db4a9250e461866d",
11
11
  },
12
- description="""A translated dataset from MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages
13
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
14
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
15
- - Applies advanced embedding models to filter the translations.
16
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
12
+ description="A translated dataset from MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
17
13
  reference="https://arxiv.org/abs/2204.08582#:~:text=MASSIVE%20contains%201M%20realistic%2C%20parallel,diverse%20languages%20from%2029%20genera.",
18
14
  category="t2c",
19
15
  type="Classification",
@@ -9,11 +9,7 @@ class MassiveScenarioVNClassification(AbsTaskClassification):
9
9
  "path": "GreenNode/amazon-massive-scenario-vn",
10
10
  "revision": "a82e282d9f5aec1a8cf7d868ce40f70669c16b89",
11
11
  },
12
- description="""A translated dataset from MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages
13
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
14
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
15
- - Applies advanced embedding models to filter the translations.
16
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
12
+ description="A translated dataset from MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
17
13
  reference="https://arxiv.org/abs/2204.08582#:~:text=MASSIVE%20contains%201M%20realistic%2C%20parallel,diverse%20languages%20from%2029%20genera.",
18
14
  category="t2c",
19
15
  type="Classification",
@@ -9,11 +9,7 @@ class MTOPDomainVNClassification(AbsTaskClassification):
9
9
  "path": "GreenNode/mtop-domain-vn",
10
10
  "revision": "6e1ec8c54c018151c77472d94b1c0765230cf6ca",
11
11
  },
12
- description="""A translated dataset from MTOP: Multilingual Task-Oriented Semantic Parsing
13
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
14
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
15
- - Applies advanced embedding models to filter the translations.
16
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
12
+ description="A translated dataset from MTOP: Multilingual Task-Oriented Semantic Parsing The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
17
13
  reference="https://arxiv.org/pdf/2008.09335.pdf",
18
14
  category="t2c",
19
15
  type="Classification",
@@ -9,11 +9,7 @@ class MTOPIntentVNClassification(AbsTaskClassification):
9
9
  "path": "GreenNode/mtop-intent-vn",
10
10
  "revision": "c4e81a5c9a813a0142d905e261e5a446cc6fbc4a",
11
11
  },
12
- description="""A translated dataset from MTOP: Multilingual Task-Oriented Semantic Parsing
13
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
14
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
15
- - Applies advanced embedding models to filter the translations.
16
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
12
+ description="A translated dataset from MTOP: Multilingual Task-Oriented Semantic Parsing The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
17
13
  reference="https://arxiv.org/pdf/2008.09335.pdf",
18
14
  category="t2c",
19
15
  type="Classification",
@@ -7,11 +7,7 @@ class ToxicConversationsVNClassification(AbsTaskClassification):
7
7
 
8
8
  metadata = TaskMetadata(
9
9
  name="ToxicConversationsVNClassification",
10
- description="""A translated dataset from Collection of comments from the Civil Comments platform together with annotations if the comment is toxic or not.
11
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
12
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
13
- - Applies advanced embedding models to filter the translations.
14
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
10
+ description="A translated dataset from Collection of comments from the Civil Comments platform together with annotations if the comment is toxic or not. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
15
11
  reference="https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification/overview",
16
12
  dataset={
17
13
  "path": "GreenNode/toxic-conversations-50k-vn",
@@ -7,11 +7,7 @@ class TweetSentimentExtractionVNClassification(AbsTaskClassification):
7
7
 
8
8
  metadata = TaskMetadata(
9
9
  name="TweetSentimentExtractionVNClassification",
10
- description="""A collection of translated tweets annotated for sentiment extraction.
11
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
12
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
13
- - Applies advanced embedding models to filter the translations.
14
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
10
+ description="A collection of translated tweets annotated for sentiment extraction. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
15
11
  reference="https://www.kaggle.com/competitions/tweet-sentiment-extraction/overview",
16
12
  dataset={
17
13
  "path": "GreenNode/tweet-sentiment-extraction-vn",
@@ -45,8 +45,7 @@ class VieStudentFeedbackClassification(AbsTaskClassification):
45
45
  class VieStudentFeedbackClassificationV2(AbsTaskClassification):
46
46
  metadata = TaskMetadata(
47
47
  name="VieStudentFeedbackClassification.v2",
48
- description="""A Vietnamese dataset for classification of student feedback
49
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
48
+ description="A Vietnamese dataset for classification of student feedback This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
50
49
  reference="https://ieeexplore.ieee.org/document/8573337",
51
50
  dataset={
52
51
  "path": "mteb/vie_student_feedback",
@@ -79,8 +79,7 @@ Lan, Zhenzhong },
79
79
  class TNewsV2(AbsTaskClassification):
80
80
  metadata = TaskMetadata(
81
81
  name="TNews.v2",
82
- description="""Short Text Classification for News
83
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
82
+ description="Short Text Classification for News This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
84
83
  reference="https://www.cluebenchmarks.com/introduce.html",
85
84
  dataset={
86
85
  "path": "mteb/t_news",
@@ -229,8 +228,7 @@ Lan, Zhenzhong },
229
228
  class IFlyTekV2(AbsTaskClassification):
230
229
  metadata = TaskMetadata(
231
230
  name="IFlyTek.v2",
232
- description="""Long Text classification for the description of Apps
233
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
231
+ description="Long Text classification for the description of Apps This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
234
232
  reference="https://www.cluebenchmarks.com/introduce.html",
235
233
  dataset={
236
234
  "path": "mteb/i_fly_tek",
@@ -335,8 +333,7 @@ class MultilingualSentiment(AbsTaskClassification):
335
333
  class MultilingualSentimentV2(AbsTaskClassification):
336
334
  metadata = TaskMetadata(
337
335
  name="MultilingualSentiment.v2",
338
- description="""A collection of multilingual sentiments datasets grouped into 3 classes -- positive, neutral, negative
339
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
336
+ description="A collection of multilingual sentiments datasets grouped into 3 classes -- positive, neutral, negative This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
340
337
  reference="https://github.com/tyqiangz/multilingual-sentiment-datasets",
341
338
  dataset={
342
339
  "path": "mteb/multilingual_sentiment",
@@ -403,8 +400,7 @@ class JDReview(AbsTaskClassification):
403
400
  class JDReviewV2(AbsTaskClassification):
404
401
  metadata = TaskMetadata(
405
402
  name="JDReview.v2",
406
- description="""review for iphone
407
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
403
+ description="review for iphone This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
408
404
  reference="https://aclanthology.org/2023.nodalida-1.20/",
409
405
  dataset={
410
406
  "path": "mteb/jd_review",
@@ -514,8 +510,7 @@ class Waimai(AbsTaskClassification):
514
510
  class WaimaiV2(AbsTaskClassification):
515
511
  metadata = TaskMetadata(
516
512
  name="Waimai.v2",
517
- description="""Sentiment Analysis of user reviews on takeaway platforms
518
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
513
+ description="Sentiment Analysis of user reviews on takeaway platforms This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
519
514
  reference="https://aclanthology.org/2023.nodalida-1.20/",
520
515
  dataset={
521
516
  "path": "mteb/waimai",
@@ -48,8 +48,7 @@ class YueOpenriceReviewClassification(AbsTaskClassification):
48
48
  class YueOpenriceReviewClassificationV2(AbsTaskClassification):
49
49
  metadata = TaskMetadata(
50
50
  name="YueOpenriceReviewClassification.v2",
51
- description="""A Cantonese dataset for review classification
52
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
51
+ description="A Cantonese dataset for review classification This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
53
52
  reference="https://github.com/Christainx/Dataset_Cantonese_Openrice",
54
53
  dataset={
55
54
  "path": "mteb/yue_openrice_review",
@@ -45,8 +45,7 @@ class IsiZuluNewsClassification(AbsTaskClassification):
45
45
  class IsiZuluNewsClassificationV2(AbsTaskClassification):
46
46
  metadata = TaskMetadata(
47
47
  name="IsiZuluNewsClassification.v2",
48
- description="""isiZulu News Classification Dataset
49
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
48
+ description="isiZulu News Classification Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
50
49
  reference="https://huggingface.co/datasets/dsfsi/za-isizulu-siswati-news",
51
50
  dataset={
52
51
  "path": "mteb/isi_zulu_news",
@@ -25,7 +25,7 @@ class HUMEWikiCitiesClustering(AbsTaskClusteringLegacy):
25
25
  dialect=[],
26
26
  sample_creation="found",
27
27
  bibtex_citation=r"""
28
- @online{wikidump,
28
+ @online{wikidump2024,
29
29
  author = {Wikimedia Foundation},
30
30
  title = {Wikimedia Downloads},
31
31
  url = {https://dumps.wikimedia.org},
@@ -25,7 +25,7 @@ class WikiCitiesClustering(AbsTaskClusteringLegacy):
25
25
  dialect=[],
26
26
  sample_creation="found",
27
27
  bibtex_citation=r"""
28
- @online{wikidump,
28
+ @online{wikidump2024,
29
29
  author = {Wikimedia Foundation},
30
30
  title = {Wikimedia Downloads},
31
31
  url = {https://dumps.wikimedia.org},
@@ -8,9 +8,7 @@ class MewsC16JaClustering(AbsTaskClustering):
8
8
 
9
9
  metadata = TaskMetadata(
10
10
  name="MewsC16JaClustering",
11
- description="""MewsC-16 (Multilingual Short Text Clustering Dataset for News in 16 languages) is constructed from Wikinews.
12
- This dataset is the Japanese split of MewsC-16, containing topic sentences from Wikinews articles in 12 categories.
13
- More detailed information is available in the Appendix E of the citation.""",
11
+ description="MewsC-16 (Multilingual Short Text Clustering Dataset for News in 16 languages) is constructed from Wikinews. This dataset is the Japanese split of MewsC-16, containing topic sentences from Wikinews articles in 12 categories. More detailed information is available in the Appendix E of the citation.",
14
12
  reference="https://github.com/sbintuitions/JMTEB",
15
13
  dataset={
16
14
  "path": "mteb/MewsC16JaClustering",
@@ -210,12 +210,7 @@ class SIB200ClusteringFast(AbsTaskClustering):
210
210
 
211
211
  metadata = TaskMetadata(
212
212
  name="SIB200ClusteringS2S",
213
- description="""SIB-200 is the largest publicly available topic classification
214
- dataset based on Flores-200 covering 205 languages and dialects annotated. The dataset is
215
- annotated in English for the topics, science/technology, travel, politics, sports,
216
- health, entertainment, and geography. The labels are then transferred to the other languages
217
- in Flores-200 which are human-translated.
218
- """,
213
+ description="SIB-200 is the largest publicly available topic classification dataset based on Flores-200 covering 205 languages and dialects annotated. The dataset is annotated in English for the topics, science/technology, travel, politics, sports, health, entertainment, and geography. The labels are then transferred to the other languages in Flores-200 which are human-translated.",
219
214
  reference="https://arxiv.org/abs/2309.07445",
220
215
  dataset={
221
216
  "path": "mteb/sib200",
@@ -28,6 +28,9 @@ class DutchNewsArticlesClusteringP2P(AbsTaskClustering):
28
28
  dialect=[],
29
29
  sample_creation="found",
30
30
  bibtex_citation="",
31
+ prompt={
32
+ "query": "Identificeer de hoofdcategorie van nieuwsartikelen op basis van de titels en de inhoud"
33
+ },
31
34
  )
32
35
 
33
36
  def dataset_transform(self):
@@ -28,6 +28,9 @@ class DutchNewsArticlesClusteringS2S(AbsTaskClustering):
28
28
  dialect=[],
29
29
  sample_creation="found",
30
30
  bibtex_citation="",
31
+ prompt={
32
+ "query": "Identificeer de hoofdcategorie van nieuwsartikelen op basis van de titels"
33
+ },
31
34
  )
32
35
 
33
36
  def dataset_transform(self):
@@ -38,6 +38,9 @@ class IconclassClusteringS2S(AbsTaskClustering):
38
38
  year = {2023},
39
39
  }
40
40
  """,
41
+ prompt={
42
+ "query": "Identificeer het onderwerp of thema van kunstwerken op basis van de titels"
43
+ },
41
44
  )
42
45
 
43
46
  def dataset_transform(self):
@@ -38,6 +38,9 @@ class OpenTenderClusteringP2P(AbsTaskClustering):
38
38
  year = {2025},
39
39
  }
40
40
  """,
41
+ prompt={
42
+ "query": "Identificeer de hoofdcategorie van aanbestedingen op basis van de titels en beschrijvingen"
43
+ },
41
44
  )
42
45
 
43
46
  def dataset_transform(self):
@@ -38,4 +38,7 @@ class OpenTenderClusteringS2S(AbsTaskClustering):
38
38
  year = {2025},
39
39
  }
40
40
  """,
41
+ prompt={
42
+ "query": "Identificeer de hoofdcategorie van aanbestedingen op basis van de titels"
43
+ },
41
44
  )
@@ -39,6 +39,9 @@ class VABBClusteringP2P(AbsTaskClustering):
39
39
  year = {2024},
40
40
  }
41
41
  """,
42
+ prompt={
43
+ "query": "Identificeer de hoofdcategorie van wetenschappelijke artikelen op basis van de titels en abstracts"
44
+ },
42
45
  )
43
46
 
44
47
  def dataset_transform(self):
@@ -39,6 +39,9 @@ class VABBClusteringS2S(AbsTaskClustering):
39
39
  year = {2024},
40
40
  }
41
41
  """,
42
+ prompt={
43
+ "query": "Identificeer de hoofdcategorie van wetenschappelijke artikelen op basis van de titels"
44
+ },
42
45
  )
43
46
 
44
47
  def dataset_transform(self):
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class RedditClusteringP2PVN(AbsTaskClusteringLegacy):
6
6
  metadata = TaskMetadata(
7
7
  name="RedditClusteringP2P-VN",
8
- description="""A translated dataset from Clustering of title+posts from reddit. Clustering of 10 sets of 50k paragraphs and 40 sets of 10k paragraphs.
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated dataset from Clustering of title+posts from reddit. Clustering of 10 sets of 50k paragraphs and 40 sets of 10k paragraphs. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  reference="https://arxiv.org/abs/2104.07081",
14
10
  dataset={
15
11
  "path": "GreenNode/reddit-clustering-p2p-vn",
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class RedditClusteringVN(AbsTaskClusteringLegacy):
6
6
  metadata = TaskMetadata(
7
7
  name="RedditClustering-VN",
8
- description="""A translated dataset from Clustering of titles from 199 subreddits. Clustering of 25 sets, each with 10-50 classes, and each class with 100 - 1000 sentences.
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated dataset from Clustering of titles from 199 subreddits. Clustering of 25 sets, each with 10-50 classes, and each class with 100 - 1000 sentences. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  reference="https://arxiv.org/abs/2104.07081",
14
10
  dataset={
15
11
  "path": "GreenNode/reddit-clustering-vn",
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class StackExchangeClusteringP2PVN(AbsTaskClusteringLegacy):
6
6
  metadata = TaskMetadata(
7
7
  name="StackExchangeClusteringP2P-VN",
8
- description="""A translated Clustering of title+body from stackexchange. Clustering of 5 sets of 10k paragraphs and 5 sets of 5k paragraphs.
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated Clustering of title+body from stackexchange. Clustering of 5 sets of 10k paragraphs and 5 sets of 5k paragraphs. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  reference="https://arxiv.org/abs/2104.07081",
14
10
  dataset={
15
11
  "path": "GreenNode/stackexchange-clustering-p2p-vn",
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class StackExchangeClusteringVN(AbsTaskClusteringLegacy):
6
6
  metadata = TaskMetadata(
7
7
  name="StackExchangeClustering-VN",
8
- description="""A translated dataset from Clustering of titles from 121 stackexchanges. Clustering of 25 sets, each with 10-50 classes, and each class with 100 - 1000 sentences.
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated dataset from Clustering of titles from 121 stackexchanges. Clustering of 25 sets, each with 10-50 classes, and each class with 100 - 1000 sentences. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  reference="https://arxiv.org/abs/2104.07081",
14
10
  dataset={
15
11
  "path": "GreenNode/stackexchange-clustering-vn",
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class TwentyNewsgroupsClusteringVN(AbsTaskClusteringLegacy):
6
6
  metadata = TaskMetadata(
7
7
  name="TwentyNewsgroupsClustering-VN",
8
- description="""A translated dataset from Clustering of the 20 Newsgroups dataset (subject only).
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated dataset from Clustering of the 20 Newsgroups dataset (subject only). The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  reference="https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html",
14
10
  dataset={
15
11
  "path": "GreenNode/twentynewsgroups-clustering-vn",
@@ -226,7 +226,7 @@ class ThuNewsClusteringFastS2S(AbsTaskClustering):
226
226
  dialect=[],
227
227
  sample_creation="found",
228
228
  bibtex_citation=r"""
229
- @software{THUCTC,
229
+ @software{sun2016thuctc,
230
230
  author = {Sun, M. and Li, J. and Guo, Z. and Yu, Z. and Zheng, Y. and Si, X. and Liu, Z.},
231
231
  note = {THU Chinese Text Classification Toolkit},
232
232
  publisher = {THU Natural Language Processing Lab},
@@ -285,7 +285,7 @@ class ThuNewsClusteringFastP2P(AbsTaskClustering):
285
285
  dialect=[],
286
286
  sample_creation="found",
287
287
  bibtex_citation=r"""
288
- @software{THUCTC,
288
+ @software{sun2016thuctc,
289
289
  author = {Sun, M. and Li, J. and Guo, Z. and Yu, Z. and Zheng, Y. and Si, X. and Liu, Z.},
290
290
  note = {THU Chinese Text Classification Toolkit},
291
291
  publisher = {THU Natural Language Processing Lab},
@@ -49,7 +49,7 @@ class SugarCrepe(AbsTaskImageTextPairClassification):
49
49
  """Load dataset from HuggingFace hub"""
50
50
  if self.data_loaded:
51
51
  return
52
- self.dataset = datasets.load_dataset(**self.metadata.dataset) # type: ignore
52
+ self.dataset = datasets.load_dataset(**self.metadata.dataset)
53
53
  self.dataset = datasets.DatasetDict({"test": self.dataset["train"]})
54
54
  self.dataset_transform()
55
55
  self.data_loaded = True
@@ -7,11 +7,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
7
7
  class EmitClassification(AbsTaskMultilabelClassification):
8
8
  metadata = TaskMetadata(
9
9
  name="EmitClassification",
10
- description="""The EMit dataset is a comprehensive resource for the detection of emotions in Italian social media texts.
11
- The EMit dataset consists of social media messages about TV shows, TV series, music videos, and advertisements.
12
- Each message is annotated with one or more of the 8 primary emotions defined by Plutchik
13
- (anger, anticipation, disgust, fear, joy, sadness, surprise, trust), as well as an additional label “love.”
14
- """,
10
+ description="The EMit dataset is a comprehensive resource for the detection of emotions in Italian social media texts. The EMit dataset consists of social media messages about TV shows, TV series, music videos, and advertisements. Each message is annotated with one or more of the 8 primary emotions defined by Plutchik (anger, anticipation, disgust, fear, joy, sadness, surprise, trust), as well as an additional label “love.”",
15
11
  reference="https://github.com/oaraque/emit",
16
12
  dataset={
17
13
  "path": "MattiaSangermano/emit",
@@ -7,15 +7,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
7
7
  class KorHateSpeechMLClassification(AbsTaskMultilabelClassification):
8
8
  metadata = TaskMetadata(
9
9
  name="KorHateSpeechMLClassification",
10
- description="""
11
- The Korean Multi-label Hate Speech Dataset, K-MHaS, consists of 109,692 utterances from Korean online news comments,
12
- labelled with 8 fine-grained hate speech classes (labels: Politics, Origin, Physical, Age, Gender, Religion, Race, Profanity)
13
- or Not Hate Speech class. Each utterance provides from a single to four labels that can handles Korean language patterns effectively.
14
- For more details, please refer to the paper about K-MHaS, published at COLING 2022.
15
- This dataset is based on the Korean online news comments available on Kaggle and Github.
16
- The unlabeled raw data was collected between January 2018 and June 2020.
17
- The language producers are users who left the comments on the Korean online news platform between 2018 and 2020.
18
- """,
10
+ description="The Korean Multi-label Hate Speech Dataset, K-MHaS, consists of 109,692 utterances from Korean online news comments, labelled with 8 fine-grained hate speech classes (labels: Politics, Origin, Physical, Age, Gender, Religion, Race, Profanity) or Not Hate Speech class. Each utterance provides from a single to four labels that can handles Korean language patterns effectively. For more details, please refer to the paper about K-MHaS, published at COLING 2022. This dataset is based on the Korean online news comments available on Kaggle and Github. The unlabeled raw data was collected between January 2018 and June 2020. The language producers are users who left the comments on the Korean online news platform between 2018 and 2020.",
19
11
  dataset={
20
12
  "path": "mteb/KorHateSpeechMLClassification",
21
13
  "revision": "47cd2e61b64f2f11ccb006a579cda71318c6de9b",
@@ -7,12 +7,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
7
7
  class MalteseNewsClassification(AbsTaskMultilabelClassification):
8
8
  metadata = TaskMetadata(
9
9
  name="MalteseNewsClassification",
10
- description="""A multi-label topic classification dataset for Maltese News
11
- Articles. The data was collected from the press_mt subset from Korpus
12
- Malti v4.0. Article contents were cleaned to filter out JavaScript, CSS,
13
- & repeated non-Maltese sub-headings. The labels are based on the category
14
- field from this corpus.
15
- """,
10
+ description="A multi-label topic classification dataset for Maltese News Articles. The data was collected from the press_mt subset from Korpus Malti v4.0. Article contents were cleaned to filter out JavaScript, CSS, & repeated non-Maltese sub-headings. The labels are based on the category field from this corpus.",
16
11
  reference="https://huggingface.co/datasets/MLRS/maltese_news_categories",
17
12
  dataset={
18
13
  "path": "MLRS/maltese_news_categories",
@@ -61,6 +61,9 @@ Yih, Scott Wen-tau},
61
61
  year = {2021},
62
62
  }
63
63
  """,
64
+ prompt={
65
+ "query": "Classificeer COVID-19-gerelateerde sociale media-berichten in alle toepasselijke desinformatiecategorieën"
66
+ },
64
67
  )
65
68
 
66
69
  def dataset_transform(self) -> None: