mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -42,6 +42,7 @@ gte_qwen2_7b_instruct = ModelMeta(
|
|
|
42
42
|
embed_eos="<|endoftext|>",
|
|
43
43
|
),
|
|
44
44
|
name="Alibaba-NLP/gte-Qwen2-7B-instruct",
|
|
45
|
+
model_type=["dense"],
|
|
45
46
|
languages=None,
|
|
46
47
|
open_weights=True,
|
|
47
48
|
revision="e26182b2122f4435e8b3ebecbf363990f409b45b",
|
|
@@ -52,7 +53,7 @@ gte_qwen2_7b_instruct = ModelMeta(
|
|
|
52
53
|
license="apache-2.0",
|
|
53
54
|
reference="https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct",
|
|
54
55
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
55
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
56
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
56
57
|
use_instructions=True,
|
|
57
58
|
citation=GTE_CITATION,
|
|
58
59
|
public_training_code=None,
|
|
@@ -73,6 +74,7 @@ gte_qwen1_5_7b_instruct = ModelMeta(
|
|
|
73
74
|
embed_eos="<|endoftext|>",
|
|
74
75
|
),
|
|
75
76
|
name="Alibaba-NLP/gte-Qwen1.5-7B-instruct",
|
|
77
|
+
model_type=["dense"],
|
|
76
78
|
languages=["eng-Latn"],
|
|
77
79
|
open_weights=True,
|
|
78
80
|
revision="07d27e5226328010336563bc1b564a5e3436a298",
|
|
@@ -84,11 +86,17 @@ gte_qwen1_5_7b_instruct = ModelMeta(
|
|
|
84
86
|
max_tokens=32_768,
|
|
85
87
|
reference="https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct",
|
|
86
88
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
87
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
89
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
88
90
|
use_instructions=True,
|
|
89
91
|
public_training_code=None,
|
|
90
92
|
public_training_data=None,
|
|
91
93
|
training_datasets=None,
|
|
94
|
+
citation="""@article{li2023towards,
|
|
95
|
+
title={Towards general text embeddings with multi-stage contrastive learning},
|
|
96
|
+
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
|
|
97
|
+
journal={arXiv preprint arXiv:2308.03281},
|
|
98
|
+
year={2023}
|
|
99
|
+
}""",
|
|
92
100
|
)
|
|
93
101
|
|
|
94
102
|
gte_qwen2_1_5b_instruct = ModelMeta(
|
|
@@ -103,6 +111,7 @@ gte_qwen2_1_5b_instruct = ModelMeta(
|
|
|
103
111
|
embed_eos="<|endoftext|>",
|
|
104
112
|
),
|
|
105
113
|
name="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
|
114
|
+
model_type=["dense"],
|
|
106
115
|
languages=["eng-Latn"],
|
|
107
116
|
open_weights=True,
|
|
108
117
|
revision="c6c1b92f4a3e1b92b326ad29dd3c8433457df8dd",
|
|
@@ -114,16 +123,23 @@ gte_qwen2_1_5b_instruct = ModelMeta(
|
|
|
114
123
|
max_tokens=32_768,
|
|
115
124
|
reference="https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
|
116
125
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
117
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
126
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
118
127
|
use_instructions=True,
|
|
119
128
|
public_training_code=None,
|
|
120
129
|
public_training_data=None,
|
|
121
130
|
training_datasets=None,
|
|
131
|
+
citation="""@article{li2023towards,
|
|
132
|
+
title={Towards general text embeddings with multi-stage contrastive learning},
|
|
133
|
+
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
|
|
134
|
+
journal={arXiv preprint arXiv:2308.03281},
|
|
135
|
+
year={2023}
|
|
136
|
+
}""",
|
|
122
137
|
)
|
|
123
138
|
|
|
124
139
|
gte_small_zh = ModelMeta(
|
|
125
140
|
loader=sentence_transformers_loader,
|
|
126
141
|
name="thenlper/gte-small-zh",
|
|
142
|
+
model_type=["dense"],
|
|
127
143
|
languages=["zho-Hans"],
|
|
128
144
|
open_weights=True,
|
|
129
145
|
revision="af7bd46fbb00b3a6963c8dd7f1786ddfbfbe973a",
|
|
@@ -135,16 +151,23 @@ gte_small_zh = ModelMeta(
|
|
|
135
151
|
max_tokens=512,
|
|
136
152
|
reference="https://huggingface.co/thenlper/gte-small-zh",
|
|
137
153
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
138
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
154
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
139
155
|
use_instructions=False,
|
|
140
156
|
public_training_code=None,
|
|
141
157
|
public_training_data=None,
|
|
142
158
|
training_datasets=None, # Not disclosed
|
|
159
|
+
citation="""@article{li2023towards,
|
|
160
|
+
title={Towards general text embeddings with multi-stage contrastive learning},
|
|
161
|
+
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
|
|
162
|
+
journal={arXiv preprint arXiv:2308.03281},
|
|
163
|
+
year={2023}
|
|
164
|
+
}""",
|
|
143
165
|
)
|
|
144
166
|
|
|
145
167
|
gte_base_zh = ModelMeta(
|
|
146
168
|
loader=sentence_transformers_loader,
|
|
147
169
|
name="thenlper/gte-base-zh",
|
|
170
|
+
model_type=["dense"],
|
|
148
171
|
languages=["zho-Hans"],
|
|
149
172
|
open_weights=True,
|
|
150
173
|
revision="71ab7947d6fac5b64aa299e6e40e6c2b2e85976c",
|
|
@@ -156,16 +179,23 @@ gte_base_zh = ModelMeta(
|
|
|
156
179
|
max_tokens=512,
|
|
157
180
|
reference="https://huggingface.co/thenlper/gte-base-zh",
|
|
158
181
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
159
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
182
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
160
183
|
use_instructions=False,
|
|
161
184
|
public_training_code=None,
|
|
162
185
|
public_training_data=None,
|
|
163
186
|
training_datasets=None, # Not disclosed
|
|
187
|
+
citation="""@article{li2023towards,
|
|
188
|
+
title={Towards general text embeddings with multi-stage contrastive learning},
|
|
189
|
+
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
|
|
190
|
+
journal={arXiv preprint arXiv:2308.03281},
|
|
191
|
+
year={2023}
|
|
192
|
+
}""",
|
|
164
193
|
)
|
|
165
194
|
|
|
166
195
|
gte_large_zh = ModelMeta(
|
|
167
196
|
loader=sentence_transformers_loader,
|
|
168
197
|
name="thenlper/gte-large-zh",
|
|
198
|
+
model_type=["dense"],
|
|
169
199
|
languages=["zho-Hans"],
|
|
170
200
|
open_weights=True,
|
|
171
201
|
revision="64c364e579de308104a9b2c170ca009502f4f545",
|
|
@@ -177,11 +207,17 @@ gte_large_zh = ModelMeta(
|
|
|
177
207
|
max_tokens=512,
|
|
178
208
|
reference="https://huggingface.co/thenlper/gte-large-zh",
|
|
179
209
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
180
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
210
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
181
211
|
use_instructions=False,
|
|
182
212
|
public_training_code=None,
|
|
183
213
|
public_training_data=None,
|
|
184
214
|
training_datasets=None, # Not disclosed
|
|
215
|
+
citation="""@article{li2023towards,
|
|
216
|
+
title={Towards general text embeddings with multi-stage contrastive learning},
|
|
217
|
+
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
|
|
218
|
+
journal={arXiv preprint arXiv:2308.03281},
|
|
219
|
+
year={2023}
|
|
220
|
+
}""",
|
|
185
221
|
)
|
|
186
222
|
|
|
187
223
|
gte_multilingual_langs = [
|
|
@@ -288,6 +324,7 @@ gte_multi_training_data = {
|
|
|
288
324
|
gte_multilingual_base = ModelMeta(
|
|
289
325
|
loader=sentence_transformers_loader,
|
|
290
326
|
name="Alibaba-NLP/gte-multilingual-base",
|
|
327
|
+
model_type=["dense"],
|
|
291
328
|
languages=gte_multilingual_langs,
|
|
292
329
|
open_weights=True,
|
|
293
330
|
revision="ca1791e0bcc104f6db161f27de1340241b13c5a4",
|
|
@@ -299,16 +336,24 @@ gte_multilingual_base = ModelMeta(
|
|
|
299
336
|
max_tokens=8192,
|
|
300
337
|
reference="https://huggingface.co/Alibaba-NLP/gte-multilingual-base",
|
|
301
338
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
302
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
339
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
303
340
|
use_instructions=False,
|
|
304
341
|
public_training_code=None,
|
|
305
342
|
public_training_data=None, # couldn't find
|
|
306
343
|
training_datasets=gte_multi_training_data,
|
|
344
|
+
citation="""@inproceedings{zhang2024mgte,
|
|
345
|
+
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
|
|
346
|
+
author={Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Wen and Dai, Ziqi and Tang, Jialong and Lin, Huan and Yang, Baosong and Xie, Pengjun and Huang, Fei and others},
|
|
347
|
+
booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track},
|
|
348
|
+
pages={1393--1412},
|
|
349
|
+
year={2024}
|
|
350
|
+
}""",
|
|
307
351
|
)
|
|
308
352
|
|
|
309
353
|
gte_modernbert_base = ModelMeta(
|
|
310
354
|
loader=sentence_transformers_loader,
|
|
311
355
|
name="Alibaba-NLP/gte-modernbert-base",
|
|
356
|
+
model_type=["dense"],
|
|
312
357
|
languages=["eng-Latn"],
|
|
313
358
|
open_weights=True,
|
|
314
359
|
revision="7ca8b4ca700621b67618669f5378fe5f5820b8e4",
|
|
@@ -320,17 +365,38 @@ gte_modernbert_base = ModelMeta(
|
|
|
320
365
|
max_tokens=8192,
|
|
321
366
|
reference="https://huggingface.co/Alibaba-NLP/gte-modernbert-base",
|
|
322
367
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
323
|
-
framework=[
|
|
368
|
+
framework=[
|
|
369
|
+
"Sentence Transformers",
|
|
370
|
+
"PyTorch",
|
|
371
|
+
"Transformers",
|
|
372
|
+
"ONNX",
|
|
373
|
+
"safetensors",
|
|
374
|
+
],
|
|
324
375
|
use_instructions=False,
|
|
325
376
|
public_training_code=None, # couldn't find
|
|
326
377
|
public_training_data=None,
|
|
327
378
|
training_datasets=gte_multi_training_data, # English part of gte_multi_training_data,
|
|
379
|
+
citation="""@inproceedings{zhang2024mgte,
|
|
380
|
+
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
|
|
381
|
+
author={Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Wen and Dai, Ziqi and Tang, Jialong and Lin, Huan and Yang, Baosong and Xie, Pengjun and Huang, Fei and others},
|
|
382
|
+
booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track},
|
|
383
|
+
pages={1393--1412},
|
|
384
|
+
year={2024}
|
|
385
|
+
}
|
|
386
|
+
|
|
387
|
+
@article{li2023towards,
|
|
388
|
+
title={Towards general text embeddings with multi-stage contrastive learning},
|
|
389
|
+
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
|
|
390
|
+
journal={arXiv preprint arXiv:2308.03281},
|
|
391
|
+
year={2023}
|
|
392
|
+
}""",
|
|
328
393
|
)
|
|
329
394
|
|
|
330
395
|
|
|
331
396
|
gte_base_en_v15 = ModelMeta(
|
|
332
397
|
loader=sentence_transformers_loader,
|
|
333
398
|
name="Alibaba-NLP/gte-base-en-v1.5",
|
|
399
|
+
model_type=["dense"],
|
|
334
400
|
languages=["eng-Latn"],
|
|
335
401
|
open_weights=True,
|
|
336
402
|
revision="a829fd0e060bb84554da0dfd354d0de0f7712b7f", # can be any
|
|
@@ -342,11 +408,35 @@ gte_base_en_v15 = ModelMeta(
|
|
|
342
408
|
max_tokens=8192,
|
|
343
409
|
reference="https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5",
|
|
344
410
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
345
|
-
framework=[
|
|
411
|
+
framework=[
|
|
412
|
+
"Sentence Transformers",
|
|
413
|
+
"PyTorch",
|
|
414
|
+
"Transformers",
|
|
415
|
+
"ONNX",
|
|
416
|
+
"safetensors",
|
|
417
|
+
],
|
|
346
418
|
use_instructions=False,
|
|
347
419
|
superseded_by=None,
|
|
348
420
|
adapted_from=None,
|
|
349
421
|
public_training_code=None,
|
|
350
422
|
public_training_data=None,
|
|
351
423
|
training_datasets=None,
|
|
424
|
+
citation="""@misc{zhang2024mgte,
|
|
425
|
+
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
|
|
426
|
+
author={Xin Zhang and Yanzhao Zhang and Dingkun Long and Wen Xie and Ziqi Dai and Jialong Tang and Huan Lin and Baosong Yang and Pengjun Xie and Fei Huang and Meishan Zhang and Wenjie Li and Min Zhang},
|
|
427
|
+
year={2024},
|
|
428
|
+
eprint={2407.19669},
|
|
429
|
+
archivePrefix={arXiv},
|
|
430
|
+
primaryClass={cs.CL},
|
|
431
|
+
url={https://arxiv.org/abs/2407.19669},
|
|
432
|
+
}
|
|
433
|
+
@misc{li2023gte,
|
|
434
|
+
title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
|
|
435
|
+
author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
|
|
436
|
+
year={2023},
|
|
437
|
+
eprint={2308.03281},
|
|
438
|
+
archivePrefix={arXiv},
|
|
439
|
+
primaryClass={cs.CL},
|
|
440
|
+
url={https://arxiv.org/abs/2308.03281},
|
|
441
|
+
}""",
|
|
352
442
|
)
|
|
@@ -37,6 +37,7 @@ Hinvec_bidir = ModelMeta(
|
|
|
37
37
|
add_eos_token=True,
|
|
38
38
|
),
|
|
39
39
|
name="Sailesh97/Hinvec",
|
|
40
|
+
model_type=["dense"],
|
|
40
41
|
languages=["eng-Latn", "hin-Deva"],
|
|
41
42
|
open_weights=True,
|
|
42
43
|
revision="d4fc678720cc1b8c5d18599ce2d9a4d6090c8b6b",
|
|
@@ -48,7 +49,7 @@ Hinvec_bidir = ModelMeta(
|
|
|
48
49
|
max_tokens=2048,
|
|
49
50
|
reference="https://huggingface.co/Sailesh97/Hinvec",
|
|
50
51
|
similarity_fn_name="cosine",
|
|
51
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
52
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
52
53
|
use_instructions=True,
|
|
53
54
|
training_datasets=hinvec_training_datasets,
|
|
54
55
|
public_training_code=None,
|
|
@@ -94,6 +94,7 @@ granite_training_data = {
|
|
|
94
94
|
granite_107m_multilingual = ModelMeta(
|
|
95
95
|
loader=sentence_transformers_loader,
|
|
96
96
|
name="ibm-granite/granite-embedding-107m-multilingual",
|
|
97
|
+
model_type=["dense"],
|
|
97
98
|
languages=GRANITE_LANGUAGES,
|
|
98
99
|
open_weights=True,
|
|
99
100
|
revision="47db56afe692f731540413c67dd818ff492277e7",
|
|
@@ -105,7 +106,13 @@ granite_107m_multilingual = ModelMeta(
|
|
|
105
106
|
max_tokens=512,
|
|
106
107
|
reference="https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual",
|
|
107
108
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
108
|
-
framework=[
|
|
109
|
+
framework=[
|
|
110
|
+
"Sentence Transformers",
|
|
111
|
+
"PyTorch",
|
|
112
|
+
"Transformers",
|
|
113
|
+
"ONNX",
|
|
114
|
+
"safetensors",
|
|
115
|
+
],
|
|
109
116
|
adapted_from=None,
|
|
110
117
|
superseded_by=None,
|
|
111
118
|
public_training_code=None,
|
|
@@ -118,6 +125,7 @@ granite_107m_multilingual = ModelMeta(
|
|
|
118
125
|
granite_278m_multilingual = ModelMeta(
|
|
119
126
|
loader=sentence_transformers_loader,
|
|
120
127
|
name="ibm-granite/granite-embedding-278m-multilingual",
|
|
128
|
+
model_type=["dense"],
|
|
121
129
|
languages=GRANITE_LANGUAGES,
|
|
122
130
|
open_weights=True,
|
|
123
131
|
revision="84e3546b88b0cb69f8078608a1df558020bcbf1f",
|
|
@@ -129,7 +137,13 @@ granite_278m_multilingual = ModelMeta(
|
|
|
129
137
|
max_tokens=512,
|
|
130
138
|
reference="https://huggingface.co/ibm-granite/granite-embedding-278m-multilingual",
|
|
131
139
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
132
|
-
framework=[
|
|
140
|
+
framework=[
|
|
141
|
+
"Sentence Transformers",
|
|
142
|
+
"PyTorch",
|
|
143
|
+
"Transformers",
|
|
144
|
+
"ONNX",
|
|
145
|
+
"safetensors",
|
|
146
|
+
],
|
|
133
147
|
adapted_from=None,
|
|
134
148
|
superseded_by=None,
|
|
135
149
|
public_training_code=None,
|
|
@@ -142,6 +156,7 @@ granite_278m_multilingual = ModelMeta(
|
|
|
142
156
|
granite_30m_english = ModelMeta(
|
|
143
157
|
loader=sentence_transformers_loader,
|
|
144
158
|
name="ibm-granite/granite-embedding-30m-english",
|
|
159
|
+
model_type=["dense"],
|
|
145
160
|
languages=["eng-Latn"],
|
|
146
161
|
open_weights=True,
|
|
147
162
|
revision="eddbb57470f896b5f8e2bfcb823d8f0e2d2024a5",
|
|
@@ -153,7 +168,13 @@ granite_30m_english = ModelMeta(
|
|
|
153
168
|
max_tokens=512,
|
|
154
169
|
reference="https://huggingface.co/ibm-granite/granite-embedding-30m-english",
|
|
155
170
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
156
|
-
framework=[
|
|
171
|
+
framework=[
|
|
172
|
+
"Sentence Transformers",
|
|
173
|
+
"PyTorch",
|
|
174
|
+
"ONNX",
|
|
175
|
+
"safetensors",
|
|
176
|
+
"Transformers",
|
|
177
|
+
],
|
|
157
178
|
adapted_from=None,
|
|
158
179
|
superseded_by=None,
|
|
159
180
|
public_training_code=None,
|
|
@@ -166,6 +187,7 @@ granite_30m_english = ModelMeta(
|
|
|
166
187
|
granite_125m_english = ModelMeta(
|
|
167
188
|
loader=sentence_transformers_loader,
|
|
168
189
|
name="ibm-granite/granite-embedding-125m-english",
|
|
190
|
+
model_type=["dense"],
|
|
169
191
|
languages=["eng-Latn"],
|
|
170
192
|
open_weights=True,
|
|
171
193
|
revision="e48d3a5b47eaa18e3fe07d4676e187fd80f32730",
|
|
@@ -177,7 +199,13 @@ granite_125m_english = ModelMeta(
|
|
|
177
199
|
max_tokens=512,
|
|
178
200
|
reference="https://huggingface.co/ibm-granite/granite-embedding-125m-english",
|
|
179
201
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
180
|
-
framework=[
|
|
202
|
+
framework=[
|
|
203
|
+
"Sentence Transformers",
|
|
204
|
+
"PyTorch",
|
|
205
|
+
"ONNX",
|
|
206
|
+
"safetensors",
|
|
207
|
+
"Transformers",
|
|
208
|
+
],
|
|
181
209
|
adapted_from=None,
|
|
182
210
|
superseded_by=None,
|
|
183
211
|
public_training_code=None,
|
|
@@ -191,6 +219,7 @@ granite_125m_english = ModelMeta(
|
|
|
191
219
|
granite_english_r2 = ModelMeta(
|
|
192
220
|
loader=sentence_transformers_loader,
|
|
193
221
|
name="ibm-granite/granite-embedding-english-r2",
|
|
222
|
+
model_type=["dense"],
|
|
194
223
|
languages=["eng-Latn"],
|
|
195
224
|
open_weights=True,
|
|
196
225
|
revision="6e7b8ce0e76270394ac4669ba4bbd7133b60b7f9",
|
|
@@ -202,7 +231,7 @@ granite_english_r2 = ModelMeta(
|
|
|
202
231
|
max_tokens=8192,
|
|
203
232
|
reference="https://huggingface.co/ibm-granite/granite-embedding-english-r2",
|
|
204
233
|
similarity_fn_name="cosine",
|
|
205
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
234
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
206
235
|
adapted_from=None,
|
|
207
236
|
superseded_by=None,
|
|
208
237
|
public_training_code=None,
|
|
@@ -215,6 +244,7 @@ granite_english_r2 = ModelMeta(
|
|
|
215
244
|
granite_small_english_r2 = ModelMeta(
|
|
216
245
|
loader=sentence_transformers_loader,
|
|
217
246
|
name="ibm-granite/granite-embedding-small-english-r2",
|
|
247
|
+
model_type=["dense"],
|
|
218
248
|
languages=["eng-Latn"],
|
|
219
249
|
open_weights=True,
|
|
220
250
|
revision="54a8d2616a0844355a5164432d3f6dafb37b17a3",
|
|
@@ -226,7 +256,7 @@ granite_small_english_r2 = ModelMeta(
|
|
|
226
256
|
max_tokens=8192,
|
|
227
257
|
reference="https://huggingface.co/ibm-granite/granite-embedding-small-english-r2",
|
|
228
258
|
similarity_fn_name="cosine",
|
|
229
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
259
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
230
260
|
adapted_from=None,
|
|
231
261
|
superseded_by=None,
|
|
232
262
|
public_training_code=None,
|
|
@@ -50,6 +50,7 @@ inf_retriever_v1 = ModelMeta(
|
|
|
50
50
|
trust_remote_code=True,
|
|
51
51
|
),
|
|
52
52
|
name="infly/inf-retriever-v1",
|
|
53
|
+
model_type=["dense"],
|
|
53
54
|
languages=["eng-Latn", "zho-Hans"],
|
|
54
55
|
open_weights=True,
|
|
55
56
|
revision="cb70ca7c31dfa866b2eff2dad229c144d8ddfd91",
|
|
@@ -61,7 +62,7 @@ inf_retriever_v1 = ModelMeta(
|
|
|
61
62
|
max_tokens=32768,
|
|
62
63
|
reference="https://huggingface.co/infly/inf-retriever-v1",
|
|
63
64
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
64
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
65
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
65
66
|
use_instructions=True,
|
|
66
67
|
adapted_from="Alibaba-NLP/gte-Qwen2-7B-instruct",
|
|
67
68
|
public_training_code=None,
|
|
@@ -76,6 +77,7 @@ inf_retriever_v1_1_5b = ModelMeta(
|
|
|
76
77
|
trust_remote_code=True,
|
|
77
78
|
),
|
|
78
79
|
name="infly/inf-retriever-v1-1.5b",
|
|
80
|
+
model_type=["dense"],
|
|
79
81
|
languages=["eng-Latn", "zho-Hans"],
|
|
80
82
|
open_weights=True,
|
|
81
83
|
revision="c9c05c2dd50707a486966ba81703021ae2094a06",
|
|
@@ -87,7 +89,7 @@ inf_retriever_v1_1_5b = ModelMeta(
|
|
|
87
89
|
max_tokens=32768,
|
|
88
90
|
reference="https://huggingface.co/infly/inf-retriever-v1-1.5b",
|
|
89
91
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
90
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
92
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
91
93
|
use_instructions=True,
|
|
92
94
|
adapted_from="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
|
93
95
|
public_training_code=None,
|