mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -5,108 +5,10 @@ from mteb.models.model_meta import (
|
|
|
5
5
|
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
6
6
|
from mteb.types import PromptType
|
|
7
7
|
|
|
8
|
+
from .facebookai import XLMR_LANGUAGES
|
|
9
|
+
|
|
8
10
|
E5_PAPER_RELEASE_DATE = "2024-02-08"
|
|
9
|
-
|
|
10
|
-
"afr-Latn",
|
|
11
|
-
"amh-Latn",
|
|
12
|
-
"ara-Latn",
|
|
13
|
-
"asm-Latn",
|
|
14
|
-
"aze-Latn",
|
|
15
|
-
"bel-Latn",
|
|
16
|
-
"bul-Latn",
|
|
17
|
-
"ben-Latn",
|
|
18
|
-
"ben-Beng",
|
|
19
|
-
"bre-Latn",
|
|
20
|
-
"bos-Latn",
|
|
21
|
-
"cat-Latn",
|
|
22
|
-
"ces-Latn",
|
|
23
|
-
"cym-Latn",
|
|
24
|
-
"dan-Latn",
|
|
25
|
-
"deu-Latn",
|
|
26
|
-
"ell-Latn",
|
|
27
|
-
"eng-Latn",
|
|
28
|
-
"epo-Latn",
|
|
29
|
-
"spa-Latn",
|
|
30
|
-
"est-Latn",
|
|
31
|
-
"eus-Latn",
|
|
32
|
-
"fas-Latn",
|
|
33
|
-
"fin-Latn",
|
|
34
|
-
"fra-Latn",
|
|
35
|
-
"fry-Latn",
|
|
36
|
-
"gle-Latn",
|
|
37
|
-
"gla-Latn",
|
|
38
|
-
"glg-Latn",
|
|
39
|
-
"guj-Latn",
|
|
40
|
-
"hau-Latn",
|
|
41
|
-
"heb-Latn",
|
|
42
|
-
"hin-Latn",
|
|
43
|
-
"hin-Deva",
|
|
44
|
-
"hrv-Latn",
|
|
45
|
-
"hun-Latn",
|
|
46
|
-
"hye-Latn",
|
|
47
|
-
"ind-Latn",
|
|
48
|
-
"isl-Latn",
|
|
49
|
-
"ita-Latn",
|
|
50
|
-
"jpn-Latn",
|
|
51
|
-
"jav-Latn",
|
|
52
|
-
"kat-Latn",
|
|
53
|
-
"kaz-Latn",
|
|
54
|
-
"khm-Latn",
|
|
55
|
-
"kan-Latn",
|
|
56
|
-
"kor-Latn",
|
|
57
|
-
"kur-Latn",
|
|
58
|
-
"kir-Latn",
|
|
59
|
-
"lat-Latn",
|
|
60
|
-
"lao-Latn",
|
|
61
|
-
"lit-Latn",
|
|
62
|
-
"lav-Latn",
|
|
63
|
-
"mlg-Latn",
|
|
64
|
-
"mkd-Latn",
|
|
65
|
-
"mal-Latn",
|
|
66
|
-
"mon-Latn",
|
|
67
|
-
"mar-Latn",
|
|
68
|
-
"msa-Latn",
|
|
69
|
-
"mya-Latn",
|
|
70
|
-
"nep-Latn",
|
|
71
|
-
"nld-Latn",
|
|
72
|
-
"nob-Latn",
|
|
73
|
-
"orm-Latn",
|
|
74
|
-
"ori-Latn",
|
|
75
|
-
"pan-Latn",
|
|
76
|
-
"pol-Latn",
|
|
77
|
-
"pus-Latn",
|
|
78
|
-
"por-Latn",
|
|
79
|
-
"ron-Latn",
|
|
80
|
-
"rus-Latn",
|
|
81
|
-
"san-Latn",
|
|
82
|
-
"snd-Latn",
|
|
83
|
-
"sin-Latn",
|
|
84
|
-
"slk-Latn",
|
|
85
|
-
"slv-Latn",
|
|
86
|
-
"som-Latn",
|
|
87
|
-
"sqi-Latn",
|
|
88
|
-
"srp-Latn",
|
|
89
|
-
"sun-Latn",
|
|
90
|
-
"swe-Latn",
|
|
91
|
-
"swa-Latn",
|
|
92
|
-
"tam-Latn",
|
|
93
|
-
"tam-Taml",
|
|
94
|
-
"tel-Latn",
|
|
95
|
-
"tel-Telu",
|
|
96
|
-
"tha-Latn",
|
|
97
|
-
"tgl-Latn",
|
|
98
|
-
"tur-Latn",
|
|
99
|
-
"uig-Latn",
|
|
100
|
-
"ukr-Latn",
|
|
101
|
-
"urd-Latn",
|
|
102
|
-
"urd-Arab",
|
|
103
|
-
"uzb-Latn",
|
|
104
|
-
"vie-Latn",
|
|
105
|
-
"xho-Latn",
|
|
106
|
-
"yid-Latn",
|
|
107
|
-
"zho-Hant",
|
|
108
|
-
"zho-Hans",
|
|
109
|
-
]
|
|
11
|
+
|
|
110
12
|
|
|
111
13
|
MULTILINGUAL_E5_CITATION = """
|
|
112
14
|
@article{wang2024multilingual,
|
|
@@ -168,6 +70,7 @@ e5_mult_small = ModelMeta(
|
|
|
168
70
|
model_prompts=model_prompts,
|
|
169
71
|
),
|
|
170
72
|
name="intfloat/multilingual-e5-small",
|
|
73
|
+
model_type=["dense"],
|
|
171
74
|
languages=XLMR_LANGUAGES,
|
|
172
75
|
open_weights=True,
|
|
173
76
|
revision="fd1525a9fd15316a2d503bf26ab031a61d056e98",
|
|
@@ -179,7 +82,7 @@ e5_mult_small = ModelMeta(
|
|
|
179
82
|
max_tokens=512,
|
|
180
83
|
reference="https://huggingface.co/intfloat/multilingual-e5-small",
|
|
181
84
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
182
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
85
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
183
86
|
use_instructions=True,
|
|
184
87
|
public_training_code=None, # couldn't find
|
|
185
88
|
public_training_data=None,
|
|
@@ -194,6 +97,7 @@ e5_mult_base = ModelMeta(
|
|
|
194
97
|
model_prompts=model_prompts,
|
|
195
98
|
),
|
|
196
99
|
name="intfloat/multilingual-e5-base",
|
|
100
|
+
model_type=["dense"],
|
|
197
101
|
languages=XLMR_LANGUAGES,
|
|
198
102
|
open_weights=True,
|
|
199
103
|
revision="d13f1b27baf31030b7fd040960d60d909913633f",
|
|
@@ -205,7 +109,7 @@ e5_mult_base = ModelMeta(
|
|
|
205
109
|
max_tokens=514,
|
|
206
110
|
reference="https://huggingface.co/intfloat/multilingual-e5-base",
|
|
207
111
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
208
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
112
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
209
113
|
use_instructions=True,
|
|
210
114
|
public_training_code=None,
|
|
211
115
|
public_training_data=None,
|
|
@@ -220,6 +124,7 @@ e5_mult_large = ModelMeta(
|
|
|
220
124
|
model_prompts=model_prompts,
|
|
221
125
|
),
|
|
222
126
|
name="intfloat/multilingual-e5-large",
|
|
127
|
+
model_type=["dense"],
|
|
223
128
|
languages=XLMR_LANGUAGES,
|
|
224
129
|
open_weights=True,
|
|
225
130
|
revision="ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb",
|
|
@@ -231,7 +136,7 @@ e5_mult_large = ModelMeta(
|
|
|
231
136
|
max_tokens=514,
|
|
232
137
|
reference="https://huggingface.co/intfloat/multilingual-e5-large",
|
|
233
138
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
234
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
139
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
235
140
|
use_instructions=True,
|
|
236
141
|
public_training_code=None,
|
|
237
142
|
public_training_data=None,
|
|
@@ -246,6 +151,7 @@ e5_eng_small_v2 = ModelMeta(
|
|
|
246
151
|
model_prompts=model_prompts,
|
|
247
152
|
),
|
|
248
153
|
name="intfloat/e5-small-v2",
|
|
154
|
+
model_type=["dense"],
|
|
249
155
|
languages=["eng-Latn"],
|
|
250
156
|
open_weights=True,
|
|
251
157
|
revision="dca8b1a9dae0d4575df2bf423a5edb485a431236",
|
|
@@ -257,7 +163,7 @@ e5_eng_small_v2 = ModelMeta(
|
|
|
257
163
|
max_tokens=512,
|
|
258
164
|
reference="https://huggingface.co/intfloat/e5-small-v2",
|
|
259
165
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
260
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
166
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
261
167
|
use_instructions=True,
|
|
262
168
|
public_training_code=None,
|
|
263
169
|
public_training_data=None,
|
|
@@ -272,6 +178,7 @@ e5_eng_small = ModelMeta(
|
|
|
272
178
|
model_prompts=model_prompts,
|
|
273
179
|
),
|
|
274
180
|
name="intfloat/e5-small",
|
|
181
|
+
model_type=["dense"],
|
|
275
182
|
languages=["eng-Latn"],
|
|
276
183
|
open_weights=True,
|
|
277
184
|
revision="e272f3049e853b47cb5ca3952268c6662abda68f",
|
|
@@ -283,7 +190,7 @@ e5_eng_small = ModelMeta(
|
|
|
283
190
|
max_tokens=512,
|
|
284
191
|
reference="https://huggingface.co/intfloat/e5-small",
|
|
285
192
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
286
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
193
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
287
194
|
use_instructions=True,
|
|
288
195
|
public_training_code=None,
|
|
289
196
|
public_training_data=None,
|
|
@@ -298,6 +205,7 @@ e5_eng_base_v2 = ModelMeta(
|
|
|
298
205
|
model_prompts=model_prompts,
|
|
299
206
|
),
|
|
300
207
|
name="intfloat/e5-base-v2",
|
|
208
|
+
model_type=["dense"],
|
|
301
209
|
languages=["eng-Latn"],
|
|
302
210
|
open_weights=True,
|
|
303
211
|
revision="1c644c92ad3ba1efdad3f1451a637716616a20e8",
|
|
@@ -309,7 +217,7 @@ e5_eng_base_v2 = ModelMeta(
|
|
|
309
217
|
max_tokens=512,
|
|
310
218
|
reference="https://huggingface.co/intfloat/e5-base-v2",
|
|
311
219
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
312
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
220
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
313
221
|
use_instructions=True,
|
|
314
222
|
superseded_by=None,
|
|
315
223
|
adapted_from="intfloat/e5-base",
|
|
@@ -325,6 +233,7 @@ e5_eng_large_v2 = ModelMeta(
|
|
|
325
233
|
model_prompts=model_prompts,
|
|
326
234
|
),
|
|
327
235
|
name="intfloat/e5-large-v2",
|
|
236
|
+
model_type=["dense"],
|
|
328
237
|
languages=["eng-Latn"],
|
|
329
238
|
open_weights=True,
|
|
330
239
|
revision="b322e09026e4ea05f42beadf4d661fb4e101d311",
|
|
@@ -336,7 +245,7 @@ e5_eng_large_v2 = ModelMeta(
|
|
|
336
245
|
max_tokens=514,
|
|
337
246
|
reference="https://huggingface.co/intfloat/e5-large-v2",
|
|
338
247
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
339
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
248
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
340
249
|
use_instructions=True,
|
|
341
250
|
superseded_by=None,
|
|
342
251
|
adapted_from="intfloat/e5-large",
|
|
@@ -352,6 +261,7 @@ e5_large = ModelMeta(
|
|
|
352
261
|
model_prompts=model_prompts,
|
|
353
262
|
),
|
|
354
263
|
name="intfloat/e5-large",
|
|
264
|
+
model_type=["dense"],
|
|
355
265
|
languages=["eng-Latn"],
|
|
356
266
|
open_weights=True,
|
|
357
267
|
revision="4dc6d853a804b9c8886ede6dda8a073b7dc08a81",
|
|
@@ -363,7 +273,7 @@ e5_large = ModelMeta(
|
|
|
363
273
|
max_tokens=512,
|
|
364
274
|
reference="https://huggingface.co/intfloat/e5-large",
|
|
365
275
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
366
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
276
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
367
277
|
use_instructions=True,
|
|
368
278
|
superseded_by="intfloat/e5-large-v2",
|
|
369
279
|
adapted_from="google-bert/bert-large-uncased-whole-word-masking",
|
|
@@ -379,6 +289,7 @@ e5_base = ModelMeta(
|
|
|
379
289
|
model_prompts=model_prompts,
|
|
380
290
|
),
|
|
381
291
|
name="intfloat/e5-base",
|
|
292
|
+
model_type=["dense"],
|
|
382
293
|
languages=["eng-Latn"],
|
|
383
294
|
open_weights=True,
|
|
384
295
|
revision="b533fe4636f4a2507c08ddab40644d20b0006d6a",
|
|
@@ -390,7 +301,7 @@ e5_base = ModelMeta(
|
|
|
390
301
|
max_tokens=512,
|
|
391
302
|
reference="https://huggingface.co/intfloat/e5-base",
|
|
392
303
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
393
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
304
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
394
305
|
use_instructions=True,
|
|
395
306
|
superseded_by="intfloat/e5-base-v2",
|
|
396
307
|
adapted_from="google-bert/bert-base-uncased",
|
|
@@ -30,6 +30,7 @@ class E5VModel(AbsEncoder):
|
|
|
30
30
|
self,
|
|
31
31
|
model_name: str,
|
|
32
32
|
revision: str,
|
|
33
|
+
device: str | None = None,
|
|
33
34
|
composed_prompt=None,
|
|
34
35
|
**kwargs: Any,
|
|
35
36
|
):
|
|
@@ -47,8 +48,7 @@ class E5VModel(AbsEncoder):
|
|
|
47
48
|
self.processor = LlavaNextProcessor.from_pretrained(
|
|
48
49
|
model_name, revision=revision
|
|
49
50
|
)
|
|
50
|
-
|
|
51
|
-
self.device = kwargs.pop("device")
|
|
51
|
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
|
52
52
|
self.model = LlavaNextForConditionalGeneration.from_pretrained(
|
|
53
53
|
model_name, revision=revision, **kwargs
|
|
54
54
|
)
|
|
@@ -87,7 +87,7 @@ class E5VModel(AbsEncoder):
|
|
|
87
87
|
],
|
|
88
88
|
return_tensors="pt",
|
|
89
89
|
padding=True,
|
|
90
|
-
).to(
|
|
90
|
+
).to(self.device)
|
|
91
91
|
text_outputs = self.model(
|
|
92
92
|
**text_inputs, output_hidden_states=True, return_dict=True
|
|
93
93
|
).hidden_states[-1][:, -1, :]
|
|
@@ -111,7 +111,7 @@ class E5VModel(AbsEncoder):
|
|
|
111
111
|
batch["image"],
|
|
112
112
|
return_tensors="pt",
|
|
113
113
|
padding=True,
|
|
114
|
-
).to(
|
|
114
|
+
).to(self.device)
|
|
115
115
|
image_outputs = self.model(
|
|
116
116
|
**img_inputs, output_hidden_states=True, return_dict=True
|
|
117
117
|
).hidden_states[-1][:, -1, :]
|
|
@@ -141,7 +141,7 @@ class E5VModel(AbsEncoder):
|
|
|
141
141
|
]
|
|
142
142
|
inputs = self.processor(
|
|
143
143
|
prompts, batch["image"], return_tensors="pt", padding=True
|
|
144
|
-
).to(
|
|
144
|
+
).to(self.device)
|
|
145
145
|
outputs = self.model(
|
|
146
146
|
**inputs, output_hidden_states=True, return_dict=True
|
|
147
147
|
).hidden_states[-1][:, -1, :]
|
|
@@ -160,6 +160,7 @@ e5_v = ModelMeta(
|
|
|
160
160
|
device_map="auto",
|
|
161
161
|
),
|
|
162
162
|
name="royokong/e5-v",
|
|
163
|
+
model_type=["dense"],
|
|
163
164
|
languages=["eng-Latn"],
|
|
164
165
|
revision="0c1f22679417b3ae925d779442221c40cd1861ab",
|
|
165
166
|
release_date="2024-07-17",
|
|
@@ -172,7 +173,7 @@ e5_v = ModelMeta(
|
|
|
172
173
|
open_weights=True,
|
|
173
174
|
public_training_code="https://github.com/kongds/E5-V",
|
|
174
175
|
public_training_data="https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse",
|
|
175
|
-
framework=["PyTorch"],
|
|
176
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
176
177
|
reference="https://huggingface.co/royokong/e5-v",
|
|
177
178
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
178
179
|
use_instructions=True,
|
|
@@ -0,0 +1,164 @@
|
|
|
1
|
+
from typing import Any
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch.utils.data import DataLoader
|
|
5
|
+
from tqdm.auto import tqdm
|
|
6
|
+
|
|
7
|
+
from mteb._requires_package import (
|
|
8
|
+
requires_image_dependencies,
|
|
9
|
+
requires_package,
|
|
10
|
+
)
|
|
11
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
12
|
+
from mteb.models.abs_encoder import AbsEncoder
|
|
13
|
+
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
14
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class EagerEmbedV1Wrapper(AbsEncoder):
|
|
18
|
+
"""Wrapper for EagerEmbed single-vector embedding models."""
|
|
19
|
+
|
|
20
|
+
def __init__(
|
|
21
|
+
self,
|
|
22
|
+
model_name: str,
|
|
23
|
+
revision: str | None = None,
|
|
24
|
+
device: str | None = None,
|
|
25
|
+
image_size: int = 784,
|
|
26
|
+
**kwargs,
|
|
27
|
+
):
|
|
28
|
+
requires_image_dependencies()
|
|
29
|
+
requires_package(
|
|
30
|
+
self, "qwen_vl_utils", model_name, "pip install mteb[eager_embed]"
|
|
31
|
+
)
|
|
32
|
+
from transformers import AutoProcessor, Qwen3VLForConditionalGeneration
|
|
33
|
+
|
|
34
|
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
|
35
|
+
self.image_size = image_size
|
|
36
|
+
|
|
37
|
+
# Load model
|
|
38
|
+
self.mdl = Qwen3VLForConditionalGeneration.from_pretrained(model_name, **kwargs)
|
|
39
|
+
self.mdl = self.mdl.to(self.device)
|
|
40
|
+
self.mdl.eval()
|
|
41
|
+
|
|
42
|
+
# Load processor
|
|
43
|
+
self.processor = AutoProcessor.from_pretrained(model_name)
|
|
44
|
+
|
|
45
|
+
def get_embedding(self, last_hidden_state: torch.Tensor) -> torch.Tensor:
|
|
46
|
+
"""Extract embeddings from last token of last hidden state."""
|
|
47
|
+
reps = last_hidden_state[:, -1]
|
|
48
|
+
return reps
|
|
49
|
+
|
|
50
|
+
def encode(
|
|
51
|
+
self,
|
|
52
|
+
inputs: DataLoader[BatchedInput],
|
|
53
|
+
*,
|
|
54
|
+
task_metadata: TaskMetadata,
|
|
55
|
+
hf_split: str,
|
|
56
|
+
hf_subset: str,
|
|
57
|
+
prompt_type: PromptType | None = None,
|
|
58
|
+
**kwargs: Any,
|
|
59
|
+
) -> Array:
|
|
60
|
+
"""Encode inputs (text and/or images) into embeddings."""
|
|
61
|
+
from qwen_vl_utils import process_vision_info
|
|
62
|
+
|
|
63
|
+
all_embeddings: list[torch.Tensor] = []
|
|
64
|
+
|
|
65
|
+
with torch.no_grad():
|
|
66
|
+
for batch in tqdm(inputs, desc="Encoding"):
|
|
67
|
+
batch_texts = batch.get("text", [])
|
|
68
|
+
batch_images = batch.get("image", [])
|
|
69
|
+
|
|
70
|
+
messages = []
|
|
71
|
+
for i in range(max(len(batch_texts), len(batch_images))):
|
|
72
|
+
text_content = batch_texts[i] if batch_texts else ""
|
|
73
|
+
image_content = batch_images[i] if batch_images else None
|
|
74
|
+
|
|
75
|
+
query_prefix = "Query: " if prompt_type == PromptType.query else ""
|
|
76
|
+
content = [
|
|
77
|
+
{"type": "text", "text": f"{query_prefix}{text_content}"}
|
|
78
|
+
]
|
|
79
|
+
|
|
80
|
+
if image_content is not None:
|
|
81
|
+
content.append(
|
|
82
|
+
{
|
|
83
|
+
"type": "image",
|
|
84
|
+
"image": image_content,
|
|
85
|
+
"resized_height": self.image_size,
|
|
86
|
+
"resized_width": self.image_size,
|
|
87
|
+
}
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
messages.append([{"role": "user", "content": content}])
|
|
91
|
+
|
|
92
|
+
# Prepare inputs
|
|
93
|
+
texts = [
|
|
94
|
+
self.processor.apply_chat_template(
|
|
95
|
+
msg, tokenize=False, add_generation_prompt=False
|
|
96
|
+
)
|
|
97
|
+
+ "<|endoftext|>"
|
|
98
|
+
for msg in messages
|
|
99
|
+
]
|
|
100
|
+
|
|
101
|
+
image_inputs = None
|
|
102
|
+
video_inputs = None
|
|
103
|
+
if batch_images:
|
|
104
|
+
image_inputs, video_inputs = process_vision_info(messages)
|
|
105
|
+
|
|
106
|
+
model_inputs = self.processor(
|
|
107
|
+
text=texts,
|
|
108
|
+
images=image_inputs,
|
|
109
|
+
videos=video_inputs,
|
|
110
|
+
padding="longest",
|
|
111
|
+
return_tensors="pt",
|
|
112
|
+
).to(self.device)
|
|
113
|
+
|
|
114
|
+
# Get embeddings
|
|
115
|
+
output = self.mdl(
|
|
116
|
+
**model_inputs, return_dict=True, output_hidden_states=True
|
|
117
|
+
)
|
|
118
|
+
embeddings = self.get_embedding(output.hidden_states[-1])
|
|
119
|
+
embeddings = embeddings.cpu().to(torch.float32)
|
|
120
|
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=-1)
|
|
121
|
+
|
|
122
|
+
all_embeddings.append(embeddings)
|
|
123
|
+
|
|
124
|
+
return torch.cat(all_embeddings, dim=0)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
EAGER_EMBED_V1_CITATION = """@article{EagerEmbed,
|
|
128
|
+
title={Eager Embed V1: Multimodal Dense Embeddings for Retrieval},
|
|
129
|
+
author={Juan Pablo Balarini},
|
|
130
|
+
year={2025},
|
|
131
|
+
publisher={Eagerworks},
|
|
132
|
+
url={https://github.com/eagerworks/eager-embed},
|
|
133
|
+
}"""
|
|
134
|
+
|
|
135
|
+
EAGER_EMBED_V1_TRAINING_DATASETS = {"colpali", "bge-ir", "pixmo-docs", "wiki-ss"}
|
|
136
|
+
|
|
137
|
+
Eager_Embed_V1 = ModelMeta(
|
|
138
|
+
loader=EagerEmbedV1Wrapper,
|
|
139
|
+
loader_kwargs=dict(
|
|
140
|
+
dtype=torch.float16,
|
|
141
|
+
image_size=784,
|
|
142
|
+
),
|
|
143
|
+
name="eagerworks/eager-embed-v1",
|
|
144
|
+
model_type=["dense"],
|
|
145
|
+
languages=["fra-Latn", "spa-Latn", "eng-Latn", "deu-Latn"],
|
|
146
|
+
revision="a6bec272729c5056e2c26618ce085205c82a3b3c",
|
|
147
|
+
release_date="2025-11-20",
|
|
148
|
+
modalities=["image", "text"],
|
|
149
|
+
n_parameters=4_000_000_000,
|
|
150
|
+
memory_usage_mb=16929,
|
|
151
|
+
max_tokens=262144,
|
|
152
|
+
embed_dim=2560,
|
|
153
|
+
license="apache-2.0",
|
|
154
|
+
open_weights=True,
|
|
155
|
+
framework=["Tevatron", "safetensors"],
|
|
156
|
+
reference="https://huggingface.co/eagerworks/eager-embed-v1",
|
|
157
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
158
|
+
use_instructions=True,
|
|
159
|
+
training_datasets=EAGER_EMBED_V1_TRAINING_DATASETS,
|
|
160
|
+
citation=EAGER_EMBED_V1_CITATION,
|
|
161
|
+
adapted_from="https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct",
|
|
162
|
+
public_training_code="https://github.com/eagerworks/eager-embed",
|
|
163
|
+
public_training_data="https://github.com/eagerworks/eager-embed/blob/main/dataset_config.yaml",
|
|
164
|
+
)
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
from mteb.models.model_meta import ModelMeta
|
|
2
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
3
|
+
|
|
4
|
+
embedding_gemma_300m_scandi = ModelMeta(
|
|
5
|
+
loader=sentence_transformers_loader,
|
|
6
|
+
name="emillykkejensen/EmbeddingGemma-Scandi-300m",
|
|
7
|
+
model_type=["dense"],
|
|
8
|
+
languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
|
|
9
|
+
open_weights=True,
|
|
10
|
+
revision="9f3307b9f601db564a9190cb475324d128dcfe86",
|
|
11
|
+
release_date="2025-10-17",
|
|
12
|
+
n_parameters=307_581_696,
|
|
13
|
+
embed_dim=768,
|
|
14
|
+
max_tokens=2048,
|
|
15
|
+
license="apache-2.0",
|
|
16
|
+
reference="https://huggingface.co/emillykkejensen/EmbeddingGemma-Scandi-300m",
|
|
17
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
18
|
+
use_instructions=True,
|
|
19
|
+
public_training_code=None,
|
|
20
|
+
public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
|
|
21
|
+
training_datasets=set(),
|
|
22
|
+
similarity_fn_name="cosine", # type: ignore[arg-type]
|
|
23
|
+
adapted_from="google/embeddinggemma-300m",
|
|
24
|
+
memory_usage_mb=578,
|
|
25
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
26
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
27
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
28
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
29
|
+
month = "11",
|
|
30
|
+
year = "2019",
|
|
31
|
+
publisher = "Association for Computational Linguistics",
|
|
32
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
33
|
+
}""",
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
qwen_scandi = ModelMeta(
|
|
38
|
+
loader=sentence_transformers_loader,
|
|
39
|
+
name="emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
|
|
40
|
+
model_type=["dense"],
|
|
41
|
+
languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
|
|
42
|
+
open_weights=True,
|
|
43
|
+
revision="cf1e7ba36ebd3d605549d8f02930a18e17b54513",
|
|
44
|
+
release_date="2025-10-17",
|
|
45
|
+
n_parameters=595776512,
|
|
46
|
+
memory_usage_mb=2272,
|
|
47
|
+
embed_dim=1024,
|
|
48
|
+
max_tokens=32768,
|
|
49
|
+
license="apache-2.0",
|
|
50
|
+
reference="https://huggingface.co/emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
|
|
51
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
52
|
+
use_instructions=True,
|
|
53
|
+
public_training_code=None,
|
|
54
|
+
public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
|
|
55
|
+
training_datasets=set(),
|
|
56
|
+
similarity_fn_name="cosine", # type: ignore[arg-type]
|
|
57
|
+
adapted_from="Qwen/Qwen3-Embedding-0.6B",
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
mmbert_scandi = ModelMeta(
|
|
62
|
+
loader=sentence_transformers_loader,
|
|
63
|
+
name="emillykkejensen/mmBERTscandi-base-embedding",
|
|
64
|
+
model_type=["dense"],
|
|
65
|
+
languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
|
|
66
|
+
open_weights=True,
|
|
67
|
+
revision="82d74c7a5d8e1ddf31b132865df2d16b2b0294ee",
|
|
68
|
+
release_date="2025-10-17",
|
|
69
|
+
n_parameters=306939648,
|
|
70
|
+
memory_usage_mb=1171,
|
|
71
|
+
embed_dim=768,
|
|
72
|
+
max_tokens=8192,
|
|
73
|
+
license="apache-2.0",
|
|
74
|
+
reference="https://huggingface.co/emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
|
|
75
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
76
|
+
use_instructions=True,
|
|
77
|
+
public_training_code=None,
|
|
78
|
+
public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
|
|
79
|
+
training_datasets=set(),
|
|
80
|
+
similarity_fn_name="cosine", # type: ignore[arg-type]
|
|
81
|
+
adapted_from="jonasaise/scandmmBERT-base-scandinavian",
|
|
82
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
83
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
84
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
85
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
86
|
+
month = "11",
|
|
87
|
+
year = "2019",
|
|
88
|
+
publisher = "Association for Computational Linguistics",
|
|
89
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
90
|
+
}""",
|
|
91
|
+
)
|
|
@@ -12,6 +12,7 @@ english_code_retriever = ModelMeta(
|
|
|
12
12
|
},
|
|
13
13
|
),
|
|
14
14
|
name="fyaronskiy/english_code_retriever",
|
|
15
|
+
model_type=["dense"],
|
|
15
16
|
languages=["eng-Latn"],
|
|
16
17
|
open_weights=True,
|
|
17
18
|
revision="be653fab7d27a7348a0c2c3d16b9f92a7f10cb0c",
|
|
@@ -23,7 +24,7 @@ english_code_retriever = ModelMeta(
|
|
|
23
24
|
max_tokens=8192,
|
|
24
25
|
reference="https://huggingface.co/fyaronskiy/english_code_retriever",
|
|
25
26
|
similarity_fn_name="cosine",
|
|
26
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
27
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
27
28
|
use_instructions=True,
|
|
28
29
|
public_training_code=None,
|
|
29
30
|
public_training_data="https://huggingface.co/datasets/code-search-net/code_search_net",
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
from mteb.models.model_meta import ModelMeta
|
|
2
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
3
|
+
|
|
4
|
+
Euler_Legal_Embedding_V1 = ModelMeta(
|
|
5
|
+
loader=sentence_transformers_loader,
|
|
6
|
+
name="Mira190/Euler-Legal-Embedding-V1",
|
|
7
|
+
model_type=["dense"],
|
|
8
|
+
revision="df607ed9e25e569514a99c27cdaaab16e76b6dd4",
|
|
9
|
+
release_date="2025-11-06",
|
|
10
|
+
languages=["eng-Latn"],
|
|
11
|
+
n_parameters=8000000000,
|
|
12
|
+
memory_usage_mb=15618,
|
|
13
|
+
max_tokens=1536,
|
|
14
|
+
embed_dim=4096,
|
|
15
|
+
license="apache-2.0",
|
|
16
|
+
open_weights=True,
|
|
17
|
+
public_training_code=None,
|
|
18
|
+
public_training_data=None,
|
|
19
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
20
|
+
reference="https://huggingface.co/Mira190/Euler-Legal-Embedding-V1",
|
|
21
|
+
similarity_fn_name="cosine",
|
|
22
|
+
use_instructions=False,
|
|
23
|
+
training_datasets=set(), # final-data-new-anonymized-grok4-filtered
|
|
24
|
+
adapted_from="Qwen/Qwen3-Embedding-8B",
|
|
25
|
+
superseded_by=None,
|
|
26
|
+
citation="""@misc{euler2025legal,
|
|
27
|
+
title={Euler-Legal-Embedding: Advanced Legal Representation Learning},
|
|
28
|
+
author={LawRank Team},
|
|
29
|
+
year={2025},
|
|
30
|
+
publisher={Hugging Face}
|
|
31
|
+
}""",
|
|
32
|
+
)
|
|
@@ -138,6 +138,7 @@ laion_2b = set(
|
|
|
138
138
|
EVA02_CLIP_B_16 = ModelMeta(
|
|
139
139
|
loader=evaclip_loader,
|
|
140
140
|
name="QuanSun/EVA02-CLIP-B-16",
|
|
141
|
+
model_type=["dense"],
|
|
141
142
|
languages=["eng-Latn"],
|
|
142
143
|
revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12",
|
|
143
144
|
release_date="2023-04-26",
|
|
@@ -161,6 +162,7 @@ EVA02_CLIP_B_16 = ModelMeta(
|
|
|
161
162
|
EVA02_CLIP_L_14 = ModelMeta(
|
|
162
163
|
loader=evaclip_loader,
|
|
163
164
|
name="QuanSun/EVA02-CLIP-L-14",
|
|
165
|
+
model_type=["dense"],
|
|
164
166
|
languages=["eng-Latn"],
|
|
165
167
|
revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12",
|
|
166
168
|
release_date="2023-04-26",
|
|
@@ -184,6 +186,7 @@ EVA02_CLIP_L_14 = ModelMeta(
|
|
|
184
186
|
EVA02_CLIP_bigE_14 = ModelMeta(
|
|
185
187
|
loader=evaclip_loader,
|
|
186
188
|
name="QuanSun/EVA02-CLIP-bigE-14",
|
|
189
|
+
model_type=["dense"],
|
|
187
190
|
languages=["eng-Latn"],
|
|
188
191
|
revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12",
|
|
189
192
|
release_date="2023-04-26",
|
|
@@ -208,6 +211,7 @@ EVA02_CLIP_bigE_14 = ModelMeta(
|
|
|
208
211
|
EVA02_CLIP_bigE_14_plus = ModelMeta(
|
|
209
212
|
loader=evaclip_loader,
|
|
210
213
|
name="QuanSun/EVA02-CLIP-bigE-14-plus",
|
|
214
|
+
model_type=["dense"],
|
|
211
215
|
languages=["eng-Latn"],
|
|
212
216
|
revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12",
|
|
213
217
|
release_date="2023-04-26",
|