sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
    
        sglang/srt/models/qwen3_vl.py
    CHANGED
    
    | 
         @@ -15,12 +15,11 @@ 
     | 
|
| 
       15 
15 
     | 
    
         
             
            """Inference-only Qwen3-VL model compatible with HuggingFace weights."""
         
     | 
| 
       16 
16 
     | 
    
         
             
            import logging
         
     | 
| 
       17 
17 
     | 
    
         
             
            from functools import lru_cache, partial
         
     | 
| 
       18 
     | 
    
         
            -
            from typing import Callable, Iterable, List,  
     | 
| 
      
 18 
     | 
    
         
            +
            from typing import Callable, Iterable, List, Optional, Tuple, Union
         
     | 
| 
       19 
19 
     | 
    
         | 
| 
       20 
20 
     | 
    
         
             
            import numpy as np
         
     | 
| 
       21 
21 
     | 
    
         
             
            import torch
         
     | 
| 
       22 
22 
     | 
    
         
             
            import torch.nn as nn
         
     | 
| 
       23 
     | 
    
         
            -
            import torch.nn.functional as F
         
     | 
| 
       24 
23 
     | 
    
         
             
            from einops import rearrange
         
     | 
| 
       25 
24 
     | 
    
         
             
            from transformers.activations import ACT2FN
         
     | 
| 
       26 
25 
     | 
    
         
             
            from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
         
     | 
| 
         @@ -38,16 +37,20 @@ from sglang.srt.managers.mm_utils import ( 
     | 
|
| 
       38 
37 
     | 
    
         
             
                MultiModalityDataPaddingPatternMultimodalTokens,
         
     | 
| 
       39 
38 
     | 
    
         
             
                general_mm_embed_routine,
         
     | 
| 
       40 
39 
     | 
    
         
             
            )
         
     | 
| 
       41 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import  
     | 
| 
      
 40 
     | 
    
         
            +
            from sglang.srt.managers.schedule_batch import (
         
     | 
| 
      
 41 
     | 
    
         
            +
                Modality,
         
     | 
| 
      
 42 
     | 
    
         
            +
                MultimodalDataItem,
         
     | 
| 
      
 43 
     | 
    
         
            +
                MultimodalInputs,
         
     | 
| 
      
 44 
     | 
    
         
            +
            )
         
     | 
| 
       42 
45 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
         
     | 
| 
       43 
46 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import default_weight_loader
         
     | 
| 
       44 
     | 
    
         
            -
            from sglang.srt.models.qwen2_vl import Qwen2VLVideoInputs
         
     | 
| 
       45 
47 
     | 
    
         
             
            from sglang.srt.models.qwen3 import Qwen3Model
         
     | 
| 
       46 
48 
     | 
    
         
             
            from sglang.srt.utils import add_prefix
         
     | 
| 
       47 
49 
     | 
    
         
             
            from sglang.srt.utils.hf_transformers_utils import get_processor
         
     | 
| 
       48 
50 
     | 
    
         | 
| 
       49 
51 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       50 
52 
     | 
    
         | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
       51 
54 
     | 
    
         
             
            # === Vision Encoder === #
         
     | 
| 
       52 
55 
     | 
    
         | 
| 
       53 
56 
     | 
    
         | 
| 
         @@ -189,14 +192,14 @@ class Qwen3_VisionBlock(nn.Module): 
     | 
|
| 
       189 
192 
     | 
    
         
             
                        position_embeddings=position_embeddings,
         
     | 
| 
       190 
193 
     | 
    
         
             
                    )
         
     | 
| 
       191 
194 
     | 
    
         
             
                    attn = rearrange(attn, "b s ... -> s b ...")
         
     | 
| 
       192 
     | 
    
         
            -
                    x  
     | 
| 
      
 195 
     | 
    
         
            +
                    x += attn
         
     | 
| 
       193 
196 
     | 
    
         
             
                    norm2 = self.norm2(x)
         
     | 
| 
       194 
197 
     | 
    
         
             
                    mlp = self.mlp(norm2)
         
     | 
| 
       195 
     | 
    
         
            -
                    x  
     | 
| 
      
 198 
     | 
    
         
            +
                    x += mlp
         
     | 
| 
       196 
199 
     | 
    
         
             
                    return x
         
     | 
| 
       197 
200 
     | 
    
         | 
| 
       198 
201 
     | 
    
         | 
| 
       199 
     | 
    
         
            -
            class  
     | 
| 
      
 202 
     | 
    
         
            +
            class Qwen3VLMoeVisionPatchMerger(nn.Module):
         
     | 
| 
       200 
203 
     | 
    
         | 
| 
       201 
204 
     | 
    
         
             
                def __init__(
         
     | 
| 
       202 
205 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -246,7 +249,7 @@ class Qwen3_VisionPatchMerger(nn.Module): 
     | 
|
| 
       246 
249 
     | 
    
         
             
                    return out
         
     | 
| 
       247 
250 
     | 
    
         | 
| 
       248 
251 
     | 
    
         | 
| 
       249 
     | 
    
         
            -
            class  
     | 
| 
      
 252 
     | 
    
         
            +
            class Qwen3VLMoeVisionModel(nn.Module):
         
     | 
| 
       250 
253 
     | 
    
         | 
| 
       251 
254 
     | 
    
         
             
                def __init__(
         
     | 
| 
       252 
255 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -263,10 +266,10 @@ class Qwen3_VisionTransformer(nn.Module): 
     | 
|
| 
       263 
266 
     | 
    
         
             
                    self.spatial_merge_size = vision_config.spatial_merge_size
         
     | 
| 
       264 
267 
     | 
    
         
             
                    self.spatial_merge_unit = self.spatial_merge_size**2
         
     | 
| 
       265 
268 
     | 
    
         
             
                    self.temporal_patch_size = vision_config.temporal_patch_size
         
     | 
| 
      
 269 
     | 
    
         
            +
                    # layer indexes of which layer's output should be deep-stacked
         
     | 
| 
       266 
270 
     | 
    
         
             
                    self.deepstack_visual_indexes = vision_config.deepstack_visual_indexes
         
     | 
| 
       267 
271 
     | 
    
         
             
                    self.patch_embed = Qwen3VLVisionPatchEmbed(config=vision_config)
         
     | 
| 
       268 
272 
     | 
    
         
             
                    self.pos_embed = nn.Embedding(self.num_position_embeddings, self.hidden_size)
         
     | 
| 
       269 
     | 
    
         
            -
             
     | 
| 
       270 
273 
     | 
    
         
             
                    norm_layer = partial(nn.LayerNorm, eps=norm_eps)
         
     | 
| 
       271 
274 
     | 
    
         
             
                    head_dim = self.hidden_size // self.num_heads
         
     | 
| 
       272 
275 
     | 
    
         
             
                    self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
         
     | 
| 
         @@ -286,7 +289,7 @@ class Qwen3_VisionTransformer(nn.Module): 
     | 
|
| 
       286 
289 
     | 
    
         
             
                            for layer_idx in range(vision_config.depth)
         
     | 
| 
       287 
290 
     | 
    
         
             
                        ]
         
     | 
| 
       288 
291 
     | 
    
         
             
                    )
         
     | 
| 
       289 
     | 
    
         
            -
                    self.merger =  
     | 
| 
      
 292 
     | 
    
         
            +
                    self.merger = Qwen3VLMoeVisionPatchMerger(
         
     | 
| 
       290 
293 
     | 
    
         
             
                        dim=vision_config.out_hidden_size,
         
     | 
| 
       291 
294 
     | 
    
         
             
                        context_dim=self.hidden_size,
         
     | 
| 
       292 
295 
     | 
    
         
             
                        norm_layer=norm_layer,
         
     | 
| 
         @@ -297,7 +300,7 @@ class Qwen3_VisionTransformer(nn.Module): 
     | 
|
| 
       297 
300 
     | 
    
         | 
| 
       298 
301 
     | 
    
         
             
                    self.deepstack_merger_list = nn.ModuleList(
         
     | 
| 
       299 
302 
     | 
    
         
             
                        [
         
     | 
| 
       300 
     | 
    
         
            -
                             
     | 
| 
      
 303 
     | 
    
         
            +
                            Qwen3VLMoeVisionPatchMerger(
         
     | 
| 
       301 
304 
     | 
    
         
             
                                dim=vision_config.out_hidden_size,
         
     | 
| 
       302 
305 
     | 
    
         
             
                                context_dim=self.hidden_size,
         
     | 
| 
       303 
306 
     | 
    
         
             
                                spatial_merge_size=self.spatial_merge_size,
         
     | 
| 
         @@ -441,7 +444,7 @@ class Qwen3_VisionTransformer(nn.Module): 
     | 
|
| 
       441 
444 
     | 
    
         
             
                    x = self.patch_embed(x)
         
     | 
| 
       442 
445 
     | 
    
         | 
| 
       443 
446 
     | 
    
         
             
                    pos_embeds = self.fast_pos_embed_interpolate(grid_thw)
         
     | 
| 
       444 
     | 
    
         
            -
                    x  
     | 
| 
      
 447 
     | 
    
         
            +
                    x += pos_embeds
         
     | 
| 
       445 
448 
     | 
    
         
             
                    rotary_pos_emb = self.rot_pos_emb(grid_thw)
         
     | 
| 
       446 
449 
     | 
    
         | 
| 
       447 
450 
     | 
    
         
             
                    seq_len, _ = x.size()
         
     | 
| 
         @@ -452,15 +455,16 @@ class Qwen3_VisionTransformer(nn.Module): 
     | 
|
| 
       452 
455 
     | 
    
         
             
                    position_embeddings = (emb.cos(), emb.sin())
         
     | 
| 
       453 
456 
     | 
    
         | 
| 
       454 
457 
     | 
    
         
             
                    # compute cu_seqlens
         
     | 
| 
      
 458 
     | 
    
         
            +
                    cu_seqlens = torch.repeat_interleave(
         
     | 
| 
      
 459 
     | 
    
         
            +
                        grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
         
     | 
| 
      
 460 
     | 
    
         
            +
                    ).cumsum(dim=0)
         
     | 
| 
       455 
461 
     | 
    
         
             
                    cu_seqlens = torch.cat(
         
     | 
| 
       456 
462 
     | 
    
         
             
                        [
         
     | 
| 
       457 
     | 
    
         
            -
                            torch. 
     | 
| 
       458 
     | 
    
         
            -
                            ( 
     | 
| 
      
 463 
     | 
    
         
            +
                            torch.zeros(1, dtype=torch.int32, device=cu_seqlens.device),
         
     | 
| 
      
 464 
     | 
    
         
            +
                            cu_seqlens.to(torch.int32),
         
     | 
| 
       459 
465 
     | 
    
         
             
                        ]
         
     | 
| 
       460 
466 
     | 
    
         
             
                    )
         
     | 
| 
       461 
     | 
    
         
            -
                    cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
         
     | 
| 
       462 
467 
     | 
    
         | 
| 
       463 
     | 
    
         
            -
                    # max_seqlen, seqlens = self.compute_attn_mask_seqlen(cu_seqlens)
         
     | 
| 
       464 
468 
     | 
    
         
             
                    x = x.unsqueeze(1)
         
     | 
| 
       465 
469 
     | 
    
         | 
| 
       466 
470 
     | 
    
         
             
                    deepstack_feature_lists = []
         
     | 
| 
         @@ -574,10 +578,7 @@ class Qwen3LLMModel(Qwen3Model): 
     | 
|
| 
       574 
578 
     | 
    
         
             
                            and layer_idx in self.deepstack_embed_to_decoder_layer
         
     | 
| 
       575 
579 
     | 
    
         
             
                        ):
         
     | 
| 
       576 
580 
     | 
    
         
             
                            sep = self.hidden_size * layer_idx
         
     | 
| 
       577 
     | 
    
         
            -
                            hidden_states  
     | 
| 
       578 
     | 
    
         
            -
                                hidden_states
         
     | 
| 
       579 
     | 
    
         
            -
                                + input_deepstack_embeds[:, sep : sep + self.hidden_size]
         
     | 
| 
       580 
     | 
    
         
            -
                            )
         
     | 
| 
      
 581 
     | 
    
         
            +
                            hidden_states += input_deepstack_embeds[:, sep : sep + self.hidden_size]
         
     | 
| 
       581 
582 
     | 
    
         | 
| 
       582 
583 
     | 
    
         
             
                    if not self.pp_group.is_last_rank:
         
     | 
| 
       583 
584 
     | 
    
         
             
                        return PPProxyTensors(
         
     | 
| 
         @@ -605,37 +606,43 @@ class Qwen3VLForConditionalGeneration(nn.Module): 
     | 
|
| 
       605 
606 
     | 
    
         
             
                    config: Qwen3VLConfig,
         
     | 
| 
       606 
607 
     | 
    
         
             
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
       607 
608 
     | 
    
         
             
                    prefix: str = "",
         
     | 
| 
      
 609 
     | 
    
         
            +
                    language_model_cls=Qwen3LLMModel,
         
     | 
| 
       608 
610 
     | 
    
         
             
                ) -> None:
         
     | 
| 
       609 
611 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       610 
612 
     | 
    
         | 
| 
       611 
     | 
    
         
            -
                    self. 
     | 
| 
       612 
     | 
    
         
            -
                    self.visual = Qwen3_VisionTransformer(
         
     | 
| 
      
 613 
     | 
    
         
            +
                    self.visual = Qwen3VLMoeVisionModel(
         
     | 
| 
       613 
614 
     | 
    
         
             
                        config.vision_config,
         
     | 
| 
       614 
     | 
    
         
            -
                        norm_eps=getattr(config, "rms_norm_eps", 1e-6),
         
     | 
| 
       615 
615 
     | 
    
         
             
                        # NOTE: Qwen3-VL vision encoder currently supports BitsAndBytes 4-bit quantization.
         
     | 
| 
       616 
616 
     | 
    
         
             
                        # Other quantization methods (e.g., GPTQ, AWQ) are untested and may not be supported.
         
     | 
| 
       617 
617 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
      
 618 
     | 
    
         
            +
                        norm_eps=getattr(config, "rms_norm_eps", 1e-6),
         
     | 
| 
       618 
619 
     | 
    
         
             
                        prefix=add_prefix("visual", prefix),
         
     | 
| 
       619 
620 
     | 
    
         
             
                    )
         
     | 
| 
       620 
621 
     | 
    
         | 
| 
       621 
     | 
    
         
            -
                     
     | 
| 
       622 
     | 
    
         
            -
             
     | 
| 
      
 622 
     | 
    
         
            +
                    # TODO: make it more elegant
         
     | 
| 
      
 623 
     | 
    
         
            +
                    if language_model_cls is Qwen3LLMModel:
         
     | 
| 
      
 624 
     | 
    
         
            +
                        self.config: Qwen3VLConfig = config  # for qwen3-vl
         
     | 
| 
      
 625 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 626 
     | 
    
         
            +
                        self.config = config.text_config  # for qwen3-omni
         
     | 
| 
      
 627 
     | 
    
         
            +
             
     | 
| 
      
 628 
     | 
    
         
            +
                    self.model = language_model_cls(
         
     | 
| 
      
 629 
     | 
    
         
            +
                        config=self.config,
         
     | 
| 
       623 
630 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
       624 
631 
     | 
    
         
             
                        prefix=add_prefix("model", prefix),
         
     | 
| 
       625 
632 
     | 
    
         
             
                    )
         
     | 
| 
       626 
633 
     | 
    
         | 
| 
       627 
     | 
    
         
            -
                    if config.tie_word_embeddings:
         
     | 
| 
      
 634 
     | 
    
         
            +
                    if self.config.tie_word_embeddings:
         
     | 
| 
       628 
635 
     | 
    
         
             
                        self.lm_head = self.model.embed_tokens
         
     | 
| 
       629 
636 
     | 
    
         
             
                    else:
         
     | 
| 
       630 
637 
     | 
    
         
             
                        self.lm_head = ParallelLMHead(
         
     | 
| 
       631 
     | 
    
         
            -
                            config.vocab_size,
         
     | 
| 
       632 
     | 
    
         
            -
                            config.hidden_size,
         
     | 
| 
      
 638 
     | 
    
         
            +
                            self.config.vocab_size,
         
     | 
| 
      
 639 
     | 
    
         
            +
                            self.config.hidden_size,
         
     | 
| 
       633 
640 
     | 
    
         
             
                            quant_config=quant_config,
         
     | 
| 
       634 
641 
     | 
    
         
             
                            prefix=add_prefix("lm_head", prefix),
         
     | 
| 
       635 
642 
     | 
    
         
             
                        )
         
     | 
| 
       636 
643 
     | 
    
         
             
                    self.is_mrope_enabled = "mrope_section" in self.config.rope_scaling
         
     | 
| 
       637 
644 
     | 
    
         | 
| 
       638 
     | 
    
         
            -
                    self.logits_processor = LogitsProcessor(config)
         
     | 
| 
      
 645 
     | 
    
         
            +
                    self.logits_processor = LogitsProcessor(self.config)
         
     | 
| 
       639 
646 
     | 
    
         
             
                    self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
         
     | 
| 
       640 
647 
     | 
    
         
             
                    # like {8:0, 16:1, 24:2}, which stands for the captured deepstack features on
         
     | 
| 
       641 
648 
     | 
    
         
             
                    # 8, 16, 24 layer will be merged to 0, 1, 2 layer of decoder output hidden_states
         
     | 
| 
         @@ -643,10 +650,7 @@ class Qwen3VLForConditionalGeneration(nn.Module): 
     | 
|
| 
       643 
650 
     | 
    
         
             
                    # deepstack
         
     | 
| 
       644 
651 
     | 
    
         
             
                    self.deepstack_visual_indexes = self.visual.deepstack_visual_indexes
         
     | 
| 
       645 
652 
     | 
    
         
             
                    self.num_deepstack_embeddings = len(self.deepstack_visual_indexes)
         
     | 
| 
       646 
     | 
    
         
            -
             
     | 
| 
       647 
     | 
    
         
            -
                @property
         
     | 
| 
       648 
     | 
    
         
            -
                def use_deepstack(self) -> bool:
         
     | 
| 
       649 
     | 
    
         
            -
                    return hasattr(self, "deepstack_visual_indexes")
         
     | 
| 
      
 653 
     | 
    
         
            +
                    self.use_deepstack = {Modality.IMAGE: True, Modality.VIDEO: True}
         
     | 
| 
       650 
654 
     | 
    
         | 
| 
       651 
655 
     | 
    
         
             
                def separate_deepstack_embeds(self, embedding):
         
     | 
| 
       652 
656 
     | 
    
         
             
                    assert (
         
     | 
| 
         @@ -14,49 +14,23 @@ 
     | 
|
| 
       14 
14 
     | 
    
         
             
            # ==============================================================================
         
     | 
| 
       15 
15 
     | 
    
         
             
            """Inference-only Qwen3-VL model compatible with HuggingFace weights."""
         
     | 
| 
       16 
16 
     | 
    
         
             
            import logging
         
     | 
| 
       17 
     | 
    
         
            -
            from functools import lru_cache 
     | 
| 
       18 
     | 
    
         
            -
            from typing import  
     | 
| 
      
 17 
     | 
    
         
            +
            from functools import lru_cache
         
     | 
| 
      
 18 
     | 
    
         
            +
            from typing import Iterable, Optional, Tuple, Union
         
     | 
| 
       19 
19 
     | 
    
         | 
| 
       20 
     | 
    
         
            -
            import numpy as np
         
     | 
| 
       21 
20 
     | 
    
         
             
            import torch
         
     | 
| 
       22 
21 
     | 
    
         
             
            import torch.nn as nn
         
     | 
| 
       23 
     | 
    
         
            -
            import torch.nn.functional as F
         
     | 
| 
       24 
     | 
    
         
            -
            from einops import rearrange
         
     | 
| 
       25 
     | 
    
         
            -
            from transformers import BatchFeature
         
     | 
| 
       26 
     | 
    
         
            -
            from transformers.activations import ACT2FN
         
     | 
| 
       27 
     | 
    
         
            -
            from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
         
     | 
| 
       28 
     | 
    
         
            -
                Qwen2_5_VisionRotaryEmbedding,
         
     | 
| 
       29 
     | 
    
         
            -
            )
         
     | 
| 
       30 
22 
     | 
    
         | 
| 
       31 
     | 
    
         
            -
            from sglang.srt.configs.qwen3_vl import Qwen3VLMoeConfig,  
     | 
| 
      
 23 
     | 
    
         
            +
            from sglang.srt.configs.qwen3_vl import Qwen3VLMoeConfig, Qwen3VLMoeTextConfig
         
     | 
| 
       32 
24 
     | 
    
         
             
            from sglang.srt.distributed import (
         
     | 
| 
       33 
25 
     | 
    
         
             
                get_moe_expert_parallel_world_size,
         
     | 
| 
       34 
     | 
    
         
            -
                get_pp_group,
         
     | 
| 
       35 
26 
     | 
    
         
             
                get_tensor_model_parallel_rank,
         
     | 
| 
       36 
27 
     | 
    
         
             
            )
         
     | 
| 
       37 
     | 
    
         
            -
            from sglang.srt.layers.logits_processor import LogitsProcessor
         
     | 
| 
       38 
28 
     | 
    
         
             
            from sglang.srt.layers.moe.fused_moe_triton.layer import FusedMoE
         
     | 
| 
       39 
     | 
    
         
            -
            from sglang.srt.layers.pooler import Pooler, PoolingType
         
     | 
| 
       40 
29 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
       41 
     | 
    
         
            -
            from sglang.srt.layers.utils import get_layer_id
         
     | 
| 
       42 
     | 
    
         
            -
            from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
         
     | 
| 
       43 
     | 
    
         
            -
            from sglang.srt.managers.mm_utils import (
         
     | 
| 
       44 
     | 
    
         
            -
                MultiModalityDataPaddingPatternMultimodalTokens,
         
     | 
| 
       45 
     | 
    
         
            -
                general_mm_embed_routine,
         
     | 
| 
       46 
     | 
    
         
            -
            )
         
     | 
| 
       47 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import (
         
     | 
| 
       48 
     | 
    
         
            -
                MultimodalDataItem,
         
     | 
| 
       49 
     | 
    
         
            -
                MultimodalInputs,
         
     | 
| 
       50 
     | 
    
         
            -
                global_server_args_dict,
         
     | 
| 
       51 
     | 
    
         
            -
            )
         
     | 
| 
       52 
30 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
         
     | 
| 
       53 
31 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import default_weight_loader
         
     | 
| 
       54 
     | 
    
         
            -
            from sglang.srt.models.qwen3_moe import  
     | 
| 
       55 
     | 
    
         
            -
            from sglang.srt.models.qwen3_vl import  
     | 
| 
       56 
     | 
    
         
            -
                Qwen3_VisionTransformer,
         
     | 
| 
       57 
     | 
    
         
            -
                Qwen3VLForConditionalGeneration,
         
     | 
| 
       58 
     | 
    
         
            -
            )
         
     | 
| 
       59 
     | 
    
         
            -
            from sglang.srt.utils import add_prefix
         
     | 
| 
      
 32 
     | 
    
         
            +
            from sglang.srt.models.qwen3_moe import Qwen3MoeModel
         
     | 
| 
      
 33 
     | 
    
         
            +
            from sglang.srt.models.qwen3_vl import Qwen3VLForConditionalGeneration
         
     | 
| 
       60 
34 
     | 
    
         
             
            from sglang.srt.utils.hf_transformers_utils import get_processor
         
     | 
| 
       61 
35 
     | 
    
         | 
| 
       62 
36 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
         @@ -68,28 +42,16 @@ class Qwen3MoeLLMModel(Qwen3MoeModel): 
     | 
|
| 
       68 
42 
     | 
    
         
             
                def __init__(
         
     | 
| 
       69 
43 
     | 
    
         
             
                    self,
         
     | 
| 
       70 
44 
     | 
    
         
             
                    *,
         
     | 
| 
       71 
     | 
    
         
            -
                    config:  
     | 
| 
      
 45 
     | 
    
         
            +
                    config: Qwen3VLMoeTextConfig,
         
     | 
| 
       72 
46 
     | 
    
         
             
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
       73 
47 
     | 
    
         
             
                    prefix: str = "",
         
     | 
| 
       74 
48 
     | 
    
         
             
                ):
         
     | 
| 
       75 
49 
     | 
    
         
             
                    super().__init__(config=config, quant_config=quant_config, prefix=prefix)
         
     | 
| 
       76 
     | 
    
         
            -
             
     | 
| 
       77 
50 
     | 
    
         
             
                    self.hidden_size = config.hidden_size
         
     | 
| 
       78 
51 
     | 
    
         | 
| 
       79 
52 
     | 
    
         
             
                def get_input_embeddings(self) -> nn.Embedding:
         
     | 
| 
       80 
53 
     | 
    
         
             
                    return self.embed_tokens
         
     | 
| 
       81 
54 
     | 
    
         | 
| 
       82 
     | 
    
         
            -
                def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
         
     | 
| 
       83 
     | 
    
         
            -
                    # in qwen-vl, last dim is the same
         
     | 
| 
       84 
     | 
    
         
            -
                    pixel_values = torch.cat([item.feature for item in items], dim=0).type(
         
     | 
| 
       85 
     | 
    
         
            -
                        self.visual.dtype
         
     | 
| 
       86 
     | 
    
         
            -
                    )
         
     | 
| 
       87 
     | 
    
         
            -
                    image_grid_thw = torch.concat([item.image_grid_thw for item in items], dim=0)
         
     | 
| 
       88 
     | 
    
         
            -
                    assert pixel_values.dim() == 2, pixel_values.dim()
         
     | 
| 
       89 
     | 
    
         
            -
                    assert image_grid_thw.dim() == 2, image_grid_thw.dim()
         
     | 
| 
       90 
     | 
    
         
            -
                    image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
         
     | 
| 
       91 
     | 
    
         
            -
                    return image_embeds
         
     | 
| 
       92 
     | 
    
         
            -
             
     | 
| 
       93 
55 
     | 
    
         
             
                def forward(
         
     | 
| 
       94 
56 
     | 
    
         
             
                    self,
         
     | 
| 
       95 
57 
     | 
    
         
             
                    input_ids: torch.Tensor,
         
     | 
| 
         @@ -114,7 +76,7 @@ class Qwen3MoeLLMModel(Qwen3MoeModel): 
     | 
|
| 
       114 
76 
     | 
    
         
             
                    for layer_idx, layer in enumerate(
         
     | 
| 
       115 
77 
     | 
    
         
             
                        self.layers[self.start_layer : self.end_layer]
         
     | 
| 
       116 
78 
     | 
    
         
             
                    ):
         
     | 
| 
       117 
     | 
    
         
            -
                        layer_idx  
     | 
| 
      
 79 
     | 
    
         
            +
                        layer_idx += self.start_layer
         
     | 
| 
       118 
80 
     | 
    
         
             
                        if layer_idx in self.layers_to_capture:
         
     | 
| 
       119 
81 
     | 
    
         
             
                            aux_hidden_states.append(
         
     | 
| 
       120 
82 
     | 
    
         
             
                                hidden_states + residual if residual is not None else hidden_states
         
     | 
| 
         @@ -128,11 +90,10 @@ class Qwen3MoeLLMModel(Qwen3MoeModel): 
     | 
|
| 
       128 
90 
     | 
    
         
             
                        )
         
     | 
| 
       129 
91 
     | 
    
         | 
| 
       130 
92 
     | 
    
         
             
                        # process deepstack
         
     | 
| 
       131 
     | 
    
         
            -
                        if input_deepstack_embeds is not None and layer_idx  
     | 
| 
      
 93 
     | 
    
         
            +
                        if input_deepstack_embeds is not None and layer_idx < 3:
         
     | 
| 
       132 
94 
     | 
    
         
             
                            sep = self.hidden_size * layer_idx
         
     | 
| 
       133 
     | 
    
         
            -
                            hidden_states 
     | 
| 
       134 
     | 
    
         
            -
                                 
     | 
| 
       135 
     | 
    
         
            -
                                + input_deepstack_embeds[:, sep : sep + self.hidden_size]
         
     | 
| 
      
 95 
     | 
    
         
            +
                            hidden_states.add_(
         
     | 
| 
      
 96 
     | 
    
         
            +
                                input_deepstack_embeds[:, sep : sep + self.hidden_size]
         
     | 
| 
       136 
97 
     | 
    
         
             
                            )
         
     | 
| 
       137 
98 
     | 
    
         | 
| 
       138 
99 
     | 
    
         
             
                    if not self.pp_group.is_last_rank:
         
     | 
| 
         @@ -155,144 +116,56 @@ class Qwen3MoeLLMModel(Qwen3MoeModel): 
     | 
|
| 
       155 
116 
     | 
    
         
             
                    return hidden_states, aux_hidden_states
         
     | 
| 
       156 
117 
     | 
    
         | 
| 
       157 
118 
     | 
    
         | 
| 
       158 
     | 
    
         
            -
             
     | 
| 
       159 
     | 
    
         
            -
                 
     | 
| 
       160 
     | 
    
         
            -
             
     | 
| 
       161 
     | 
    
         
            -
             
     | 
| 
       162 
     | 
    
         
            -
             
     | 
| 
       163 
     | 
    
         
            -
             
     | 
| 
       164 
     | 
    
         
            -
             
     | 
| 
       165 
     | 
    
         
            -
                 
     | 
| 
       166 
     | 
    
         
            -
             
     | 
| 
       167 
     | 
    
         
            -
             
     | 
| 
       168 
     | 
    
         
            -
             
     | 
| 
       169 
     | 
    
         
            -
             
     | 
| 
       170 
     | 
    
         
            -
             
     | 
| 
       171 
     | 
    
         
            -
             
     | 
| 
       172 
     | 
    
         
            -
                         
     | 
| 
       173 
     | 
    
         
            -
                         
     | 
| 
       174 
     | 
    
         
            -
             
     | 
| 
       175 
     | 
    
         
            -
             
     | 
| 
       176 
     | 
    
         
            -
             
     | 
| 
       177 
     | 
    
         
            -
             
     | 
| 
       178 
     | 
    
         
            -
             
     | 
| 
       179 
     | 
    
         
            -
                        config=config,
         
     | 
| 
       180 
     | 
    
         
            -
                        quant_config=quant_config,
         
     | 
| 
       181 
     | 
    
         
            -
                        prefix=add_prefix("model", prefix),
         
     | 
| 
       182 
     | 
    
         
            -
                    )
         
     | 
| 
       183 
     | 
    
         
            -
             
     | 
| 
       184 
     | 
    
         
            -
                    if config.tie_word_embeddings:
         
     | 
| 
       185 
     | 
    
         
            -
                        self.lm_head = self.model.embed_tokens
         
     | 
| 
       186 
     | 
    
         
            -
                    else:
         
     | 
| 
       187 
     | 
    
         
            -
                        self.lm_head = ParallelLMHead(
         
     | 
| 
       188 
     | 
    
         
            -
                            config.vocab_size,
         
     | 
| 
       189 
     | 
    
         
            -
                            config.hidden_size,
         
     | 
| 
       190 
     | 
    
         
            -
                            quant_config=quant_config,
         
     | 
| 
       191 
     | 
    
         
            -
                            prefix=add_prefix("lm_head", prefix),
         
     | 
| 
      
 119 
     | 
    
         
            +
            def load_fused_expert_weights(
         
     | 
| 
      
 120 
     | 
    
         
            +
                name: str,
         
     | 
| 
      
 121 
     | 
    
         
            +
                params_dict: dict,
         
     | 
| 
      
 122 
     | 
    
         
            +
                loaded_weight: torch.Tensor,
         
     | 
| 
      
 123 
     | 
    
         
            +
                shard_id: str,
         
     | 
| 
      
 124 
     | 
    
         
            +
                num_experts: int,
         
     | 
| 
      
 125 
     | 
    
         
            +
            ):
         
     | 
| 
      
 126 
     | 
    
         
            +
                param = params_dict[name]
         
     | 
| 
      
 127 
     | 
    
         
            +
                # weight_loader = typing.cast(Callable[..., bool], param.weight_loader)
         
     | 
| 
      
 128 
     | 
    
         
            +
                weight_loader = param.weight_loader
         
     | 
| 
      
 129 
     | 
    
         
            +
                ep_rank = get_tensor_model_parallel_rank()
         
     | 
| 
      
 130 
     | 
    
         
            +
                ep_size = get_moe_expert_parallel_world_size()
         
     | 
| 
      
 131 
     | 
    
         
            +
                if ep_size == 1:
         
     | 
| 
      
 132 
     | 
    
         
            +
                    for expert_id in range(num_experts):
         
     | 
| 
      
 133 
     | 
    
         
            +
                        curr_expert_weight = loaded_weight[expert_id]
         
     | 
| 
      
 134 
     | 
    
         
            +
                        weight_loader(
         
     | 
| 
      
 135 
     | 
    
         
            +
                            param,
         
     | 
| 
      
 136 
     | 
    
         
            +
                            curr_expert_weight,
         
     | 
| 
      
 137 
     | 
    
         
            +
                            name,
         
     | 
| 
      
 138 
     | 
    
         
            +
                            shard_id,
         
     | 
| 
      
 139 
     | 
    
         
            +
                            expert_id,
         
     | 
| 
       192 
140 
     | 
    
         
             
                        )
         
     | 
| 
       193 
     | 
    
         
            -
             
     | 
| 
       194 
     | 
    
         
            -
             
     | 
| 
       195 
     | 
    
         
            -
                     
     | 
| 
       196 
     | 
    
         
            -
                     
     | 
| 
       197 
     | 
    
         
            -
             
     | 
| 
       198 
     | 
    
         
            -
                    # deepstack
         
     | 
| 
       199 
     | 
    
         
            -
                    self.deepstack_visual_indexes = self.visual.deepstack_visual_indexes
         
     | 
| 
       200 
     | 
    
         
            -
                    self.num_deepstack_embeddings = len(self.deepstack_visual_indexes)
         
     | 
| 
       201 
     | 
    
         
            -
             
     | 
| 
       202 
     | 
    
         
            -
                @property
         
     | 
| 
       203 
     | 
    
         
            -
                def use_deepstack(self) -> bool:
         
     | 
| 
       204 
     | 
    
         
            -
                    return hasattr(self, "deepstack_visual_indexes")
         
     | 
| 
       205 
     | 
    
         
            -
             
     | 
| 
       206 
     | 
    
         
            -
                def forward(
         
     | 
| 
       207 
     | 
    
         
            -
                    self,
         
     | 
| 
       208 
     | 
    
         
            -
                    input_ids: torch.Tensor,
         
     | 
| 
       209 
     | 
    
         
            -
                    positions: torch.Tensor,
         
     | 
| 
       210 
     | 
    
         
            -
                    forward_batch: ForwardBatch,
         
     | 
| 
       211 
     | 
    
         
            -
                    get_embedding: bool = False,
         
     | 
| 
       212 
     | 
    
         
            -
                ):
         
     | 
| 
       213 
     | 
    
         
            -
                    """Run forward pass for Qwen3-VL.
         
     | 
| 
       214 
     | 
    
         
            -
             
     | 
| 
       215 
     | 
    
         
            -
                    Args:
         
     | 
| 
       216 
     | 
    
         
            -
                        input_ids: Flattened (concatenated) input_ids corresponding to a
         
     | 
| 
       217 
     | 
    
         
            -
                            batch.
         
     | 
| 
       218 
     | 
    
         
            -
                        positions: Flattened (concatenated) position ids corresponding to a
         
     | 
| 
       219 
     | 
    
         
            -
                            batch.
         
     | 
| 
       220 
     | 
    
         
            -
                            **NOTE**: If mrope is enabled (default setting for Qwen2-VL
         
     | 
| 
       221 
     | 
    
         
            -
                            opensource models), the shape will be `(3, seq_len)`,
         
     | 
| 
       222 
     | 
    
         
            -
                            otherwise it will be `(seq_len,).
         
     | 
| 
       223 
     | 
    
         
            -
                            (Use input_metadata.mrope_positions to replace it)
         
     | 
| 
       224 
     | 
    
         
            -
                    """
         
     | 
| 
       225 
     | 
    
         
            -
                    if self.is_mrope_enabled:
         
     | 
| 
       226 
     | 
    
         
            -
                        positions = forward_batch.mrope_positions
         
     | 
| 
       227 
     | 
    
         
            -
             
     | 
| 
       228 
     | 
    
         
            -
                    if not (
         
     | 
| 
       229 
     | 
    
         
            -
                        forward_batch.forward_mode.is_decode()
         
     | 
| 
       230 
     | 
    
         
            -
                        or not forward_batch.contains_image_inputs()
         
     | 
| 
       231 
     | 
    
         
            -
                    ):
         
     | 
| 
       232 
     | 
    
         
            -
                        if self.is_mrope_enabled:
         
     | 
| 
       233 
     | 
    
         
            -
                            assert positions.ndim == 2 and positions.size(0) == 3, (
         
     | 
| 
       234 
     | 
    
         
            -
                                "multimodal section rotary embedding requires "
         
     | 
| 
       235 
     | 
    
         
            -
                                f"(3, seq_len) positions, but got {positions.size()}"
         
     | 
| 
       236 
     | 
    
         
            -
                            )
         
     | 
| 
       237 
     | 
    
         
            -
             
     | 
| 
       238 
     | 
    
         
            -
                    hidden_states = general_mm_embed_routine(
         
     | 
| 
       239 
     | 
    
         
            -
                        input_ids=input_ids,
         
     | 
| 
       240 
     | 
    
         
            -
                        forward_batch=forward_batch,
         
     | 
| 
       241 
     | 
    
         
            -
                        language_model=self.model,
         
     | 
| 
       242 
     | 
    
         
            -
                        multimodal_model=self,
         
     | 
| 
       243 
     | 
    
         
            -
                        positions=positions,
         
     | 
| 
       244 
     | 
    
         
            -
                        use_deepstack=self.use_deepstack,
         
     | 
| 
      
 141 
     | 
    
         
            +
                else:
         
     | 
| 
      
 142 
     | 
    
         
            +
                    experts_per_ep = num_experts // ep_size
         
     | 
| 
      
 143 
     | 
    
         
            +
                    start_expert = ep_rank * experts_per_ep
         
     | 
| 
      
 144 
     | 
    
         
            +
                    end_expert = (
         
     | 
| 
      
 145 
     | 
    
         
            +
                        (ep_rank + 1) * experts_per_ep if ep_rank != ep_size - 1 else num_experts
         
     | 
| 
       245 
146 
     | 
    
         
             
                    )
         
     | 
| 
       246 
147 
     | 
    
         | 
| 
       247 
     | 
    
         
            -
                     
     | 
| 
       248 
     | 
    
         
            -
                         
     | 
| 
       249 
     | 
    
         
            -
             
     | 
| 
      
 148 
     | 
    
         
            +
                    for idx, expert_id in enumerate(range(start_expert, end_expert)):
         
     | 
| 
      
 149 
     | 
    
         
            +
                        curr_expert_weight = loaded_weight[expert_id]
         
     | 
| 
      
 150 
     | 
    
         
            +
                        weight_loader(
         
     | 
| 
      
 151 
     | 
    
         
            +
                            param,
         
     | 
| 
      
 152 
     | 
    
         
            +
                            curr_expert_weight,
         
     | 
| 
      
 153 
     | 
    
         
            +
                            name,
         
     | 
| 
      
 154 
     | 
    
         
            +
                            shard_id,
         
     | 
| 
      
 155 
     | 
    
         
            +
                            idx,
         
     | 
| 
       250 
156 
     | 
    
         
             
                        )
         
     | 
| 
       251 
     | 
    
         
            -
             
     | 
| 
       252 
     | 
    
         
            -
                        return self.pooler(hidden_states, forward_batch)
         
     | 
| 
      
 157 
     | 
    
         
            +
                return True
         
     | 
| 
       253 
158 
     | 
    
         | 
| 
       254 
     | 
    
         
            -
             
     | 
| 
      
 159 
     | 
    
         
            +
             
     | 
| 
      
 160 
     | 
    
         
            +
            class Qwen3VLMoeForConditionalGeneration(Qwen3VLForConditionalGeneration):
         
     | 
| 
      
 161 
     | 
    
         
            +
                def __init__(
         
     | 
| 
       255 
162 
     | 
    
         
             
                    self,
         
     | 
| 
       256 
     | 
    
         
            -
                     
     | 
| 
       257 
     | 
    
         
            -
                     
     | 
| 
       258 
     | 
    
         
            -
                     
     | 
| 
       259 
     | 
    
         
            -
                     
     | 
| 
       260 
     | 
    
         
            -
                    num_experts: int,
         
     | 
| 
      
 163 
     | 
    
         
            +
                    config: Qwen3VLMoeConfig,
         
     | 
| 
      
 164 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 165 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 166 
     | 
    
         
            +
                    language_model_cls=Qwen3MoeLLMModel,
         
     | 
| 
       261 
167 
     | 
    
         
             
                ):
         
     | 
| 
       262 
     | 
    
         
            -
                     
     | 
| 
       263 
     | 
    
         
            -
                    # weight_loader = typing.cast(Callable[..., bool], param.weight_loader)
         
     | 
| 
       264 
     | 
    
         
            -
                    weight_loader = param.weight_loader
         
     | 
| 
       265 
     | 
    
         
            -
                    ep_rank = get_tensor_model_parallel_rank()
         
     | 
| 
       266 
     | 
    
         
            -
                    ep_size = get_moe_expert_parallel_world_size()
         
     | 
| 
       267 
     | 
    
         
            -
                    if ep_size == 1:
         
     | 
| 
       268 
     | 
    
         
            -
                        for expert_id in range(num_experts):
         
     | 
| 
       269 
     | 
    
         
            -
                            curr_expert_weight = loaded_weight[expert_id]
         
     | 
| 
       270 
     | 
    
         
            -
                            weight_loader(
         
     | 
| 
       271 
     | 
    
         
            -
                                param,
         
     | 
| 
       272 
     | 
    
         
            -
                                curr_expert_weight,
         
     | 
| 
       273 
     | 
    
         
            -
                                name,
         
     | 
| 
       274 
     | 
    
         
            -
                                shard_id,
         
     | 
| 
       275 
     | 
    
         
            -
                                expert_id,
         
     | 
| 
       276 
     | 
    
         
            -
                            )
         
     | 
| 
       277 
     | 
    
         
            -
                    else:
         
     | 
| 
       278 
     | 
    
         
            -
                        experts_per_ep = num_experts // ep_size
         
     | 
| 
       279 
     | 
    
         
            -
                        start_expert = ep_rank * experts_per_ep
         
     | 
| 
       280 
     | 
    
         
            -
                        end_expert = (
         
     | 
| 
       281 
     | 
    
         
            -
                            (ep_rank + 1) * experts_per_ep
         
     | 
| 
       282 
     | 
    
         
            -
                            if ep_rank != ep_size - 1
         
     | 
| 
       283 
     | 
    
         
            -
                            else num_experts
         
     | 
| 
       284 
     | 
    
         
            -
                        )
         
     | 
| 
       285 
     | 
    
         
            -
             
     | 
| 
       286 
     | 
    
         
            -
                        for idx, expert_id in enumerate(range(start_expert, end_expert)):
         
     | 
| 
       287 
     | 
    
         
            -
                            curr_expert_weight = loaded_weight[expert_id]
         
     | 
| 
       288 
     | 
    
         
            -
                            weight_loader(
         
     | 
| 
       289 
     | 
    
         
            -
                                param,
         
     | 
| 
       290 
     | 
    
         
            -
                                curr_expert_weight,
         
     | 
| 
       291 
     | 
    
         
            -
                                name,
         
     | 
| 
       292 
     | 
    
         
            -
                                shard_id,
         
     | 
| 
       293 
     | 
    
         
            -
                                idx,
         
     | 
| 
       294 
     | 
    
         
            -
                            )
         
     | 
| 
       295 
     | 
    
         
            -
                    return True
         
     | 
| 
      
 168 
     | 
    
         
            +
                    super().__init__(config, quant_config, prefix, language_model_cls)
         
     | 
| 
       296 
169 
     | 
    
         | 
| 
       297 
170 
     | 
    
         
             
                def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
         
     | 
| 
       298 
171 
     | 
    
         
             
                    stacked_params_mapping = [
         
     | 
| 
         @@ -338,8 +211,7 @@ class Qwen3VLMoeForConditionalGeneration(Qwen3VLForConditionalGeneration): 
     | 
|
| 
       338 
211 
     | 
    
         
             
                        self._cached_params_dict = dict(self.named_parameters())
         
     | 
| 
       339 
212 
     | 
    
         
             
                    params_dict = self._cached_params_dict
         
     | 
| 
       340 
213 
     | 
    
         
             
                    for name, loaded_weight in weights:
         
     | 
| 
       341 
     | 
    
         
            -
                         
     | 
| 
       342 
     | 
    
         
            -
                            name = name.replace(r"model.language_model.", r"model.")
         
     | 
| 
      
 214 
     | 
    
         
            +
                        name = name.replace(r"model.language_model.", r"model.")
         
     | 
| 
       343 
215 
     | 
    
         | 
| 
       344 
216 
     | 
    
         
             
                        for param_name, weight_name, shard_id in stacked_params_mapping:
         
     | 
| 
       345 
217 
     | 
    
         
             
                            if "experts.gate_up_proj" in name or "experts.down_proj" in name:
         
     | 
| 
         @@ -393,14 +265,14 @@ class Qwen3VLMoeForConditionalGeneration(Qwen3VLForConditionalGeneration): 
     | 
|
| 
       393 
265 
     | 
    
         
             
                                    loaded_weight = loaded_weight.transpose(-1, -2)  # no bias
         
     | 
| 
       394 
266 
     | 
    
         
             
                                    if "experts.gate_up_proj" in name:
         
     | 
| 
       395 
267 
     | 
    
         
             
                                        loaded_weight = loaded_weight.chunk(2, dim=-2)
         
     | 
| 
       396 
     | 
    
         
            -
                                         
     | 
| 
      
 268 
     | 
    
         
            +
                                        load_fused_expert_weights(
         
     | 
| 
       397 
269 
     | 
    
         
             
                                            name_mapped,
         
     | 
| 
       398 
270 
     | 
    
         
             
                                            params_dict,
         
     | 
| 
       399 
271 
     | 
    
         
             
                                            loaded_weight[0],
         
     | 
| 
       400 
272 
     | 
    
         
             
                                            "w1",
         
     | 
| 
       401 
273 
     | 
    
         
             
                                            num_experts,
         
     | 
| 
       402 
274 
     | 
    
         
             
                                        )
         
     | 
| 
       403 
     | 
    
         
            -
                                         
     | 
| 
      
 275 
     | 
    
         
            +
                                        load_fused_expert_weights(
         
     | 
| 
       404 
276 
     | 
    
         
             
                                            name_mapped,
         
     | 
| 
       405 
277 
     | 
    
         
             
                                            params_dict,
         
     | 
| 
       406 
278 
     | 
    
         
             
                                            loaded_weight[1],
         
     | 
| 
         @@ -408,7 +280,7 @@ class Qwen3VLMoeForConditionalGeneration(Qwen3VLForConditionalGeneration): 
     | 
|
| 
       408 
280 
     | 
    
         
             
                                            num_experts,
         
     | 
| 
       409 
281 
     | 
    
         
             
                                        )
         
     | 
| 
       410 
282 
     | 
    
         
             
                                    else:
         
     | 
| 
       411 
     | 
    
         
            -
                                         
     | 
| 
      
 283 
     | 
    
         
            +
                                        load_fused_expert_weights(
         
     | 
| 
       412 
284 
     | 
    
         
             
                                            name_mapped,
         
     | 
| 
       413 
285 
     | 
    
         
             
                                            params_dict,
         
     | 
| 
       414 
286 
     | 
    
         
             
                                            loaded_weight,
         
     | 
    
        sglang/srt/models/roberta.py
    CHANGED
    
    | 
         @@ -1,6 +1,6 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            # SPDX-License-Identifier: Apache-2.0
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
     | 
    
         
            -
            import  
     | 
| 
      
 3 
     | 
    
         
            +
            import os
         
     | 
| 
       4 
4 
     | 
    
         
             
            from typing import Iterable, Optional, Tuple
         
     | 
| 
       5 
5 
     | 
    
         | 
| 
       6 
6 
     | 
    
         
             
            import torch
         
     | 
| 
         @@ -8,10 +8,12 @@ from torch import nn 
     | 
|
| 
       8 
8 
     | 
    
         | 
| 
       9 
9 
     | 
    
         
             
            from sglang.srt.layers.pooler import CrossEncodingPooler, Pooler, PoolingType
         
     | 
| 
       10 
10 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
      
 11 
     | 
    
         
            +
            from sglang.srt.layers.sparse_pooler import SparsePooler
         
     | 
| 
       11 
12 
     | 
    
         
             
            from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
         
     | 
| 
       12 
13 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
       13 
14 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import default_weight_loader
         
     | 
| 
       14 
15 
     | 
    
         
             
            from sglang.srt.models.bert import BertEncoder
         
     | 
| 
      
 16 
     | 
    
         
            +
            from sglang.srt.utils.hf_transformers_utils import download_from_hf
         
     | 
| 
       15 
17 
     | 
    
         | 
| 
       16 
18 
     | 
    
         
             
            RobertaConfig = None
         
     | 
| 
       17 
19 
     | 
    
         | 
| 
         @@ -206,12 +208,29 @@ class XLMRobertaModel(nn.Module): 
     | 
|
| 
       206 
208 
     | 
    
         
             
                    config: RobertaConfig,
         
     | 
| 
       207 
209 
     | 
    
         
             
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
       208 
210 
     | 
    
         
             
                    prefix: str = "",
         
     | 
| 
      
 211 
     | 
    
         
            +
                    sparse_head: Optional[str] = None,
         
     | 
| 
      
 212 
     | 
    
         
            +
                    model_path: Optional[str] = None,
         
     | 
| 
       209 
213 
     | 
    
         
             
                ):
         
     | 
| 
       210 
214 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       211 
215 
     | 
    
         
             
                    self.roberta = XLMRobertaBaseModel(
         
     | 
| 
       212 
216 
     | 
    
         
             
                        config=config, quant_config=quant_config, prefix=prefix
         
     | 
| 
       213 
217 
     | 
    
         
             
                    )
         
     | 
| 
       214 
     | 
    
         
            -
                     
     | 
| 
      
 218 
     | 
    
         
            +
                    if sparse_head is not None:
         
     | 
| 
      
 219 
     | 
    
         
            +
                        self._is_sparse = True
         
     | 
| 
      
 220 
     | 
    
         
            +
                        self._model_path = model_path
         
     | 
| 
      
 221 
     | 
    
         
            +
                        self._sparse_head = sparse_head
         
     | 
| 
      
 222 
     | 
    
         
            +
                        self.pooler = SparsePooler(config=config)
         
     | 
| 
      
 223 
     | 
    
         
            +
                        # Zero out special tokens
         
     | 
| 
      
 224 
     | 
    
         
            +
                        self._special_tokens = [
         
     | 
| 
      
 225 
     | 
    
         
            +
                            config.bos_token_id,
         
     | 
| 
      
 226 
     | 
    
         
            +
                            config.eos_token_id,
         
     | 
| 
      
 227 
     | 
    
         
            +
                            config.pad_token_id,
         
     | 
| 
      
 228 
     | 
    
         
            +
                            # self.config.unk_token_id # not available in the XLMRobertaConfig
         
     | 
| 
      
 229 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 230 
     | 
    
         
            +
                        self._special_tokens = [t for t in self._special_tokens if t is not None]
         
     | 
| 
      
 231 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 232 
     | 
    
         
            +
                        self._is_sparse = False
         
     | 
| 
      
 233 
     | 
    
         
            +
                        self.pooler = Pooler(pooling_type=PoolingType.CLS, normalize=True)
         
     | 
| 
       215 
234 
     | 
    
         | 
| 
       216 
235 
     | 
    
         
             
                def forward(
         
     | 
| 
       217 
236 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -224,11 +243,44 @@ class XLMRobertaModel(nn.Module): 
     | 
|
| 
       224 
243 
     | 
    
         
             
                    hidden_states = self.roberta(
         
     | 
| 
       225 
244 
     | 
    
         
             
                        input_ids, positions, forward_batch, input_embeds, get_embedding
         
     | 
| 
       226 
245 
     | 
    
         
             
                    )
         
     | 
| 
       227 
     | 
    
         
            -
                     
     | 
| 
      
 246 
     | 
    
         
            +
                    embeddings = self.pooler(hidden_states, forward_batch)
         
     | 
| 
      
 247 
     | 
    
         
            +
             
     | 
| 
      
 248 
     | 
    
         
            +
                    if self._is_sparse:
         
     | 
| 
      
 249 
     | 
    
         
            +
                        for token_id in self._special_tokens:
         
     | 
| 
      
 250 
     | 
    
         
            +
                            embeddings.embeddings[:, token_id] = 0.0
         
     | 
| 
      
 251 
     | 
    
         
            +
                        embeddings.embeddings = embeddings.embeddings.to_sparse()
         
     | 
| 
      
 252 
     | 
    
         
            +
             
     | 
| 
      
 253 
     | 
    
         
            +
                    return embeddings
         
     | 
| 
       228 
254 
     | 
    
         | 
| 
       229 
255 
     | 
    
         
             
                def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
         
     | 
| 
       230 
256 
     | 
    
         
             
                    self.roberta.load_weights(weights)
         
     | 
| 
       231 
257 
     | 
    
         | 
| 
      
 258 
     | 
    
         
            +
                    if self._is_sparse:
         
     | 
| 
      
 259 
     | 
    
         
            +
                        sparse_dict = XLMRobertaModel._load_sparse_linear(
         
     | 
| 
      
 260 
     | 
    
         
            +
                            self._model_path, self._sparse_head
         
     | 
| 
      
 261 
     | 
    
         
            +
                        )
         
     | 
| 
      
 262 
     | 
    
         
            +
                        self.pooler.load_weights(sparse_dict)
         
     | 
| 
      
 263 
     | 
    
         
            +
             
     | 
| 
      
 264 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 265 
     | 
    
         
            +
                def _load_sparse_linear(model_path_or_dir: str, sparse_head: str) -> dict:
         
     | 
| 
      
 266 
     | 
    
         
            +
                    """
         
     | 
| 
      
 267 
     | 
    
         
            +
                    Load sparse_head from local dir or HF Hub.
         
     | 
| 
      
 268 
     | 
    
         
            +
                    Returns a state_dict suitable for nn.Linear.load_state_dict().
         
     | 
| 
      
 269 
     | 
    
         
            +
                    """
         
     | 
| 
      
 270 
     | 
    
         
            +
                    if os.path.isdir(model_path_or_dir):
         
     | 
| 
      
 271 
     | 
    
         
            +
                        path = os.path.join(model_path_or_dir, sparse_head)
         
     | 
| 
      
 272 
     | 
    
         
            +
                        if not os.path.exists(path):
         
     | 
| 
      
 273 
     | 
    
         
            +
                            raise FileNotFoundError(
         
     | 
| 
      
 274 
     | 
    
         
            +
                                f"'{sparse_head}' not found in {model_path_or_dir}"
         
     | 
| 
      
 275 
     | 
    
         
            +
                            )
         
     | 
| 
      
 276 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 277 
     | 
    
         
            +
                        # remote → use SGLang HF utility
         
     | 
| 
      
 278 
     | 
    
         
            +
                        local_dir = download_from_hf(model_path_or_dir, allow_patterns=sparse_head)
         
     | 
| 
      
 279 
     | 
    
         
            +
                        path = os.path.join(local_dir, sparse_head)
         
     | 
| 
      
 280 
     | 
    
         
            +
             
     | 
| 
      
 281 
     | 
    
         
            +
                    state_dict = torch.load(path)
         
     | 
| 
      
 282 
     | 
    
         
            +
                    return state_dict
         
     | 
| 
      
 283 
     | 
    
         
            +
             
     | 
| 
       232 
284 
     | 
    
         | 
| 
       233 
285 
     | 
    
         
             
            class XLMRobertaForSequenceClassification(nn.Module):
         
     | 
| 
       234 
286 
     | 
    
         
             
                def __init__(
         
     | 
    
        sglang/srt/models/step3_vl.py
    CHANGED
    
    | 
         @@ -1,8 +1,7 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            import logging
         
     | 
| 
       2 
2 
     | 
    
         
             
            import math
         
     | 
| 
       3 
     | 
    
         
            -
            from collections.abc import Iterable
         
     | 
| 
       4 
3 
     | 
    
         
             
            from math import sqrt
         
     | 
| 
       5 
     | 
    
         
            -
            from typing import Any, Dict, Iterable, List,  
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import Any, Dict, Iterable, List, Optional, Tuple
         
     | 
| 
       6 
5 
     | 
    
         | 
| 
       7 
6 
     | 
    
         
             
            import torch
         
     | 
| 
       8 
7 
     | 
    
         
             
            from torch import nn
         
     | 
| 
         @@ -57,7 +56,6 @@ from sglang.srt.managers.schedule_batch import ( 
     | 
|
| 
       57 
56 
     | 
    
         
             
                Modality,
         
     | 
| 
       58 
57 
     | 
    
         
             
                MultimodalDataItem,
         
     | 
| 
       59 
58 
     | 
    
         
             
                MultimodalInputs,
         
     | 
| 
       60 
     | 
    
         
            -
                global_server_args_dict,
         
     | 
| 
       61 
59 
     | 
    
         
             
            )
         
     | 
| 
       62 
60 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
       63 
61 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import default_weight_loader
         
     | 
| 
         @@ -300,7 +298,7 @@ class Step3TextDecoderLayer(nn.Module): 
     | 
|
| 
       300 
298 
     | 
    
         
             
                    # self.n_shared_experts = 1
         
     | 
| 
       301 
299 
     | 
    
         
             
                    # self.num_fused_shared_experts = (
         
     | 
| 
       302 
300 
     | 
    
         
             
                    #     0
         
     | 
| 
       303 
     | 
    
         
            -
                    #     if  
     | 
| 
      
 301 
     | 
    
         
            +
                    #     if global_server_args.disable_shared_experts_fusion
         
     | 
| 
       304 
302 
     | 
    
         
             
                    #     else self.n_shared_experts
         
     | 
| 
       305 
303 
     | 
    
         
             
                    # )
         
     | 
| 
       306 
304 
     | 
    
         
             
                    self.num_fused_shared_experts = 0
         
     | 
| 
         @@ -774,7 +772,7 @@ class Step3VLForConditionalGeneration(nn.Module): 
     | 
|
| 
       774 
772 
     | 
    
         
             
                    # self.n_shared_experts = 1
         
     | 
| 
       775 
773 
     | 
    
         
             
                    # self.num_fused_shared_experts = (
         
     | 
| 
       776 
774 
     | 
    
         
             
                    #     0
         
     | 
| 
       777 
     | 
    
         
            -
                    #     if  
     | 
| 
      
 775 
     | 
    
         
            +
                    #     if global_server_args.disable_shared_experts_fusion
         
     | 
| 
       778 
776 
     | 
    
         
             
                    #     else self.n_shared_experts
         
     | 
| 
       779 
777 
     | 
    
         
             
                    # )
         
     | 
| 
       780 
778 
     | 
    
         
             
                    self.num_fused_shared_experts = 0
         
     |