sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,146 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            {
         
     | 
| 
      
 2 
     | 
    
         
            +
                "1": {
         
     | 
| 
      
 3 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 4 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 5 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 6 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 7 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 8 
     | 
    
         
            +
                    "num_stages": 4
         
     | 
| 
      
 9 
     | 
    
         
            +
                },
         
     | 
| 
      
 10 
     | 
    
         
            +
                "2": {
         
     | 
| 
      
 11 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 12 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 13 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 14 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 15 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 16 
     | 
    
         
            +
                    "num_stages": 4
         
     | 
| 
      
 17 
     | 
    
         
            +
                },
         
     | 
| 
      
 18 
     | 
    
         
            +
                "4": {
         
     | 
| 
      
 19 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 20 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 21 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 22 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 23 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 24 
     | 
    
         
            +
                    "num_stages": 4
         
     | 
| 
      
 25 
     | 
    
         
            +
                },
         
     | 
| 
      
 26 
     | 
    
         
            +
                "8": {
         
     | 
| 
      
 27 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 28 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 29 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 30 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 31 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 32 
     | 
    
         
            +
                    "num_stages": 4
         
     | 
| 
      
 33 
     | 
    
         
            +
                },
         
     | 
| 
      
 34 
     | 
    
         
            +
                "16": {
         
     | 
| 
      
 35 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 36 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 37 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 38 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 39 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 40 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 41 
     | 
    
         
            +
                },
         
     | 
| 
      
 42 
     | 
    
         
            +
                "24": {
         
     | 
| 
      
 43 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 44 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 45 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 46 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 47 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 48 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 49 
     | 
    
         
            +
                },
         
     | 
| 
      
 50 
     | 
    
         
            +
                "32": {
         
     | 
| 
      
 51 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 52 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 53 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 54 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 55 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 56 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 57 
     | 
    
         
            +
                },
         
     | 
| 
      
 58 
     | 
    
         
            +
                "48": {
         
     | 
| 
      
 59 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 60 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 61 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 62 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 63 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 64 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 65 
     | 
    
         
            +
                },
         
     | 
| 
      
 66 
     | 
    
         
            +
                "64": {
         
     | 
| 
      
 67 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 68 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 69 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 70 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 71 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 72 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 73 
     | 
    
         
            +
                },
         
     | 
| 
      
 74 
     | 
    
         
            +
                "96": {
         
     | 
| 
      
 75 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 76 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 77 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 78 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 79 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 80 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 81 
     | 
    
         
            +
                },
         
     | 
| 
      
 82 
     | 
    
         
            +
                "128": {
         
     | 
| 
      
 83 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 84 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 85 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 86 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 87 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 88 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 89 
     | 
    
         
            +
                },
         
     | 
| 
      
 90 
     | 
    
         
            +
                "256": {
         
     | 
| 
      
 91 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 92 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 93 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 94 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 95 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 96 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 97 
     | 
    
         
            +
                },
         
     | 
| 
      
 98 
     | 
    
         
            +
                "512": {
         
     | 
| 
      
 99 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 64,
         
     | 
| 
      
 100 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 101 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 102 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 103 
     | 
    
         
            +
                    "num_warps": 8,
         
     | 
| 
      
 104 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 105 
     | 
    
         
            +
                },
         
     | 
| 
      
 106 
     | 
    
         
            +
                "1024": {
         
     | 
| 
      
 107 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 64,
         
     | 
| 
      
 108 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 109 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 110 
     | 
    
         
            +
                    "GROUP_SIZE_M": 16,
         
     | 
| 
      
 111 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 112 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 113 
     | 
    
         
            +
                },
         
     | 
| 
      
 114 
     | 
    
         
            +
                "1536": {
         
     | 
| 
      
 115 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 128,
         
     | 
| 
      
 116 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 117 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 118 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 119 
     | 
    
         
            +
                    "num_warps": 8,
         
     | 
| 
      
 120 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 121 
     | 
    
         
            +
                },
         
     | 
| 
      
 122 
     | 
    
         
            +
                "2048": {
         
     | 
| 
      
 123 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 64,
         
     | 
| 
      
 124 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 125 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 126 
     | 
    
         
            +
                    "GROUP_SIZE_M": 16,
         
     | 
| 
      
 127 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 128 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 129 
     | 
    
         
            +
                },
         
     | 
| 
      
 130 
     | 
    
         
            +
                "3072": {
         
     | 
| 
      
 131 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 128,
         
     | 
| 
      
 132 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 133 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 134 
     | 
    
         
            +
                    "GROUP_SIZE_M": 16,
         
     | 
| 
      
 135 
     | 
    
         
            +
                    "num_warps": 8,
         
     | 
| 
      
 136 
     | 
    
         
            +
                    "num_stages": 4
         
     | 
| 
      
 137 
     | 
    
         
            +
                },
         
     | 
| 
      
 138 
     | 
    
         
            +
                "4096": {
         
     | 
| 
      
 139 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 128,
         
     | 
| 
      
 140 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 141 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 142 
     | 
    
         
            +
                    "GROUP_SIZE_M": 16,
         
     | 
| 
      
 143 
     | 
    
         
            +
                    "num_warps": 8,
         
     | 
| 
      
 144 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 145 
     | 
    
         
            +
                }
         
     | 
| 
      
 146 
     | 
    
         
            +
            }
         
     | 
    
        sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json
    ADDED
    
    | 
         @@ -0,0 +1,146 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            {
         
     | 
| 
      
 2 
     | 
    
         
            +
                "1": {
         
     | 
| 
      
 3 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 4 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 64,
         
     | 
| 
      
 5 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 6 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 7 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 8 
     | 
    
         
            +
                    "num_stages": 5
         
     | 
| 
      
 9 
     | 
    
         
            +
                },
         
     | 
| 
      
 10 
     | 
    
         
            +
                "2": {
         
     | 
| 
      
 11 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 12 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 64,
         
     | 
| 
      
 13 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 14 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 15 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 16 
     | 
    
         
            +
                    "num_stages": 5
         
     | 
| 
      
 17 
     | 
    
         
            +
                },
         
     | 
| 
      
 18 
     | 
    
         
            +
                "4": {
         
     | 
| 
      
 19 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 20 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 64,
         
     | 
| 
      
 21 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 22 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 23 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 24 
     | 
    
         
            +
                    "num_stages": 5
         
     | 
| 
      
 25 
     | 
    
         
            +
                },
         
     | 
| 
      
 26 
     | 
    
         
            +
                "8": {
         
     | 
| 
      
 27 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 28 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 29 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 30 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 31 
     | 
    
         
            +
                    "num_warps": 8,
         
     | 
| 
      
 32 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 33 
     | 
    
         
            +
                },
         
     | 
| 
      
 34 
     | 
    
         
            +
                "16": {
         
     | 
| 
      
 35 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 36 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 64,
         
     | 
| 
      
 37 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 38 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 39 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 40 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 41 
     | 
    
         
            +
                },
         
     | 
| 
      
 42 
     | 
    
         
            +
                "24": {
         
     | 
| 
      
 43 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 44 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 256,
         
     | 
| 
      
 45 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 46 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 47 
     | 
    
         
            +
                    "num_warps": 8,
         
     | 
| 
      
 48 
     | 
    
         
            +
                    "num_stages": 2
         
     | 
| 
      
 49 
     | 
    
         
            +
                },
         
     | 
| 
      
 50 
     | 
    
         
            +
                "32": {
         
     | 
| 
      
 51 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 52 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 53 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 54 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 55 
     | 
    
         
            +
                    "num_warps": 8,
         
     | 
| 
      
 56 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 57 
     | 
    
         
            +
                },
         
     | 
| 
      
 58 
     | 
    
         
            +
                "48": {
         
     | 
| 
      
 59 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 60 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 61 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 62 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 63 
     | 
    
         
            +
                    "num_warps": 8,
         
     | 
| 
      
 64 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 65 
     | 
    
         
            +
                },
         
     | 
| 
      
 66 
     | 
    
         
            +
                "64": {
         
     | 
| 
      
 67 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 68 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 69 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 70 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 71 
     | 
    
         
            +
                    "num_warps": 8,
         
     | 
| 
      
 72 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 73 
     | 
    
         
            +
                },
         
     | 
| 
      
 74 
     | 
    
         
            +
                "96": {
         
     | 
| 
      
 75 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 76 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 64,
         
     | 
| 
      
 77 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 78 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 79 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 80 
     | 
    
         
            +
                    "num_stages": 2
         
     | 
| 
      
 81 
     | 
    
         
            +
                },
         
     | 
| 
      
 82 
     | 
    
         
            +
                "128": {
         
     | 
| 
      
 83 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 84 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 64,
         
     | 
| 
      
 85 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 86 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 87 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 88 
     | 
    
         
            +
                    "num_stages": 2
         
     | 
| 
      
 89 
     | 
    
         
            +
                },
         
     | 
| 
      
 90 
     | 
    
         
            +
                "256": {
         
     | 
| 
      
 91 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 16,
         
     | 
| 
      
 92 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 64,
         
     | 
| 
      
 93 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
      
 94 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 95 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 96 
     | 
    
         
            +
                    "num_stages": 2
         
     | 
| 
      
 97 
     | 
    
         
            +
                },
         
     | 
| 
      
 98 
     | 
    
         
            +
                "512": {
         
     | 
| 
      
 99 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 32,
         
     | 
| 
      
 100 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 101 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 102 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 103 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 104 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 105 
     | 
    
         
            +
                },
         
     | 
| 
      
 106 
     | 
    
         
            +
                "1024": {
         
     | 
| 
      
 107 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 64,
         
     | 
| 
      
 108 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 109 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 110 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 111 
     | 
    
         
            +
                    "num_warps": 8,
         
     | 
| 
      
 112 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 113 
     | 
    
         
            +
                },
         
     | 
| 
      
 114 
     | 
    
         
            +
                "1536": {
         
     | 
| 
      
 115 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 64,
         
     | 
| 
      
 116 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 117 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 118 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 119 
     | 
    
         
            +
                    "num_warps": 8,
         
     | 
| 
      
 120 
     | 
    
         
            +
                    "num_stages": 3
         
     | 
| 
      
 121 
     | 
    
         
            +
                },
         
     | 
| 
      
 122 
     | 
    
         
            +
                "2048": {
         
     | 
| 
      
 123 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 128,
         
     | 
| 
      
 124 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 256,
         
     | 
| 
      
 125 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 126 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 127 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 128 
     | 
    
         
            +
                    "num_stages": 2
         
     | 
| 
      
 129 
     | 
    
         
            +
                },
         
     | 
| 
      
 130 
     | 
    
         
            +
                "3072": {
         
     | 
| 
      
 131 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 128,
         
     | 
| 
      
 132 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 256,
         
     | 
| 
      
 133 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 134 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 135 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 136 
     | 
    
         
            +
                    "num_stages": 2
         
     | 
| 
      
 137 
     | 
    
         
            +
                },
         
     | 
| 
      
 138 
     | 
    
         
            +
                "4096": {
         
     | 
| 
      
 139 
     | 
    
         
            +
                    "BLOCK_SIZE_M": 128,
         
     | 
| 
      
 140 
     | 
    
         
            +
                    "BLOCK_SIZE_N": 256,
         
     | 
| 
      
 141 
     | 
    
         
            +
                    "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 142 
     | 
    
         
            +
                    "GROUP_SIZE_M": 1,
         
     | 
| 
      
 143 
     | 
    
         
            +
                    "num_warps": 4,
         
     | 
| 
      
 144 
     | 
    
         
            +
                    "num_stages": 2
         
     | 
| 
      
 145 
     | 
    
         
            +
                }
         
     | 
| 
      
 146 
     | 
    
         
            +
            }
         
     | 
| 
         @@ -16,14 +16,19 @@ _is_hip = is_hip() 
     | 
|
| 
       16 
16 
     | 
    
         | 
| 
       17 
17 
     | 
    
         | 
| 
       18 
18 
     | 
    
         
             
            def get_config_file_name(
         
     | 
| 
       19 
     | 
    
         
            -
                E: int, 
     | 
| 
      
 19 
     | 
    
         
            +
                E: int,
         
     | 
| 
      
 20 
     | 
    
         
            +
                N: int,
         
     | 
| 
      
 21 
     | 
    
         
            +
                dtype: Optional[str],
         
     | 
| 
      
 22 
     | 
    
         
            +
                block_shape: Optional[int] = None,
         
     | 
| 
      
 23 
     | 
    
         
            +
                per_channel_quant: bool = False,
         
     | 
| 
       20 
24 
     | 
    
         
             
            ) -> str:
         
     | 
| 
       21 
25 
     | 
    
         
             
                device_name = get_device_name().replace(" ", "_")
         
     | 
| 
       22 
26 
     | 
    
         
             
                dtype_selector = "" if not dtype else f",dtype={dtype}"
         
     | 
| 
       23 
27 
     | 
    
         
             
                block_shape_selector = (
         
     | 
| 
       24 
28 
     | 
    
         
             
                    "" if not block_shape or not all(block_shape) else f",block_shape={block_shape}"
         
     | 
| 
       25 
29 
     | 
    
         
             
                )
         
     | 
| 
       26 
     | 
    
         
            -
                 
     | 
| 
      
 30 
     | 
    
         
            +
                per_channel_quant_selector = ",per_channel_quant=True" if per_channel_quant else ""
         
     | 
| 
      
 31 
     | 
    
         
            +
                return f"E={E},N={N},device_name={device_name}{dtype_selector}{block_shape_selector}{per_channel_quant_selector}.json"
         
     | 
| 
       27 
32 
     | 
    
         | 
| 
       28 
33 
     | 
    
         | 
| 
       29 
34 
     | 
    
         
             
            @functools.lru_cache
         
     | 
| 
         @@ -33,6 +38,7 @@ def get_moe_configs( 
     | 
|
| 
       33 
38 
     | 
    
         
             
                dtype: Optional[str],
         
     | 
| 
       34 
39 
     | 
    
         
             
                block_n: Optional[int] = 0,
         
     | 
| 
       35 
40 
     | 
    
         
             
                block_k: Optional[int] = 0,
         
     | 
| 
      
 41 
     | 
    
         
            +
                per_channel_quant: bool = False,
         
     | 
| 
       36 
42 
     | 
    
         
             
            ) -> Optional[Dict[int, Any]]:
         
     | 
| 
       37 
43 
     | 
    
         
             
                """
         
     | 
| 
       38 
44 
     | 
    
         
             
                Return optimized configurations for the fused MoE kernel.
         
     | 
| 
         @@ -47,7 +53,9 @@ def get_moe_configs( 
     | 
|
| 
       47 
53 
     | 
    
         | 
| 
       48 
54 
     | 
    
         
             
                # First look up if an optimized configuration is available in the configs
         
     | 
| 
       49 
55 
     | 
    
         
             
                # directory
         
     | 
| 
       50 
     | 
    
         
            -
                json_file_name = get_config_file_name( 
     | 
| 
      
 56 
     | 
    
         
            +
                json_file_name = get_config_file_name(
         
     | 
| 
      
 57 
     | 
    
         
            +
                    E, N, dtype, [block_n, block_k], per_channel_quant
         
     | 
| 
      
 58 
     | 
    
         
            +
                )
         
     | 
| 
       51 
59 
     | 
    
         | 
| 
       52 
60 
     | 
    
         
             
                # We found that using the fused_moe_kernel config from Triton 3.1.0 with Triton 3.2.0 results in negative performance gains,
         
     | 
| 
       53 
61 
     | 
    
         
             
                # so we also include the Triton version as a key for finding the fused_moe_kernel config to achieve the best performance.
         
     | 
| 
         @@ -11,14 +11,19 @@ from sglang.srt.distributed import ( 
     | 
|
| 
       11 
11 
     | 
    
         
             
                get_moe_expert_parallel_world_size,
         
     | 
| 
       12 
12 
     | 
    
         
             
                get_moe_tensor_parallel_rank,
         
     | 
| 
       13 
13 
     | 
    
         
             
                get_moe_tensor_parallel_world_size,
         
     | 
| 
      
 14 
     | 
    
         
            +
                get_tp_group,
         
     | 
| 
       14 
15 
     | 
    
         
             
                tensor_model_parallel_all_reduce,
         
     | 
| 
       15 
16 
     | 
    
         
             
            )
         
     | 
| 
       16 
17 
     | 
    
         
             
            from sglang.srt.eplb.expert_location import get_global_expert_location_metadata
         
     | 
| 
       17 
18 
     | 
    
         
             
            from sglang.srt.layers.moe import (
         
     | 
| 
       18 
19 
     | 
    
         
             
                MoeRunnerConfig,
         
     | 
| 
      
 20 
     | 
    
         
            +
                get_deepep_mode,
         
     | 
| 
      
 21 
     | 
    
         
            +
                get_moe_a2a_backend,
         
     | 
| 
       19 
22 
     | 
    
         
             
                get_moe_runner_backend,
         
     | 
| 
       20 
23 
     | 
    
         
             
                should_use_flashinfer_trtllm_moe,
         
     | 
| 
       21 
24 
     | 
    
         
             
            )
         
     | 
| 
      
 25 
     | 
    
         
            +
            from sglang.srt.layers.moe.token_dispatcher import CombineInput, DispatchOutput
         
     | 
| 
      
 26 
     | 
    
         
            +
            from sglang.srt.layers.moe.token_dispatcher.base import BaseDispatcher
         
     | 
| 
       22 
27 
     | 
    
         
             
            from sglang.srt.layers.moe.token_dispatcher.standard import (
         
     | 
| 
       23 
28 
     | 
    
         
             
                StandardDispatcher,
         
     | 
| 
       24 
29 
     | 
    
         
             
                StandardDispatchOutput,
         
     | 
| 
         @@ -27,31 +32,28 @@ from sglang.srt.layers.moe.topk import TopKOutput, TopKOutputChecker 
     | 
|
| 
       27 
32 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import (
         
     | 
| 
       28 
33 
     | 
    
         
             
                FusedMoEMethodBase,
         
     | 
| 
       29 
34 
     | 
    
         
             
                QuantizationConfig,
         
     | 
| 
       30 
     | 
    
         
            -
             
     | 
| 
      
 35 
     | 
    
         
            +
            )
         
     | 
| 
      
 36 
     | 
    
         
            +
            from sglang.srt.layers.quantization.compressed_tensors.compressed_tensors_moe import (
         
     | 
| 
      
 37 
     | 
    
         
            +
                CompressedTensorsWNA16AMXEPMoEMethod,
         
     | 
| 
      
 38 
     | 
    
         
            +
                CompressedTensorsWNA16AMXMoEMethod,
         
     | 
| 
      
 39 
     | 
    
         
            +
                CompressedTensorsWNA16MoEMethod,
         
     | 
| 
       31 
40 
     | 
    
         
             
            )
         
     | 
| 
       32 
41 
     | 
    
         
             
            from sglang.srt.layers.quantization.fp8 import Fp8MoEMethod
         
     | 
| 
       33 
42 
     | 
    
         
             
            from sglang.srt.layers.quantization.modelopt_quant import ModelOptNvFp4FusedMoEMethod
         
     | 
| 
       34 
43 
     | 
    
         
             
            from sglang.srt.layers.quantization.unquant import UnquantizedFusedMoEMethod
         
     | 
| 
       35 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       36 
44 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import narrow_padded_param_and_loaded_weight
         
     | 
| 
      
 45 
     | 
    
         
            +
            from sglang.srt.two_batch_overlap import MaybeTboDeepEPDispatcher
         
     | 
| 
       37 
46 
     | 
    
         
             
            from sglang.srt.utils import (
         
     | 
| 
       38 
47 
     | 
    
         
             
                cpu_has_amx_support,
         
     | 
| 
       39 
48 
     | 
    
         
             
                get_bool_env_var,
         
     | 
| 
       40 
49 
     | 
    
         
             
                is_cpu,
         
     | 
| 
       41 
50 
     | 
    
         
             
                is_flashinfer_available,
         
     | 
| 
       42 
51 
     | 
    
         
             
                is_hip,
         
     | 
| 
       43 
     | 
    
         
            -
                next_power_of_2,
         
     | 
| 
       44 
52 
     | 
    
         
             
                round_up,
         
     | 
| 
       45 
53 
     | 
    
         
             
            )
         
     | 
| 
       46 
54 
     | 
    
         | 
| 
       47 
55 
     | 
    
         
             
            if is_flashinfer_available():
         
     | 
| 
       48 
     | 
    
         
            -
                from flashinfer import  
     | 
| 
       49 
     | 
    
         
            -
                    RoutingMethodType,
         
     | 
| 
       50 
     | 
    
         
            -
                    fp4_quantize,
         
     | 
| 
       51 
     | 
    
         
            -
                    reorder_rows_for_gated_act_gemm,
         
     | 
| 
       52 
     | 
    
         
            -
                    shuffle_matrix_a,
         
     | 
| 
       53 
     | 
    
         
            -
                    shuffle_matrix_sf_a,
         
     | 
| 
       54 
     | 
    
         
            -
                )
         
     | 
| 
      
 56 
     | 
    
         
            +
                from flashinfer import RoutingMethodType, fp4_quantize
         
     | 
| 
       55 
57 
     | 
    
         | 
| 
       56 
58 
     | 
    
         
             
            _is_hip = is_hip()
         
     | 
| 
       57 
59 
     | 
    
         
             
            _is_cpu_amx_available = cpu_has_amx_support()
         
     | 
| 
         @@ -69,14 +71,25 @@ if should_use_flashinfer_trtllm_moe(): 
     | 
|
| 
       69 
71 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       70 
72 
     | 
    
         | 
| 
       71 
73 
     | 
    
         | 
| 
       72 
     | 
    
         
            -
            def  
     | 
| 
       73 
     | 
    
         
            -
                 
     | 
| 
       74 
     | 
    
         
            -
                 
     | 
| 
       75 
     | 
    
         
            -
             
     | 
| 
       76 
     | 
    
         
            -
                 
     | 
| 
       77 
     | 
    
         
            -
             
     | 
| 
       78 
     | 
    
         
            -
             
     | 
| 
       79 
     | 
    
         
            -
             
     | 
| 
      
 74 
     | 
    
         
            +
            def create_moe_dispatcher(moe_runner_config: MoeRunnerConfig) -> BaseDispatcher:
         
     | 
| 
      
 75 
     | 
    
         
            +
                a2a_backend = get_moe_a2a_backend()
         
     | 
| 
      
 76 
     | 
    
         
            +
                if a2a_backend.is_none():
         
     | 
| 
      
 77 
     | 
    
         
            +
                    return StandardDispatcher(moe_runner_config)
         
     | 
| 
      
 78 
     | 
    
         
            +
                elif a2a_backend.is_deepep() or a2a_backend.is_mooncake():
         
     | 
| 
      
 79 
     | 
    
         
            +
                    return MaybeTboDeepEPDispatcher(
         
     | 
| 
      
 80 
     | 
    
         
            +
                        group=get_tp_group().device_group,
         
     | 
| 
      
 81 
     | 
    
         
            +
                        router_topk=moe_runner_config.top_k,
         
     | 
| 
      
 82 
     | 
    
         
            +
                        permute_fusion=True,
         
     | 
| 
      
 83 
     | 
    
         
            +
                        num_experts=moe_runner_config.num_experts,
         
     | 
| 
      
 84 
     | 
    
         
            +
                        num_local_experts=moe_runner_config.num_local_experts,
         
     | 
| 
      
 85 
     | 
    
         
            +
                        hidden_size=moe_runner_config.hidden_size,
         
     | 
| 
      
 86 
     | 
    
         
            +
                        params_dtype=moe_runner_config.params_dtype,
         
     | 
| 
      
 87 
     | 
    
         
            +
                        deepep_mode=get_deepep_mode(),
         
     | 
| 
      
 88 
     | 
    
         
            +
                        async_finish=True,
         
     | 
| 
      
 89 
     | 
    
         
            +
                        return_recv_hook=True,
         
     | 
| 
      
 90 
     | 
    
         
            +
                    )
         
     | 
| 
      
 91 
     | 
    
         
            +
                else:
         
     | 
| 
      
 92 
     | 
    
         
            +
                    raise NotImplementedError(f"Unsupported a2a backend: {a2a_backend}")
         
     | 
| 
       80 
93 
     | 
    
         | 
| 
       81 
94 
     | 
    
         | 
| 
       82 
95 
     | 
    
         
             
            class FusedMoeWeightScaleSupported(Enum):
         
     | 
| 
         @@ -131,7 +144,6 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       131 
144 
     | 
    
         
             
                    with_bias=False,
         
     | 
| 
       132 
145 
     | 
    
         
             
                ):
         
     | 
| 
       133 
146 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       134 
     | 
    
         
            -
             
     | 
| 
       135 
147 
     | 
    
         
             
                    if params_dtype is None:
         
     | 
| 
       136 
148 
     | 
    
         
             
                        params_dtype = torch.get_default_dtype()
         
     | 
| 
       137 
149 
     | 
    
         | 
| 
         @@ -140,8 +152,6 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       140 
152 
     | 
    
         
             
                    self.hidden_size = hidden_size
         
     | 
| 
       141 
153 
     | 
    
         
             
                    self.num_experts = num_experts
         
     | 
| 
       142 
154 
     | 
    
         
             
                    self.num_fused_shared_experts = num_fused_shared_experts
         
     | 
| 
       143 
     | 
    
         
            -
                    self.expert_map_cpu = None
         
     | 
| 
       144 
     | 
    
         
            -
                    self.expert_map_gpu = None
         
     | 
| 
       145 
155 
     | 
    
         | 
| 
       146 
156 
     | 
    
         
             
                    enable_flashinfer_cutlass_moe = get_moe_runner_backend().is_flashinfer_cutlass()
         
     | 
| 
       147 
157 
     | 
    
         | 
| 
         @@ -156,27 +166,13 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       156 
166 
     | 
    
         
             
                    self.moe_tp_rank = get_moe_tensor_parallel_rank()
         
     | 
| 
       157 
167 
     | 
    
         
             
                    assert num_experts % self.moe_ep_size == 0
         
     | 
| 
       158 
168 
     | 
    
         
             
                    self.num_local_experts = num_experts // self.moe_ep_size
         
     | 
| 
       159 
     | 
    
         
            -
                    self.start_expert_id = self.moe_ep_rank * self.num_local_experts
         
     | 
| 
       160 
     | 
    
         
            -
                    self.end_expert_id = self.start_expert_id + self.num_local_experts - 1
         
     | 
| 
       161 
     | 
    
         
            -
                    if self.moe_ep_size > 1:
         
     | 
| 
       162 
     | 
    
         
            -
                        # TODO(ch-wan): support shared experts fusion
         
     | 
| 
       163 
     | 
    
         
            -
                        # Create a tensor of size num_experts filled with -1
         
     | 
| 
       164 
     | 
    
         
            -
                        self.expert_map_cpu = torch.full(
         
     | 
| 
       165 
     | 
    
         
            -
                            (self.num_experts,), -1, dtype=torch.int32, device="cpu"
         
     | 
| 
       166 
     | 
    
         
            -
                        )
         
     | 
| 
       167 
     | 
    
         
            -
                        # Create a expert map for the local experts
         
     | 
| 
       168 
     | 
    
         
            -
                        self.expert_map_cpu[
         
     | 
| 
       169 
     | 
    
         
            -
                            self.moe_ep_rank
         
     | 
| 
       170 
     | 
    
         
            -
                            * self.num_local_experts : (self.moe_ep_rank + 1)
         
     | 
| 
       171 
     | 
    
         
            -
                            * self.num_local_experts
         
     | 
| 
       172 
     | 
    
         
            -
                        ] = torch.arange(0, self.num_local_experts, dtype=torch.int32, device="cpu")
         
     | 
| 
       173 
169 
     | 
    
         | 
| 
       174 
170 
     | 
    
         
             
                    assert intermediate_size % self.moe_tp_size == 0
         
     | 
| 
       175 
171 
     | 
    
         
             
                    self.intermediate_size_per_partition = intermediate_size // self.moe_tp_size
         
     | 
| 
       176 
172 
     | 
    
         
             
                    self.reduce_results = reduce_results
         
     | 
| 
       177 
173 
     | 
    
         
             
                    self.use_presharded_weights = use_presharded_weights
         
     | 
| 
       178 
174 
     | 
    
         | 
| 
       179 
     | 
    
         
            -
                    self.use_triton_kernels = get_moe_runner_backend(). 
     | 
| 
      
 175 
     | 
    
         
            +
                    self.use_triton_kernels = get_moe_runner_backend().is_triton_kernels()
         
     | 
| 
       180 
176 
     | 
    
         | 
| 
       181 
177 
     | 
    
         
             
                    self.quant_config = quant_config
         
     | 
| 
       182 
178 
     | 
    
         
             
                    self.use_flashinfer_mxfp4_moe = get_moe_runner_backend().is_flashinfer_mxfp4()
         
     | 
| 
         @@ -207,15 +203,11 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       207 
203 
     | 
    
         
             
                        gemm1_clamp_limit=gemm1_clamp_limit,
         
     | 
| 
       208 
204 
     | 
    
         
             
                    )
         
     | 
| 
       209 
205 
     | 
    
         | 
| 
       210 
     | 
    
         
            -
                     
     | 
| 
       211 
     | 
    
         
            -
             
     | 
| 
       212 
     | 
    
         
            -
             
     | 
| 
       213 
     | 
    
         
            -
             
     | 
| 
       214 
     | 
    
         
            -
             
     | 
| 
       215 
     | 
    
         
            -
                        self.quant_method: FusedMoEMethodBase = quant_config.get_quant_method(
         
     | 
| 
       216 
     | 
    
         
            -
                            self, prefix
         
     | 
| 
       217 
     | 
    
         
            -
                        )
         
     | 
| 
       218 
     | 
    
         
            -
                    assert self.quant_method is not None
         
     | 
| 
      
 206 
     | 
    
         
            +
                    self.quant_method: Optional[FusedMoEMethodBase] = None
         
     | 
| 
      
 207 
     | 
    
         
            +
                    if quant_config is not None:
         
     | 
| 
      
 208 
     | 
    
         
            +
                        self.quant_method = quant_config.get_quant_method(self, prefix)
         
     | 
| 
      
 209 
     | 
    
         
            +
                    if self.quant_method is None:
         
     | 
| 
      
 210 
     | 
    
         
            +
                        self.quant_method = UnquantizedFusedMoEMethod(self.use_triton_kernels)
         
     | 
| 
       219 
211 
     | 
    
         | 
| 
       220 
212 
     | 
    
         
             
                    self.quant_method.create_weights(
         
     | 
| 
       221 
213 
     | 
    
         
             
                        layer=self,
         
     | 
| 
         @@ -228,17 +220,19 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       228 
220 
     | 
    
         
             
                            if not use_weight_loader_fused
         
     | 
| 
       229 
221 
     | 
    
         
             
                            else self.weight_loader_fused
         
     | 
| 
       230 
222 
     | 
    
         
             
                        ),
         
     | 
| 
      
 223 
     | 
    
         
            +
                        intermediate_size_full=intermediate_size,
         
     | 
| 
      
 224 
     | 
    
         
            +
                        top_k=top_k,
         
     | 
| 
       231 
225 
     | 
    
         
             
                        with_bias=with_bias,
         
     | 
| 
       232 
226 
     | 
    
         
             
                    )
         
     | 
| 
       233 
227 
     | 
    
         | 
| 
       234 
228 
     | 
    
         
             
                    self.quant_method.create_moe_runner(self, self.moe_runner_config)
         
     | 
| 
       235 
     | 
    
         
            -
                    self.dispatcher =  
     | 
| 
      
 229 
     | 
    
         
            +
                    self.dispatcher = create_moe_dispatcher(self.moe_runner_config)
         
     | 
| 
       236 
230 
     | 
    
         | 
| 
       237 
231 
     | 
    
         
             
                    self.should_fuse_routed_scaling_factor_in_topk = isinstance(
         
     | 
| 
       238 
232 
     | 
    
         
             
                        self.quant_method, ModelOptNvFp4FusedMoEMethod
         
     | 
| 
       239 
233 
     | 
    
         
             
                    ) or (
         
     | 
| 
       240 
234 
     | 
    
         
             
                        isinstance(self.quant_method, Fp8MoEMethod)
         
     | 
| 
       241 
     | 
    
         
            -
                        and self.quant_method. 
     | 
| 
      
 235 
     | 
    
         
            +
                        and self.quant_method._should_use_cutlass_fused_experts()
         
     | 
| 
       242 
236 
     | 
    
         
             
                    )
         
     | 
| 
       243 
237 
     | 
    
         | 
| 
       244 
238 
     | 
    
         
             
                def _load_per_tensor_weight_scale(
         
     | 
| 
         @@ -466,9 +460,12 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       466 
460 
     | 
    
         
             
                        expert_data.copy_(loaded_weight)
         
     | 
| 
       467 
461 
     | 
    
         | 
| 
       468 
462 
     | 
    
         
             
                def _map_global_expert_id_to_local_expert_id(self, expert_id: int) -> int:
         
     | 
| 
       469 
     | 
    
         
            -
                     
     | 
| 
       470 
     | 
    
         
            -
             
     | 
| 
       471 
     | 
    
         
            -
                     
     | 
| 
      
 463 
     | 
    
         
            +
                    start_idx = self.moe_ep_rank * self.num_local_experts
         
     | 
| 
      
 464 
     | 
    
         
            +
                    end_idx = (self.moe_ep_rank + 1) * self.num_local_experts
         
     | 
| 
      
 465 
     | 
    
         
            +
                    if start_idx <= expert_id < end_idx:
         
     | 
| 
      
 466 
     | 
    
         
            +
                        return expert_id - start_idx
         
     | 
| 
      
 467 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 468 
     | 
    
         
            +
                        return -1
         
     | 
| 
       472 
469 
     | 
    
         | 
| 
       473 
470 
     | 
    
         
             
                def weight_loader(
         
     | 
| 
       474 
471 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -540,6 +537,18 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       540 
537 
     | 
    
         
             
                        if expert_id == -1:
         
     | 
| 
       541 
538 
     | 
    
         
             
                            return
         
     | 
| 
       542 
539 
     | 
    
         | 
| 
      
 540 
     | 
    
         
            +
                    if isinstance(
         
     | 
| 
      
 541 
     | 
    
         
            +
                        self.quant_method,
         
     | 
| 
      
 542 
     | 
    
         
            +
                        (
         
     | 
| 
      
 543 
     | 
    
         
            +
                            CompressedTensorsWNA16MoEMethod,
         
     | 
| 
      
 544 
     | 
    
         
            +
                            CompressedTensorsWNA16AMXMoEMethod,
         
     | 
| 
      
 545 
     | 
    
         
            +
                            CompressedTensorsWNA16AMXEPMoEMethod,
         
     | 
| 
      
 546 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 547 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 548 
     | 
    
         
            +
                        if self.quant_method.num_gpu_experts != -1:
         
     | 
| 
      
 549 
     | 
    
         
            +
                            if expert_id >= self.quant_method.num_gpu_experts:
         
     | 
| 
      
 550 
     | 
    
         
            +
                                return
         
     | 
| 
      
 551 
     | 
    
         
            +
             
     | 
| 
       543 
552 
     | 
    
         
             
                    self._weight_loader_impl(
         
     | 
| 
       544 
553 
     | 
    
         
             
                        param=param,
         
     | 
| 
       545 
554 
     | 
    
         
             
                        loaded_weight=loaded_weight,
         
     | 
| 
         @@ -566,7 +575,12 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       566 
575 
     | 
    
         
             
                        loaded_weight.t().contiguous()
         
     | 
| 
       567 
576 
     | 
    
         
             
                        if (
         
     | 
| 
       568 
577 
     | 
    
         
             
                            self.quant_method.__class__.__name__
         
     | 
| 
       569 
     | 
    
         
            -
                             
     | 
| 
      
 578 
     | 
    
         
            +
                            in [
         
     | 
| 
      
 579 
     | 
    
         
            +
                                "CompressedTensorsWNA16MarlinMoEMethod",
         
     | 
| 
      
 580 
     | 
    
         
            +
                                "CompressedTensorsWNA16MoEMethod",
         
     | 
| 
      
 581 
     | 
    
         
            +
                                "CompressedTensorsWNA16AMXMoEMethod",
         
     | 
| 
      
 582 
     | 
    
         
            +
                                "CompressedTensorsWNA16AMXEPMoEMethod",
         
     | 
| 
      
 583 
     | 
    
         
            +
                            ]
         
     | 
| 
       570 
584 
     | 
    
         
             
                        )
         
     | 
| 
       571 
585 
     | 
    
         
             
                        else loaded_weight
         
     | 
| 
       572 
586 
     | 
    
         
             
                    )
         
     | 
| 
         @@ -813,35 +827,21 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       813 
827 
     | 
    
         
             
                            f"Unsupported weight_name {weight_name} for FusedMoE weight_loader_fused. Nothing is loaded."
         
     | 
| 
       814 
828 
     | 
    
         
             
                        )
         
     | 
| 
       815 
829 
     | 
    
         | 
| 
       816 
     | 
    
         
            -
                def forward(self, hidden_states: torch.Tensor, topk_output: TopKOutput):
         
     | 
| 
      
 830 
     | 
    
         
            +
                def forward(self, hidden_states: torch.Tensor, topk_output: TopKOutput, **kwargs):
         
     | 
| 
       817 
831 
     | 
    
         
             
                    origin_hidden_states_dim = hidden_states.shape[-1]
         
     | 
| 
       818 
832 
     | 
    
         
             
                    assert self.quant_method is not None
         
     | 
| 
       819 
833 
     | 
    
         | 
| 
       820 
     | 
    
         
            -
                    if self.moe_ep_size > 1 and not self.enable_flashinfer_cutlass_moe:
         
     | 
| 
       821 
     | 
    
         
            -
                        if self.expert_map_cpu is not None and self.expert_map_gpu is None:
         
     | 
| 
       822 
     | 
    
         
            -
                            # If we are in EP mode, we need to move the expert map to GPU.
         
     | 
| 
       823 
     | 
    
         
            -
                            self.expert_map_gpu = self.expert_map_cpu.to(device="cuda")
         
     | 
| 
       824 
     | 
    
         
            -
             
     | 
| 
       825 
     | 
    
         
            -
                    if self.expert_map_gpu is not None:
         
     | 
| 
       826 
     | 
    
         
            -
                        if TopKOutputChecker.format_is_standard(topk_output):
         
     | 
| 
       827 
     | 
    
         
            -
                            topk_output = topk_output._replace(
         
     | 
| 
       828 
     | 
    
         
            -
                                topk_ids=self.expert_map_gpu[topk_output.topk_ids]
         
     | 
| 
       829 
     | 
    
         
            -
                            )
         
     | 
| 
       830 
     | 
    
         
            -
                        elif TopKOutputChecker.format_is_triton_kernel(topk_output):
         
     | 
| 
       831 
     | 
    
         
            -
                            raise NotImplementedError()
         
     | 
| 
       832 
     | 
    
         
            -
             
     | 
| 
       833 
834 
     | 
    
         
             
                    dispatch_output = self.dispatcher.dispatch(
         
     | 
| 
       834 
835 
     | 
    
         
             
                        hidden_states=hidden_states, topk_output=topk_output
         
     | 
| 
       835 
836 
     | 
    
         
             
                    )
         
     | 
| 
       836 
837 
     | 
    
         | 
| 
       837 
     | 
    
         
            -
                     
     | 
| 
       838 
     | 
    
         
            -
                    combine_input = self.quant_method.apply(
         
     | 
| 
       839 
     | 
    
         
            -
                        layer=self,
         
     | 
| 
      
 838 
     | 
    
         
            +
                    combine_input = self.run_moe_core(
         
     | 
| 
       840 
839 
     | 
    
         
             
                        dispatch_output=dispatch_output,
         
     | 
| 
      
 840 
     | 
    
         
            +
                        **kwargs,
         
     | 
| 
       841 
841 
     | 
    
         
             
                    )
         
     | 
| 
      
 842 
     | 
    
         
            +
                    final_hidden_states = self.dispatcher.combine(combine_input=combine_input)
         
     | 
| 
       842 
843 
     | 
    
         | 
| 
       843 
     | 
    
         
            -
                     
     | 
| 
       844 
     | 
    
         
            -
             
     | 
| 
      
 844 
     | 
    
         
            +
                    # TODO: should we add some conditions here?
         
     | 
| 
       845 
845 
     | 
    
         
             
                    final_hidden_states = final_hidden_states[
         
     | 
| 
       846 
846 
     | 
    
         
             
                        ..., :origin_hidden_states_dim
         
     | 
| 
       847 
847 
     | 
    
         
             
                    ].contiguous()
         
     | 
| 
         @@ -851,6 +851,14 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       851 
851 
     | 
    
         | 
| 
       852 
852 
     | 
    
         
             
                    return final_hidden_states
         
     | 
| 
       853 
853 
     | 
    
         | 
| 
      
 854 
     | 
    
         
            +
                def run_moe_core(self, dispatch_output: DispatchOutput, **kwargs) -> CombineInput:
         
     | 
| 
      
 855 
     | 
    
         
            +
                    # TODO: consider using symmetric memory
         
     | 
| 
      
 856 
     | 
    
         
            +
                    return self.quant_method.apply(
         
     | 
| 
      
 857 
     | 
    
         
            +
                        layer=self,
         
     | 
| 
      
 858 
     | 
    
         
            +
                        dispatch_output=dispatch_output,
         
     | 
| 
      
 859 
     | 
    
         
            +
                        **kwargs,
         
     | 
| 
      
 860 
     | 
    
         
            +
                    )
         
     | 
| 
      
 861 
     | 
    
         
            +
             
     | 
| 
       854 
862 
     | 
    
         
             
                @classmethod
         
     | 
| 
       855 
863 
     | 
    
         
             
                def make_expert_params_mapping(
         
     | 
| 
       856 
864 
     | 
    
         
             
                    cls,
         
     | 
| 
         @@ -1061,9 +1069,7 @@ class FlashInferFP4MoE(FusedMoE): 
     | 
|
| 
       1061 
1069 
     | 
    
         
             
                        local_expert_offset=self.moe_ep_rank * self.num_local_experts,
         
     | 
| 
       1062 
1070 
     | 
    
         
             
                        local_num_experts=self.num_local_experts,
         
     | 
| 
       1063 
1071 
     | 
    
         
             
                        routed_scaling_factor=self.moe_runner_config.routed_scaling_factor,
         
     | 
| 
       1064 
     | 
    
         
            -
                        tile_tokens_dim= 
     | 
| 
       1065 
     | 
    
         
            -
                            hidden_states.shape[0], topk_config.top_k, self.num_local_experts
         
     | 
| 
       1066 
     | 
    
         
            -
                        ),
         
     | 
| 
      
 1072 
     | 
    
         
            +
                        tile_tokens_dim=None,
         
     | 
| 
       1067 
1073 
     | 
    
         
             
                        routing_method_type=RoutingMethodType.DeepSeekV3,
         
     | 
| 
       1068 
1074 
     | 
    
         
             
                        do_finalize=True,
         
     | 
| 
       1069 
1075 
     | 
    
         
             
                    )[0]
         
     |