sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -11,24 +11,25 @@ from sgl_kernel import ( 
     | 
|
| 
       11 
11 
     | 
    
         
             
            )
         
     | 
| 
       12 
12 
     | 
    
         | 
| 
       13 
13 
     | 
    
         
             
            from sglang.srt.layers.moe.ep_moe.kernels import (
         
     | 
| 
      
 14 
     | 
    
         
            +
                deepep_ll_get_cutlass_w4a8_moe_mm_data,
         
     | 
| 
      
 15 
     | 
    
         
            +
                deepep_permute_triton_kernel,
         
     | 
| 
      
 16 
     | 
    
         
            +
                deepep_post_reorder_triton_kernel,
         
     | 
| 
      
 17 
     | 
    
         
            +
                deepep_run_moe_deep_preprocess,
         
     | 
| 
       14 
18 
     | 
    
         
             
                post_reorder_triton_kernel_for_cutlass_moe,
         
     | 
| 
       15 
19 
     | 
    
         
             
                pre_reorder_triton_kernel_for_cutlass_moe,
         
     | 
| 
       16 
     | 
    
         
            -
                 
     | 
| 
      
 20 
     | 
    
         
            +
                run_moe_ep_preproess,
         
     | 
| 
      
 21 
     | 
    
         
            +
                silu_and_mul_masked_post_per_tensor_quant_fwd,
         
     | 
| 
       17 
22 
     | 
    
         
             
            )
         
     | 
| 
       18 
23 
     | 
    
         | 
| 
       19 
24 
     | 
    
         | 
| 
       20 
25 
     | 
    
         
             
            def cutlass_w4a8_moe(
         
     | 
| 
       21 
     | 
    
         
            -
                start_expert_id: int,
         
     | 
| 
       22 
     | 
    
         
            -
                end_expert_id: int,
         
     | 
| 
       23 
     | 
    
         
            -
                total_num_experts: int,
         
     | 
| 
       24 
26 
     | 
    
         
             
                a: torch.Tensor,
         
     | 
| 
       25 
27 
     | 
    
         
             
                w1_q: torch.Tensor,
         
     | 
| 
       26 
28 
     | 
    
         
             
                w2_q: torch.Tensor,
         
     | 
| 
       27 
29 
     | 
    
         
             
                w1_scale: torch.Tensor,
         
     | 
| 
       28 
30 
     | 
    
         
             
                w2_scale: torch.Tensor,
         
     | 
| 
       29 
31 
     | 
    
         
             
                topk_weights: torch.Tensor,
         
     | 
| 
       30 
     | 
    
         
            -
                 
     | 
| 
       31 
     | 
    
         
            -
                local_topk_ids: torch.Tensor,
         
     | 
| 
      
 32 
     | 
    
         
            +
                topk_ids: torch.Tensor,
         
     | 
| 
       32 
33 
     | 
    
         
             
                a_strides1: torch.Tensor,
         
     | 
| 
       33 
34 
     | 
    
         
             
                b_strides1: torch.Tensor,
         
     | 
| 
       34 
35 
     | 
    
         
             
                c_strides1: torch.Tensor,
         
     | 
| 
         @@ -64,6 +65,7 @@ def cutlass_w4a8_moe( 
     | 
|
| 
       64 
65 
     | 
    
         
             
                - w2_scale (torch.Tensor): The fp32 scale to dequantize w2_q.
         
     | 
| 
       65 
66 
     | 
    
         
             
                    Shape: [num_experts, N // 512, K * 4]
         
     | 
| 
       66 
67 
     | 
    
         
             
                - topk_weights (torch.Tensor): The weights of each token->expert mapping.
         
     | 
| 
      
 68 
     | 
    
         
            +
                - topk_ids (torch.Tensor): The ids of each token->expert mapping.
         
     | 
| 
       67 
69 
     | 
    
         
             
                - a_strides1 (torch.Tensor): The input strides of the first grouped gemm.
         
     | 
| 
       68 
70 
     | 
    
         
             
                - b_strides1 (torch.Tensor): The weights strides of the first grouped gemm.
         
     | 
| 
       69 
71 
     | 
    
         
             
                - c_strides1 (torch.Tensor): The output strides of the first grouped gemm.
         
     | 
| 
         @@ -83,7 +85,7 @@ def cutlass_w4a8_moe( 
     | 
|
| 
       83 
85 
     | 
    
         
             
                Returns:
         
     | 
| 
       84 
86 
     | 
    
         
             
                - torch.Tensor: The fp8 output tensor after applying the MoE layer.
         
     | 
| 
       85 
87 
     | 
    
         
             
                """
         
     | 
| 
       86 
     | 
    
         
            -
                assert topk_weights.shape ==  
     | 
| 
      
 88 
     | 
    
         
            +
                assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
         
     | 
| 
       87 
89 
     | 
    
         
             
                assert w1_q.dtype == torch.int8
         
     | 
| 
       88 
90 
     | 
    
         
             
                assert w2_q.dtype == torch.int8
         
     | 
| 
       89 
91 
     | 
    
         
             
                assert a.shape[1] // 2 == w1_q.shape[2], "Hidden size mismatch w1"
         
     | 
| 
         @@ -96,20 +98,21 @@ def cutlass_w4a8_moe( 
     | 
|
| 
       96 
98 
     | 
    
         
             
                assert b_strides1.shape[0] == w1_q.shape[0], "B Strides 1 expert number mismatch"
         
     | 
| 
       97 
99 
     | 
    
         
             
                assert a_strides2.shape[0] == w2_q.shape[0], "A Strides 2 expert number mismatch"
         
     | 
| 
       98 
100 
     | 
    
         
             
                assert b_strides2.shape[0] == w2_q.shape[0], "B Strides 2 expert number mismatch"
         
     | 
| 
       99 
     | 
    
         
            -
                 
     | 
| 
      
 101 
     | 
    
         
            +
                num_local_experts = w1_q.size(0)
         
     | 
| 
       100 
102 
     | 
    
         
             
                m = a.size(0)
         
     | 
| 
       101 
103 
     | 
    
         
             
                k = w1_q.size(2) * 2  # w1_q is transposed and packed
         
     | 
| 
       102 
104 
     | 
    
         
             
                n = w2_q.size(2) * 2  # w2_q is transposed and packed
         
     | 
| 
       103 
     | 
    
         
            -
                topk =  
     | 
| 
      
 105 
     | 
    
         
            +
                topk = topk_ids.size(1)
         
     | 
| 
       104 
106 
     | 
    
         | 
| 
       105 
107 
     | 
    
         
             
                if apply_router_weight_on_input:
         
     | 
| 
       106 
108 
     | 
    
         
             
                    assert topk == 1, "apply_router_weight_on_input is only implemented for topk=1"
         
     | 
| 
       107 
109 
     | 
    
         | 
| 
       108 
110 
     | 
    
         
             
                device = a.device
         
     | 
| 
      
 111 
     | 
    
         
            +
                topk_ids = torch.where(topk_ids == -1, num_local_experts, topk_ids)
         
     | 
| 
       109 
112 
     | 
    
         | 
| 
       110 
     | 
    
         
            -
                _, src2dst, _ =  
     | 
| 
       111 
     | 
    
         
            -
                     
     | 
| 
       112 
     | 
    
         
            -
                     
     | 
| 
      
 113 
     | 
    
         
            +
                _, src2dst, _ = run_moe_ep_preproess(
         
     | 
| 
      
 114 
     | 
    
         
            +
                    topk_ids,
         
     | 
| 
      
 115 
     | 
    
         
            +
                    num_local_experts,
         
     | 
| 
       113 
116 
     | 
    
         
             
                )
         
     | 
| 
       114 
117 
     | 
    
         | 
| 
       115 
118 
     | 
    
         
             
                gateup_input = torch.empty(
         
     | 
| 
         @@ -122,9 +125,9 @@ def cutlass_w4a8_moe( 
     | 
|
| 
       122 
125 
     | 
    
         
             
                    a,
         
     | 
| 
       123 
126 
     | 
    
         
             
                    gateup_input,
         
     | 
| 
       124 
127 
     | 
    
         
             
                    src2dst,
         
     | 
| 
       125 
     | 
    
         
            -
                     
     | 
| 
      
 128 
     | 
    
         
            +
                    topk_ids,
         
     | 
| 
       126 
129 
     | 
    
         
             
                    a1_scale,
         
     | 
| 
       127 
     | 
    
         
            -
                     
     | 
| 
      
 130 
     | 
    
         
            +
                    num_local_experts,
         
     | 
| 
       128 
131 
     | 
    
         
             
                    topk,
         
     | 
| 
       129 
132 
     | 
    
         
             
                    k,
         
     | 
| 
       130 
133 
     | 
    
         
             
                    BLOCK_SIZE=512,
         
     | 
| 
         @@ -133,16 +136,16 @@ def cutlass_w4a8_moe( 
     | 
|
| 
       133 
136 
     | 
    
         
             
                # NOTE: a_map and c_map are not used in the get_cutlass_w4a8_moe_mm_data kernel,
         
     | 
| 
       134 
137 
     | 
    
         
             
                # they are kept to allow for a quick switch of the permutation logic
         
     | 
| 
       135 
138 
     | 
    
         
             
                # from the current triton kernel implementation to the cutlass-based one if needed.
         
     | 
| 
       136 
     | 
    
         
            -
                a_map = torch.empty(( 
     | 
| 
       137 
     | 
    
         
            -
                c_map = torch.empty(( 
     | 
| 
      
 139 
     | 
    
         
            +
                a_map = torch.empty((topk_ids.numel()), dtype=torch.int32, device=device)
         
     | 
| 
      
 140 
     | 
    
         
            +
                c_map = torch.empty((topk_ids.numel()), dtype=torch.int32, device=device)
         
     | 
| 
       138 
141 
     | 
    
         
             
                get_cutlass_w4a8_moe_mm_data(
         
     | 
| 
       139 
     | 
    
         
            -
                     
     | 
| 
      
 142 
     | 
    
         
            +
                    topk_ids,
         
     | 
| 
       140 
143 
     | 
    
         
             
                    expert_offsets,
         
     | 
| 
       141 
144 
     | 
    
         
             
                    problem_sizes1,
         
     | 
| 
       142 
145 
     | 
    
         
             
                    problem_sizes2,
         
     | 
| 
       143 
146 
     | 
    
         
             
                    a_map,
         
     | 
| 
       144 
147 
     | 
    
         
             
                    c_map,
         
     | 
| 
       145 
     | 
    
         
            -
                     
     | 
| 
      
 148 
     | 
    
         
            +
                    num_local_experts,
         
     | 
| 
       146 
149 
     | 
    
         
             
                    n,
         
     | 
| 
       147 
150 
     | 
    
         
             
                    k,
         
     | 
| 
       148 
151 
     | 
    
         
             
                )
         
     | 
| 
         @@ -195,12 +198,339 @@ def cutlass_w4a8_moe( 
     | 
|
| 
       195 
198 
     | 
    
         
             
                    c2,
         
     | 
| 
       196 
199 
     | 
    
         
             
                    output,
         
     | 
| 
       197 
200 
     | 
    
         
             
                    src2dst,
         
     | 
| 
       198 
     | 
    
         
            -
                     
     | 
| 
      
 201 
     | 
    
         
            +
                    topk_ids,
         
     | 
| 
       199 
202 
     | 
    
         
             
                    topk_weights,
         
     | 
| 
       200 
     | 
    
         
            -
                    num_experts,
         
     | 
| 
       201 
203 
     | 
    
         
             
                    topk,
         
     | 
| 
      
 204 
     | 
    
         
            +
                    num_local_experts,
         
     | 
| 
      
 205 
     | 
    
         
            +
                    k,
         
     | 
| 
      
 206 
     | 
    
         
            +
                    BLOCK_SIZE=512,
         
     | 
| 
      
 207 
     | 
    
         
            +
                )
         
     | 
| 
      
 208 
     | 
    
         
            +
                return output
         
     | 
| 
      
 209 
     | 
    
         
            +
             
     | 
| 
      
 210 
     | 
    
         
            +
             
     | 
| 
      
 211 
     | 
    
         
            +
            def cutlass_w4a8_moe_deepep_normal(
         
     | 
| 
      
 212 
     | 
    
         
            +
                a: torch.Tensor,
         
     | 
| 
      
 213 
     | 
    
         
            +
                w1_q: torch.Tensor,
         
     | 
| 
      
 214 
     | 
    
         
            +
                w2_q: torch.Tensor,
         
     | 
| 
      
 215 
     | 
    
         
            +
                w1_scale: torch.Tensor,
         
     | 
| 
      
 216 
     | 
    
         
            +
                w2_scale: torch.Tensor,
         
     | 
| 
      
 217 
     | 
    
         
            +
                topk_weights: torch.Tensor,
         
     | 
| 
      
 218 
     | 
    
         
            +
                topk_ids_: torch.Tensor,
         
     | 
| 
      
 219 
     | 
    
         
            +
                a_strides1: torch.Tensor,
         
     | 
| 
      
 220 
     | 
    
         
            +
                b_strides1: torch.Tensor,
         
     | 
| 
      
 221 
     | 
    
         
            +
                c_strides1: torch.Tensor,
         
     | 
| 
      
 222 
     | 
    
         
            +
                a_strides2: torch.Tensor,
         
     | 
| 
      
 223 
     | 
    
         
            +
                b_strides2: torch.Tensor,
         
     | 
| 
      
 224 
     | 
    
         
            +
                c_strides2: torch.Tensor,
         
     | 
| 
      
 225 
     | 
    
         
            +
                s_strides13: torch.Tensor,
         
     | 
| 
      
 226 
     | 
    
         
            +
                s_strides2: torch.Tensor,
         
     | 
| 
      
 227 
     | 
    
         
            +
                expert_offsets: torch.Tensor,
         
     | 
| 
      
 228 
     | 
    
         
            +
                problem_sizes1: torch.Tensor,
         
     | 
| 
      
 229 
     | 
    
         
            +
                problem_sizes2: torch.Tensor,
         
     | 
| 
      
 230 
     | 
    
         
            +
                a1_scale: Optional[torch.Tensor] = None,
         
     | 
| 
      
 231 
     | 
    
         
            +
                a2_scale: Optional[torch.Tensor] = None,
         
     | 
| 
      
 232 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 233 
     | 
    
         
            +
                """
         
     | 
| 
      
 234 
     | 
    
         
            +
                This function computes a w4a8-quantized Mixture of Experts (MoE) layer
         
     | 
| 
      
 235 
     | 
    
         
            +
                using two sets of quantized weights, w1_q and w2_q, and top-k gating
         
     | 
| 
      
 236 
     | 
    
         
            +
                mechanism. The matrix multiplications are implemented with CUTLASS
         
     | 
| 
      
 237 
     | 
    
         
            +
                grouped gemm.
         
     | 
| 
      
 238 
     | 
    
         
            +
             
     | 
| 
      
 239 
     | 
    
         
            +
                Parameters:
         
     | 
| 
      
 240 
     | 
    
         
            +
                - a (torch.Tensor): The input tensor to the MoE layer.
         
     | 
| 
      
 241 
     | 
    
         
            +
                    Shape: [M, K]
         
     | 
| 
      
 242 
     | 
    
         
            +
                - w1_q (torch.Tensor): The first set of int4-quantized expert weights.
         
     | 
| 
      
 243 
     | 
    
         
            +
                    Shape: [num_experts, N * 2,  K // 2]
         
     | 
| 
      
 244 
     | 
    
         
            +
                    (the weights are passed transposed and int4-packed)
         
     | 
| 
      
 245 
     | 
    
         
            +
                - w2_q (torch.Tensor): The second set of int4-quantized expert weights.
         
     | 
| 
      
 246 
     | 
    
         
            +
                    Shape: [num_experts, K, N // 2]
         
     | 
| 
      
 247 
     | 
    
         
            +
                    (the weights are passed transposed and int4-packed)
         
     | 
| 
      
 248 
     | 
    
         
            +
                - w1_scale (torch.Tensor): The fp32 scale to dequantize w1_q.
         
     | 
| 
      
 249 
     | 
    
         
            +
                    Shape: [num_experts, K // 512, N * 8]
         
     | 
| 
      
 250 
     | 
    
         
            +
                - w2_scale (torch.Tensor): The fp32 scale to dequantize w2_q.
         
     | 
| 
      
 251 
     | 
    
         
            +
                    Shape: [num_experts, N // 512, K * 4]
         
     | 
| 
      
 252 
     | 
    
         
            +
                - topk_weights (torch.Tensor): The weights of each token->expert mapping.
         
     | 
| 
      
 253 
     | 
    
         
            +
                - a_strides1 (torch.Tensor): The input strides of the first grouped gemm.
         
     | 
| 
      
 254 
     | 
    
         
            +
                - b_strides1 (torch.Tensor): The weights strides of the first grouped gemm.
         
     | 
| 
      
 255 
     | 
    
         
            +
                - c_strides1 (torch.Tensor): The output strides of the first grouped gemm.
         
     | 
| 
      
 256 
     | 
    
         
            +
                - a_strides2 (torch.Tensor): The input strides of the second grouped gemm.
         
     | 
| 
      
 257 
     | 
    
         
            +
                - b_strides2 (torch.Tensor): The weights strides of the second grouped gemm.
         
     | 
| 
      
 258 
     | 
    
         
            +
                - c_strides2 (torch.Tensor): The output strides of the second grouped gemm.
         
     | 
| 
      
 259 
     | 
    
         
            +
                - s_strides13 (torch.Tensor): The input and scale strides of the first grouped gemm.
         
     | 
| 
      
 260 
     | 
    
         
            +
                - s_strides2 (torch.Tensor): The scale strides of the second grouped gemm.
         
     | 
| 
      
 261 
     | 
    
         
            +
                - a1_scale (Optional[torch.Tensor]): The optional fp32 scale to quantize a.
         
     | 
| 
      
 262 
     | 
    
         
            +
                    Shape: scalar or [1, K]
         
     | 
| 
      
 263 
     | 
    
         
            +
                - a2_scale (Optional[torch.Tensor]): The optional fp32 scale to
         
     | 
| 
      
 264 
     | 
    
         
            +
                    quantize the intermediate result between the gemms.
         
     | 
| 
      
 265 
     | 
    
         
            +
                    Shape: scalar or [1, N]
         
     | 
| 
      
 266 
     | 
    
         
            +
                - apply_router_weight_on_input (bool): When true, the topk weights are
         
     | 
| 
      
 267 
     | 
    
         
            +
                    applied directly on the inputs. This is only applicable when topk is 1.
         
     | 
| 
      
 268 
     | 
    
         
            +
             
     | 
| 
      
 269 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 270 
     | 
    
         
            +
                - torch.Tensor: The fp8 output tensor after applying the MoE layer.
         
     | 
| 
      
 271 
     | 
    
         
            +
                """
         
     | 
| 
      
 272 
     | 
    
         
            +
                assert topk_weights.shape == topk_ids_.shape, "topk shape mismatch"
         
     | 
| 
      
 273 
     | 
    
         
            +
                assert w1_q.dtype == torch.int8
         
     | 
| 
      
 274 
     | 
    
         
            +
                assert w2_q.dtype == torch.int8
         
     | 
| 
      
 275 
     | 
    
         
            +
                assert a.shape[1] // 2 == w1_q.shape[2], "Hidden size mismatch w1"
         
     | 
| 
      
 276 
     | 
    
         
            +
                assert w1_q.shape[2] * 2 == w2_q.shape[1], "Hidden size mismatch w2"
         
     | 
| 
      
 277 
     | 
    
         
            +
                assert w1_q.shape[0] == w2_q.shape[0], "Expert number mismatch"
         
     | 
| 
      
 278 
     | 
    
         
            +
                assert w1_q.shape[0] == w1_scale.shape[0], "w1 scales expert number mismatch"
         
     | 
| 
      
 279 
     | 
    
         
            +
                assert w1_q.shape[0] == w2_scale.shape[0], "w2 scales expert number mismatch"
         
     | 
| 
      
 280 
     | 
    
         
            +
             
     | 
| 
      
 281 
     | 
    
         
            +
                assert a_strides1.shape[0] == w1_q.shape[0], "A Strides 1 expert number mismatch"
         
     | 
| 
      
 282 
     | 
    
         
            +
                assert b_strides1.shape[0] == w1_q.shape[0], "B Strides 1 expert number mismatch"
         
     | 
| 
      
 283 
     | 
    
         
            +
                assert a_strides2.shape[0] == w2_q.shape[0], "A Strides 2 expert number mismatch"
         
     | 
| 
      
 284 
     | 
    
         
            +
                assert b_strides2.shape[0] == w2_q.shape[0], "B Strides 2 expert number mismatch"
         
     | 
| 
      
 285 
     | 
    
         
            +
                num_experts = w1_q.size(0)
         
     | 
| 
      
 286 
     | 
    
         
            +
                m = a.size(0)
         
     | 
| 
      
 287 
     | 
    
         
            +
                k = w1_q.size(2) * 2  # w1_q is transposed and packed
         
     | 
| 
      
 288 
     | 
    
         
            +
                n = w2_q.size(2) * 2  # w2_q is transposed and packed
         
     | 
| 
      
 289 
     | 
    
         
            +
                topk = topk_ids_.size(1)
         
     | 
| 
      
 290 
     | 
    
         
            +
             
     | 
| 
      
 291 
     | 
    
         
            +
                num_experts = w1_q.size(0)
         
     | 
| 
      
 292 
     | 
    
         
            +
                m = a.size(0)
         
     | 
| 
      
 293 
     | 
    
         
            +
                k = w1_q.size(2) * 2
         
     | 
| 
      
 294 
     | 
    
         
            +
                n = w2_q.size(2) * 2
         
     | 
| 
      
 295 
     | 
    
         
            +
                topk = topk_ids_.size(1)
         
     | 
| 
      
 296 
     | 
    
         
            +
                device = a.device
         
     | 
| 
      
 297 
     | 
    
         
            +
             
     | 
| 
      
 298 
     | 
    
         
            +
                reorder_topk_ids, src2dst, _ = deepep_run_moe_deep_preprocess(
         
     | 
| 
      
 299 
     | 
    
         
            +
                    topk_ids_, num_experts
         
     | 
| 
      
 300 
     | 
    
         
            +
                )
         
     | 
| 
      
 301 
     | 
    
         
            +
                num_total_tokens = reorder_topk_ids.numel()
         
     | 
| 
      
 302 
     | 
    
         
            +
                gateup_input_pre_reorder = torch.empty(
         
     | 
| 
      
 303 
     | 
    
         
            +
                    (int(num_total_tokens), a.shape[1]),
         
     | 
| 
      
 304 
     | 
    
         
            +
                    device=device,
         
     | 
| 
      
 305 
     | 
    
         
            +
                    dtype=a.dtype,
         
     | 
| 
      
 306 
     | 
    
         
            +
                )
         
     | 
| 
      
 307 
     | 
    
         
            +
                deepep_permute_triton_kernel[(a.shape[0],)](
         
     | 
| 
      
 308 
     | 
    
         
            +
                    a,
         
     | 
| 
      
 309 
     | 
    
         
            +
                    gateup_input_pre_reorder,
         
     | 
| 
      
 310 
     | 
    
         
            +
                    src2dst,
         
     | 
| 
      
 311 
     | 
    
         
            +
                    topk_ids_.to(torch.int64),
         
     | 
| 
      
 312 
     | 
    
         
            +
                    None,
         
     | 
| 
      
 313 
     | 
    
         
            +
                    topk,
         
     | 
| 
      
 314 
     | 
    
         
            +
                    a.shape[1],
         
     | 
| 
      
 315 
     | 
    
         
            +
                    BLOCK_SIZE=512,
         
     | 
| 
      
 316 
     | 
    
         
            +
                )
         
     | 
| 
      
 317 
     | 
    
         
            +
                gateup_input = torch.empty(
         
     | 
| 
      
 318 
     | 
    
         
            +
                    gateup_input_pre_reorder.shape, dtype=torch.float8_e4m3fn, device=device
         
     | 
| 
      
 319 
     | 
    
         
            +
                )
         
     | 
| 
      
 320 
     | 
    
         
            +
                sgl_per_tensor_quant_fp8(
         
     | 
| 
      
 321 
     | 
    
         
            +
                    gateup_input_pre_reorder, gateup_input, a1_scale.float(), True
         
     | 
| 
      
 322 
     | 
    
         
            +
                )
         
     | 
| 
      
 323 
     | 
    
         
            +
                del gateup_input_pre_reorder
         
     | 
| 
      
 324 
     | 
    
         
            +
                local_topk_ids = topk_ids_
         
     | 
| 
      
 325 
     | 
    
         
            +
                local_topk_ids = (
         
     | 
| 
      
 326 
     | 
    
         
            +
                    torch.where(local_topk_ids == -1, num_experts, topk_ids_).to(torch.int32)
         
     | 
| 
      
 327 
     | 
    
         
            +
                ).contiguous()
         
     | 
| 
      
 328 
     | 
    
         
            +
             
     | 
| 
      
 329 
     | 
    
         
            +
                a_map = torch.empty((local_topk_ids.numel()), dtype=torch.int32, device=device)
         
     | 
| 
      
 330 
     | 
    
         
            +
                c_map = torch.empty((local_topk_ids.numel()), dtype=torch.int32, device=device)
         
     | 
| 
      
 331 
     | 
    
         
            +
                get_cutlass_w4a8_moe_mm_data(
         
     | 
| 
      
 332 
     | 
    
         
            +
                    local_topk_ids,
         
     | 
| 
      
 333 
     | 
    
         
            +
                    expert_offsets,
         
     | 
| 
      
 334 
     | 
    
         
            +
                    problem_sizes1,
         
     | 
| 
      
 335 
     | 
    
         
            +
                    problem_sizes2,
         
     | 
| 
      
 336 
     | 
    
         
            +
                    a_map,
         
     | 
| 
      
 337 
     | 
    
         
            +
                    c_map,
         
     | 
| 
      
 338 
     | 
    
         
            +
                    num_experts,
         
     | 
| 
      
 339 
     | 
    
         
            +
                    n,
         
     | 
| 
       202 
340 
     | 
    
         
             
                    k,
         
     | 
| 
       203 
     | 
    
         
            -
             
     | 
| 
      
 341 
     | 
    
         
            +
                )
         
     | 
| 
      
 342 
     | 
    
         
            +
                c1 = torch.empty((m * topk, n * 2), device=device, dtype=torch.bfloat16)
         
     | 
| 
      
 343 
     | 
    
         
            +
                c2 = torch.zeros((m * topk, k), device=device, dtype=torch.bfloat16)
         
     | 
| 
      
 344 
     | 
    
         
            +
             
     | 
| 
      
 345 
     | 
    
         
            +
                cutlass_w4a8_moe_mm(
         
     | 
| 
      
 346 
     | 
    
         
            +
                    c1,
         
     | 
| 
      
 347 
     | 
    
         
            +
                    gateup_input,
         
     | 
| 
      
 348 
     | 
    
         
            +
                    w1_q,
         
     | 
| 
      
 349 
     | 
    
         
            +
                    a1_scale.float(),
         
     | 
| 
      
 350 
     | 
    
         
            +
                    w1_scale,
         
     | 
| 
      
 351 
     | 
    
         
            +
                    expert_offsets[:-1],
         
     | 
| 
      
 352 
     | 
    
         
            +
                    problem_sizes1,
         
     | 
| 
      
 353 
     | 
    
         
            +
                    a_strides1,
         
     | 
| 
      
 354 
     | 
    
         
            +
                    b_strides1,
         
     | 
| 
      
 355 
     | 
    
         
            +
                    c_strides1,
         
     | 
| 
      
 356 
     | 
    
         
            +
                    s_strides13,
         
     | 
| 
      
 357 
     | 
    
         
            +
                    128,
         
     | 
| 
      
 358 
     | 
    
         
            +
                    topk,
         
     | 
| 
      
 359 
     | 
    
         
            +
                )
         
     | 
| 
      
 360 
     | 
    
         
            +
                intermediate = torch.empty((m * topk, n), device=device, dtype=torch.bfloat16)
         
     | 
| 
      
 361 
     | 
    
         
            +
                silu_and_mul(c1, intermediate)
         
     | 
| 
      
 362 
     | 
    
         
            +
             
     | 
| 
      
 363 
     | 
    
         
            +
                intermediate_q = torch.empty(
         
     | 
| 
      
 364 
     | 
    
         
            +
                    intermediate.shape, dtype=torch.float8_e4m3fn, device=device
         
     | 
| 
      
 365 
     | 
    
         
            +
                )
         
     | 
| 
      
 366 
     | 
    
         
            +
                sgl_per_tensor_quant_fp8(intermediate, intermediate_q, a2_scale.float(), True)
         
     | 
| 
      
 367 
     | 
    
         
            +
             
     | 
| 
      
 368 
     | 
    
         
            +
                cutlass_w4a8_moe_mm(
         
     | 
| 
      
 369 
     | 
    
         
            +
                    c2,
         
     | 
| 
      
 370 
     | 
    
         
            +
                    intermediate_q,
         
     | 
| 
      
 371 
     | 
    
         
            +
                    w2_q,
         
     | 
| 
      
 372 
     | 
    
         
            +
                    a2_scale.float(),
         
     | 
| 
      
 373 
     | 
    
         
            +
                    w2_scale,
         
     | 
| 
      
 374 
     | 
    
         
            +
                    expert_offsets[:-1],
         
     | 
| 
      
 375 
     | 
    
         
            +
                    problem_sizes2,
         
     | 
| 
      
 376 
     | 
    
         
            +
                    a_strides2,
         
     | 
| 
      
 377 
     | 
    
         
            +
                    b_strides2,
         
     | 
| 
      
 378 
     | 
    
         
            +
                    c_strides2,
         
     | 
| 
      
 379 
     | 
    
         
            +
                    s_strides2,
         
     | 
| 
      
 380 
     | 
    
         
            +
                    128,
         
     | 
| 
      
 381 
     | 
    
         
            +
                    topk,
         
     | 
| 
      
 382 
     | 
    
         
            +
                )
         
     | 
| 
      
 383 
     | 
    
         
            +
                num_tokens = src2dst.shape[0] // topk
         
     | 
| 
      
 384 
     | 
    
         
            +
                output = torch.empty(
         
     | 
| 
      
 385 
     | 
    
         
            +
                    (num_tokens, c2.shape[1]),
         
     | 
| 
      
 386 
     | 
    
         
            +
                    device=c2.device,
         
     | 
| 
      
 387 
     | 
    
         
            +
                    dtype=torch.bfloat16,
         
     | 
| 
      
 388 
     | 
    
         
            +
                )
         
     | 
| 
      
 389 
     | 
    
         
            +
                deepep_post_reorder_triton_kernel[(num_tokens,)](
         
     | 
| 
      
 390 
     | 
    
         
            +
                    c2,
         
     | 
| 
      
 391 
     | 
    
         
            +
                    output,
         
     | 
| 
      
 392 
     | 
    
         
            +
                    src2dst,
         
     | 
| 
      
 393 
     | 
    
         
            +
                    topk_ids_,
         
     | 
| 
      
 394 
     | 
    
         
            +
                    topk_weights,
         
     | 
| 
      
 395 
     | 
    
         
            +
                    topk,
         
     | 
| 
      
 396 
     | 
    
         
            +
                    c2.shape[1],
         
     | 
| 
       204 
397 
     | 
    
         
             
                    BLOCK_SIZE=512,
         
     | 
| 
       205 
398 
     | 
    
         
             
                )
         
     | 
| 
      
 399 
     | 
    
         
            +
             
     | 
| 
       206 
400 
     | 
    
         
             
                return output
         
     | 
| 
      
 401 
     | 
    
         
            +
             
     | 
| 
      
 402 
     | 
    
         
            +
             
     | 
| 
      
 403 
     | 
    
         
            +
            def cutlass_w4a8_moe_deepep_ll(
         
     | 
| 
      
 404 
     | 
    
         
            +
                a: torch.Tensor,
         
     | 
| 
      
 405 
     | 
    
         
            +
                w1_q: torch.Tensor,
         
     | 
| 
      
 406 
     | 
    
         
            +
                w2_q: torch.Tensor,
         
     | 
| 
      
 407 
     | 
    
         
            +
                w1_scale: torch.Tensor,
         
     | 
| 
      
 408 
     | 
    
         
            +
                w2_scale: torch.Tensor,
         
     | 
| 
      
 409 
     | 
    
         
            +
                topk_ids_: torch.Tensor,
         
     | 
| 
      
 410 
     | 
    
         
            +
                masked_m: torch.Tensor,
         
     | 
| 
      
 411 
     | 
    
         
            +
                a_strides1: torch.Tensor,
         
     | 
| 
      
 412 
     | 
    
         
            +
                b_strides1: torch.Tensor,
         
     | 
| 
      
 413 
     | 
    
         
            +
                c_strides1: torch.Tensor,
         
     | 
| 
      
 414 
     | 
    
         
            +
                a_strides2: torch.Tensor,
         
     | 
| 
      
 415 
     | 
    
         
            +
                b_strides2: torch.Tensor,
         
     | 
| 
      
 416 
     | 
    
         
            +
                c_strides2: torch.Tensor,
         
     | 
| 
      
 417 
     | 
    
         
            +
                s_strides13: torch.Tensor,
         
     | 
| 
      
 418 
     | 
    
         
            +
                s_strides2: torch.Tensor,
         
     | 
| 
      
 419 
     | 
    
         
            +
                expert_offsets: torch.Tensor,
         
     | 
| 
      
 420 
     | 
    
         
            +
                problem_sizes1: torch.Tensor,
         
     | 
| 
      
 421 
     | 
    
         
            +
                problem_sizes2: torch.Tensor,
         
     | 
| 
      
 422 
     | 
    
         
            +
                a1_scale: Optional[torch.Tensor] = None,
         
     | 
| 
      
 423 
     | 
    
         
            +
                a2_scale: Optional[torch.Tensor] = None,
         
     | 
| 
      
 424 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 425 
     | 
    
         
            +
                """
         
     | 
| 
      
 426 
     | 
    
         
            +
                This function computes a w4a8-quantized Mixture of Experts (MoE) layer
         
     | 
| 
      
 427 
     | 
    
         
            +
                using two sets of quantized weights, w1_q and w2_q, and top-k gating
         
     | 
| 
      
 428 
     | 
    
         
            +
                mechanism. The matrix multiplications are implemented with CUTLASS
         
     | 
| 
      
 429 
     | 
    
         
            +
                grouped gemm.
         
     | 
| 
      
 430 
     | 
    
         
            +
             
     | 
| 
      
 431 
     | 
    
         
            +
                Parameters:
         
     | 
| 
      
 432 
     | 
    
         
            +
                - a (torch.Tensor): The input tensor to the MoE layer.
         
     | 
| 
      
 433 
     | 
    
         
            +
                    Shape: [num_local_experts, num_max_dispatch_tokens_per_rank * num_ranks, K]
         
     | 
| 
      
 434 
     | 
    
         
            +
                - w1_q (torch.Tensor): The first set of int4-quantized expert weights.
         
     | 
| 
      
 435 
     | 
    
         
            +
                    Shape: [num_experts, N * 2,  K // 2]
         
     | 
| 
      
 436 
     | 
    
         
            +
                    (the weights are passed transposed and int4-packed)
         
     | 
| 
      
 437 
     | 
    
         
            +
                - w2_q (torch.Tensor): The second set of int4-quantized expert weights.
         
     | 
| 
      
 438 
     | 
    
         
            +
                    Shape: [num_experts, K, N // 2]
         
     | 
| 
      
 439 
     | 
    
         
            +
                    (the weights are passed transposed and int4-packed)
         
     | 
| 
      
 440 
     | 
    
         
            +
                - w1_scale (torch.Tensor): The fp32 scale to dequantize w1_q.
         
     | 
| 
      
 441 
     | 
    
         
            +
                    Shape: [num_experts, K // 512, N * 8]
         
     | 
| 
      
 442 
     | 
    
         
            +
                - w2_scale (torch.Tensor): The fp32 scale to dequantize w2_q.
         
     | 
| 
      
 443 
     | 
    
         
            +
                    Shape: [num_experts, N // 512, K * 4]
         
     | 
| 
      
 444 
     | 
    
         
            +
                - topk_weights (torch.Tensor): The weights of each token->expert mapping.
         
     | 
| 
      
 445 
     | 
    
         
            +
                - a_strides1 (torch.Tensor): The input strides of the first grouped gemm.
         
     | 
| 
      
 446 
     | 
    
         
            +
                - b_strides1 (torch.Tensor): The weights strides of the first grouped gemm.
         
     | 
| 
      
 447 
     | 
    
         
            +
                - c_strides1 (torch.Tensor): The output strides of the first grouped gemm.
         
     | 
| 
      
 448 
     | 
    
         
            +
                - a_strides2 (torch.Tensor): The input strides of the second grouped gemm.
         
     | 
| 
      
 449 
     | 
    
         
            +
                - b_strides2 (torch.Tensor): The weights strides of the second grouped gemm.
         
     | 
| 
      
 450 
     | 
    
         
            +
                - c_strides2 (torch.Tensor): The output strides of the second grouped gemm.
         
     | 
| 
      
 451 
     | 
    
         
            +
                - s_strides13 (torch.Tensor): The input and scale strides of the first grouped gemm.
         
     | 
| 
      
 452 
     | 
    
         
            +
                - s_strides2 (torch.Tensor): The scale strides of the second grouped gemm.
         
     | 
| 
      
 453 
     | 
    
         
            +
                - a1_scale (Optional[torch.Tensor]): The optional fp32 scale to quantize a.
         
     | 
| 
      
 454 
     | 
    
         
            +
                    Shape: scalar or [1, K]
         
     | 
| 
      
 455 
     | 
    
         
            +
                - a2_scale (Optional[torch.Tensor]): The optional fp32 scale to
         
     | 
| 
      
 456 
     | 
    
         
            +
                    quantize the intermediate result between the gemms.
         
     | 
| 
      
 457 
     | 
    
         
            +
                    Shape: scalar or [1, N]
         
     | 
| 
      
 458 
     | 
    
         
            +
                - apply_router_weight_on_input (bool): When true, the topk weights are
         
     | 
| 
      
 459 
     | 
    
         
            +
                    applied directly on the inputs. This is only applicable when topk is 1.
         
     | 
| 
      
 460 
     | 
    
         
            +
             
     | 
| 
      
 461 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 462 
     | 
    
         
            +
                - torch.Tensor: The fp8 output tensor after applying the MoE layer.
         
     | 
| 
      
 463 
     | 
    
         
            +
                """
         
     | 
| 
      
 464 
     | 
    
         
            +
                assert w1_q.dtype == torch.int8
         
     | 
| 
      
 465 
     | 
    
         
            +
                assert w2_q.dtype == torch.int8
         
     | 
| 
      
 466 
     | 
    
         
            +
                assert a.shape[2] // 2 == w1_q.shape[2], "Hidden size mismatch w1"
         
     | 
| 
      
 467 
     | 
    
         
            +
                assert w1_q.shape[2] * 2 == w2_q.shape[1], "Hidden size mismatch w2"
         
     | 
| 
      
 468 
     | 
    
         
            +
                assert w1_q.shape[0] == w2_q.shape[0], "Expert number mismatch"
         
     | 
| 
      
 469 
     | 
    
         
            +
                assert w1_q.shape[0] == w1_scale.shape[0], "w1 scales expert number mismatch"
         
     | 
| 
      
 470 
     | 
    
         
            +
                assert w1_q.shape[0] == w2_scale.shape[0], "w2 scales expert number mismatch"
         
     | 
| 
      
 471 
     | 
    
         
            +
             
     | 
| 
      
 472 
     | 
    
         
            +
                assert a_strides1.shape[0] == w1_q.shape[0], "A Strides 1 expert number mismatch"
         
     | 
| 
      
 473 
     | 
    
         
            +
                assert b_strides1.shape[0] == w1_q.shape[0], "B Strides 1 expert number mismatch"
         
     | 
| 
      
 474 
     | 
    
         
            +
                assert a_strides2.shape[0] == w2_q.shape[0], "A Strides 2 expert number mismatch"
         
     | 
| 
      
 475 
     | 
    
         
            +
                assert b_strides2.shape[0] == w2_q.shape[0], "B Strides 2 expert number mismatch"
         
     | 
| 
      
 476 
     | 
    
         
            +
                num_experts = w1_q.size(0)
         
     | 
| 
      
 477 
     | 
    
         
            +
                m = a.size(1)
         
     | 
| 
      
 478 
     | 
    
         
            +
                k = w1_q.size(2) * 2  # w1_q is transposed and packed
         
     | 
| 
      
 479 
     | 
    
         
            +
                n = w2_q.size(2) * 2  # w2_q is transposed and packed
         
     | 
| 
      
 480 
     | 
    
         
            +
                topk = topk_ids_.size(1)
         
     | 
| 
      
 481 
     | 
    
         
            +
             
     | 
| 
      
 482 
     | 
    
         
            +
                device = a.device
         
     | 
| 
      
 483 
     | 
    
         
            +
             
     | 
| 
      
 484 
     | 
    
         
            +
                problem_sizes1, problem_sizes2 = deepep_ll_get_cutlass_w4a8_moe_mm_data(
         
     | 
| 
      
 485 
     | 
    
         
            +
                    masked_m,
         
     | 
| 
      
 486 
     | 
    
         
            +
                    problem_sizes1,
         
     | 
| 
      
 487 
     | 
    
         
            +
                    problem_sizes2,
         
     | 
| 
      
 488 
     | 
    
         
            +
                    num_experts,
         
     | 
| 
      
 489 
     | 
    
         
            +
                    n,
         
     | 
| 
      
 490 
     | 
    
         
            +
                    k,
         
     | 
| 
      
 491 
     | 
    
         
            +
                )
         
     | 
| 
      
 492 
     | 
    
         
            +
             
     | 
| 
      
 493 
     | 
    
         
            +
                gateup_input = torch.empty(a.shape, dtype=torch.float8_e4m3fn, device=device)
         
     | 
| 
      
 494 
     | 
    
         
            +
                sgl_per_tensor_quant_fp8(a, gateup_input, a1_scale.float(), True)
         
     | 
| 
      
 495 
     | 
    
         
            +
                c1 = torch.empty((num_experts, m, n * 2), device=device, dtype=torch.bfloat16)
         
     | 
| 
      
 496 
     | 
    
         
            +
                c2 = torch.empty((num_experts, m, k), device=device, dtype=torch.bfloat16)
         
     | 
| 
      
 497 
     | 
    
         
            +
             
     | 
| 
      
 498 
     | 
    
         
            +
                cutlass_w4a8_moe_mm(
         
     | 
| 
      
 499 
     | 
    
         
            +
                    c1,
         
     | 
| 
      
 500 
     | 
    
         
            +
                    gateup_input,
         
     | 
| 
      
 501 
     | 
    
         
            +
                    w1_q,
         
     | 
| 
      
 502 
     | 
    
         
            +
                    a1_scale.float(),
         
     | 
| 
      
 503 
     | 
    
         
            +
                    w1_scale,
         
     | 
| 
      
 504 
     | 
    
         
            +
                    expert_offsets[:-1],
         
     | 
| 
      
 505 
     | 
    
         
            +
                    problem_sizes1,
         
     | 
| 
      
 506 
     | 
    
         
            +
                    a_strides1,
         
     | 
| 
      
 507 
     | 
    
         
            +
                    b_strides1,
         
     | 
| 
      
 508 
     | 
    
         
            +
                    c_strides1,
         
     | 
| 
      
 509 
     | 
    
         
            +
                    s_strides13,
         
     | 
| 
      
 510 
     | 
    
         
            +
                    128,
         
     | 
| 
      
 511 
     | 
    
         
            +
                    topk,
         
     | 
| 
      
 512 
     | 
    
         
            +
                )
         
     | 
| 
      
 513 
     | 
    
         
            +
             
     | 
| 
      
 514 
     | 
    
         
            +
                intermediate_q = torch.empty(
         
     | 
| 
      
 515 
     | 
    
         
            +
                    (num_experts, m, n), device=a.device, dtype=torch.float8_e4m3fn
         
     | 
| 
      
 516 
     | 
    
         
            +
                )
         
     | 
| 
      
 517 
     | 
    
         
            +
                silu_and_mul_masked_post_per_tensor_quant_fwd(
         
     | 
| 
      
 518 
     | 
    
         
            +
                    c1, intermediate_q, masked_m, a2_scale
         
     | 
| 
      
 519 
     | 
    
         
            +
                )
         
     | 
| 
      
 520 
     | 
    
         
            +
                cutlass_w4a8_moe_mm(
         
     | 
| 
      
 521 
     | 
    
         
            +
                    c2,
         
     | 
| 
      
 522 
     | 
    
         
            +
                    intermediate_q,
         
     | 
| 
      
 523 
     | 
    
         
            +
                    w2_q,
         
     | 
| 
      
 524 
     | 
    
         
            +
                    a2_scale.float(),
         
     | 
| 
      
 525 
     | 
    
         
            +
                    w2_scale,
         
     | 
| 
      
 526 
     | 
    
         
            +
                    expert_offsets[:-1],
         
     | 
| 
      
 527 
     | 
    
         
            +
                    problem_sizes2,
         
     | 
| 
      
 528 
     | 
    
         
            +
                    a_strides2,
         
     | 
| 
      
 529 
     | 
    
         
            +
                    b_strides2,
         
     | 
| 
      
 530 
     | 
    
         
            +
                    c_strides2,
         
     | 
| 
      
 531 
     | 
    
         
            +
                    s_strides2,
         
     | 
| 
      
 532 
     | 
    
         
            +
                    128,
         
     | 
| 
      
 533 
     | 
    
         
            +
                    topk,
         
     | 
| 
      
 534 
     | 
    
         
            +
                )
         
     | 
| 
      
 535 
     | 
    
         
            +
             
     | 
| 
      
 536 
     | 
    
         
            +
                return c2
         
     |