sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -4,18 +4,40 @@ from __future__ import annotations 
     | 
|
| 
       4 
4 
     | 
    
         | 
| 
       5 
5 
     | 
    
         
             
            import enum
         
     | 
| 
       6 
6 
     | 
    
         
             
            import logging
         
     | 
| 
      
 7 
     | 
    
         
            +
            import re
         
     | 
| 
       7 
8 
     | 
    
         
             
            from enum import Enum
         
     | 
| 
       8 
     | 
    
         
            -
            from typing import TYPE_CHECKING 
     | 
| 
      
 9 
     | 
    
         
            +
            from typing import TYPE_CHECKING
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
            try:
         
     | 
| 
      
 12 
     | 
    
         
            +
                from sgl_kernel import fused_marlin_moe
         
     | 
| 
      
 13 
     | 
    
         
            +
             
     | 
| 
      
 14 
     | 
    
         
            +
                FUSED_MARLIN_MOE_AVAILABLE = True
         
     | 
| 
      
 15 
     | 
    
         
            +
            except ImportError:
         
     | 
| 
      
 16 
     | 
    
         
            +
                FUSED_MARLIN_MOE_AVAILABLE = False
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
            try:
         
     | 
| 
      
 19 
     | 
    
         
            +
                from kt_kernel import AMXMoEWrapper
         
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
                KTRANSFORMERS_AVAILABLE = True
         
     | 
| 
      
 22 
     | 
    
         
            +
            except ImportError:
         
     | 
| 
      
 23 
     | 
    
         
            +
                KTRANSFORMERS_AVAILABLE = False
         
     | 
| 
       9 
24 
     | 
    
         | 
| 
       10 
25 
     | 
    
         
             
            import torch
         
     | 
| 
       11 
26 
     | 
    
         
             
            from compressed_tensors import CompressionFormat
         
     | 
| 
       12 
27 
     | 
    
         
             
            from compressed_tensors.quantization import QuantizationStrategy
         
     | 
| 
       13 
28 
     | 
    
         | 
| 
      
 29 
     | 
    
         
            +
            from sglang.srt.distributed import get_tensor_model_parallel_rank
         
     | 
| 
      
 30 
     | 
    
         
            +
            from sglang.srt.environ import envs
         
     | 
| 
       14 
31 
     | 
    
         
             
            from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
         
     | 
| 
       15 
32 
     | 
    
         
             
            from sglang.srt.layers.moe.moe_runner.triton import TritonMoeQuantInfo
         
     | 
| 
       16 
33 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import FusedMoEMethodBase
         
     | 
| 
      
 34 
     | 
    
         
            +
            from sglang.srt.layers.quantization.compressed_tensors.schemes import (
         
     | 
| 
      
 35 
     | 
    
         
            +
                WNA16_SUPPORTED_BITS,
         
     | 
| 
      
 36 
     | 
    
         
            +
            )
         
     | 
| 
       17 
37 
     | 
    
         
             
            from sglang.srt.layers.quantization.fp8_kernel import is_fp8_fnuz, scaled_fp8_quant
         
     | 
| 
       18 
38 
     | 
    
         
             
            from sglang.srt.layers.quantization.fp8_utils import normalize_e4m3fn_to_e4m3fnuz
         
     | 
| 
      
 39 
     | 
    
         
            +
            from sglang.srt.layers.quantization.gptq import gptq_marlin_moe_repack
         
     | 
| 
      
 40 
     | 
    
         
            +
            from sglang.srt.layers.quantization.marlin_utils import marlin_moe_permute_scales
         
     | 
| 
       19 
41 
     | 
    
         
             
            from sglang.srt.layers.quantization.utils import (
         
     | 
| 
       20 
42 
     | 
    
         
             
                all_close_1d,
         
     | 
| 
       21 
43 
     | 
    
         
             
                per_tensor_dequantize,
         
     | 
| 
         @@ -23,10 +45,9 @@ from sglang.srt.layers.quantization.utils import ( 
     | 
|
| 
       23 
45 
     | 
    
         
             
            )
         
     | 
| 
       24 
46 
     | 
    
         
             
            from sglang.srt.utils import (
         
     | 
| 
       25 
47 
     | 
    
         
             
                get_bool_env_var,
         
     | 
| 
       26 
     | 
    
         
            -
                 
     | 
| 
      
 48 
     | 
    
         
            +
                get_compiler_backend,
         
     | 
| 
       27 
49 
     | 
    
         
             
                is_cuda,
         
     | 
| 
       28 
50 
     | 
    
         
             
                is_hip,
         
     | 
| 
       29 
     | 
    
         
            -
                is_npu,
         
     | 
| 
       30 
51 
     | 
    
         
             
                set_weight_attrs,
         
     | 
| 
       31 
52 
     | 
    
         
             
            )
         
     | 
| 
       32 
53 
     | 
    
         | 
| 
         @@ -41,6 +62,8 @@ if TYPE_CHECKING: 
     | 
|
| 
       41 
62 
     | 
    
         
             
                )
         
     | 
| 
       42 
63 
     | 
    
         | 
| 
       43 
64 
     | 
    
         
             
            _is_hip = is_hip()
         
     | 
| 
      
 65 
     | 
    
         
            +
            _is_cuda = is_cuda()
         
     | 
| 
      
 66 
     | 
    
         
            +
             
     | 
| 
       44 
67 
     | 
    
         
             
            _use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
         
     | 
| 
       45 
68 
     | 
    
         | 
| 
       46 
69 
     | 
    
         
             
            if _use_aiter:
         
     | 
| 
         @@ -48,16 +71,25 @@ if _use_aiter: 
     | 
|
| 
       48 
71 
     | 
    
         | 
| 
       49 
72 
     | 
    
         
             
                from sglang.srt.layers.moe.rocm_moe_utils import rocm_fused_experts_tkw1
         
     | 
| 
       50 
73 
     | 
    
         | 
| 
       51 
     | 
    
         
            -
            try:
         
     | 
| 
       52 
     | 
    
         
            -
                import vllm
         
     | 
| 
       53 
74 
     | 
    
         | 
| 
       54 
     | 
    
         
            -
             
     | 
| 
       55 
     | 
    
         
            -
             
     | 
| 
       56 
     | 
    
         
            -
                VLLM_AVAILABLE = False
         
     | 
| 
      
 75 
     | 
    
         
            +
            if _is_cuda:
         
     | 
| 
      
 76 
     | 
    
         
            +
                from sgl_kernel import fused_marlin_moe
         
     | 
| 
       57 
77 
     | 
    
         | 
| 
       58 
78 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       59 
79 
     | 
    
         | 
| 
       60 
80 
     | 
    
         | 
| 
      
 81 
     | 
    
         
            +
            def _mask_topk_ids_cpu_experts(topk_ids: torch.Tensor, num_gpu_experts: int):
         
     | 
| 
      
 82 
     | 
    
         
            +
                """Mask topk_ids >= num_gpu_experts by setting them to -1."""
         
     | 
| 
      
 83 
     | 
    
         
            +
                topk_ids[topk_ids >= num_gpu_experts] = -1
         
     | 
| 
      
 84 
     | 
    
         
            +
             
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
      
 86 
     | 
    
         
            +
            @torch.compile(dynamic=True, backend=get_compiler_backend())
         
     | 
| 
      
 87 
     | 
    
         
            +
            def mask_cpu_expert_ids(topk_ids: torch.Tensor, num_gpu_experts: int):
         
     | 
| 
      
 88 
     | 
    
         
            +
                """mask CPU expert IDs."""
         
     | 
| 
      
 89 
     | 
    
         
            +
                _mask_topk_ids_cpu_experts(topk_ids, num_gpu_experts)
         
     | 
| 
      
 90 
     | 
    
         
            +
                return topk_ids
         
     | 
| 
      
 91 
     | 
    
         
            +
             
     | 
| 
      
 92 
     | 
    
         
            +
             
     | 
| 
       61 
93 
     | 
    
         
             
            class GPTQMarlinState(Enum):
         
     | 
| 
       62 
94 
     | 
    
         
             
                REPACK = enum.auto()
         
     | 
| 
       63 
95 
     | 
    
         
             
                READY = enum.auto()
         
     | 
| 
         @@ -67,6 +99,7 @@ __all__ = [ 
     | 
|
| 
       67 
99 
     | 
    
         
             
                "CompressedTensorsMoEMethod",
         
     | 
| 
       68 
100 
     | 
    
         
             
                "CompressedTensorsW8A8Fp8MoEMethod",
         
     | 
| 
       69 
101 
     | 
    
         
             
                "CompressedTensorsWNA16MoEMethod",
         
     | 
| 
      
 102 
     | 
    
         
            +
                "CompressedTensorsWNA16AMXEPMoEMethod",  # for Ktransformers
         
     | 
| 
       70 
103 
     | 
    
         
             
            ]
         
     | 
| 
       71 
104 
     | 
    
         | 
| 
       72 
105 
     | 
    
         | 
| 
         @@ -79,17 +112,27 @@ class CompressedTensorsMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       79 
112 
     | 
    
         
             
                @staticmethod
         
     | 
| 
       80 
113 
     | 
    
         
             
                def get_moe_method(
         
     | 
| 
       81 
114 
     | 
    
         
             
                    quant_config: CompressedTensorsConfig,
         
     | 
| 
      
 115 
     | 
    
         
            +
                    layer: torch.nn.Module,
         
     | 
| 
      
 116 
     | 
    
         
            +
                    prefix: str,
         
     | 
| 
       82 
117 
     | 
    
         
             
                ) -> "CompressedTensorsMoEMethod":
         
     | 
| 
       83 
118 
     | 
    
         
             
                    # TODO: @dsikka: refactor this to use schemes as other kernels
         
     | 
| 
       84 
119 
     | 
    
         
             
                    # are supported + check if the layer is being ignored.
         
     | 
| 
      
 120 
     | 
    
         
            +
             
     | 
| 
      
 121 
     | 
    
         
            +
                    if envs.SGLANG_KT_MOE_AMX_WEIGHT_PATH.is_set():
         
     | 
| 
      
 122 
     | 
    
         
            +
                        match = re.search(r"(\d+)\.mlp", prefix)
         
     | 
| 
      
 123 
     | 
    
         
            +
                        if not match:
         
     | 
| 
      
 124 
     | 
    
         
            +
                            raise ValueError(
         
     | 
| 
      
 125 
     | 
    
         
            +
                                f"Unable to extract layer number from prefix '{prefix}'. "
         
     | 
| 
      
 126 
     | 
    
         
            +
                                f"Expected format: '<layer_number>.mlp'"
         
     | 
| 
      
 127 
     | 
    
         
            +
                            )
         
     | 
| 
      
 128 
     | 
    
         
            +
                        layer_number = int(match.group(1))
         
     | 
| 
      
 129 
     | 
    
         
            +
                        return CompressedTensorsWNA16AMXEPMoEMethod(quant_config, layer_number)
         
     | 
| 
      
 130 
     | 
    
         
            +
             
     | 
| 
       85 
131 
     | 
    
         
             
                    weight_quant = quant_config.target_scheme_map["Linear"].get("weights")
         
     | 
| 
       86 
132 
     | 
    
         
             
                    input_quant = quant_config.target_scheme_map["Linear"].get("input_activations")
         
     | 
| 
       87 
     | 
    
         
            -
             
     | 
| 
       88 
133 
     | 
    
         
             
                    if quant_config._is_wNa16_group_channel(weight_quant, input_quant):
         
     | 
| 
       89 
     | 
    
         
            -
             
     | 
| 
       90 
     | 
    
         
            -
             
     | 
| 
       91 
     | 
    
         
            -
                                "vllm is not installed, to use CompressedTensorsWNA16MoEMethod, please install vllm."
         
     | 
| 
       92 
     | 
    
         
            -
                            )
         
     | 
| 
      
 134 
     | 
    
         
            +
             
     | 
| 
      
 135 
     | 
    
         
            +
                        logger.info_once("Using CompressedTensorsWNA16MarlinMoEMethod")
         
     | 
| 
       93 
136 
     | 
    
         
             
                        return CompressedTensorsWNA16MoEMethod(quant_config)
         
     | 
| 
       94 
137 
     | 
    
         
             
                    elif quant_config._is_fp8_w8a8(weight_quant, input_quant):
         
     | 
| 
       95 
138 
     | 
    
         
             
                        return CompressedTensorsW8A8Fp8MoEMethod(quant_config)
         
     | 
| 
         @@ -208,7 +251,7 @@ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod): 
     | 
|
| 
       208 
251 
     | 
    
         
             
                        layer.w13_input_scale = None
         
     | 
| 
       209 
252 
     | 
    
         
             
                        layer.w2_input_scale = None
         
     | 
| 
       210 
253 
     | 
    
         | 
| 
       211 
     | 
    
         
            -
                def process_weights_after_loading(self, layer: FusedMoE) -> None:
         
     | 
| 
      
 254 
     | 
    
         
            +
                def process_weights_after_loading(self, layer: torch.nn.Module | FusedMoE) -> None:
         
     | 
| 
       212 
255 
     | 
    
         
             
                    # Fp8 moe kernels require a single activation scale.
         
     | 
| 
       213 
256 
     | 
    
         
             
                    # We take the max of all the scales in case they differ.
         
     | 
| 
       214 
257 
     | 
    
         
             
                    if self.static_input_scales:
         
     | 
| 
         @@ -356,7 +399,7 @@ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod): 
     | 
|
| 
       356 
399 
     | 
    
         | 
| 
       357 
400 
     | 
    
         
             
            class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod):
         
     | 
| 
       358 
401 
     | 
    
         | 
| 
       359 
     | 
    
         
            -
                def __init__(self, quant_config: CompressedTensorsConfig):
         
     | 
| 
      
 402 
     | 
    
         
            +
                def __init__(self, quant_config: CompressedTensorsConfig, num_gpu_experts=-1):
         
     | 
| 
       360 
403 
     | 
    
         
             
                    self.quant_config = quant_config
         
     | 
| 
       361 
404 
     | 
    
         
             
                    # TODO: @dsikka: refactor this to use schemes as other kernels
         
     | 
| 
       362 
405 
     | 
    
         
             
                    # are supported + check if the layer is being ignored.
         
     | 
| 
         @@ -378,6 +421,7 @@ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod): 
     | 
|
| 
       378 
421 
     | 
    
         
             
                            "is supported for the following bits: ",
         
     | 
| 
       379 
422 
     | 
    
         
             
                            f"{WNA16_SUPPORTED_BITS}",
         
     | 
| 
       380 
423 
     | 
    
         
             
                        )
         
     | 
| 
      
 424 
     | 
    
         
            +
                    self.num_gpu_experts = num_gpu_experts
         
     | 
| 
       381 
425 
     | 
    
         | 
| 
       382 
426 
     | 
    
         
             
                def create_weights(
         
     | 
| 
       383 
427 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -388,10 +432,8 @@ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod): 
     | 
|
| 
       388 
432 
     | 
    
         
             
                    params_dtype: torch.dtype,
         
     | 
| 
       389 
433 
     | 
    
         
             
                    **extra_weight_attrs,
         
     | 
| 
       390 
434 
     | 
    
         
             
                ):
         
     | 
| 
       391 
     | 
    
         
            -
             
     | 
| 
       392 
     | 
    
         
            -
             
     | 
| 
       393 
     | 
    
         
            -
                        params_dtype == torch.float16
         
     | 
| 
       394 
     | 
    
         
            -
                    ), "float16 is required for MoE compressed models. Set dtype=torch.float16"  # noqa: E501
         
     | 
| 
      
 435 
     | 
    
         
            +
                    if self.num_gpu_experts != -1:
         
     | 
| 
      
 436 
     | 
    
         
            +
                        num_experts = self.num_gpu_experts
         
     | 
| 
       395 
437 
     | 
    
         | 
| 
       396 
438 
     | 
    
         
             
                    # Will transpose the loaded weight along the
         
     | 
| 
       397 
439 
     | 
    
         
             
                    # intermediate and hidden dim sizes. Will
         
     | 
| 
         @@ -530,44 +572,6 @@ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod): 
     | 
|
| 
       530 
572 
     | 
    
         
             
                        getattr(layer, name).copy_(new_t)
         
     | 
| 
       531 
573 
     | 
    
         
             
                        del new_t
         
     | 
| 
       532 
574 
     | 
    
         | 
| 
       533 
     | 
    
         
            -
                    def get_scale_perms(num_bits: int):
         
     | 
| 
       534 
     | 
    
         
            -
                        scale_perm: List[int] = []
         
     | 
| 
       535 
     | 
    
         
            -
                        for i in range(8):
         
     | 
| 
       536 
     | 
    
         
            -
                            scale_perm.extend([i + 8 * j for j in range(8)])
         
     | 
| 
       537 
     | 
    
         
            -
                        scale_perm_single: List[int] = []
         
     | 
| 
       538 
     | 
    
         
            -
                        for i in range(4):
         
     | 
| 
       539 
     | 
    
         
            -
                            scale_perm_single.extend(
         
     | 
| 
       540 
     | 
    
         
            -
                                [2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]]
         
     | 
| 
       541 
     | 
    
         
            -
                            )
         
     | 
| 
       542 
     | 
    
         
            -
                        return scale_perm, scale_perm_single
         
     | 
| 
       543 
     | 
    
         
            -
             
     | 
| 
       544 
     | 
    
         
            -
                    def marlin_permute_scales(
         
     | 
| 
       545 
     | 
    
         
            -
                        s: torch.Tensor, size_k: int, size_n: int, group_size: int, num_bits: int
         
     | 
| 
       546 
     | 
    
         
            -
                    ):
         
     | 
| 
       547 
     | 
    
         
            -
                        scale_perm, scale_perm_single = get_scale_perms(num_bits)
         
     | 
| 
       548 
     | 
    
         
            -
                        if group_size < size_k and group_size != -1:
         
     | 
| 
       549 
     | 
    
         
            -
                            s = s.reshape((-1, len(scale_perm)))[:, scale_perm]
         
     | 
| 
       550 
     | 
    
         
            -
                        else:
         
     | 
| 
       551 
     | 
    
         
            -
                            s = s.reshape((-1, len(scale_perm_single)))[:, scale_perm_single]
         
     | 
| 
       552 
     | 
    
         
            -
                        s = s.reshape((-1, size_n)).contiguous()
         
     | 
| 
       553 
     | 
    
         
            -
                        return s
         
     | 
| 
       554 
     | 
    
         
            -
             
     | 
| 
       555 
     | 
    
         
            -
                    def marlin_moe_permute_scales(
         
     | 
| 
       556 
     | 
    
         
            -
                        s: torch.Tensor, size_k: int, size_n: int, group_size: int, num_bits: int
         
     | 
| 
       557 
     | 
    
         
            -
                    ):
         
     | 
| 
       558 
     | 
    
         
            -
                        num_experts = s.shape[0]
         
     | 
| 
       559 
     | 
    
         
            -
                        output = torch.empty(
         
     | 
| 
       560 
     | 
    
         
            -
                            (num_experts, s.shape[1], s.shape[2]), device=s.device, dtype=s.dtype
         
     | 
| 
       561 
     | 
    
         
            -
                        )
         
     | 
| 
       562 
     | 
    
         
            -
                        for e in range(num_experts):
         
     | 
| 
       563 
     | 
    
         
            -
                            output[e] = marlin_permute_scales(
         
     | 
| 
       564 
     | 
    
         
            -
                                s[e], size_k, size_n, group_size, num_bits
         
     | 
| 
       565 
     | 
    
         
            -
                            )
         
     | 
| 
       566 
     | 
    
         
            -
                        return output
         
     | 
| 
       567 
     | 
    
         
            -
             
     | 
| 
       568 
     | 
    
         
            -
                    size_k2 = layer.w2_weight_packed.shape[2]
         
     | 
| 
       569 
     | 
    
         
            -
                    size_k13 = layer.w13_weight_packed.shape[2]
         
     | 
| 
       570 
     | 
    
         
            -
             
     | 
| 
       571 
575 
     | 
    
         
             
                    num_experts = layer.w13_weight_g_idx.shape[0]
         
     | 
| 
       572 
576 
     | 
    
         
             
                    device = layer.w13_weight_g_idx.device
         
     | 
| 
       573 
577 
     | 
    
         | 
| 
         @@ -614,42 +618,39 @@ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod): 
     | 
|
| 
       614 
618 
     | 
    
         
             
                            requires_grad=False,
         
     | 
| 
       615 
619 
     | 
    
         
             
                        )
         
     | 
| 
       616 
620 
     | 
    
         | 
| 
       617 
     | 
    
         
            -
                     
     | 
| 
       618 
     | 
    
         
            -
             
     | 
| 
       619 
     | 
    
         
            -
                    marlin_w13_qweight = vllm_ops.gptq_marlin_moe_repack(
         
     | 
| 
      
 621 
     | 
    
         
            +
                    marlin_w13_qweight = gptq_marlin_moe_repack(
         
     | 
| 
       620 
622 
     | 
    
         
             
                        layer.w13_weight_packed,
         
     | 
| 
       621 
623 
     | 
    
         
             
                        layer.w13_g_idx_sort_indices,
         
     | 
| 
       622 
624 
     | 
    
         
             
                        layer.w13_weight_packed.shape[1] * self.packed_factor,
         
     | 
| 
       623 
625 
     | 
    
         
             
                        layer.w13_weight_packed.shape[2],
         
     | 
| 
       624 
626 
     | 
    
         
             
                        self.num_bits,
         
     | 
| 
       625 
627 
     | 
    
         
             
                    )
         
     | 
| 
       626 
     | 
    
         
            -
                     
     | 
| 
       627 
     | 
    
         
            -
                    marlin_w2_qweight =  
     | 
| 
      
 628 
     | 
    
         
            +
                    replace_parameter(layer, "w13_weight_packed", marlin_w13_qweight)
         
     | 
| 
      
 629 
     | 
    
         
            +
                    marlin_w2_qweight = gptq_marlin_moe_repack(
         
     | 
| 
       628 
630 
     | 
    
         
             
                        layer.w2_weight_packed,
         
     | 
| 
       629 
631 
     | 
    
         
             
                        layer.w2_g_idx_sort_indices,
         
     | 
| 
       630 
632 
     | 
    
         
             
                        layer.w2_weight_packed.shape[1] * self.packed_factor,
         
     | 
| 
       631 
633 
     | 
    
         
             
                        layer.w2_weight_packed.shape[2],
         
     | 
| 
       632 
634 
     | 
    
         
             
                        self.num_bits,
         
     | 
| 
       633 
635 
     | 
    
         
             
                    )
         
     | 
| 
       634 
     | 
    
         
            -
                     
     | 
| 
      
 636 
     | 
    
         
            +
                    replace_parameter(layer, "w2_weight_packed", marlin_w2_qweight)
         
     | 
| 
       635 
637 
     | 
    
         
             
                    # Repack scales
         
     | 
| 
       636 
638 
     | 
    
         
             
                    marlin_w13_scales = marlin_moe_permute_scales(
         
     | 
| 
       637 
639 
     | 
    
         
             
                        layer.w13_weight_scale,
         
     | 
| 
       638 
     | 
    
         
            -
                         
     | 
| 
      
 640 
     | 
    
         
            +
                        layer.w13_weight_packed.shape[2],
         
     | 
| 
       639 
641 
     | 
    
         
             
                        layer.w13_weight_scale.shape[2],
         
     | 
| 
       640 
642 
     | 
    
         
             
                        self.group_size,
         
     | 
| 
       641 
     | 
    
         
            -
                        self.num_bits,
         
     | 
| 
       642 
643 
     | 
    
         
             
                    )
         
     | 
| 
       643 
     | 
    
         
            -
                     
     | 
| 
      
 644 
     | 
    
         
            +
                    replace_parameter(layer, "w13_weight_scale", marlin_w13_scales)
         
     | 
| 
      
 645 
     | 
    
         
            +
             
     | 
| 
       644 
646 
     | 
    
         
             
                    marlin_w2_scales = marlin_moe_permute_scales(
         
     | 
| 
       645 
647 
     | 
    
         
             
                        layer.w2_weight_scale,
         
     | 
| 
       646 
648 
     | 
    
         
             
                        layer.w2_weight_scale.shape[1]
         
     | 
| 
       647 
649 
     | 
    
         
             
                        * (self.group_size if self.group_size != -1 else self.packed_factor),
         
     | 
| 
       648 
     | 
    
         
            -
                         
     | 
| 
      
 650 
     | 
    
         
            +
                        layer.w2_weight_scale.shape[2],
         
     | 
| 
       649 
651 
     | 
    
         
             
                        self.group_size,
         
     | 
| 
       650 
     | 
    
         
            -
                        self.num_bits,
         
     | 
| 
       651 
652 
     | 
    
         
             
                    )
         
     | 
| 
       652 
     | 
    
         
            -
                     
     | 
| 
      
 653 
     | 
    
         
            +
                    replace_parameter(layer, "w2_weight_scale", marlin_w2_scales)
         
     | 
| 
       653 
654 
     | 
    
         | 
| 
       654 
655 
     | 
    
         
             
                def create_moe_runner(
         
     | 
| 
       655 
656 
     | 
    
         
             
                    self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
         
     | 
| 
         @@ -673,7 +674,7 @@ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod): 
     | 
|
| 
       673 
674 
     | 
    
         | 
| 
       674 
675 
     | 
    
         
             
                    topk_weights, topk_ids, router_logits = topk_output
         
     | 
| 
       675 
676 
     | 
    
         | 
| 
       676 
     | 
    
         
            -
                    output =  
     | 
| 
      
 677 
     | 
    
         
            +
                    output = fused_marlin_moe(
         
     | 
| 
       677 
678 
     | 
    
         
             
                        x,
         
     | 
| 
       678 
679 
     | 
    
         
             
                        layer.w13_weight_packed,
         
     | 
| 
       679 
680 
     | 
    
         
             
                        layer.w2_weight_packed,
         
     | 
| 
         @@ -690,3 +691,353 @@ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod): 
     | 
|
| 
       690 
691 
     | 
    
         
             
                        is_k_full=self.is_k_full,
         
     | 
| 
       691 
692 
     | 
    
         
             
                    )
         
     | 
| 
       692 
693 
     | 
    
         
             
                    return StandardCombineInput(hidden_states=output)
         
     | 
| 
      
 694 
     | 
    
         
            +
             
     | 
| 
      
 695 
     | 
    
         
            +
             
     | 
| 
      
 696 
     | 
    
         
            +
            class CompressedTensorsWNA16AMXMoEMethod(CompressedTensorsMoEMethod):
         
     | 
| 
      
 697 
     | 
    
         
            +
                """AMX MoE method using AMXMoEWrapper for CPU inference."""
         
     | 
| 
      
 698 
     | 
    
         
            +
             
     | 
| 
      
 699 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 700 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 701 
     | 
    
         
            +
                    quant_config: "CompressedTensorsConfig",  # type: ignore # noqa E501
         
     | 
| 
      
 702 
     | 
    
         
            +
                    layer_idx,
         
     | 
| 
      
 703 
     | 
    
         
            +
                    num_gpu_experts,
         
     | 
| 
      
 704 
     | 
    
         
            +
                    cpuinfer,
         
     | 
| 
      
 705 
     | 
    
         
            +
                    threadpool_count,
         
     | 
| 
      
 706 
     | 
    
         
            +
                    amx_weight_path,
         
     | 
| 
      
 707 
     | 
    
         
            +
                    chunked_prefill_size,
         
     | 
| 
      
 708 
     | 
    
         
            +
                ):
         
     | 
| 
      
 709 
     | 
    
         
            +
             
     | 
| 
      
 710 
     | 
    
         
            +
                    if not KTRANSFORMERS_AVAILABLE:
         
     | 
| 
      
 711 
     | 
    
         
            +
                        raise ImportError(
         
     | 
| 
      
 712 
     | 
    
         
            +
                            "kt_kernel is not installed, to use CompressedTensorsWNA16AMXEPMoEMethod, please install kt_kernel."
         
     | 
| 
      
 713 
     | 
    
         
            +
                        )
         
     | 
| 
      
 714 
     | 
    
         
            +
             
     | 
| 
      
 715 
     | 
    
         
            +
                    if not FUSED_MARLIN_MOE_AVAILABLE:
         
     | 
| 
      
 716 
     | 
    
         
            +
                        raise ImportError("fused_marlin_moe is not available")
         
     | 
| 
      
 717 
     | 
    
         
            +
             
     | 
| 
      
 718 
     | 
    
         
            +
                    self.tp_rank = get_tensor_model_parallel_rank()
         
     | 
| 
      
 719 
     | 
    
         
            +
                    self.layer_idx = layer_idx
         
     | 
| 
      
 720 
     | 
    
         
            +
                    self.num_gpu_experts = num_gpu_experts
         
     | 
| 
      
 721 
     | 
    
         
            +
                    self.amx_weight_path = amx_weight_path
         
     | 
| 
      
 722 
     | 
    
         
            +
                    self.chunked_prefill_size = chunked_prefill_size
         
     | 
| 
      
 723 
     | 
    
         
            +
                    self.cpuinfer = cpuinfer
         
     | 
| 
      
 724 
     | 
    
         
            +
                    self.threadpool_count = threadpool_count
         
     | 
| 
      
 725 
     | 
    
         
            +
                    self.amx_wrapper = None
         
     | 
| 
      
 726 
     | 
    
         
            +
             
     | 
| 
      
 727 
     | 
    
         
            +
                def create_weights(
         
     | 
| 
      
 728 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 729 
     | 
    
         
            +
                    layer: torch.nn.Module,
         
     | 
| 
      
 730 
     | 
    
         
            +
                    num_experts: int,
         
     | 
| 
      
 731 
     | 
    
         
            +
                    hidden_size: int,
         
     | 
| 
      
 732 
     | 
    
         
            +
                    intermediate_size_per_partition: int,
         
     | 
| 
      
 733 
     | 
    
         
            +
                    params_dtype: torch.dtype,
         
     | 
| 
      
 734 
     | 
    
         
            +
                    **extra_weight_attrs,
         
     | 
| 
      
 735 
     | 
    
         
            +
                ):
         
     | 
| 
      
 736 
     | 
    
         
            +
                    self.experts_num = num_experts
         
     | 
| 
      
 737 
     | 
    
         
            +
                    self.num_experts_per_tok = extra_weight_attrs.pop("top_k")
         
     | 
| 
      
 738 
     | 
    
         
            +
                    self.hidden_size = hidden_size
         
     | 
| 
      
 739 
     | 
    
         
            +
                    self.moe_intermediate_size = extra_weight_attrs.pop("intermediate_size_full")
         
     | 
| 
      
 740 
     | 
    
         
            +
             
     | 
| 
      
 741 
     | 
    
         
            +
                    if self.tp_rank != 0:
         
     | 
| 
      
 742 
     | 
    
         
            +
                        return
         
     | 
| 
      
 743 
     | 
    
         
            +
                    self.amx_wrapper = AMXMoEWrapper(
         
     | 
| 
      
 744 
     | 
    
         
            +
                        layer_idx=self.layer_idx,
         
     | 
| 
      
 745 
     | 
    
         
            +
                        num_experts=num_experts,
         
     | 
| 
      
 746 
     | 
    
         
            +
                        num_experts_per_tok=self.num_experts_per_tok,
         
     | 
| 
      
 747 
     | 
    
         
            +
                        hidden_size=hidden_size,
         
     | 
| 
      
 748 
     | 
    
         
            +
                        moe_intermediate_size=self.moe_intermediate_size,
         
     | 
| 
      
 749 
     | 
    
         
            +
                        num_gpu_experts=self.num_gpu_experts,
         
     | 
| 
      
 750 
     | 
    
         
            +
                        cpuinfer_threads=self.cpuinfer,
         
     | 
| 
      
 751 
     | 
    
         
            +
                        threadpool_count=self.threadpool_count,
         
     | 
| 
      
 752 
     | 
    
         
            +
                        amx_weight_path=self.amx_weight_path,
         
     | 
| 
      
 753 
     | 
    
         
            +
                        chunked_prefill_size=self.chunked_prefill_size,
         
     | 
| 
      
 754 
     | 
    
         
            +
                    )
         
     | 
| 
      
 755 
     | 
    
         
            +
             
     | 
| 
      
 756 
     | 
    
         
            +
                def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
         
     | 
| 
      
 757 
     | 
    
         
            +
                    if self.tp_rank != 0:
         
     | 
| 
      
 758 
     | 
    
         
            +
                        return
         
     | 
| 
      
 759 
     | 
    
         
            +
             
     | 
| 
      
 760 
     | 
    
         
            +
                    if self.amx_wrapper is None:
         
     | 
| 
      
 761 
     | 
    
         
            +
                        raise RuntimeError(
         
     | 
| 
      
 762 
     | 
    
         
            +
                            "AMXMoEWrapper not initialized. Call create_weights first."
         
     | 
| 
      
 763 
     | 
    
         
            +
                        )
         
     | 
| 
      
 764 
     | 
    
         
            +
             
     | 
| 
      
 765 
     | 
    
         
            +
                    torch.cuda.synchronize()
         
     | 
| 
      
 766 
     | 
    
         
            +
                    # Load weights using wrapper
         
     | 
| 
      
 767 
     | 
    
         
            +
                    from sglang.srt.eplb.expert_location_dispatch import (
         
     | 
| 
      
 768 
     | 
    
         
            +
                        get_global_expert_location_metadata,
         
     | 
| 
      
 769 
     | 
    
         
            +
                    )
         
     | 
| 
      
 770 
     | 
    
         
            +
             
     | 
| 
      
 771 
     | 
    
         
            +
                    physical_to_logical_map_cpu = (
         
     | 
| 
      
 772 
     | 
    
         
            +
                        get_global_expert_location_metadata()
         
     | 
| 
      
 773 
     | 
    
         
            +
                        .physical_to_logical_map_cpu[self.layer_idx]
         
     | 
| 
      
 774 
     | 
    
         
            +
                        .contiguous()
         
     | 
| 
      
 775 
     | 
    
         
            +
                    )
         
     | 
| 
      
 776 
     | 
    
         
            +
                    self.amx_wrapper.load_weights(physical_to_logical_map_cpu)
         
     | 
| 
      
 777 
     | 
    
         
            +
             
     | 
| 
      
 778 
     | 
    
         
            +
                def submit(
         
     | 
| 
      
 779 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 780 
     | 
    
         
            +
                    layer: torch.nn.Module,
         
     | 
| 
      
 781 
     | 
    
         
            +
                    dispatch_output: StandardDispatchOutput,
         
     | 
| 
      
 782 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 783 
     | 
    
         
            +
                    """Submit AMX inference task asynchronously."""
         
     | 
| 
      
 784 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 785 
     | 
    
         
            +
                        self.moe_runner_config.activation == "silu"
         
     | 
| 
      
 786 
     | 
    
         
            +
                    ), "Only SiLU activation is supported."
         
     | 
| 
      
 787 
     | 
    
         
            +
             
     | 
| 
      
 788 
     | 
    
         
            +
                    x = dispatch_output.hidden_states
         
     | 
| 
      
 789 
     | 
    
         
            +
                    topk_output = dispatch_output.topk_output
         
     | 
| 
      
 790 
     | 
    
         
            +
                    topk_weights, topk_ids, _ = topk_output
         
     | 
| 
      
 791 
     | 
    
         
            +
             
     | 
| 
      
 792 
     | 
    
         
            +
                    if self.tp_rank != 0 or self.amx_wrapper is None:
         
     | 
| 
      
 793 
     | 
    
         
            +
                        return None
         
     | 
| 
      
 794 
     | 
    
         
            +
             
     | 
| 
      
 795 
     | 
    
         
            +
                    # Submit forward task using wrapper
         
     | 
| 
      
 796 
     | 
    
         
            +
                    self.amx_wrapper.submit_forward(
         
     | 
| 
      
 797 
     | 
    
         
            +
                        x, topk_ids, topk_weights, torch.cuda.current_stream(x.device).cuda_stream
         
     | 
| 
      
 798 
     | 
    
         
            +
                    )
         
     | 
| 
      
 799 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 800 
     | 
    
         
            +
             
     | 
| 
      
 801 
     | 
    
         
            +
                def sync(self, x):
         
     | 
| 
      
 802 
     | 
    
         
            +
                    """Synchronize and retrieve AMX inference results."""
         
     | 
| 
      
 803 
     | 
    
         
            +
                    if self.tp_rank != 0 or self.amx_wrapper is None:
         
     | 
| 
      
 804 
     | 
    
         
            +
                        return torch.zeros_like(x)
         
     | 
| 
      
 805 
     | 
    
         
            +
             
     | 
| 
      
 806 
     | 
    
         
            +
                    # Sync forward task using wrapper
         
     | 
| 
      
 807 
     | 
    
         
            +
                    return self.amx_wrapper.sync_forward(
         
     | 
| 
      
 808 
     | 
    
         
            +
                        x, torch.cuda.current_stream(x.device).cuda_stream
         
     | 
| 
      
 809 
     | 
    
         
            +
                    )
         
     | 
| 
      
 810 
     | 
    
         
            +
             
     | 
| 
      
 811 
     | 
    
         
            +
                def create_moe_runner(
         
     | 
| 
      
 812 
     | 
    
         
            +
                    self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
         
     | 
| 
      
 813 
     | 
    
         
            +
                ):
         
     | 
| 
      
 814 
     | 
    
         
            +
                    self.moe_runner_config = moe_runner_config
         
     | 
| 
      
 815 
     | 
    
         
            +
             
     | 
| 
      
 816 
     | 
    
         
            +
                def apply(
         
     | 
| 
      
 817 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 818 
     | 
    
         
            +
                    layer: torch.nn.Module,
         
     | 
| 
      
 819 
     | 
    
         
            +
                    dispatch_output: StandardDispatchOutput,
         
     | 
| 
      
 820 
     | 
    
         
            +
                ) -> CombineInput:
         
     | 
| 
      
 821 
     | 
    
         
            +
                    """Execute AMX MoE forward pass synchronously."""
         
     | 
| 
      
 822 
     | 
    
         
            +
                    from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
         
     | 
| 
      
 823 
     | 
    
         
            +
             
     | 
| 
      
 824 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 825 
     | 
    
         
            +
                        self.moe_runner_config.activation == "silu"
         
     | 
| 
      
 826 
     | 
    
         
            +
                    ), "Only SiLU activation is supported."
         
     | 
| 
      
 827 
     | 
    
         
            +
             
     | 
| 
      
 828 
     | 
    
         
            +
                    x = dispatch_output.hidden_states
         
     | 
| 
      
 829 
     | 
    
         
            +
                    topk_output = dispatch_output.topk_output
         
     | 
| 
      
 830 
     | 
    
         
            +
                    topk_weights, topk_ids, _ = topk_output
         
     | 
| 
      
 831 
     | 
    
         
            +
             
     | 
| 
      
 832 
     | 
    
         
            +
                    if self.tp_rank != 0 or self.amx_wrapper is None:
         
     | 
| 
      
 833 
     | 
    
         
            +
                        return StandardCombineInput(hidden_states=torch.zeros_like(x))
         
     | 
| 
      
 834 
     | 
    
         
            +
             
     | 
| 
      
 835 
     | 
    
         
            +
                    # Execute forward using wrapper (submit + sync)
         
     | 
| 
      
 836 
     | 
    
         
            +
                    output = self.amx_wrapper.forward(
         
     | 
| 
      
 837 
     | 
    
         
            +
                        x, topk_ids, topk_weights, torch.cuda.current_stream(x.device).cuda_stream
         
     | 
| 
      
 838 
     | 
    
         
            +
                    )
         
     | 
| 
      
 839 
     | 
    
         
            +
                    return StandardCombineInput(hidden_states=output)
         
     | 
| 
      
 840 
     | 
    
         
            +
             
     | 
| 
      
 841 
     | 
    
         
            +
             
     | 
| 
      
 842 
     | 
    
         
            +
            def override_config(
         
     | 
| 
      
 843 
     | 
    
         
            +
                cls,
         
     | 
| 
      
 844 
     | 
    
         
            +
                num_gpu_experts,
         
     | 
| 
      
 845 
     | 
    
         
            +
                cpuinfer,
         
     | 
| 
      
 846 
     | 
    
         
            +
                threadpool_count,
         
     | 
| 
      
 847 
     | 
    
         
            +
                amx_weight_path,
         
     | 
| 
      
 848 
     | 
    
         
            +
                amx_method,
         
     | 
| 
      
 849 
     | 
    
         
            +
                chunked_prefill_size,
         
     | 
| 
      
 850 
     | 
    
         
            +
            ):
         
     | 
| 
      
 851 
     | 
    
         
            +
                """Override MOE configuration via environment variables."""
         
     | 
| 
      
 852 
     | 
    
         
            +
                # Set environment variables using envs utility class
         
     | 
| 
      
 853 
     | 
    
         
            +
                if num_gpu_experts is not None:
         
     | 
| 
      
 854 
     | 
    
         
            +
                    envs.SGLANG_KT_MOE_NUM_GPU_EXPERTS.set(num_gpu_experts)
         
     | 
| 
      
 855 
     | 
    
         
            +
                if cpuinfer is not None:
         
     | 
| 
      
 856 
     | 
    
         
            +
                    envs.SGLANG_KT_MOE_CPUINFER.set(cpuinfer)
         
     | 
| 
      
 857 
     | 
    
         
            +
                if threadpool_count is not None:
         
     | 
| 
      
 858 
     | 
    
         
            +
                    envs.SGLANG_KT_THREADPOOL_COUNT.set(threadpool_count)
         
     | 
| 
      
 859 
     | 
    
         
            +
                if amx_weight_path is not None:
         
     | 
| 
      
 860 
     | 
    
         
            +
                    envs.SGLANG_KT_MOE_AMX_WEIGHT_PATH.set(amx_weight_path)
         
     | 
| 
      
 861 
     | 
    
         
            +
                if amx_method is not None:
         
     | 
| 
      
 862 
     | 
    
         
            +
                    envs.SGLANG_KT_AMX_METHOD.set(amx_method)
         
     | 
| 
      
 863 
     | 
    
         
            +
                if chunked_prefill_size is not None:
         
     | 
| 
      
 864 
     | 
    
         
            +
                    envs.SGLANG_KT_MOE_CHUNKED_PREFILL_SIZE.set(chunked_prefill_size)
         
     | 
| 
      
 865 
     | 
    
         
            +
             
     | 
| 
      
 866 
     | 
    
         
            +
             
     | 
| 
      
 867 
     | 
    
         
            +
            class CompressedTensorsWNA16AMXEPMoEMethod(CompressedTensorsMoEMethod):
         
     | 
| 
      
 868 
     | 
    
         
            +
             
     | 
| 
      
 869 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 870 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 871 
     | 
    
         
            +
                    quant_config: "CompressedTensorsConfig",  # type: ignore # noqa E501
         
     | 
| 
      
 872 
     | 
    
         
            +
                    layer_idx,
         
     | 
| 
      
 873 
     | 
    
         
            +
                ):
         
     | 
| 
      
 874 
     | 
    
         
            +
                    self.tp_rank = get_tensor_model_parallel_rank()
         
     | 
| 
      
 875 
     | 
    
         
            +
             
     | 
| 
      
 876 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 877 
     | 
    
         
            +
                        not envs.SGLANG_KT_MOE_NUM_GPU_EXPERTS.is_set()
         
     | 
| 
      
 878 
     | 
    
         
            +
                        or not envs.SGLANG_KT_MOE_CPUINFER.is_set()
         
     | 
| 
      
 879 
     | 
    
         
            +
                        or not envs.SGLANG_KT_MOE_AMX_WEIGHT_PATH.is_set()
         
     | 
| 
      
 880 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 881 
     | 
    
         
            +
                        raise RuntimeError(
         
     | 
| 
      
 882 
     | 
    
         
            +
                            "the following arguments are required: --kt-amx-weight-path, --kt-cpuinfer, --kt-num-gpu-experts"
         
     | 
| 
      
 883 
     | 
    
         
            +
                        )
         
     | 
| 
      
 884 
     | 
    
         
            +
                    self.num_gpu_experts = envs.SGLANG_KT_MOE_NUM_GPU_EXPERTS.value
         
     | 
| 
      
 885 
     | 
    
         
            +
                    cpuinfer = envs.SGLANG_KT_MOE_CPUINFER.value
         
     | 
| 
      
 886 
     | 
    
         
            +
                    threadpool_count = envs.SGLANG_KT_THREADPOOL_COUNT.value
         
     | 
| 
      
 887 
     | 
    
         
            +
                    amx_weight_path = envs.SGLANG_KT_MOE_AMX_WEIGHT_PATH.value
         
     | 
| 
      
 888 
     | 
    
         
            +
                    chunked_prefill_size = envs.SGLANG_KT_MOE_CHUNKED_PREFILL_SIZE.value
         
     | 
| 
      
 889 
     | 
    
         
            +
             
     | 
| 
      
 890 
     | 
    
         
            +
                    self.AMX_method = CompressedTensorsWNA16AMXMoEMethod(
         
     | 
| 
      
 891 
     | 
    
         
            +
                        quant_config,
         
     | 
| 
      
 892 
     | 
    
         
            +
                        layer_idx,
         
     | 
| 
      
 893 
     | 
    
         
            +
                        self.num_gpu_experts,
         
     | 
| 
      
 894 
     | 
    
         
            +
                        cpuinfer,
         
     | 
| 
      
 895 
     | 
    
         
            +
                        threadpool_count,
         
     | 
| 
      
 896 
     | 
    
         
            +
                        amx_weight_path,
         
     | 
| 
      
 897 
     | 
    
         
            +
                        chunked_prefill_size,
         
     | 
| 
      
 898 
     | 
    
         
            +
                    )
         
     | 
| 
      
 899 
     | 
    
         
            +
                    self.marlin_method = CompressedTensorsWNA16MoEMethod(
         
     | 
| 
      
 900 
     | 
    
         
            +
                        quant_config, self.num_gpu_experts
         
     | 
| 
      
 901 
     | 
    
         
            +
                    )
         
     | 
| 
      
 902 
     | 
    
         
            +
                    self.layer_id = layer_idx
         
     | 
| 
      
 903 
     | 
    
         
            +
             
     | 
| 
      
 904 
     | 
    
         
            +
                def create_weights(
         
     | 
| 
      
 905 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 906 
     | 
    
         
            +
                    layer: torch.nn.Module,
         
     | 
| 
      
 907 
     | 
    
         
            +
                    num_experts: int,
         
     | 
| 
      
 908 
     | 
    
         
            +
                    hidden_size: int,
         
     | 
| 
      
 909 
     | 
    
         
            +
                    intermediate_size_per_partition: int,
         
     | 
| 
      
 910 
     | 
    
         
            +
                    params_dtype: torch.dtype,
         
     | 
| 
      
 911 
     | 
    
         
            +
                    **extra_weight_attrs,
         
     | 
| 
      
 912 
     | 
    
         
            +
                ):
         
     | 
| 
      
 913 
     | 
    
         
            +
                    self.global_num_experts = num_experts
         
     | 
| 
      
 914 
     | 
    
         
            +
                    self.AMX_method.create_weights(
         
     | 
| 
      
 915 
     | 
    
         
            +
                        layer,
         
     | 
| 
      
 916 
     | 
    
         
            +
                        num_experts,
         
     | 
| 
      
 917 
     | 
    
         
            +
                        hidden_size,
         
     | 
| 
      
 918 
     | 
    
         
            +
                        intermediate_size_per_partition,
         
     | 
| 
      
 919 
     | 
    
         
            +
                        params_dtype,
         
     | 
| 
      
 920 
     | 
    
         
            +
                        **extra_weight_attrs,
         
     | 
| 
      
 921 
     | 
    
         
            +
                    )
         
     | 
| 
      
 922 
     | 
    
         
            +
                    self.marlin_method.create_weights(
         
     | 
| 
      
 923 
     | 
    
         
            +
                        layer,
         
     | 
| 
      
 924 
     | 
    
         
            +
                        num_experts,
         
     | 
| 
      
 925 
     | 
    
         
            +
                        hidden_size,
         
     | 
| 
      
 926 
     | 
    
         
            +
                        intermediate_size_per_partition,
         
     | 
| 
      
 927 
     | 
    
         
            +
                        params_dtype,
         
     | 
| 
      
 928 
     | 
    
         
            +
                        **extra_weight_attrs,
         
     | 
| 
      
 929 
     | 
    
         
            +
                    )
         
     | 
| 
      
 930 
     | 
    
         
            +
             
     | 
| 
      
 931 
     | 
    
         
            +
                def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
         
     | 
| 
      
 932 
     | 
    
         
            +
                    self.AMX_method.process_weights_after_loading(layer)
         
     | 
| 
      
 933 
     | 
    
         
            +
                    self.marlin_method.process_weights_after_loading(layer)
         
     | 
| 
      
 934 
     | 
    
         
            +
             
     | 
| 
      
 935 
     | 
    
         
            +
                def submit(
         
     | 
| 
      
 936 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 937 
     | 
    
         
            +
                    layer: torch.nn.Module,
         
     | 
| 
      
 938 
     | 
    
         
            +
                    dispatch_output: StandardDispatchOutput,
         
     | 
| 
      
 939 
     | 
    
         
            +
                ) -> CombineInput:
         
     | 
| 
      
 940 
     | 
    
         
            +
                    """Submit hybrid GPU+CPU MoE task (AMX submission + GPU execution)."""
         
     | 
| 
      
 941 
     | 
    
         
            +
                    from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
         
     | 
| 
      
 942 
     | 
    
         
            +
             
     | 
| 
      
 943 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 944 
     | 
    
         
            +
                        self.moe_runner_config.activation == "silu"
         
     | 
| 
      
 945 
     | 
    
         
            +
                    ), "Only SiLU activation is supported."
         
     | 
| 
      
 946 
     | 
    
         
            +
             
     | 
| 
      
 947 
     | 
    
         
            +
                    x = dispatch_output.hidden_states
         
     | 
| 
      
 948 
     | 
    
         
            +
                    topk_output = dispatch_output.topk_output
         
     | 
| 
      
 949 
     | 
    
         
            +
             
     | 
| 
      
 950 
     | 
    
         
            +
                    topk_weights, topk_ids, router_logits = topk_output
         
     | 
| 
      
 951 
     | 
    
         
            +
             
     | 
| 
      
 952 
     | 
    
         
            +
                    # Submit AMX task if on rank 0
         
     | 
| 
      
 953 
     | 
    
         
            +
                    if self.tp_rank == 0:
         
     | 
| 
      
 954 
     | 
    
         
            +
                        self.AMX_method.submit(layer, dispatch_output)
         
     | 
| 
      
 955 
     | 
    
         
            +
             
     | 
| 
      
 956 
     | 
    
         
            +
                    # Mask CPU expert IDs (>= num_gpu_experts) as -1 so they won't be computed on GPU
         
     | 
| 
      
 957 
     | 
    
         
            +
                    topk_ids = mask_cpu_expert_ids(topk_ids, self.num_gpu_experts)
         
     | 
| 
      
 958 
     | 
    
         
            +
             
     | 
| 
      
 959 
     | 
    
         
            +
                    # Execute GPU (Marlin) experts
         
     | 
| 
      
 960 
     | 
    
         
            +
                    output = fused_marlin_moe(
         
     | 
| 
      
 961 
     | 
    
         
            +
                        x,
         
     | 
| 
      
 962 
     | 
    
         
            +
                        layer.w13_weight_packed,
         
     | 
| 
      
 963 
     | 
    
         
            +
                        layer.w2_weight_packed,
         
     | 
| 
      
 964 
     | 
    
         
            +
                        layer.w13_weight_scale,
         
     | 
| 
      
 965 
     | 
    
         
            +
                        layer.w2_weight_scale,
         
     | 
| 
      
 966 
     | 
    
         
            +
                        router_logits,
         
     | 
| 
      
 967 
     | 
    
         
            +
                        topk_weights,
         
     | 
| 
      
 968 
     | 
    
         
            +
                        topk_ids,
         
     | 
| 
      
 969 
     | 
    
         
            +
                        g_idx1=layer.w13_weight_g_idx,
         
     | 
| 
      
 970 
     | 
    
         
            +
                        g_idx2=layer.w2_weight_g_idx,
         
     | 
| 
      
 971 
     | 
    
         
            +
                        sort_indices1=layer.w13_g_idx_sort_indices,
         
     | 
| 
      
 972 
     | 
    
         
            +
                        sort_indices2=layer.w2_g_idx_sort_indices,
         
     | 
| 
      
 973 
     | 
    
         
            +
                        num_bits=self.marlin_method.num_bits,
         
     | 
| 
      
 974 
     | 
    
         
            +
                        is_k_full=self.marlin_method.is_k_full,
         
     | 
| 
      
 975 
     | 
    
         
            +
                        global_num_experts=self.global_num_experts,
         
     | 
| 
      
 976 
     | 
    
         
            +
                        expert_map=torch.empty(1, device=x.device),
         
     | 
| 
      
 977 
     | 
    
         
            +
                    )
         
     | 
| 
      
 978 
     | 
    
         
            +
                    return StandardCombineInput(hidden_states=output)
         
     | 
| 
      
 979 
     | 
    
         
            +
             
     | 
| 
      
 980 
     | 
    
         
            +
                def sync(self, x):
         
     | 
| 
      
 981 
     | 
    
         
            +
                    """Synchronize and retrieve AMX results."""
         
     | 
| 
      
 982 
     | 
    
         
            +
                    if self.tp_rank != 0:
         
     | 
| 
      
 983 
     | 
    
         
            +
                        return torch.zeros_like(x)
         
     | 
| 
      
 984 
     | 
    
         
            +
                    return self.AMX_method.sync(x)
         
     | 
| 
      
 985 
     | 
    
         
            +
             
     | 
| 
      
 986 
     | 
    
         
            +
                def apply(
         
     | 
| 
      
 987 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 988 
     | 
    
         
            +
                    layer: torch.nn.Module,
         
     | 
| 
      
 989 
     | 
    
         
            +
                    dispatch_output: StandardDispatchOutput,
         
     | 
| 
      
 990 
     | 
    
         
            +
                ) -> CombineInput:
         
     | 
| 
      
 991 
     | 
    
         
            +
                    """Execute hybrid GPU+CPU MoE forward pass with parallelism."""
         
     | 
| 
      
 992 
     | 
    
         
            +
                    from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
         
     | 
| 
      
 993 
     | 
    
         
            +
             
     | 
| 
      
 994 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 995 
     | 
    
         
            +
                        self.moe_runner_config.activation == "silu"
         
     | 
| 
      
 996 
     | 
    
         
            +
                    ), "Only SiLU activation is supported."
         
     | 
| 
      
 997 
     | 
    
         
            +
             
     | 
| 
      
 998 
     | 
    
         
            +
                    x = dispatch_output.hidden_states
         
     | 
| 
      
 999 
     | 
    
         
            +
                    topk_output = dispatch_output.topk_output
         
     | 
| 
      
 1000 
     | 
    
         
            +
                    topk_weights, topk_ids, router_logits = topk_output
         
     | 
| 
      
 1001 
     | 
    
         
            +
             
     | 
| 
      
 1002 
     | 
    
         
            +
                    # Step 1: Submit AMX task (non-blocking) if on rank 0
         
     | 
| 
      
 1003 
     | 
    
         
            +
                    # This starts CPU computation in parallel
         
     | 
| 
      
 1004 
     | 
    
         
            +
                    if self.tp_rank == 0:
         
     | 
| 
      
 1005 
     | 
    
         
            +
                        self.AMX_method.submit(layer, dispatch_output)
         
     | 
| 
      
 1006 
     | 
    
         
            +
             
     | 
| 
      
 1007 
     | 
    
         
            +
                    # Step 2: Execute GPU (Marlin) experts in parallel with CPU
         
     | 
| 
      
 1008 
     | 
    
         
            +
             
     | 
| 
      
 1009 
     | 
    
         
            +
                    # Mask CPU expert IDs (>= num_gpu_experts) as -1 so they won't be computed on GPU
         
     | 
| 
      
 1010 
     | 
    
         
            +
                    topk_ids = mask_cpu_expert_ids(topk_ids, self.num_gpu_experts)
         
     | 
| 
      
 1011 
     | 
    
         
            +
             
     | 
| 
      
 1012 
     | 
    
         
            +
                    # While GPU computes, CPU is also computing
         
     | 
| 
      
 1013 
     | 
    
         
            +
                    output = fused_marlin_moe(
         
     | 
| 
      
 1014 
     | 
    
         
            +
                        x,
         
     | 
| 
      
 1015 
     | 
    
         
            +
                        layer.w13_weight_packed,
         
     | 
| 
      
 1016 
     | 
    
         
            +
                        layer.w2_weight_packed,
         
     | 
| 
      
 1017 
     | 
    
         
            +
                        layer.w13_weight_scale,
         
     | 
| 
      
 1018 
     | 
    
         
            +
                        layer.w2_weight_scale,
         
     | 
| 
      
 1019 
     | 
    
         
            +
                        router_logits,
         
     | 
| 
      
 1020 
     | 
    
         
            +
                        topk_weights,
         
     | 
| 
      
 1021 
     | 
    
         
            +
                        topk_ids,
         
     | 
| 
      
 1022 
     | 
    
         
            +
                        g_idx1=layer.w13_weight_g_idx,
         
     | 
| 
      
 1023 
     | 
    
         
            +
                        g_idx2=layer.w2_weight_g_idx,
         
     | 
| 
      
 1024 
     | 
    
         
            +
                        sort_indices1=layer.w13_g_idx_sort_indices,
         
     | 
| 
      
 1025 
     | 
    
         
            +
                        sort_indices2=layer.w2_g_idx_sort_indices,
         
     | 
| 
      
 1026 
     | 
    
         
            +
                        num_bits=self.marlin_method.num_bits,
         
     | 
| 
      
 1027 
     | 
    
         
            +
                        is_k_full=self.marlin_method.is_k_full,
         
     | 
| 
      
 1028 
     | 
    
         
            +
                        global_num_experts=self.global_num_experts,
         
     | 
| 
      
 1029 
     | 
    
         
            +
                        expert_map=torch.empty(1, device=x.device),
         
     | 
| 
      
 1030 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1031 
     | 
    
         
            +
             
     | 
| 
      
 1032 
     | 
    
         
            +
                    # Step 3: Sync AMX results and combine with GPU results
         
     | 
| 
      
 1033 
     | 
    
         
            +
                    if self.tp_rank == 0:
         
     | 
| 
      
 1034 
     | 
    
         
            +
                        amx_output = self.AMX_method.sync(x)
         
     | 
| 
      
 1035 
     | 
    
         
            +
                        output += amx_output
         
     | 
| 
      
 1036 
     | 
    
         
            +
             
     | 
| 
      
 1037 
     | 
    
         
            +
                    return StandardCombineInput(hidden_states=output)
         
     | 
| 
      
 1038 
     | 
    
         
            +
             
     | 
| 
      
 1039 
     | 
    
         
            +
                def create_moe_runner(
         
     | 
| 
      
 1040 
     | 
    
         
            +
                    self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
         
     | 
| 
      
 1041 
     | 
    
         
            +
                ):
         
     | 
| 
      
 1042 
     | 
    
         
            +
                    self.moe_runner_config = moe_runner_config
         
     | 
| 
      
 1043 
     | 
    
         
            +
                    self.AMX_method.create_moe_runner(layer, moe_runner_config)
         
     | 
| 
         @@ -4,10 +4,13 @@ from .compressed_tensors_scheme import CompressedTensorsScheme 
     | 
|
| 
       4 
4 
     | 
    
         
             
            from .compressed_tensors_w8a8_fp8 import CompressedTensorsW8A8Fp8
         
     | 
| 
       5 
5 
     | 
    
         
             
            from .compressed_tensors_w8a8_int8 import CompressedTensorsW8A8Int8
         
     | 
| 
       6 
6 
     | 
    
         
             
            from .compressed_tensors_w8a16_fp8 import CompressedTensorsW8A16Fp8
         
     | 
| 
      
 7 
     | 
    
         
            +
            from .compressed_tensors_wNa16 import WNA16_SUPPORTED_BITS, CompressedTensorsWNA16
         
     | 
| 
       7 
8 
     | 
    
         | 
| 
       8 
9 
     | 
    
         
             
            __all__ = [
         
     | 
| 
       9 
10 
     | 
    
         
             
                "CompressedTensorsScheme",
         
     | 
| 
       10 
11 
     | 
    
         
             
                "CompressedTensorsW8A8Fp8",
         
     | 
| 
       11 
12 
     | 
    
         
             
                "CompressedTensorsW8A16Fp8",
         
     | 
| 
       12 
13 
     | 
    
         
             
                "CompressedTensorsW8A8Int8",
         
     | 
| 
      
 14 
     | 
    
         
            +
                "CompressedTensorsWNA16",
         
     | 
| 
      
 15 
     | 
    
         
            +
                "WNA16_SUPPORTED_BITS",
         
     | 
| 
       13 
16 
     | 
    
         
             
            ]
         
     | 
| 
         @@ -14,25 +14,12 @@ from sglang.srt.layers.parameter import ( 
     | 
|
| 
       14 
14 
     | 
    
         
             
            from sglang.srt.layers.quantization.compressed_tensors.schemes import (
         
     | 
| 
       15 
15 
     | 
    
         
             
                CompressedTensorsScheme,
         
     | 
| 
       16 
16 
     | 
    
         
             
            )
         
     | 
| 
      
 17 
     | 
    
         
            +
            from sglang.srt.layers.quantization.marlin_utils_fp8 import (
         
     | 
| 
      
 18 
     | 
    
         
            +
                apply_fp8_marlin_linear,
         
     | 
| 
      
 19 
     | 
    
         
            +
                prepare_fp8_layer_for_marlin,
         
     | 
| 
      
 20 
     | 
    
         
            +
            )
         
     | 
| 
       17 
21 
     | 
    
         
             
            from sglang.srt.layers.quantization.utils import convert_to_channelwise
         
     | 
| 
       18 
22 
     | 
    
         | 
| 
       19 
     | 
    
         
            -
            try:
         
     | 
| 
       20 
     | 
    
         
            -
                from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
         
     | 
| 
       21 
     | 
    
         
            -
                    apply_fp8_marlin_linear,
         
     | 
| 
       22 
     | 
    
         
            -
                    prepare_fp8_layer_for_marlin,
         
     | 
| 
       23 
     | 
    
         
            -
                )
         
     | 
| 
       24 
     | 
    
         
            -
             
     | 
| 
       25 
     | 
    
         
            -
                MARLIN_FP8_AVAILABLE = True
         
     | 
| 
       26 
     | 
    
         
            -
            except ImportError:
         
     | 
| 
       27 
     | 
    
         
            -
                MARLIN_FP8_AVAILABLE = False
         
     | 
| 
       28 
     | 
    
         
            -
             
     | 
| 
       29 
     | 
    
         
            -
                def apply_fp8_marlin_linear(*args, **kwargs):
         
     | 
| 
       30 
     | 
    
         
            -
                    raise ImportError("vllm is not installed")
         
     | 
| 
       31 
     | 
    
         
            -
             
     | 
| 
       32 
     | 
    
         
            -
                def prepare_fp8_layer_for_marlin(*args, **kwargs):
         
     | 
| 
       33 
     | 
    
         
            -
                    raise ImportError("vllm is not installed")
         
     | 
| 
       34 
     | 
    
         
            -
             
     | 
| 
       35 
     | 
    
         
            -
             
     | 
| 
       36 
23 
     | 
    
         
             
            __all__ = ["CompressedTensorsW8A16Fp8"]
         
     | 
| 
       37 
24 
     | 
    
         | 
| 
       38 
25 
     | 
    
         
             
            SUPPORTED_STRATEGIES = [QuantizationStrategy.CHANNEL, QuantizationStrategy.TENSOR]
         
     | 
| 
         @@ -43,11 +30,6 @@ class CompressedTensorsW8A16Fp8(CompressedTensorsScheme): 
     | 
|
| 
       43 
30 
     | 
    
         
             
                    self.strategy = strategy
         
     | 
| 
       44 
31 
     | 
    
         
             
                    self.is_static_input_scheme = is_static_input_scheme
         
     | 
| 
       45 
32 
     | 
    
         | 
| 
       46 
     | 
    
         
            -
                    if not MARLIN_FP8_AVAILABLE:
         
     | 
| 
       47 
     | 
    
         
            -
                        raise ImportError(
         
     | 
| 
       48 
     | 
    
         
            -
                            "vllm is not installed. To use CompressedTensorsW8A16Fp8, please install vllm"
         
     | 
| 
       49 
     | 
    
         
            -
                        )
         
     | 
| 
       50 
     | 
    
         
            -
             
     | 
| 
       51 
33 
     | 
    
         
             
                @classmethod
         
     | 
| 
       52 
34 
     | 
    
         
             
                def get_min_capability(cls) -> int:
         
     | 
| 
       53 
35 
     | 
    
         
             
                    # ampere and up
         
     |