sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
    
        sglang/srt/models/glm4_moe.py
    CHANGED
    
    | 
         @@ -15,7 +15,7 @@ 
     | 
|
| 
       15 
15 
     | 
    
         
             
            """Inference-only GLM-4.5, GLM-4.6 model compatible with HuggingFace weights"""
         
     | 
| 
       16 
16 
     | 
    
         | 
| 
       17 
17 
     | 
    
         
             
            import logging
         
     | 
| 
       18 
     | 
    
         
            -
            from typing import Any, Dict, Iterable, Optional, Tuple
         
     | 
| 
      
 18 
     | 
    
         
            +
            from typing import Any, Dict, Iterable, Optional, Tuple, Union
         
     | 
| 
       19 
19 
     | 
    
         | 
| 
       20 
20 
     | 
    
         
             
            import torch
         
     | 
| 
       21 
21 
     | 
    
         
             
            import torch.nn.functional as F
         
     | 
| 
         @@ -30,8 +30,13 @@ from sglang.srt.distributed import ( 
     | 
|
| 
       30 
30 
     | 
    
         
             
                parallel_state,
         
     | 
| 
       31 
31 
     | 
    
         
             
                tensor_model_parallel_all_reduce,
         
     | 
| 
       32 
32 
     | 
    
         
             
            )
         
     | 
| 
      
 33 
     | 
    
         
            +
            from sglang.srt.distributed.device_communicators.pynccl_allocator import (
         
     | 
| 
      
 34 
     | 
    
         
            +
                use_symmetric_memory,
         
     | 
| 
      
 35 
     | 
    
         
            +
            )
         
     | 
| 
      
 36 
     | 
    
         
            +
            from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
         
     | 
| 
      
 37 
     | 
    
         
            +
            from sglang.srt.eplb.expert_location import ModelConfigForExpertLocation
         
     | 
| 
      
 38 
     | 
    
         
            +
            from sglang.srt.eplb.expert_location_dispatch import ExpertLocationDispatchInfo
         
     | 
| 
       33 
39 
     | 
    
         
             
            from sglang.srt.layers.activation import SiluAndMul
         
     | 
| 
       34 
     | 
    
         
            -
            from sglang.srt.layers.amx_utils import PackWeightMethod
         
     | 
| 
       35 
40 
     | 
    
         
             
            from sglang.srt.layers.communicator import (
         
     | 
| 
       36 
41 
     | 
    
         
             
                LayerCommunicator,
         
     | 
| 
       37 
42 
     | 
    
         
             
                LayerScatterModes,
         
     | 
| 
         @@ -44,56 +49,41 @@ from sglang.srt.layers.dp_attention import ( 
     | 
|
| 
       44 
49 
     | 
    
         
             
            )
         
     | 
| 
       45 
50 
     | 
    
         
             
            from sglang.srt.layers.layernorm import RMSNorm
         
     | 
| 
       46 
51 
     | 
    
         
             
            from sglang.srt.layers.linear import (
         
     | 
| 
       47 
     | 
    
         
            -
                ColumnParallelLinear,
         
     | 
| 
       48 
52 
     | 
    
         
             
                MergedColumnParallelLinear,
         
     | 
| 
       49 
53 
     | 
    
         
             
                QKVParallelLinear,
         
     | 
| 
       50 
     | 
    
         
            -
                ReplicatedLinear,
         
     | 
| 
       51 
54 
     | 
    
         
             
                RowParallelLinear,
         
     | 
| 
       52 
55 
     | 
    
         
             
            )
         
     | 
| 
       53 
56 
     | 
    
         
             
            from sglang.srt.layers.logits_processor import LogitsProcessor
         
     | 
| 
       54 
     | 
    
         
            -
            from sglang.srt.layers.moe import  
     | 
| 
      
 57 
     | 
    
         
            +
            from sglang.srt.layers.moe import (
         
     | 
| 
      
 58 
     | 
    
         
            +
                get_moe_a2a_backend,
         
     | 
| 
      
 59 
     | 
    
         
            +
                should_use_flashinfer_cutlass_moe_fp4_allgather,
         
     | 
| 
      
 60 
     | 
    
         
            +
            )
         
     | 
| 
       55 
61 
     | 
    
         
             
            from sglang.srt.layers.moe.ep_moe.layer import get_moe_impl_class
         
     | 
| 
       56 
62 
     | 
    
         
             
            from sglang.srt.layers.moe.fused_moe_triton.layer import FusedMoE
         
     | 
| 
       57 
63 
     | 
    
         
             
            from sglang.srt.layers.moe.topk import TopK
         
     | 
| 
       58 
64 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
       59 
     | 
    
         
            -
            from sglang.srt.layers.quantization.fp8_kernel import  
     | 
| 
       60 
     | 
    
         
            -
                is_fp8_fnuz,
         
     | 
| 
       61 
     | 
    
         
            -
                per_tensor_quant_mla_fp8,
         
     | 
| 
       62 
     | 
    
         
            -
                per_token_group_quant_mla_deep_gemm_masked_fp8,
         
     | 
| 
       63 
     | 
    
         
            -
            )
         
     | 
| 
      
 65 
     | 
    
         
            +
            from sglang.srt.layers.quantization.fp8_kernel import is_fp8_fnuz
         
     | 
| 
       64 
66 
     | 
    
         
             
            from sglang.srt.layers.radix_attention import RadixAttention
         
     | 
| 
       65 
67 
     | 
    
         
             
            from sglang.srt.layers.rotary_embedding import get_rope
         
     | 
| 
      
 68 
     | 
    
         
            +
            from sglang.srt.layers.utils import PPMissingLayer
         
     | 
| 
       66 
69 
     | 
    
         
             
            from sglang.srt.layers.vocab_parallel_embedding import (
         
     | 
| 
       67 
70 
     | 
    
         
             
                ParallelLMHead,
         
     | 
| 
       68 
71 
     | 
    
         
             
                VocabParallelEmbedding,
         
     | 
| 
       69 
72 
     | 
    
         
             
            )
         
     | 
| 
       70 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       71 
73 
     | 
    
         
             
            from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode
         
     | 
| 
       72 
     | 
    
         
            -
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
      
 74 
     | 
    
         
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
         
     | 
| 
       73 
75 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import default_weight_loader
         
     | 
| 
       74 
     | 
    
         
            -
            from sglang.srt. 
     | 
| 
       75 
     | 
    
         
            -
             
     | 
| 
       76 
     | 
    
         
            -
                DeepseekV2ForCausalLM,
         
     | 
| 
       77 
     | 
    
         
            -
                DeepseekV2Model,
         
     | 
| 
       78 
     | 
    
         
            -
                DeepseekV2MoE,
         
     | 
| 
       79 
     | 
    
         
            -
            )
         
     | 
| 
       80 
     | 
    
         
            -
            from sglang.srt.two_batch_overlap import MaybeTboDeepEPDispatcher
         
     | 
| 
      
 76 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
      
 77 
     | 
    
         
            +
            from sglang.srt.two_batch_overlap import model_forward_maybe_tbo
         
     | 
| 
       81 
78 
     | 
    
         
             
            from sglang.srt.utils import (
         
     | 
| 
       82 
     | 
    
         
            -
                BumpAllocator,
         
     | 
| 
       83 
     | 
    
         
            -
                LazyValue,
         
     | 
| 
       84 
79 
     | 
    
         
             
                add_prefix,
         
     | 
| 
       85 
     | 
    
         
            -
                bind_or_assign,
         
     | 
| 
       86 
80 
     | 
    
         
             
                cpu_has_amx_support,
         
     | 
| 
       87 
81 
     | 
    
         
             
                get_bool_env_var,
         
     | 
| 
       88 
82 
     | 
    
         
             
                get_device_sm,
         
     | 
| 
       89 
     | 
    
         
            -
                get_int_env_var,
         
     | 
| 
       90 
83 
     | 
    
         
             
                is_cpu,
         
     | 
| 
       91 
84 
     | 
    
         
             
                is_cuda,
         
     | 
| 
       92 
     | 
    
         
            -
                is_flashinfer_available,
         
     | 
| 
       93 
85 
     | 
    
         
             
                is_hip,
         
     | 
| 
       94 
     | 
    
         
            -
                 
     | 
| 
       95 
     | 
    
         
            -
                log_info_on_rank0,
         
     | 
| 
       96 
     | 
    
         
            -
                use_intel_amx_backend,
         
     | 
| 
      
 86 
     | 
    
         
            +
                make_layers,
         
     | 
| 
       97 
87 
     | 
    
         
             
            )
         
     | 
| 
       98 
88 
     | 
    
         | 
| 
       99 
89 
     | 
    
         
             
            _is_hip = is_hip()
         
     | 
| 
         @@ -104,11 +94,6 @@ _is_cpu_amx_available = cpu_has_amx_support() 
     | 
|
| 
       104 
94 
     | 
    
         
             
            _is_cpu = is_cpu()
         
     | 
| 
       105 
95 
     | 
    
         
             
            _device_sm = get_device_sm()
         
     | 
| 
       106 
96 
     | 
    
         | 
| 
       107 
     | 
    
         
            -
            if _is_cuda:
         
     | 
| 
       108 
     | 
    
         
            -
                from sgl_kernel import dsv3_router_gemm
         
     | 
| 
       109 
     | 
    
         
            -
            elif _is_cpu and _is_cpu_amx_available:
         
     | 
| 
       110 
     | 
    
         
            -
                pass
         
     | 
| 
       111 
     | 
    
         
            -
             
     | 
| 
       112 
97 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       113 
98 
     | 
    
         | 
| 
       114 
99 
     | 
    
         | 
| 
         @@ -148,8 +133,7 @@ class Glm4MoeMLP(nn.Module): 
     | 
|
| 
       148 
133 
     | 
    
         
             
                    )
         
     | 
| 
       149 
134 
     | 
    
         
             
                    if hidden_act != "silu":
         
     | 
| 
       150 
135 
     | 
    
         
             
                        raise ValueError(
         
     | 
| 
       151 
     | 
    
         
            -
                            f"Unsupported activation: {hidden_act}. "
         
     | 
| 
       152 
     | 
    
         
            -
                            "Only silu is supported for now."
         
     | 
| 
      
 136 
     | 
    
         
            +
                            f"Unsupported activation: {hidden_act}. Only silu is supported for now."
         
     | 
| 
       153 
137 
     | 
    
         
             
                        )
         
     | 
| 
       154 
138 
     | 
    
         
             
                    self.act_fn = SiluAndMul()
         
     | 
| 
       155 
139 
     | 
    
         | 
| 
         @@ -158,7 +142,6 @@ class Glm4MoeMLP(nn.Module): 
     | 
|
| 
       158 
142 
     | 
    
         
             
                    x,
         
     | 
| 
       159 
143 
     | 
    
         
             
                    forward_batch=None,
         
     | 
| 
       160 
144 
     | 
    
         
             
                    should_allreduce_fusion=False,
         
     | 
| 
       161 
     | 
    
         
            -
                    gemm_output_zero_allocator: BumpAllocator = None,
         
     | 
| 
       162 
145 
     | 
    
         
             
                ):
         
     | 
| 
       163 
146 
     | 
    
         
             
                    if (self.tp_size == 1) and x.shape[0] == 0:
         
     | 
| 
       164 
147 
     | 
    
         
             
                        return x
         
     | 
| 
         @@ -338,47 +321,21 @@ class Glm4MoeGate(nn.Module): 
     | 
|
| 
       338 
321 
     | 
    
         
             
                    self,
         
     | 
| 
       339 
322 
     | 
    
         
             
                    config,
         
     | 
| 
       340 
323 
     | 
    
         
             
                    prefix: str = "",
         
     | 
| 
       341 
     | 
    
         
            -
                    is_nextn: bool = False,
         
     | 
| 
       342 
324 
     | 
    
         
             
                ):
         
     | 
| 
       343 
325 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       344 
     | 
    
         
            -
                    self.is_nextn = is_nextn
         
     | 
| 
       345 
326 
     | 
    
         
             
                    self.weight = nn.Parameter(
         
     | 
| 
       346 
327 
     | 
    
         
             
                        torch.empty((config.n_routed_experts, config.hidden_size))
         
     | 
| 
       347 
328 
     | 
    
         
             
                    )
         
     | 
| 
       348 
329 
     | 
    
         
             
                    self.e_score_correction_bias = nn.Parameter(
         
     | 
| 
       349 
330 
     | 
    
         
             
                        torch.empty((config.n_routed_experts), dtype=torch.float32)
         
     | 
| 
       350 
331 
     | 
    
         
             
                    )
         
     | 
| 
       351 
     | 
    
         
            -
                    if _is_cpu and _is_cpu_amx_available:
         
     | 
| 
       352 
     | 
    
         
            -
                        self.quant_method = PackWeightMethod(weight_names=["weight"])
         
     | 
| 
       353 
332 
     | 
    
         | 
| 
       354 
333 
     | 
    
         
             
                def forward(self, hidden_states):
         
     | 
| 
       355 
     | 
    
         
            -
                     
     | 
| 
       356 
     | 
    
         
            -
                        return torch.ops.sgl_kernel.weight_packed_linear(
         
     | 
| 
       357 
     | 
    
         
            -
                            hidden_states,
         
     | 
| 
       358 
     | 
    
         
            -
                            self.weight,
         
     | 
| 
       359 
     | 
    
         
            -
                            None,  # bias
         
     | 
| 
       360 
     | 
    
         
            -
                            True,  # is_vnni
         
     | 
| 
       361 
     | 
    
         
            -
                        )
         
     | 
| 
       362 
     | 
    
         
            -
             
     | 
| 
       363 
     | 
    
         
            -
                    # NOTE: For some unknown reason, router_gemm seems degrade accept length.
         
     | 
| 
       364 
     | 
    
         
            -
                    if (
         
     | 
| 
       365 
     | 
    
         
            -
                        _is_cuda
         
     | 
| 
       366 
     | 
    
         
            -
                        and not self.is_nextn
         
     | 
| 
       367 
     | 
    
         
            -
                        and hidden_states.shape[0] < 4
         
     | 
| 
       368 
     | 
    
         
            -
                        and hidden_states.shape[1] == 7168
         
     | 
| 
       369 
     | 
    
         
            -
                        and self.weight.shape[0] == 256
         
     | 
| 
       370 
     | 
    
         
            -
                        and _device_sm >= 90
         
     | 
| 
       371 
     | 
    
         
            -
                    ):
         
     | 
| 
       372 
     | 
    
         
            -
                        logits = dsv3_router_gemm(hidden_states, self.weight).to(
         
     | 
| 
       373 
     | 
    
         
            -
                            hidden_states.dtype
         
     | 
| 
       374 
     | 
    
         
            -
                        )
         
     | 
| 
       375 
     | 
    
         
            -
                    else:
         
     | 
| 
       376 
     | 
    
         
            -
                        logits = F.linear(hidden_states, self.weight, None)
         
     | 
| 
       377 
     | 
    
         
            -
             
     | 
| 
      
 334 
     | 
    
         
            +
                    logits = F.linear(hidden_states, self.weight, None)
         
     | 
| 
       378 
335 
     | 
    
         
             
                    return logits
         
     | 
| 
       379 
336 
     | 
    
         | 
| 
       380 
337 
     | 
    
         | 
| 
       381 
     | 
    
         
            -
            class Glm4MoeSparseMoeBlock( 
     | 
| 
      
 338 
     | 
    
         
            +
            class Glm4MoeSparseMoeBlock(nn.Module):
         
     | 
| 
       382 
339 
     | 
    
         
             
                def __init__(
         
     | 
| 
       383 
340 
     | 
    
         
             
                    self,
         
     | 
| 
       384 
341 
     | 
    
         
             
                    config: PretrainedConfig,
         
     | 
| 
         @@ -386,18 +343,12 @@ class Glm4MoeSparseMoeBlock(DeepseekV2MoE): 
     | 
|
| 
       386 
343 
     | 
    
         
             
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
       387 
344 
     | 
    
         
             
                    prefix: str = "",
         
     | 
| 
       388 
345 
     | 
    
         
             
                    alt_stream: Optional[torch.cuda.Stream] = None,
         
     | 
| 
       389 
     | 
    
         
            -
                    is_nextn: bool = False,
         
     | 
| 
       390 
346 
     | 
    
         
             
                ):
         
     | 
| 
       391 
347 
     | 
    
         
             
                    nn.Module.__init__(self)
         
     | 
| 
      
 348 
     | 
    
         
            +
                    self.top_k = config.num_experts_per_tok
         
     | 
| 
       392 
349 
     | 
    
         
             
                    self.tp_size = get_tensor_model_parallel_world_size()
         
     | 
| 
       393 
     | 
    
         
            -
                    self.ep_size = get_moe_expert_parallel_world_size()
         
     | 
| 
       394 
350 
     | 
    
         
             
                    self.routed_scaling_factor = config.routed_scaling_factor
         
     | 
| 
       395 
351 
     | 
    
         
             
                    self.n_shared_experts = config.n_shared_experts
         
     | 
| 
       396 
     | 
    
         
            -
                    self.num_fused_shared_experts = (
         
     | 
| 
       397 
     | 
    
         
            -
                        0
         
     | 
| 
       398 
     | 
    
         
            -
                        if global_server_args_dict["disable_shared_experts_fusion"]
         
     | 
| 
       399 
     | 
    
         
            -
                        else config.n_shared_experts
         
     | 
| 
       400 
     | 
    
         
            -
                    )
         
     | 
| 
       401 
352 
     | 
    
         
             
                    self.config = config
         
     | 
| 
       402 
353 
     | 
    
         
             
                    self.layer_id = layer_id
         
     | 
| 
       403 
354 
     | 
    
         
             
                    self.alt_stream = alt_stream
         
     | 
| 
         @@ -414,39 +365,31 @@ class Glm4MoeSparseMoeBlock(DeepseekV2MoE): 
     | 
|
| 
       414 
365 
     | 
    
         
             
                            "Only silu is supported for now."
         
     | 
| 
       415 
366 
     | 
    
         
             
                        )
         
     | 
| 
       416 
367 
     | 
    
         | 
| 
       417 
     | 
    
         
            -
                    self.gate = Glm4MoeGate(
         
     | 
| 
       418 
     | 
    
         
            -
                        config=config, prefix=add_prefix("gate", prefix), is_nextn=is_nextn
         
     | 
| 
       419 
     | 
    
         
            -
                    )
         
     | 
| 
      
 368 
     | 
    
         
            +
                    self.gate = Glm4MoeGate(config=config, prefix=add_prefix("gate", prefix))
         
     | 
| 
       420 
369 
     | 
    
         | 
| 
       421 
370 
     | 
    
         
             
                    self.topk = TopK(
         
     | 
| 
       422 
     | 
    
         
            -
                        top_k= 
     | 
| 
      
 371 
     | 
    
         
            +
                        top_k=self.top_k,
         
     | 
| 
       423 
372 
     | 
    
         
             
                        renormalize=config.norm_topk_prob,
         
     | 
| 
       424 
373 
     | 
    
         
             
                        use_grouped_topk=True,
         
     | 
| 
       425 
374 
     | 
    
         
             
                        num_expert_group=config.n_group,
         
     | 
| 
       426 
     | 
    
         
            -
                        num_fused_shared_experts=self.num_fused_shared_experts,
         
     | 
| 
       427 
375 
     | 
    
         
             
                        topk_group=config.topk_group,
         
     | 
| 
       428 
376 
     | 
    
         
             
                        correction_bias=self.gate.e_score_correction_bias,
         
     | 
| 
       429 
377 
     | 
    
         
             
                        routed_scaling_factor=self.routed_scaling_factor,
         
     | 
| 
       430 
378 
     | 
    
         
             
                    )
         
     | 
| 
       431 
379 
     | 
    
         | 
| 
       432 
380 
     | 
    
         
             
                    self.experts = get_moe_impl_class(quant_config)(
         
     | 
| 
       433 
     | 
    
         
            -
                        num_experts=config.n_routed_experts
         
     | 
| 
       434 
     | 
    
         
            -
                         
     | 
| 
       435 
     | 
    
         
            -
                         
     | 
| 
       436 
     | 
    
         
            -
                        num_fused_shared_experts=self.num_fused_shared_experts,
         
     | 
| 
       437 
     | 
    
         
            -
                        top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
         
     | 
| 
      
 381 
     | 
    
         
            +
                        num_experts=config.n_routed_experts,
         
     | 
| 
      
 382 
     | 
    
         
            +
                        top_k=self.top_k,
         
     | 
| 
      
 383 
     | 
    
         
            +
                        layer_id=self.layer_id,
         
     | 
| 
       438 
384 
     | 
    
         
             
                        hidden_size=config.hidden_size,
         
     | 
| 
       439 
385 
     | 
    
         
             
                        intermediate_size=config.moe_intermediate_size,
         
     | 
| 
       440 
     | 
    
         
            -
                        layer_id=self.layer_id,
         
     | 
| 
       441 
386 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
       442 
387 
     | 
    
         
             
                        routed_scaling_factor=self.routed_scaling_factor,
         
     | 
| 
       443 
388 
     | 
    
         
             
                        prefix=add_prefix("experts", prefix),
         
     | 
| 
       444 
389 
     | 
    
         
             
                    )
         
     | 
| 
       445 
390 
     | 
    
         | 
| 
       446 
     | 
    
         
            -
                     
     | 
| 
       447 
     | 
    
         
            -
                     
     | 
| 
       448 
     | 
    
         
            -
                    # self.shared_experts_weight_block_size = None
         
     | 
| 
       449 
     | 
    
         
            -
                    if config.n_shared_experts is not None and self.num_fused_shared_experts == 0:
         
     | 
| 
      
 391 
     | 
    
         
            +
                    # shared expert
         
     | 
| 
      
 392 
     | 
    
         
            +
                    if config.n_shared_experts is not None:
         
     | 
| 
       450 
393 
     | 
    
         
             
                        intermediate_size = config.moe_intermediate_size * config.n_shared_experts
         
     | 
| 
       451 
394 
     | 
    
         
             
                        self.shared_experts = Glm4MoeMLP(
         
     | 
| 
       452 
395 
     | 
    
         
             
                            hidden_size=config.hidden_size,
         
     | 
| 
         @@ -455,28 +398,21 @@ class Glm4MoeSparseMoeBlock(DeepseekV2MoE): 
     | 
|
| 
       455 
398 
     | 
    
         
             
                            quant_config=quant_config,
         
     | 
| 
       456 
399 
     | 
    
         
             
                            reduce_results=False,
         
     | 
| 
       457 
400 
     | 
    
         
             
                            prefix=add_prefix("shared_experts", prefix),
         
     | 
| 
       458 
     | 
    
         
            -
                            **( 
     | 
| 
       459 
     | 
    
         
            -
             
     | 
| 
       460 
     | 
    
         
            -
             
     | 
| 
       461 
     | 
    
         
            -
             
     | 
| 
       462 
     | 
    
         
            -
             
     | 
| 
       463 
     | 
    
         
            -
             
     | 
| 
       464 
     | 
    
         
            -
                             
     | 
| 
       465 
     | 
    
         
            -
                            and self.shared_experts.gate_up_proj.weight.dtype == torch.int8
         
     | 
| 
      
 401 
     | 
    
         
            +
                            **(
         
     | 
| 
      
 402 
     | 
    
         
            +
                                dict(tp_rank=0, tp_size=1)
         
     | 
| 
      
 403 
     | 
    
         
            +
                                if get_moe_a2a_backend().is_deepep()
         
     | 
| 
      
 404 
     | 
    
         
            +
                                or get_moe_a2a_backend().is_mooncake()
         
     | 
| 
      
 405 
     | 
    
         
            +
                                or should_use_flashinfer_cutlass_moe_fp4_allgather()
         
     | 
| 
      
 406 
     | 
    
         
            +
                                else {}
         
     | 
| 
      
 407 
     | 
    
         
            +
                            ),
         
     | 
| 
       466 
408 
     | 
    
         
             
                        )
         
     | 
| 
       467 
     | 
    
         
            -
                        self.shared_experts_is_fp8 = (
         
     | 
| 
       468 
     | 
    
         
            -
                            not is_packed_weight
         
     | 
| 
       469 
     | 
    
         
            -
                            and self.shared_experts.gate_up_proj.weight.dtype == torch.float8_e4m3fn
         
     | 
| 
       470 
     | 
    
         
            -
                        )
         
     | 
| 
       471 
     | 
    
         
            -
             
     | 
| 
       472 
     | 
    
         
            -
                    self.top_k = config.num_experts_per_tok
         
     | 
| 
       473 
409 
     | 
    
         | 
| 
       474 
     | 
    
         
            -
                    if get_moe_a2a_backend().is_deepep():
         
     | 
| 
      
 410 
     | 
    
         
            +
                    if get_moe_a2a_backend().is_deepep() or get_moe_a2a_backend().is_mooncake():
         
     | 
| 
       475 
411 
     | 
    
         
             
                        # TODO: we will support tp < ep in the future
         
     | 
| 
       476 
412 
     | 
    
         
             
                        self.ep_size = get_moe_expert_parallel_world_size()
         
     | 
| 
       477 
413 
     | 
    
         
             
                        self.num_experts = (
         
     | 
| 
       478 
414 
     | 
    
         
             
                            config.n_routed_experts
         
     | 
| 
       479 
     | 
    
         
            -
                            +  
     | 
| 
      
 415 
     | 
    
         
            +
                            + get_global_server_args().ep_num_redundant_experts
         
     | 
| 
       480 
416 
     | 
    
         
             
                        )
         
     | 
| 
       481 
417 
     | 
    
         
             
                        self.renormalize = config.norm_topk_prob
         
     | 
| 
       482 
418 
     | 
    
         
             
                        self.topk_group = config.topk_group
         
     | 
| 
         @@ -487,27 +423,50 @@ class Glm4MoeSparseMoeBlock(DeepseekV2MoE): 
     | 
|
| 
       487 
423 
     | 
    
         
             
                            else None
         
     | 
| 
       488 
424 
     | 
    
         
             
                        )
         
     | 
| 
       489 
425 
     | 
    
         | 
| 
       490 
     | 
    
         
            -
             
     | 
| 
       491 
     | 
    
         
            -
             
     | 
| 
       492 
     | 
    
         
            -
             
     | 
| 
       493 
     | 
    
         
            -
             
     | 
| 
       494 
     | 
    
         
            -
             
     | 
| 
       495 
     | 
    
         
            -
             
     | 
| 
       496 
     | 
    
         
            -
             
     | 
| 
       497 
     | 
    
         
            -
             
     | 
| 
       498 
     | 
    
         
            -
             
     | 
| 
       499 
     | 
    
         
            -
             
     | 
| 
       500 
     | 
    
         
            -
                            return_recv_hook=True,
         
     | 
| 
       501 
     | 
    
         
            -
                        )
         
     | 
| 
      
 426 
     | 
    
         
            +
                    self._enable_a2a_moe = (
         
     | 
| 
      
 427 
     | 
    
         
            +
                        get_moe_a2a_backend().is_deepep() or get_moe_a2a_backend().is_mooncake()
         
     | 
| 
      
 428 
     | 
    
         
            +
                    )
         
     | 
| 
      
 429 
     | 
    
         
            +
             
     | 
| 
      
 430 
     | 
    
         
            +
                def get_moe_weights(self):
         
     | 
| 
      
 431 
     | 
    
         
            +
                    return [
         
     | 
| 
      
 432 
     | 
    
         
            +
                        x.data
         
     | 
| 
      
 433 
     | 
    
         
            +
                        for name, x in self.experts.named_parameters()
         
     | 
| 
      
 434 
     | 
    
         
            +
                        if name not in ["correction_bias"]
         
     | 
| 
      
 435 
     | 
    
         
            +
                    ]
         
     | 
| 
       502 
436 
     | 
    
         | 
| 
       503 
     | 
    
         
            -
             
     | 
| 
      
 437 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 438 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 439 
     | 
    
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 
      
 440 
     | 
    
         
            +
                    forward_batch: Optional[ForwardBatch] = None,
         
     | 
| 
      
 441 
     | 
    
         
            +
                    should_allreduce_fusion: bool = False,
         
     | 
| 
      
 442 
     | 
    
         
            +
                    use_reduce_scatter: bool = False,
         
     | 
| 
      
 443 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 444 
     | 
    
         
            +
                    if not self._enable_a2a_moe:
         
     | 
| 
      
 445 
     | 
    
         
            +
                        DUAL_STREAM_TOKEN_THRESHOLD = 1024
         
     | 
| 
      
 446 
     | 
    
         
            +
                        if (
         
     | 
| 
      
 447 
     | 
    
         
            +
                            self.alt_stream is not None
         
     | 
| 
      
 448 
     | 
    
         
            +
                            and hidden_states.shape[0] > 0
         
     | 
| 
      
 449 
     | 
    
         
            +
                            and hidden_states.shape[0] <= DUAL_STREAM_TOKEN_THRESHOLD
         
     | 
| 
      
 450 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 451 
     | 
    
         
            +
                            return self.forward_normal_dual_stream(
         
     | 
| 
      
 452 
     | 
    
         
            +
                                hidden_states,
         
     | 
| 
      
 453 
     | 
    
         
            +
                                should_allreduce_fusion,
         
     | 
| 
      
 454 
     | 
    
         
            +
                                use_reduce_scatter,
         
     | 
| 
      
 455 
     | 
    
         
            +
                            )
         
     | 
| 
      
 456 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 457 
     | 
    
         
            +
                            return self.forward_normal(
         
     | 
| 
      
 458 
     | 
    
         
            +
                                hidden_states,
         
     | 
| 
      
 459 
     | 
    
         
            +
                                should_allreduce_fusion,
         
     | 
| 
      
 460 
     | 
    
         
            +
                                use_reduce_scatter,
         
     | 
| 
      
 461 
     | 
    
         
            +
                            )
         
     | 
| 
      
 462 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 463 
     | 
    
         
            +
                        return self.forward_deepep(hidden_states, forward_batch)
         
     | 
| 
       504 
464 
     | 
    
         | 
| 
       505 
465 
     | 
    
         
             
                def forward_normal_dual_stream(
         
     | 
| 
       506 
466 
     | 
    
         
             
                    self,
         
     | 
| 
       507 
467 
     | 
    
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 
       508 
468 
     | 
    
         
             
                    should_allreduce_fusion: bool = False,
         
     | 
| 
       509 
469 
     | 
    
         
             
                    use_reduce_scatter: bool = False,
         
     | 
| 
       510 
     | 
    
         
            -
                    gemm_output_zero_allocator: BumpAllocator = None,
         
     | 
| 
       511 
470 
     | 
    
         
             
                ) -> torch.Tensor:
         
     | 
| 
       512 
471 
     | 
    
         | 
| 
       513 
472 
     | 
    
         
             
                    current_stream = torch.cuda.current_stream()
         
     | 
| 
         @@ -521,28 +480,21 @@ class Glm4MoeSparseMoeBlock(DeepseekV2MoE): 
     | 
|
| 
       521 
480 
     | 
    
         
             
                        final_hidden_states = self.experts(hidden_states, topk_output)
         
     | 
| 
       522 
481 
     | 
    
         
             
                        if not _is_cuda:
         
     | 
| 
       523 
482 
     | 
    
         
             
                            final_hidden_states *= self.routed_scaling_factor
         
     | 
| 
      
 483 
     | 
    
         
            +
             
     | 
| 
       524 
484 
     | 
    
         
             
                    current_stream.wait_stream(self.alt_stream)
         
     | 
| 
      
 485 
     | 
    
         
            +
                    with use_symmetric_memory(parallel_state.get_tp_group()) as sm:
         
     | 
| 
      
 486 
     | 
    
         
            +
                        final_hidden_states_out = torch.empty_like(final_hidden_states)
         
     | 
| 
       525 
487 
     | 
    
         | 
| 
       526 
     | 
    
         
            -
                     
     | 
| 
       527 
     | 
    
         
            -
             
     | 
| 
       528 
     | 
    
         
            -
             
     | 
| 
       529 
     | 
    
         
            -
             
     | 
| 
       530 
     | 
    
         
            -
             
     | 
| 
       531 
     | 
    
         
            -
                         
     | 
| 
       532 
     | 
    
         
            -
             
     | 
| 
       533 
     | 
    
         
            -
             
     | 
| 
       534 
     | 
    
         
            -
             
     | 
| 
       535 
     | 
    
         
            -
                        final_hidden_states  
     | 
| 
       536 
     | 
    
         
            -
                    else:
         
     | 
| 
       537 
     | 
    
         
            -
                        final_hidden_states += shared_output
         
     | 
| 
       538 
     | 
    
         
            -
                        if (
         
     | 
| 
       539 
     | 
    
         
            -
                            self.tp_size > 1
         
     | 
| 
       540 
     | 
    
         
            -
                            and not should_allreduce_fusion
         
     | 
| 
       541 
     | 
    
         
            -
                            and not use_reduce_scatter
         
     | 
| 
       542 
     | 
    
         
            -
                        ):
         
     | 
| 
       543 
     | 
    
         
            -
                            final_hidden_states = tensor_model_parallel_all_reduce(
         
     | 
| 
       544 
     | 
    
         
            -
                                final_hidden_states
         
     | 
| 
       545 
     | 
    
         
            -
                            )
         
     | 
| 
      
 488 
     | 
    
         
            +
                    torch.add(final_hidden_states, shared_output, out=final_hidden_states_out)
         
     | 
| 
      
 489 
     | 
    
         
            +
                    final_hidden_states = final_hidden_states_out
         
     | 
| 
      
 490 
     | 
    
         
            +
                    sm.tag(final_hidden_states)
         
     | 
| 
      
 491 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 492 
     | 
    
         
            +
                        self.tp_size > 1
         
     | 
| 
      
 493 
     | 
    
         
            +
                        and not should_allreduce_fusion
         
     | 
| 
      
 494 
     | 
    
         
            +
                        and not use_reduce_scatter
         
     | 
| 
      
 495 
     | 
    
         
            +
                        and not should_use_flashinfer_cutlass_moe_fp4_allgather()
         
     | 
| 
      
 496 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 497 
     | 
    
         
            +
                        final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
         
     | 
| 
       546 
498 
     | 
    
         
             
                    return final_hidden_states
         
     | 
| 
       547 
499 
     | 
    
         | 
| 
       548 
500 
     | 
    
         
             
                def forward_normal(
         
     | 
| 
         @@ -550,39 +502,69 @@ class Glm4MoeSparseMoeBlock(DeepseekV2MoE): 
     | 
|
| 
       550 
502 
     | 
    
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 
       551 
503 
     | 
    
         
             
                    should_allreduce_fusion: bool = False,
         
     | 
| 
       552 
504 
     | 
    
         
             
                    use_reduce_scatter: bool = False,
         
     | 
| 
       553 
     | 
    
         
            -
                    gemm_output_zero_allocator: BumpAllocator = None,
         
     | 
| 
       554 
505 
     | 
    
         
             
                ) -> torch.Tensor:
         
     | 
| 
       555 
     | 
    
         
            -
                    if  
     | 
| 
       556 
     | 
    
         
            -
                        self. 
     | 
| 
       557 
     | 
    
         
            -
             
     | 
| 
       558 
     | 
    
         
            -
                         
     | 
| 
      
 506 
     | 
    
         
            +
                    if hidden_states.shape[0] > 0:
         
     | 
| 
      
 507 
     | 
    
         
            +
                        shared_output = self._forward_shared_experts(hidden_states)
         
     | 
| 
      
 508 
     | 
    
         
            +
                        # router_logits: (num_tokens, n_experts)
         
     | 
| 
      
 509 
     | 
    
         
            +
                        router_logits = self.gate(hidden_states)
         
     | 
| 
      
 510 
     | 
    
         
            +
                        topk_output = self.topk(hidden_states, router_logits)
         
     | 
| 
      
 511 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 512 
     | 
    
         
            +
                        shared_output = None
         
     | 
| 
      
 513 
     | 
    
         
            +
                        topk_output = self.topk.empty_topk_output(hidden_states.device)
         
     | 
| 
       559 
514 
     | 
    
         | 
| 
       560 
     | 
    
         
            -
                    shared_output = self._forward_shared_experts(hidden_states)
         
     | 
| 
       561 
     | 
    
         
            -
                    # router_logits: (num_tokens, n_experts)
         
     | 
| 
       562 
     | 
    
         
            -
                    router_logits = self.gate(hidden_states)
         
     | 
| 
       563 
     | 
    
         
            -
                    topk_output = self.topk(hidden_states, router_logits)
         
     | 
| 
       564 
515 
     | 
    
         
             
                    final_hidden_states = self.experts(hidden_states, topk_output)
         
     | 
| 
       565 
516 
     | 
    
         
             
                    if not _is_cuda and not _use_aiter:
         
     | 
| 
       566 
517 
     | 
    
         
             
                        # fused in biased_grouped_topk so we can skip here
         
     | 
| 
       567 
518 
     | 
    
         
             
                        final_hidden_states *= self.routed_scaling_factor
         
     | 
| 
       568 
     | 
    
         
            -
                    if  
     | 
| 
       569 
     | 
    
         
            -
                         
     | 
| 
       570 
     | 
    
         
            -
                             
     | 
| 
       571 
     | 
    
         
            -
             
     | 
| 
       572 
     | 
    
         
            -
             
     | 
| 
       573 
     | 
    
         
            -
                         
     | 
| 
       574 
     | 
    
         
            -
             
     | 
| 
      
 519 
     | 
    
         
            +
                    if shared_output is not None:
         
     | 
| 
      
 520 
     | 
    
         
            +
                        with use_symmetric_memory(parallel_state.get_tp_group()) as sm:
         
     | 
| 
      
 521 
     | 
    
         
            +
                            final_hidden_states_out = torch.empty_like(final_hidden_states)
         
     | 
| 
      
 522 
     | 
    
         
            +
                        torch.add(final_hidden_states, shared_output, out=final_hidden_states_out)
         
     | 
| 
      
 523 
     | 
    
         
            +
                        final_hidden_states = final_hidden_states_out
         
     | 
| 
      
 524 
     | 
    
         
            +
                        sm.tag(final_hidden_states)
         
     | 
| 
      
 525 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 526 
     | 
    
         
            +
                        self.tp_size > 1
         
     | 
| 
      
 527 
     | 
    
         
            +
                        and not should_allreduce_fusion
         
     | 
| 
      
 528 
     | 
    
         
            +
                        and not use_reduce_scatter
         
     | 
| 
      
 529 
     | 
    
         
            +
                        and not should_use_flashinfer_cutlass_moe_fp4_allgather()
         
     | 
| 
      
 530 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 531 
     | 
    
         
            +
                        final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
         
     | 
| 
      
 532 
     | 
    
         
            +
                    return final_hidden_states
         
     | 
| 
      
 533 
     | 
    
         
            +
             
     | 
| 
      
 534 
     | 
    
         
            +
                def _forward_deepep(self, hidden_states: torch.Tensor, forward_batch: ForwardBatch):
         
     | 
| 
      
 535 
     | 
    
         
            +
                    shared_output = None
         
     | 
| 
      
 536 
     | 
    
         
            +
                    if hidden_states.shape[0] > 0:
         
     | 
| 
      
 537 
     | 
    
         
            +
                        # router_logits: (num_tokens, n_experts)
         
     | 
| 
      
 538 
     | 
    
         
            +
                        router_logits, _ = self.gate(hidden_states)
         
     | 
| 
      
 539 
     | 
    
         
            +
                        shared_output = self._forward_shared_experts(hidden_states)
         
     | 
| 
      
 540 
     | 
    
         
            +
                        topk_output = self.topk(
         
     | 
| 
      
 541 
     | 
    
         
            +
                            hidden_states,
         
     | 
| 
      
 542 
     | 
    
         
            +
                            router_logits,
         
     | 
| 
      
 543 
     | 
    
         
            +
                            num_token_non_padded=forward_batch.num_token_non_padded,
         
     | 
| 
      
 544 
     | 
    
         
            +
                            expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
         
     | 
| 
      
 545 
     | 
    
         
            +
                                layer_id=self.layer_id,
         
     | 
| 
      
 546 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 547 
     | 
    
         
            +
                        )
         
     | 
| 
       575 
548 
     | 
    
         
             
                    else:
         
     | 
| 
       576 
     | 
    
         
            -
                         
     | 
| 
       577 
     | 
    
         
            -
             
     | 
| 
       578 
     | 
    
         
            -
                         
     | 
| 
       579 
     | 
    
         
            -
             
     | 
| 
       580 
     | 
    
         
            -
             
     | 
| 
       581 
     | 
    
         
            -
             
     | 
| 
      
 549 
     | 
    
         
            +
                        topk_output = self.topk.empty_topk_output(hidden_states.device)
         
     | 
| 
      
 550 
     | 
    
         
            +
                    final_hidden_states = self.experts(
         
     | 
| 
      
 551 
     | 
    
         
            +
                        hidden_states=hidden_states,
         
     | 
| 
      
 552 
     | 
    
         
            +
                        topk_output=topk_output,
         
     | 
| 
      
 553 
     | 
    
         
            +
                    )
         
     | 
| 
      
 554 
     | 
    
         
            +
             
     | 
| 
      
 555 
     | 
    
         
            +
                    if shared_output is not None:
         
     | 
| 
      
 556 
     | 
    
         
            +
                        final_hidden_states.add_(shared_output)
         
     | 
| 
      
 557 
     | 
    
         
            +
             
     | 
| 
       582 
558 
     | 
    
         
             
                    return final_hidden_states
         
     | 
| 
       583 
559 
     | 
    
         | 
| 
      
 560 
     | 
    
         
            +
                def _forward_shared_experts(self, hidden_states: torch.Tensor):
         
     | 
| 
      
 561 
     | 
    
         
            +
                    shared_output = None
         
     | 
| 
      
 562 
     | 
    
         
            +
                    if hidden_states.shape[0] > 0:
         
     | 
| 
      
 563 
     | 
    
         
            +
                        shared_output = self.shared_experts(hidden_states)
         
     | 
| 
      
 564 
     | 
    
         
            +
                    return shared_output
         
     | 
| 
      
 565 
     | 
    
         
            +
             
     | 
| 
       584 
566 
     | 
    
         | 
| 
       585 
     | 
    
         
            -
            class Glm4MoeDecoderLayer( 
     | 
| 
      
 567 
     | 
    
         
            +
            class Glm4MoeDecoderLayer(nn.Module):
         
     | 
| 
       586 
568 
     | 
    
         
             
                def __init__(
         
     | 
| 
       587 
569 
     | 
    
         
             
                    self,
         
     | 
| 
       588 
570 
     | 
    
         
             
                    config: PretrainedConfig,
         
     | 
| 
         @@ -605,6 +587,7 @@ class Glm4MoeDecoderLayer(DeepseekV2DecoderLayer): 
     | 
|
| 
       605 
587 
     | 
    
         
             
                    rms_norm_eps = config.rms_norm_eps
         
     | 
| 
       606 
588 
     | 
    
         
             
                    attention_bias = config.attention_bias
         
     | 
| 
       607 
589 
     | 
    
         
             
                    self.layer_id = layer_id
         
     | 
| 
      
 590 
     | 
    
         
            +
             
     | 
| 
       608 
591 
     | 
    
         
             
                    self.self_attn = Glm4MoeAttention(
         
     | 
| 
       609 
592 
     | 
    
         
             
                        hidden_size=self.hidden_size,
         
     | 
| 
       610 
593 
     | 
    
         
             
                        num_heads=config.num_attention_heads,
         
     | 
| 
         @@ -620,15 +603,15 @@ class Glm4MoeDecoderLayer(DeepseekV2DecoderLayer): 
     | 
|
| 
       620 
603 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
       621 
604 
     | 
    
         
             
                        prefix=add_prefix("self_attn", prefix),
         
     | 
| 
       622 
605 
     | 
    
         
             
                        use_qk_norm=config.use_qk_norm,
         
     | 
| 
      
 606 
     | 
    
         
            +
                        alt_stream=alt_stream,
         
     | 
| 
       623 
607 
     | 
    
         
             
                    )
         
     | 
| 
       624 
608 
     | 
    
         | 
| 
       625 
609 
     | 
    
         
             
                    self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
         
     | 
| 
       626 
610 
     | 
    
         
             
                    is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)
         
     | 
| 
       627 
611 
     | 
    
         | 
| 
       628 
     | 
    
         
            -
                    num_layers = 1 if is_nextn else config.num_hidden_layers
         
     | 
| 
       629 
612 
     | 
    
         
             
                    self.layer_scatter_modes = LayerScatterModes.init_new(
         
     | 
| 
       630 
613 
     | 
    
         
             
                        layer_id=layer_id,
         
     | 
| 
       631 
     | 
    
         
            -
                        num_layers= 
     | 
| 
      
 614 
     | 
    
         
            +
                        num_layers=1 if is_nextn else config.num_hidden_layers,
         
     | 
| 
       632 
615 
     | 
    
         
             
                        is_layer_sparse=self.is_layer_sparse,
         
     | 
| 
       633 
616 
     | 
    
         
             
                        is_previous_layer_sparse=is_previous_layer_sparse,
         
     | 
| 
       634 
617 
     | 
    
         
             
                    )
         
     | 
| 
         @@ -639,6 +622,7 @@ class Glm4MoeDecoderLayer(DeepseekV2DecoderLayer): 
     | 
|
| 
       639 
622 
     | 
    
         
             
                            quant_config=quant_config,
         
     | 
| 
       640 
623 
     | 
    
         
             
                            prefix=add_prefix("mlp", prefix),
         
     | 
| 
       641 
624 
     | 
    
         
             
                            layer_id=self.layer_id,
         
     | 
| 
      
 625 
     | 
    
         
            +
                            alt_stream=alt_stream,
         
     | 
| 
       642 
626 
     | 
    
         
             
                        )
         
     | 
| 
       643 
627 
     | 
    
         
             
                    else:
         
     | 
| 
       644 
628 
     | 
    
         
             
                        if enable_moe_dense_fully_dp():
         
     | 
| 
         @@ -665,6 +649,15 @@ class Glm4MoeDecoderLayer(DeepseekV2DecoderLayer): 
     | 
|
| 
       665 
649 
     | 
    
         
             
                        input_layernorm=self.input_layernorm,
         
     | 
| 
       666 
650 
     | 
    
         
             
                        post_attention_layernorm=self.post_attention_layernorm,
         
     | 
| 
       667 
651 
     | 
    
         
             
                        allow_reduce_scatter=True,
         
     | 
| 
      
 652 
     | 
    
         
            +
                        is_last_layer=(
         
     | 
| 
      
 653 
     | 
    
         
            +
                            is_nextn or (self.layer_id == self.config.num_hidden_layers - 1)
         
     | 
| 
      
 654 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 655 
     | 
    
         
            +
                    )
         
     | 
| 
      
 656 
     | 
    
         
            +
             
     | 
| 
      
 657 
     | 
    
         
            +
                def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
         
     | 
| 
      
 658 
     | 
    
         
            +
                    return is_nextn or (
         
     | 
| 
      
 659 
     | 
    
         
            +
                        self.config.n_routed_experts is not None
         
     | 
| 
      
 660 
     | 
    
         
            +
                        and layer_id >= self.config.first_k_dense_replace
         
     | 
| 
       668 
661 
     | 
    
         
             
                    )
         
     | 
| 
       669 
662 
     | 
    
         | 
| 
       670 
663 
     | 
    
         
             
                def forward(
         
     | 
| 
         @@ -673,8 +666,6 @@ class Glm4MoeDecoderLayer(DeepseekV2DecoderLayer): 
     | 
|
| 
       673 
666 
     | 
    
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 
       674 
667 
     | 
    
         
             
                    forward_batch: ForwardBatch,
         
     | 
| 
       675 
668 
     | 
    
         
             
                    residual: Optional[torch.Tensor],
         
     | 
| 
       676 
     | 
    
         
            -
                    zero_allocator: BumpAllocator,
         
     | 
| 
       677 
     | 
    
         
            -
                    gemm_output_zero_allocator: BumpAllocator = None,
         
     | 
| 
       678 
669 
     | 
    
         
             
                ) -> torch.Tensor:
         
     | 
| 
       679 
670 
     | 
    
         
             
                    hidden_states, residual = self.layer_communicator.prepare_attn(
         
     | 
| 
       680 
671 
     | 
    
         
             
                        hidden_states, residual, forward_batch
         
     | 
| 
         @@ -699,44 +690,119 @@ class Glm4MoeDecoderLayer(DeepseekV2DecoderLayer): 
     | 
|
| 
       699 
690 
     | 
    
         
             
                    return hidden_states, residual
         
     | 
| 
       700 
691 
     | 
    
         | 
| 
       701 
692 
     | 
    
         | 
| 
       702 
     | 
    
         
            -
            class Glm4MoeModel( 
     | 
| 
      
 693 
     | 
    
         
            +
            class Glm4MoeModel(nn.Module):
         
     | 
| 
       703 
694 
     | 
    
         
             
                def __init__(
         
     | 
| 
       704 
695 
     | 
    
         
             
                    self,
         
     | 
| 
       705 
696 
     | 
    
         
             
                    config: PretrainedConfig,
         
     | 
| 
       706 
697 
     | 
    
         
             
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
       707 
698 
     | 
    
         
             
                    prefix: str = "",
         
     | 
| 
       708 
     | 
    
         
            -
                ) 
     | 
| 
       709 
     | 
    
         
            -
                     
     | 
| 
       710 
     | 
    
         
            -
                    self. 
     | 
| 
      
 699 
     | 
    
         
            +
                ):
         
     | 
| 
      
 700 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 701 
     | 
    
         
            +
                    self.pp_group = get_pp_group()
         
     | 
| 
      
 702 
     | 
    
         
            +
                    self.config = config
         
     | 
| 
       711 
703 
     | 
    
         
             
                    self.vocab_size = config.vocab_size
         
     | 
| 
       712 
     | 
    
         
            -
                    self. 
     | 
| 
      
 704 
     | 
    
         
            +
                    self.embed_dim = config.hidden_size
         
     | 
| 
      
 705 
     | 
    
         
            +
                    if self.pp_group.is_first_rank:
         
     | 
| 
      
 706 
     | 
    
         
            +
                        self.embed_tokens = VocabParallelEmbedding(
         
     | 
| 
      
 707 
     | 
    
         
            +
                            config.vocab_size,
         
     | 
| 
      
 708 
     | 
    
         
            +
                            config.hidden_size,
         
     | 
| 
      
 709 
     | 
    
         
            +
                            enable_tp=not is_dp_attention_enabled(),
         
     | 
| 
      
 710 
     | 
    
         
            +
                        )
         
     | 
| 
      
 711 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 712 
     | 
    
         
            +
                        self.embed_tokens = PPMissingLayer()
         
     | 
| 
       713 
713 
     | 
    
         | 
| 
       714 
     | 
    
         
            -
                    self.embed_tokens = VocabParallelEmbedding(
         
     | 
| 
       715 
     | 
    
         
            -
                        config.vocab_size,
         
     | 
| 
       716 
     | 
    
         
            -
                        config.hidden_size,
         
     | 
| 
       717 
     | 
    
         
            -
                        enable_tp=not is_dp_attention_enabled(),
         
     | 
| 
       718 
     | 
    
         
            -
                    )
         
     | 
| 
       719 
714 
     | 
    
         
             
                    self.alt_stream = torch.cuda.Stream() if _is_cuda else None
         
     | 
| 
       720 
     | 
    
         
            -
                    self.layers =  
     | 
| 
       721 
     | 
    
         
            -
                         
     | 
| 
       722 
     | 
    
         
            -
             
     | 
| 
       723 
     | 
    
         
            -
             
     | 
| 
       724 
     | 
    
         
            -
             
     | 
| 
       725 
     | 
    
         
            -
             
     | 
| 
       726 
     | 
    
         
            -
             
     | 
| 
       727 
     | 
    
         
            -
             
     | 
| 
       728 
     | 
    
         
            -
             
     | 
| 
       729 
     | 
    
         
            -
             
     | 
| 
       730 
     | 
    
         
            -
                         
     | 
| 
      
 715 
     | 
    
         
            +
                    self.layers, self.start_layer, self.end_layer = make_layers(
         
     | 
| 
      
 716 
     | 
    
         
            +
                        config.num_hidden_layers,
         
     | 
| 
      
 717 
     | 
    
         
            +
                        lambda idx, prefix: Glm4MoeDecoderLayer(
         
     | 
| 
      
 718 
     | 
    
         
            +
                            layer_id=idx,
         
     | 
| 
      
 719 
     | 
    
         
            +
                            config=config,
         
     | 
| 
      
 720 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 721 
     | 
    
         
            +
                            prefix=prefix,
         
     | 
| 
      
 722 
     | 
    
         
            +
                            alt_stream=self.alt_stream,
         
     | 
| 
      
 723 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 724 
     | 
    
         
            +
                        pp_rank=self.pp_group.rank_in_group,
         
     | 
| 
      
 725 
     | 
    
         
            +
                        pp_size=self.pp_group.world_size,
         
     | 
| 
      
 726 
     | 
    
         
            +
                        prefix=add_prefix("layers", prefix),
         
     | 
| 
       731 
727 
     | 
    
         
             
                    )
         
     | 
| 
       732 
     | 
    
         
            -
                    self.pp_group 
     | 
| 
       733 
     | 
    
         
            -
             
     | 
| 
       734 
     | 
    
         
            -
                     
     | 
| 
       735 
     | 
    
         
            -
             
     | 
| 
      
 728 
     | 
    
         
            +
                    if self.pp_group.is_last_rank:
         
     | 
| 
      
 729 
     | 
    
         
            +
                        self.norm = RMSNorm(self.embed_dim, eps=config.rms_norm_eps)
         
     | 
| 
      
 730 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 731 
     | 
    
         
            +
                        self.norm = PPMissingLayer(return_tuple=True)
         
     | 
| 
      
 732 
     | 
    
         
            +
             
     | 
| 
      
 733 
     | 
    
         
            +
                def get_input_embeddings(self) -> torch.Tensor:
         
     | 
| 
      
 734 
     | 
    
         
            +
                    return self.embed_tokens
         
     | 
| 
      
 735 
     | 
    
         
            +
             
     | 
| 
      
 736 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 737 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 738 
     | 
    
         
            +
                    input_ids: torch.Tensor,
         
     | 
| 
      
 739 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 740 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 741 
     | 
    
         
            +
                    input_embeds: torch.Tensor = None,
         
     | 
| 
      
 742 
     | 
    
         
            +
                    pp_proxy_tensors: Optional[PPProxyTensors] = None,
         
     | 
| 
      
 743 
     | 
    
         
            +
                ) -> Union[torch.Tensor, PPProxyTensors]:
         
     | 
| 
      
 744 
     | 
    
         
            +
                    if self.pp_group.is_first_rank:
         
     | 
| 
      
 745 
     | 
    
         
            +
                        if input_embeds is None:
         
     | 
| 
      
 746 
     | 
    
         
            +
                            hidden_states = self.embed_tokens(input_ids)
         
     | 
| 
      
 747 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 748 
     | 
    
         
            +
                            hidden_states = input_embeds
         
     | 
| 
      
 749 
     | 
    
         
            +
                        residual = None
         
     | 
| 
      
 750 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 751 
     | 
    
         
            +
                        assert pp_proxy_tensors is not None
         
     | 
| 
      
 752 
     | 
    
         
            +
                        hidden_states = pp_proxy_tensors["hidden_states"]
         
     | 
| 
      
 753 
     | 
    
         
            +
                        residual = pp_proxy_tensors["residual"]
         
     | 
| 
      
 754 
     | 
    
         
            +
             
     | 
| 
      
 755 
     | 
    
         
            +
                    normal_start_layer = self.start_layer
         
     | 
| 
      
 756 
     | 
    
         
            +
                    normal_end_layer = self.end_layer
         
     | 
| 
      
 757 
     | 
    
         
            +
                    if forward_batch.can_run_tbo:
         
     | 
| 
      
 758 
     | 
    
         
            +
                        if (
         
     | 
| 
      
 759 
     | 
    
         
            +
                            self.first_k_dense_replace > normal_start_layer
         
     | 
| 
      
 760 
     | 
    
         
            +
                            and self.first_k_dense_replace < normal_end_layer
         
     | 
| 
      
 761 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 762 
     | 
    
         
            +
                            normal_end_layer = self.first_k_dense_replace
         
     | 
| 
      
 763 
     | 
    
         
            +
                        elif self.first_k_dense_replace < normal_start_layer:
         
     | 
| 
      
 764 
     | 
    
         
            +
                            normal_end_layer = normal_start_layer = 0
         
     | 
| 
      
 765 
     | 
    
         
            +
             
     | 
| 
      
 766 
     | 
    
         
            +
                    for i in range(normal_start_layer, normal_end_layer):
         
     | 
| 
      
 767 
     | 
    
         
            +
                        with get_global_expert_distribution_recorder().with_current_layer(i):
         
     | 
| 
      
 768 
     | 
    
         
            +
                            layer = self.layers[i]
         
     | 
| 
      
 769 
     | 
    
         
            +
                            hidden_states, residual = layer(
         
     | 
| 
      
 770 
     | 
    
         
            +
                                positions,
         
     | 
| 
      
 771 
     | 
    
         
            +
                                hidden_states,
         
     | 
| 
      
 772 
     | 
    
         
            +
                                forward_batch,
         
     | 
| 
      
 773 
     | 
    
         
            +
                                residual,
         
     | 
| 
      
 774 
     | 
    
         
            +
                            )
         
     | 
| 
       736 
775 
     | 
    
         | 
| 
      
 776 
     | 
    
         
            +
                    if normal_end_layer != self.end_layer:
         
     | 
| 
      
 777 
     | 
    
         
            +
                        hidden_states, residual = model_forward_maybe_tbo(
         
     | 
| 
      
 778 
     | 
    
         
            +
                            layers=self.layers[normal_end_layer : self.end_layer],
         
     | 
| 
      
 779 
     | 
    
         
            +
                            enable_tbo=True,
         
     | 
| 
      
 780 
     | 
    
         
            +
                            positions=positions,
         
     | 
| 
      
 781 
     | 
    
         
            +
                            forward_batch=forward_batch,
         
     | 
| 
      
 782 
     | 
    
         
            +
                            hidden_states=hidden_states,
         
     | 
| 
      
 783 
     | 
    
         
            +
                            residual=residual,
         
     | 
| 
      
 784 
     | 
    
         
            +
                            input_data_scatter_mode=self.layers[
         
     | 
| 
      
 785 
     | 
    
         
            +
                                normal_end_layer - 1
         
     | 
| 
      
 786 
     | 
    
         
            +
                            ].layer_scatter_modes.layer_output_mode,
         
     | 
| 
      
 787 
     | 
    
         
            +
                        )
         
     | 
| 
      
 788 
     | 
    
         
            +
             
     | 
| 
      
 789 
     | 
    
         
            +
                    if not self.pp_group.is_last_rank:
         
     | 
| 
      
 790 
     | 
    
         
            +
                        return PPProxyTensors(
         
     | 
| 
      
 791 
     | 
    
         
            +
                            {
         
     | 
| 
      
 792 
     | 
    
         
            +
                                "hidden_states": hidden_states,
         
     | 
| 
      
 793 
     | 
    
         
            +
                                "residual": residual,
         
     | 
| 
      
 794 
     | 
    
         
            +
                            }
         
     | 
| 
      
 795 
     | 
    
         
            +
                        )
         
     | 
| 
      
 796 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 797 
     | 
    
         
            +
                        if not forward_batch.forward_mode.is_idle():
         
     | 
| 
      
 798 
     | 
    
         
            +
                            if residual is None:
         
     | 
| 
      
 799 
     | 
    
         
            +
                                hidden_states = self.norm(hidden_states)
         
     | 
| 
      
 800 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 801 
     | 
    
         
            +
                                hidden_states, _ = self.norm(hidden_states, residual)
         
     | 
| 
      
 802 
     | 
    
         
            +
                        return hidden_states
         
     | 
| 
       737 
803 
     | 
    
         | 
| 
       738 
     | 
    
         
            -
            class Glm4MoeForCausalLM(DeepseekV2ForCausalLM):
         
     | 
| 
       739 
804 
     | 
    
         | 
| 
      
 805 
     | 
    
         
            +
            class Glm4MoeForCausalLM(nn.Module):
         
     | 
| 
       740 
806 
     | 
    
         
             
                def __init__(
         
     | 
| 
       741 
807 
     | 
    
         
             
                    self,
         
     | 
| 
       742 
808 
     | 
    
         
             
                    config: PretrainedConfig,
         
     | 
| 
         @@ -744,12 +810,10 @@ class Glm4MoeForCausalLM(DeepseekV2ForCausalLM): 
     | 
|
| 
       744 
810 
     | 
    
         
             
                    prefix: str = "",
         
     | 
| 
       745 
811 
     | 
    
         
             
                ) -> None:
         
     | 
| 
       746 
812 
     | 
    
         
             
                    nn.Module.__init__(self)
         
     | 
| 
       747 
     | 
    
         
            -
                    config.moe_layer_freq = 1
         
     | 
| 
       748 
813 
     | 
    
         
             
                    self.config = config
         
     | 
| 
       749 
814 
     | 
    
         
             
                    self.tp_size = get_tensor_model_parallel_world_size()
         
     | 
| 
       750 
815 
     | 
    
         
             
                    self.quant_config = quant_config
         
     | 
| 
       751 
816 
     | 
    
         
             
                    self.pp_group = get_pp_group()
         
     | 
| 
       752 
     | 
    
         
            -
                    self.determine_num_fused_shared_experts("Glm4MoeForCausalLM")
         
     | 
| 
       753 
817 
     | 
    
         
             
                    self.model = Glm4MoeModel(
         
     | 
| 
       754 
818 
     | 
    
         
             
                        config, quant_config, prefix=add_prefix("model", prefix)
         
     | 
| 
       755 
819 
     | 
    
         
             
                    )
         
     | 
| 
         @@ -758,53 +822,45 @@ class Glm4MoeForCausalLM(DeepseekV2ForCausalLM): 
     | 
|
| 
       758 
822 
     | 
    
         
             
                        config.hidden_size,
         
     | 
| 
       759 
823 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
       760 
824 
     | 
    
         
             
                        prefix=add_prefix("lm_head", prefix),
         
     | 
| 
       761 
     | 
    
         
            -
                        use_attn_tp_group= 
     | 
| 
      
 825 
     | 
    
         
            +
                        use_attn_tp_group=get_global_server_args().enable_dp_lm_head,
         
     | 
| 
       762 
826 
     | 
    
         
             
                    )
         
     | 
| 
       763 
827 
     | 
    
         
             
                    self.logits_processor = LogitsProcessor(config)
         
     | 
| 
       764 
828 
     | 
    
         | 
| 
       765 
     | 
    
         
            -
                     
     | 
| 
       766 
     | 
    
         
            -
             
     | 
| 
       767 
     | 
    
         
            -
                            layer_id: layer.mlp.get_moe_weights()
         
     | 
| 
       768 
     | 
    
         
            -
                            for layer_id, layer in enumerate(self.model.layers)
         
     | 
| 
       769 
     | 
    
         
            -
                            if isinstance(layer.mlp, DeepseekV2MoE)
         
     | 
| 
       770 
     | 
    
         
            -
                        }
         
     | 
| 
       771 
     | 
    
         
            -
                    )
         
     | 
| 
      
 829 
     | 
    
         
            +
                    # For EAGLE3 support
         
     | 
| 
      
 830 
     | 
    
         
            +
                    self.capture_aux_hidden_states = False
         
     | 
| 
       772 
831 
     | 
    
         | 
| 
       773 
     | 
    
         
            -
                def  
     | 
| 
       774 
     | 
    
         
            -
                    self 
     | 
| 
       775 
     | 
    
         
            -
                ):
         
     | 
| 
       776 
     | 
    
         
            -
                    self.num_fused_shared_experts = 0
         
     | 
| 
       777 
     | 
    
         
            -
                    if global_server_args_dict["disable_shared_experts_fusion"]:
         
     | 
| 
       778 
     | 
    
         
            -
                        return
         
     | 
| 
      
 832 
     | 
    
         
            +
                def get_input_embeddings(self) -> nn.Embedding:
         
     | 
| 
      
 833 
     | 
    
         
            +
                    return self.model.embed_tokens
         
     | 
| 
       779 
834 
     | 
    
         | 
| 
       780 
     | 
    
         
            -
             
     | 
| 
       781 
     | 
    
         
            -
             
     | 
| 
       782 
     | 
    
         
            -
                     
     | 
| 
       783 
     | 
    
         
            -
             
     | 
| 
       784 
     | 
    
         
            -
             
     | 
| 
       785 
     | 
    
         
            -
             
     | 
| 
       786 
     | 
    
         
            -
             
     | 
| 
       787 
     | 
    
         
            -
                     
     | 
| 
       788 
     | 
    
         
            -
             
     | 
| 
       789 
     | 
    
         
            -
                     
     | 
| 
       790 
     | 
    
         
            -
                         
     | 
| 
       791 
     | 
    
         
            -
             
     | 
| 
       792 
     | 
    
         
            -
             
     | 
| 
       793 
     | 
    
         
            -
             
     | 
| 
       794 
     | 
    
         
            -
                        self. 
     | 
| 
       795 
     | 
    
         
            -
             
     | 
| 
       796 
     | 
    
         
            -
                            logger,
         
     | 
| 
       797 
     | 
    
         
            -
                            f"{disable_reason} Shared experts fusion optimization is disabled.",
         
     | 
| 
      
 835 
     | 
    
         
            +
                @torch.no_grad()
         
     | 
| 
      
 836 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 837 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 838 
     | 
    
         
            +
                    input_ids: torch.Tensor,
         
     | 
| 
      
 839 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 840 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 841 
     | 
    
         
            +
                    input_embeds: torch.Tensor = None,
         
     | 
| 
      
 842 
     | 
    
         
            +
                    pp_proxy_tensors: Optional[PPProxyTensors] = None,
         
     | 
| 
      
 843 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 844 
     | 
    
         
            +
                    hidden_states = self.model(
         
     | 
| 
      
 845 
     | 
    
         
            +
                        input_ids, positions, forward_batch, input_embeds, pp_proxy_tensors
         
     | 
| 
      
 846 
     | 
    
         
            +
                    )
         
     | 
| 
      
 847 
     | 
    
         
            +
             
     | 
| 
      
 848 
     | 
    
         
            +
                    if self.pp_group.is_last_rank:
         
     | 
| 
      
 849 
     | 
    
         
            +
                        return self.logits_processor(
         
     | 
| 
      
 850 
     | 
    
         
            +
                            input_ids, hidden_states, self.lm_head, forward_batch
         
     | 
| 
       798 
851 
     | 
    
         
             
                        )
         
     | 
| 
       799 
     | 
    
         
            -
             
     | 
| 
      
 852 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 853 
     | 
    
         
            +
                        return hidden_states
         
     | 
| 
       800 
854 
     | 
    
         | 
| 
       801 
     | 
    
         
            -
             
     | 
| 
      
 855 
     | 
    
         
            +
                @property
         
     | 
| 
      
 856 
     | 
    
         
            +
                def start_layer(self):
         
     | 
| 
      
 857 
     | 
    
         
            +
                    return self.model.start_layer
         
     | 
| 
       802 
858 
     | 
    
         | 
| 
       803 
     | 
    
         
            -
                 
     | 
| 
       804 
     | 
    
         
            -
             
     | 
| 
      
 859 
     | 
    
         
            +
                @property
         
     | 
| 
      
 860 
     | 
    
         
            +
                def end_layer(self):
         
     | 
| 
      
 861 
     | 
    
         
            +
                    return self.model.end_layer
         
     | 
| 
       805 
862 
     | 
    
         | 
| 
       806 
863 
     | 
    
         
             
                def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
         
     | 
| 
       807 
     | 
    
         
            -
             
     | 
| 
       808 
864 
     | 
    
         
             
                    if is_nextn:
         
     | 
| 
       809 
865 
     | 
    
         
             
                        if hasattr(self.config, "num_nextn_predict_layers"):
         
     | 
| 
       810 
866 
     | 
    
         
             
                            num_nextn_layers = self.config.num_nextn_predict_layers
         
     | 
| 
         @@ -826,117 +882,14 @@ class Glm4MoeForCausalLM(DeepseekV2ForCausalLM): 
     | 
|
| 
       826 
882 
     | 
    
         
             
                        ("gate_up_proj", "gate_proj", 0),
         
     | 
| 
       827 
883 
     | 
    
         
             
                        ("gate_up_proj", "up_proj", 1),
         
     | 
| 
       828 
884 
     | 
    
         
             
                    ]
         
     | 
| 
       829 
     | 
    
         
            -
                    if self.num_fused_shared_experts > 0:
         
     | 
| 
       830 
     | 
    
         
            -
                        assert self.num_fused_shared_experts == 1
         
     | 
| 
       831 
     | 
    
         
            -
                        weights_list = list(weights)
         
     | 
| 
       832 
     | 
    
         
            -
                        weights_dict = dict(weights_list)
         
     | 
| 
       833 
     | 
    
         
            -
                        if self.quant_config is not None:
         
     | 
| 
       834 
     | 
    
         
            -
                            if self.quant_config.get_name() == "w8a8_int8":
         
     | 
| 
       835 
     | 
    
         
            -
                                suffix_list = [
         
     | 
| 
       836 
     | 
    
         
            -
                                    "down_proj.weight",
         
     | 
| 
       837 
     | 
    
         
            -
                                    "down_proj.weight_scale",
         
     | 
| 
       838 
     | 
    
         
            -
                                    "gate_proj.weight",
         
     | 
| 
       839 
     | 
    
         
            -
                                    "gate_proj.weight_scale",
         
     | 
| 
       840 
     | 
    
         
            -
                                    "up_proj.weight",
         
     | 
| 
       841 
     | 
    
         
            -
                                    "up_proj.weight_scale",
         
     | 
| 
       842 
     | 
    
         
            -
                                ]
         
     | 
| 
       843 
     | 
    
         
            -
                            elif (
         
     | 
| 
       844 
     | 
    
         
            -
                                self.quant_config.get_name() == "fp8"
         
     | 
| 
       845 
     | 
    
         
            -
                                or self.quant_config.get_name() == "blockwise_int8"
         
     | 
| 
       846 
     | 
    
         
            -
                                or self.quant_config.get_name() == "compressed_tensors"
         
     | 
| 
       847 
     | 
    
         
            -
                            ):
         
     | 
| 
       848 
     | 
    
         
            -
                                suffix_list = [
         
     | 
| 
       849 
     | 
    
         
            -
                                    "down_proj.weight",
         
     | 
| 
       850 
     | 
    
         
            -
                                    "down_proj.weight_scale",
         
     | 
| 
       851 
     | 
    
         
            -
                                    "gate_proj.weight",
         
     | 
| 
       852 
     | 
    
         
            -
                                    "gate_proj.weight_scale",
         
     | 
| 
       853 
     | 
    
         
            -
                                    "up_proj.weight",
         
     | 
| 
       854 
     | 
    
         
            -
                                    "up_proj.weight_scale",
         
     | 
| 
       855 
     | 
    
         
            -
                                ]
         
     | 
| 
       856 
     | 
    
         
            -
                            elif self.quant_config.get_name() == "awq":
         
     | 
| 
       857 
     | 
    
         
            -
                                suffix_list = [
         
     | 
| 
       858 
     | 
    
         
            -
                                    "down_proj.qweight",
         
     | 
| 
       859 
     | 
    
         
            -
                                    "down_proj.qzeros",
         
     | 
| 
       860 
     | 
    
         
            -
                                    "down_proj.scales",
         
     | 
| 
       861 
     | 
    
         
            -
                                    "gate_proj.qweight",
         
     | 
| 
       862 
     | 
    
         
            -
                                    "gate_proj.qzeros",
         
     | 
| 
       863 
     | 
    
         
            -
                                    "gate_proj.scales",
         
     | 
| 
       864 
     | 
    
         
            -
                                    "up_proj.qweight",
         
     | 
| 
       865 
     | 
    
         
            -
                                    "up_proj.qzeros",
         
     | 
| 
       866 
     | 
    
         
            -
                                    "up_proj.scales",
         
     | 
| 
       867 
     | 
    
         
            -
                                ]
         
     | 
| 
       868 
     | 
    
         
            -
                            elif self.quant_config.get_name() == "modelopt_fp4":
         
     | 
| 
       869 
     | 
    
         
            -
                                suffix_list = [
         
     | 
| 
       870 
     | 
    
         
            -
                                    "down_proj.weight",
         
     | 
| 
       871 
     | 
    
         
            -
                                    "down_proj.weight_scale",
         
     | 
| 
       872 
     | 
    
         
            -
                                    "down_proj.weight_scale_2",
         
     | 
| 
       873 
     | 
    
         
            -
                                    "down_proj.input_scale",
         
     | 
| 
       874 
     | 
    
         
            -
                                    "gate_proj.weight",
         
     | 
| 
       875 
     | 
    
         
            -
                                    "gate_proj.weight_scale",
         
     | 
| 
       876 
     | 
    
         
            -
                                    "gate_proj.weight_scale_2",
         
     | 
| 
       877 
     | 
    
         
            -
                                    "gate_proj.input_scale",
         
     | 
| 
       878 
     | 
    
         
            -
                                    "up_proj.weight",
         
     | 
| 
       879 
     | 
    
         
            -
                                    "up_proj.weight_scale",
         
     | 
| 
       880 
     | 
    
         
            -
                                    "up_proj.weight_scale_2",
         
     | 
| 
       881 
     | 
    
         
            -
                                    "up_proj.input_scale",
         
     | 
| 
       882 
     | 
    
         
            -
                                ]
         
     | 
| 
       883 
     | 
    
         
            -
                            else:
         
     | 
| 
       884 
     | 
    
         
            -
                                raise ValueError(
         
     | 
| 
       885 
     | 
    
         
            -
                                    f"Unsupported shared expert fusion for quantization: {self.quant_config.get_name()}."
         
     | 
| 
       886 
     | 
    
         
            -
                                )
         
     | 
| 
       887 
     | 
    
         
            -
                        else:
         
     | 
| 
       888 
     | 
    
         
            -
                            suffix_list = [
         
     | 
| 
       889 
     | 
    
         
            -
                                "down_proj.weight",
         
     | 
| 
       890 
     | 
    
         
            -
                                "gate_proj.weight",
         
     | 
| 
       891 
     | 
    
         
            -
                                "up_proj.weight",
         
     | 
| 
       892 
     | 
    
         
            -
                            ]
         
     | 
| 
       893 
     | 
    
         
            -
                        names_to_remove = []
         
     | 
| 
       894 
     | 
    
         
            -
             
     | 
| 
       895 
     | 
    
         
            -
                        moe_layers = (
         
     | 
| 
       896 
     | 
    
         
            -
                            range(
         
     | 
| 
       897 
     | 
    
         
            -
                                self.config.first_k_dense_replace,
         
     | 
| 
       898 
     | 
    
         
            -
                                self.config.num_hidden_layers,
         
     | 
| 
       899 
     | 
    
         
            -
                                self.config.moe_layer_freq,
         
     | 
| 
       900 
     | 
    
         
            -
                            )
         
     | 
| 
       901 
     | 
    
         
            -
                            if not is_nextn
         
     | 
| 
       902 
     | 
    
         
            -
                            else [nextn_layer_id]
         
     | 
| 
       903 
     | 
    
         
            -
                        )
         
     | 
| 
       904 
     | 
    
         
            -
             
     | 
| 
       905 
     | 
    
         
            -
                        for moe_layer in moe_layers:
         
     | 
| 
       906 
     | 
    
         
            -
                            for suffix in suffix_list:
         
     | 
| 
       907 
     | 
    
         
            -
                                shared_expert_weight_name = (
         
     | 
| 
       908 
     | 
    
         
            -
                                    f"model.layers.{moe_layer}.mlp.shared_experts.{suffix}"
         
     | 
| 
       909 
     | 
    
         
            -
                                )
         
     | 
| 
       910 
     | 
    
         
            -
                                # online fp8 quantization does not load weight_scale
         
     | 
| 
       911 
     | 
    
         
            -
                                if shared_expert_weight_name not in weights_dict:
         
     | 
| 
       912 
     | 
    
         
            -
                                    continue
         
     | 
| 
       913 
     | 
    
         
            -
                                weights_list.append(
         
     | 
| 
       914 
     | 
    
         
            -
                                    (
         
     | 
| 
       915 
     | 
    
         
            -
                                        f"model.layers.{moe_layer}."
         
     | 
| 
       916 
     | 
    
         
            -
                                        f"mlp.experts."
         
     | 
| 
       917 
     | 
    
         
            -
                                        f"{self.config.n_routed_experts + 0}"
         
     | 
| 
       918 
     | 
    
         
            -
                                        f".{suffix}",
         
     | 
| 
       919 
     | 
    
         
            -
                                        weights_dict[shared_expert_weight_name],
         
     | 
| 
       920 
     | 
    
         
            -
                                    )
         
     | 
| 
       921 
     | 
    
         
            -
                                )
         
     | 
| 
       922 
     | 
    
         
            -
                                names_to_remove += [shared_expert_weight_name]
         
     | 
| 
       923 
     | 
    
         
            -
                        weights = [w for w in weights_list if w[0] not in names_to_remove]
         
     | 
| 
       924 
885 
     | 
    
         | 
| 
       925 
     | 
    
         
            -
                    # Params for weights, fp8 weight scales, fp8 activation scales
         
     | 
| 
       926 
     | 
    
         
            -
                    # (param_name, weight_name, expert_id, shard_id)
         
     | 
| 
       927 
886 
     | 
    
         
             
                    expert_params_mapping = FusedMoE.make_expert_params_mapping(
         
     | 
| 
       928 
887 
     | 
    
         
             
                        ckpt_gate_proj_name="gate_proj",
         
     | 
| 
       929 
888 
     | 
    
         
             
                        ckpt_down_proj_name="down_proj",
         
     | 
| 
       930 
889 
     | 
    
         
             
                        ckpt_up_proj_name="up_proj",
         
     | 
| 
       931 
     | 
    
         
            -
                        num_experts=self.config.n_routed_experts 
     | 
| 
      
 890 
     | 
    
         
            +
                        num_experts=self.config.n_routed_experts,
         
     | 
| 
       932 
891 
     | 
    
         
             
                    )
         
     | 
| 
       933 
892 
     | 
    
         | 
| 
       934 
     | 
    
         
            -
                    # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
         
     | 
| 
       935 
     | 
    
         
            -
                    fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
         
     | 
| 
       936 
     | 
    
         
            -
                        self.config.q_lora_rank is not None
         
     | 
| 
       937 
     | 
    
         
            -
                    )
         
     | 
| 
       938 
     | 
    
         
            -
                    cached_a_proj = {} if fuse_qkv_a_proj else None
         
     | 
| 
       939 
     | 
    
         
            -
             
     | 
| 
       940 
893 
     | 
    
         
             
                    if is_nextn:
         
     | 
| 
       941 
894 
     | 
    
         
             
                        nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
         
     | 
| 
       942 
895 
     | 
    
         
             
                        nextn_spec_weight_names = [
         
     | 
| 
         @@ -992,22 +945,36 @@ class Glm4MoeForCausalLM(DeepseekV2ForCausalLM): 
     | 
|
| 
       992 
945 
     | 
    
         
             
                            # name will be updated to mlp.experts[0].gate_up_proj, which
         
     | 
| 
       993 
946 
     | 
    
         
             
                            # will then be updated below in expert_params_mapping
         
     | 
| 
       994 
947 
     | 
    
         
             
                            # for mlp.experts[0].gate_gate_up_proj, which breaks load.
         
     | 
| 
       995 
     | 
    
         
            -
                            if  
     | 
| 
      
 948 
     | 
    
         
            +
                            if "mlp.experts" in name:
         
     | 
| 
       996 
949 
     | 
    
         
             
                                continue
         
     | 
| 
       997 
950 
     | 
    
         
             
                            name = name.replace(weight_name, param_name)
         
     | 
| 
       998 
951 
     | 
    
         
             
                            # Skip loading extra bias for GPTQ models.
         
     | 
| 
       999 
952 
     | 
    
         
             
                            if name.endswith(".bias") and name not in params_dict:
         
     | 
| 
       1000 
953 
     | 
    
         
             
                                continue
         
     | 
| 
      
 954 
     | 
    
         
            +
                            if name not in params_dict:
         
     | 
| 
      
 955 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 956 
     | 
    
         
            +
             
     | 
| 
       1001 
957 
     | 
    
         
             
                            param = params_dict[name]
         
     | 
| 
       1002 
958 
     | 
    
         
             
                            weight_loader = param.weight_loader
         
     | 
| 
       1003 
959 
     | 
    
         
             
                            weight_loader(param, loaded_weight, shard_id)
         
     | 
| 
       1004 
960 
     | 
    
         
             
                            break
         
     | 
| 
       1005 
961 
     | 
    
         
             
                        else:
         
     | 
| 
      
 962 
     | 
    
         
            +
                            # Track if this is an expert weight to enable early skipping
         
     | 
| 
      
 963 
     | 
    
         
            +
                            is_expert_weight = False
         
     | 
| 
      
 964 
     | 
    
         
            +
             
     | 
| 
       1006 
965 
     | 
    
         
             
                            for mapping in expert_params_mapping:
         
     | 
| 
       1007 
966 
     | 
    
         
             
                                param_name, weight_name, expert_id, shard_id = mapping
         
     | 
| 
       1008 
967 
     | 
    
         
             
                                if weight_name not in name:
         
     | 
| 
       1009 
968 
     | 
    
         
             
                                    continue
         
     | 
| 
      
 969 
     | 
    
         
            +
             
     | 
| 
      
 970 
     | 
    
         
            +
                                # Mark as expert weight regardless of whether we can process it
         
     | 
| 
      
 971 
     | 
    
         
            +
                                is_expert_weight = True
         
     | 
| 
      
 972 
     | 
    
         
            +
             
     | 
| 
       1010 
973 
     | 
    
         
             
                                name = name.replace(weight_name, param_name)
         
     | 
| 
      
 974 
     | 
    
         
            +
                                if name not in params_dict:
         
     | 
| 
      
 975 
     | 
    
         
            +
                                    # Expert weight not on this rank, will be skipped below
         
     | 
| 
      
 976 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 977 
     | 
    
         
            +
             
     | 
| 
       1011 
978 
     | 
    
         
             
                                param = params_dict[name]
         
     | 
| 
       1012 
979 
     | 
    
         
             
                                weight_loader = param.weight_loader
         
     | 
| 
       1013 
980 
     | 
    
         
             
                                weight_loader(
         
     | 
| 
         @@ -1019,65 +986,43 @@ class Glm4MoeForCausalLM(DeepseekV2ForCausalLM): 
     | 
|
| 
       1019 
986 
     | 
    
         
             
                                )
         
     | 
| 
       1020 
987 
     | 
    
         
             
                                break
         
     | 
| 
       1021 
988 
     | 
    
         
             
                            else:
         
     | 
| 
      
 989 
     | 
    
         
            +
                                if is_expert_weight:
         
     | 
| 
      
 990 
     | 
    
         
            +
                                    # This is an expert weight but not mapped to this rank, skip all remaining processing
         
     | 
| 
      
 991 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 992 
     | 
    
         
            +
             
     | 
| 
       1022 
993 
     | 
    
         
             
                                # Skip loading extra bias for GPTQ models.
         
     | 
| 
       1023 
994 
     | 
    
         
             
                                if name.endswith(".bias") and name not in params_dict:
         
     | 
| 
       1024 
995 
     | 
    
         
             
                                    continue
         
     | 
| 
       1025 
     | 
    
         
            -
                                if  
     | 
| 
       1026 
     | 
    
         
            -
                                     
     | 
| 
       1027 
     | 
    
         
            -
                                ):
         
     | 
| 
       1028 
     | 
    
         
            -
                                    cached_a_proj[name] = loaded_weight
         
     | 
| 
       1029 
     | 
    
         
            -
                                    q_a_proj_name = (
         
     | 
| 
       1030 
     | 
    
         
            -
                                        name
         
     | 
| 
       1031 
     | 
    
         
            -
                                        if "q_a_proj" in name
         
     | 
| 
       1032 
     | 
    
         
            -
                                        else name.replace("kv_a_proj_with_mqa", "q_a_proj")
         
     | 
| 
       1033 
     | 
    
         
            -
                                    )
         
     | 
| 
       1034 
     | 
    
         
            -
                                    kv_a_proj_name = (
         
     | 
| 
       1035 
     | 
    
         
            -
                                        name
         
     | 
| 
       1036 
     | 
    
         
            -
                                        if "kv_a_proj_with_mqa" in name
         
     | 
| 
       1037 
     | 
    
         
            -
                                        else name.replace("q_a_proj", "kv_a_proj_with_mqa")
         
     | 
| 
       1038 
     | 
    
         
            -
                                    )
         
     | 
| 
      
 996 
     | 
    
         
            +
                                if name not in params_dict:
         
     | 
| 
      
 997 
     | 
    
         
            +
                                    continue
         
     | 
| 
       1039 
998 
     | 
    
         | 
| 
       1040 
     | 
    
         
            -
             
     | 
| 
       1041 
     | 
    
         
            -
                                    if (
         
     | 
| 
       1042 
     | 
    
         
            -
                                        q_a_proj_name in cached_a_proj
         
     | 
| 
       1043 
     | 
    
         
            -
                                        and kv_a_proj_name in cached_a_proj
         
     | 
| 
       1044 
     | 
    
         
            -
                                    ):
         
     | 
| 
       1045 
     | 
    
         
            -
                                        q_a_proj_weight = cached_a_proj[q_a_proj_name]
         
     | 
| 
       1046 
     | 
    
         
            -
                                        kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
         
     | 
| 
       1047 
     | 
    
         
            -
                                        fused_weight = torch.cat(
         
     | 
| 
       1048 
     | 
    
         
            -
                                            [q_a_proj_weight, kv_a_proj_weight], dim=0
         
     | 
| 
       1049 
     | 
    
         
            -
                                        )
         
     | 
| 
       1050 
     | 
    
         
            -
                                        param_name = (
         
     | 
| 
       1051 
     | 
    
         
            -
                                            name.replace("q_a_proj", "fused_qkv_a_proj_with_mqa")
         
     | 
| 
       1052 
     | 
    
         
            -
                                            if "q_a_proj" in name
         
     | 
| 
       1053 
     | 
    
         
            -
                                            else name.replace(
         
     | 
| 
       1054 
     | 
    
         
            -
                                                "kv_a_proj_with_mqa", "fused_qkv_a_proj_with_mqa"
         
     | 
| 
       1055 
     | 
    
         
            -
                                            )
         
     | 
| 
       1056 
     | 
    
         
            -
                                        )
         
     | 
| 
       1057 
     | 
    
         
            -
                                        param = params_dict[param_name]
         
     | 
| 
       1058 
     | 
    
         
            -
             
     | 
| 
       1059 
     | 
    
         
            -
                                        weight_loader = getattr(
         
     | 
| 
       1060 
     | 
    
         
            -
                                            param, "weight_loader", default_weight_loader
         
     | 
| 
       1061 
     | 
    
         
            -
                                        )
         
     | 
| 
       1062 
     | 
    
         
            -
                                        weight_loader(param, fused_weight)
         
     | 
| 
       1063 
     | 
    
         
            -
                                        cached_a_proj.pop(q_a_proj_name)
         
     | 
| 
       1064 
     | 
    
         
            -
                                        cached_a_proj.pop(kv_a_proj_name)
         
     | 
| 
       1065 
     | 
    
         
            -
                                else:
         
     | 
| 
       1066 
     | 
    
         
            -
                                    if (
         
     | 
| 
       1067 
     | 
    
         
            -
                                        "k_scale" in name or "v_scale" in name
         
     | 
| 
       1068 
     | 
    
         
            -
                                    ) and name not in params_dict:
         
     | 
| 
       1069 
     | 
    
         
            -
                                        # modelopt attn kv scale is named differently
         
     | 
| 
       1070 
     | 
    
         
            -
                                        if any(scale in name for scale in ["k_scale", "v_scale"]):
         
     | 
| 
       1071 
     | 
    
         
            -
                                            name = name.replace("_proj", "attn_mqa")
         
     | 
| 
       1072 
     | 
    
         
            -
                                        else:
         
     | 
| 
       1073 
     | 
    
         
            -
                                            logger.warning(
         
     | 
| 
       1074 
     | 
    
         
            -
                                                f"Unknown scale found in checkpoint: {name}"
         
     | 
| 
       1075 
     | 
    
         
            -
                                            )
         
     | 
| 
      
 999 
     | 
    
         
            +
                                if name in params_dict.keys():
         
     | 
| 
       1076 
1000 
     | 
    
         
             
                                    param = params_dict[name]
         
     | 
| 
       1077 
1001 
     | 
    
         
             
                                    weight_loader = getattr(
         
     | 
| 
       1078 
1002 
     | 
    
         
             
                                        param, "weight_loader", default_weight_loader
         
     | 
| 
       1079 
1003 
     | 
    
         
             
                                    )
         
     | 
| 
       1080 
1004 
     | 
    
         
             
                                    weight_loader(param, loaded_weight)
         
     | 
| 
      
 1005 
     | 
    
         
            +
                                else:
         
     | 
| 
      
 1006 
     | 
    
         
            +
                                    logger.warning(f"Parameter {name} not found in params_dict")
         
     | 
| 
      
 1007 
     | 
    
         
            +
             
     | 
| 
      
 1008 
     | 
    
         
            +
                def get_embed_and_head(self):
         
     | 
| 
      
 1009 
     | 
    
         
            +
                    return self.model.embed_tokens.weight, self.lm_head.weight
         
     | 
| 
      
 1010 
     | 
    
         
            +
             
     | 
| 
      
 1011 
     | 
    
         
            +
                def set_embed_and_head(self, embed, head):
         
     | 
| 
      
 1012 
     | 
    
         
            +
                    del self.model.embed_tokens.weight
         
     | 
| 
      
 1013 
     | 
    
         
            +
                    del self.lm_head.weight
         
     | 
| 
      
 1014 
     | 
    
         
            +
                    self.model.embed_tokens.weight = embed
         
     | 
| 
      
 1015 
     | 
    
         
            +
                    self.lm_head.weight = head
         
     | 
| 
      
 1016 
     | 
    
         
            +
                    torch.cuda.empty_cache()
         
     | 
| 
      
 1017 
     | 
    
         
            +
                    torch.cuda.synchronize()
         
     | 
| 
      
 1018 
     | 
    
         
            +
             
     | 
| 
      
 1019 
     | 
    
         
            +
                @classmethod
         
     | 
| 
      
 1020 
     | 
    
         
            +
                def get_model_config_for_expert_location(cls, config):
         
     | 
| 
      
 1021 
     | 
    
         
            +
                    return ModelConfigForExpertLocation(
         
     | 
| 
      
 1022 
     | 
    
         
            +
                        num_layers=config.num_hidden_layers,
         
     | 
| 
      
 1023 
     | 
    
         
            +
                        num_logical_experts=config.n_routed_experts,
         
     | 
| 
      
 1024 
     | 
    
         
            +
                        num_groups=config.n_group,
         
     | 
| 
      
 1025 
     | 
    
         
            +
                    )
         
     | 
| 
       1081 
1026 
     | 
    
         | 
| 
       1082 
1027 
     | 
    
         | 
| 
       1083 
1028 
     | 
    
         
             
            EntryClass = [Glm4MoeForCausalLM]
         
     |