sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -40,8 +40,9 @@ from sglang.srt.layers.moe import ( 
     | 
|
| 
       40 
40 
     | 
    
         
             
                get_moe_a2a_backend,
         
     | 
| 
       41 
41 
     | 
    
         
             
                should_use_flashinfer_cutlass_moe_fp4_allgather,
         
     | 
| 
       42 
42 
     | 
    
         
             
            )
         
     | 
| 
       43 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       44 
43 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
      
 44 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
      
 45 
     | 
    
         
            +
            from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
         
     | 
| 
       45 
46 
     | 
    
         
             
            from sglang.srt.utils import (
         
     | 
| 
       46 
47 
     | 
    
         
             
                get_bool_env_var,
         
     | 
| 
       47 
48 
     | 
    
         
             
                is_cuda,
         
     | 
| 
         @@ -168,7 +169,7 @@ class LayerScatterModes: 
     | 
|
| 
       168 
169 
     | 
    
         | 
| 
       169 
170 
     | 
    
         | 
| 
       170 
171 
     | 
    
         
             
            def enable_moe_dense_fully_dp():
         
     | 
| 
       171 
     | 
    
         
            -
                return  
     | 
| 
      
 172 
     | 
    
         
            +
                return get_global_server_args().moe_dense_tp_size == 1
         
     | 
| 
       172 
173 
     | 
    
         | 
| 
       173 
174 
     | 
    
         | 
| 
       174 
175 
     | 
    
         
             
            class LayerCommunicator:
         
     | 
| 
         @@ -211,6 +212,10 @@ class LayerCommunicator: 
     | 
|
| 
       211 
212 
     | 
    
         
             
                        )
         
     | 
| 
       212 
213 
     | 
    
         
             
                    )
         
     | 
| 
       213 
214 
     | 
    
         | 
| 
      
 215 
     | 
    
         
            +
                    self._speculative_algo = SpeculativeAlgorithm.from_string(
         
     | 
| 
      
 216 
     | 
    
         
            +
                        get_global_server_args().speculative_algorithm
         
     | 
| 
      
 217 
     | 
    
         
            +
                    )
         
     | 
| 
      
 218 
     | 
    
         
            +
             
     | 
| 
       214 
219 
     | 
    
         
             
                def prepare_attn(
         
     | 
| 
       215 
220 
     | 
    
         
             
                    self,
         
     | 
| 
       216 
221 
     | 
    
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 
         @@ -314,11 +319,10 @@ class LayerCommunicator: 
     | 
|
| 
       314 
319 
     | 
    
         
             
                def should_fuse_mlp_allreduce_with_next_layer(
         
     | 
| 
       315 
320 
     | 
    
         
             
                    self, forward_batch: ForwardBatch
         
     | 
| 
       316 
321 
     | 
    
         
             
                ) -> bool:
         
     | 
| 
       317 
     | 
    
         
            -
                    speculative_algo = global_server_args_dict.get("speculative_algorithm", None)
         
     | 
| 
       318 
322 
     | 
    
         
             
                    if (
         
     | 
| 
       319 
323 
     | 
    
         
             
                        is_dp_attention_enabled()
         
     | 
| 
       320 
     | 
    
         
            -
                        and  
     | 
| 
       321 
     | 
    
         
            -
                        and  
     | 
| 
      
 324 
     | 
    
         
            +
                        and self._speculative_algo is not None
         
     | 
| 
      
 325 
     | 
    
         
            +
                        and self._speculative_algo.is_eagle()
         
     | 
| 
       322 
326 
     | 
    
         
             
                    ):
         
     | 
| 
       323 
327 
     | 
    
         
             
                        return False
         
     | 
| 
       324 
328 
     | 
    
         | 
| 
         @@ -333,7 +337,8 @@ class LayerCommunicator: 
     | 
|
| 
       333 
337 
     | 
    
         
             
                    static_conditions_met = (
         
     | 
| 
       334 
338 
     | 
    
         
             
                        (not self.is_last_layer)
         
     | 
| 
       335 
339 
     | 
    
         
             
                        and (self._context.tp_size > 1)
         
     | 
| 
       336 
     | 
    
         
            -
                        and  
     | 
| 
      
 340 
     | 
    
         
            +
                        and not is_dp_attention_enabled()
         
     | 
| 
      
 341 
     | 
    
         
            +
                        and get_global_server_args().enable_flashinfer_allreduce_fusion
         
     | 
| 
       337 
342 
     | 
    
         
             
                        and _is_flashinfer_available
         
     | 
| 
       338 
343 
     | 
    
         
             
                    )
         
     | 
| 
       339 
344 
     | 
    
         | 
| 
         @@ -531,7 +536,7 @@ class CommunicateWithAllReduceAndLayerNormFn: 
     | 
|
| 
       531 
536 
     | 
    
         
             
                            (_is_sm100_supported or _is_sm90_supported)
         
     | 
| 
       532 
537 
     | 
    
         
             
                            and _is_flashinfer_available
         
     | 
| 
       533 
538 
     | 
    
         
             
                            and hasattr(layernorm, "forward_with_allreduce_fusion")
         
     | 
| 
       534 
     | 
    
         
            -
                            and  
     | 
| 
      
 539 
     | 
    
         
            +
                            and get_global_server_args().enable_flashinfer_allreduce_fusion
         
     | 
| 
       535 
540 
     | 
    
         
             
                            and hidden_states.shape[0] <= 4096
         
     | 
| 
       536 
541 
     | 
    
         
             
                        ):
         
     | 
| 
       537 
542 
     | 
    
         
             
                            hidden_states, residual = layernorm.forward_with_allreduce_fusion(
         
     | 
| 
         @@ -7,11 +7,10 @@ from typing import Dict, List, Tuple 
     | 
|
| 
       7 
7 
     | 
    
         
             
            import torch
         
     | 
| 
       8 
8 
     | 
    
         
             
            from tqdm import tqdm
         
     | 
| 
       9 
9 
     | 
    
         | 
| 
       10 
     | 
    
         
            -
            from sglang.srt. 
     | 
| 
       11 
     | 
    
         
            -
             
     | 
| 
       12 
     | 
    
         
            -
            )
         
     | 
| 
      
 10 
     | 
    
         
            +
            from sglang.srt.environ import envs
         
     | 
| 
      
 11 
     | 
    
         
            +
            from sglang.srt.layers.deep_gemm_wrapper.configurer import ENABLE_JIT_DEEPGEMM
         
     | 
| 
       13 
12 
     | 
    
         
             
            from sglang.srt.server_args import ServerArgs
         
     | 
| 
       14 
     | 
    
         
            -
            from sglang.srt.utils import ceil_div, get_bool_env_var 
     | 
| 
      
 13 
     | 
    
         
            +
            from sglang.srt.utils import ceil_div, get_bool_env_var
         
     | 
| 
       15 
14 
     | 
    
         | 
| 
       16 
15 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       17 
16 
     | 
    
         | 
| 
         @@ -20,17 +19,14 @@ if ENABLE_JIT_DEEPGEMM: 
     | 
|
| 
       20 
19 
     | 
    
         | 
| 
       21 
20 
     | 
    
         | 
| 
       22 
21 
     | 
    
         
             
            _BUILTIN_M_LIST = list(range(1, 1024 * 16 + 1))
         
     | 
| 
       23 
     | 
    
         
            -
            _ENABLE_JIT_DEEPGEMM_PRECOMPILE =  
     | 
| 
       24 
     | 
    
         
            -
                "SGL_JIT_DEEPGEMM_PRECOMPILE", "true"
         
     | 
| 
       25 
     | 
    
         
            -
            )
         
     | 
| 
      
 22 
     | 
    
         
            +
            _ENABLE_JIT_DEEPGEMM_PRECOMPILE = envs.SGLANG_JIT_DEEPGEMM_PRECOMPILE.get()
         
     | 
| 
       26 
23 
     | 
    
         
             
            _DO_COMPILE_ALL = True
         
     | 
| 
       27 
24 
     | 
    
         
             
            _IS_FIRST_RANK_ON_NODE = get_bool_env_var("SGL_IS_FIRST_RANK_ON_NODE", "true")
         
     | 
| 
       28 
     | 
    
         
            -
            _COMPILE_WORKERS = get_int_env_var("SGL_JIT_DEEPGEMM_COMPILE_WORKERS", 4)
         
     | 
| 
       29 
25 
     | 
    
         
             
            _IN_PRECOMPILE_STAGE = get_bool_env_var("SGL_IN_DEEPGEMM_PRECOMPILE_STAGE", "false")
         
     | 
| 
       30 
26 
     | 
    
         | 
| 
       31 
27 
     | 
    
         
             
            # Force redirect deep_gemm cache_dir
         
     | 
| 
       32 
28 
     | 
    
         
             
            os.environ["DG_JIT_CACHE_DIR"] = os.getenv(
         
     | 
| 
       33 
     | 
    
         
            -
                " 
     | 
| 
      
 29 
     | 
    
         
            +
                "SGLANG_DG_CACHE_DIR", os.path.join(os.path.expanduser("~"), ".cache", "deep_gemm")
         
     | 
| 
       34 
30 
     | 
    
         
             
            )
         
     | 
| 
       35 
31 
     | 
    
         | 
| 
       36 
32 
     | 
    
         
             
            # Refer to https://github.com/deepseek-ai/DeepGEMM/commit/d75b218b7b8f4a5dd5406ac87905039ead3ae42f
         
     | 
| 
         @@ -1,6 +1,7 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            import logging
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
     | 
    
         
            -
            from sglang.srt. 
     | 
| 
      
 3 
     | 
    
         
            +
            from sglang.srt.environ import envs
         
     | 
| 
      
 4 
     | 
    
         
            +
            from sglang.srt.utils import get_device_sm, is_blackwell
         
     | 
| 
       4 
5 
     | 
    
         | 
| 
       5 
6 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       6 
7 
     | 
    
         | 
| 
         @@ -11,11 +12,11 @@ def _compute_enable_deep_gemm(): 
     | 
|
| 
       11 
12 
     | 
    
         
             
                    return False
         
     | 
| 
       12 
13 
     | 
    
         | 
| 
       13 
14 
     | 
    
         
             
                try:
         
     | 
| 
       14 
     | 
    
         
            -
                    import deep_gemm
         
     | 
| 
      
 15 
     | 
    
         
            +
                    import deep_gemm  # noqa: F401
         
     | 
| 
       15 
16 
     | 
    
         
             
                except ImportError:
         
     | 
| 
       16 
17 
     | 
    
         
             
                    return False
         
     | 
| 
       17 
18 
     | 
    
         | 
| 
       18 
     | 
    
         
            -
                return  
     | 
| 
      
 19 
     | 
    
         
            +
                return envs.SGLANG_ENABLE_JIT_DEEPGEMM.get()
         
     | 
| 
       19 
20 
     | 
    
         | 
| 
       20 
21 
     | 
    
         | 
| 
       21 
22 
     | 
    
         
             
            ENABLE_JIT_DEEPGEMM = _compute_enable_deep_gemm()
         
     | 
| 
         @@ -4,8 +4,8 @@ from typing import Tuple 
     | 
|
| 
       4 
4 
     | 
    
         | 
| 
       5 
5 
     | 
    
         
             
            import torch
         
     | 
| 
       6 
6 
     | 
    
         | 
| 
       7 
     | 
    
         
            -
            from sglang.srt.layers. 
     | 
| 
       8 
     | 
    
         
            -
            from sglang.srt.layers. 
     | 
| 
      
 7 
     | 
    
         
            +
            from sglang.srt.layers.deep_gemm_wrapper import compile_utils
         
     | 
| 
      
 8 
     | 
    
         
            +
            from sglang.srt.layers.deep_gemm_wrapper.configurer import (  # noqa: F401
         
     | 
| 
       9 
9 
     | 
    
         
             
                DEEPGEMM_BLACKWELL,
         
     | 
| 
       10 
10 
     | 
    
         
             
                DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
       11 
11 
     | 
    
         
             
                ENABLE_JIT_DEEPGEMM,
         
     | 
| 
         @@ -17,7 +17,7 @@ logger = logging.getLogger(__name__) 
     | 
|
| 
       17 
17 
     | 
    
         | 
| 
       18 
18 
     | 
    
         
             
            if ENABLE_JIT_DEEPGEMM:
         
     | 
| 
       19 
19 
     | 
    
         
             
                import deep_gemm
         
     | 
| 
       20 
     | 
    
         
            -
                from deep_gemm.utils.layout import get_mn_major_tma_aligned_tensor
         
     | 
| 
      
 20 
     | 
    
         
            +
                from deep_gemm.utils.layout import get_mn_major_tma_aligned_tensor  # noqa: F401
         
     | 
| 
       21 
21 
     | 
    
         | 
| 
       22 
22 
     | 
    
         
             
            _SANITY_CHECK = get_bool_env_var("SGLANG_DEEPGEMM_SANITY_CHECK")
         
     | 
| 
       23 
23 
     | 
    
         | 
| 
         @@ -87,6 +87,7 @@ class _DpGatheredBufferWrapper: 
     | 
|
| 
       87 
87 
     | 
    
         
             
                _global_dp_buffer_len: int
         
     | 
| 
       88 
88 
     | 
    
         
             
                _local_dp_buffer_len: int
         
     | 
| 
       89 
89 
     | 
    
         
             
                _global_num_tokens: Optional[List[int]]
         
     | 
| 
      
 90 
     | 
    
         
            +
                _is_extend_in_batch: bool
         
     | 
| 
       90 
91 
     | 
    
         | 
| 
       91 
92 
     | 
    
         
             
                @classmethod
         
     | 
| 
       92 
93 
     | 
    
         
             
                def set_metadata(cls, hidden_size: int, dtype: torch.dtype, device: torch.device):
         
     | 
| 
         @@ -145,6 +146,14 @@ class _DpGatheredBufferWrapper: 
     | 
|
| 
       145 
146 
     | 
    
         
             
                def get_dp_device(cls) -> torch.device:
         
     | 
| 
       146 
147 
     | 
    
         
             
                    return cls._device
         
     | 
| 
       147 
148 
     | 
    
         | 
| 
      
 149 
     | 
    
         
            +
                @classmethod
         
     | 
| 
      
 150 
     | 
    
         
            +
                def set_is_extend_in_batch(cls, is_extend_in_batch: bool):
         
     | 
| 
      
 151 
     | 
    
         
            +
                    cls._is_extend_in_batch = is_extend_in_batch
         
     | 
| 
      
 152 
     | 
    
         
            +
             
     | 
| 
      
 153 
     | 
    
         
            +
                @classmethod
         
     | 
| 
      
 154 
     | 
    
         
            +
                def get_is_extend_in_batch(cls) -> bool:
         
     | 
| 
      
 155 
     | 
    
         
            +
                    return cls._is_extend_in_batch
         
     | 
| 
      
 156 
     | 
    
         
            +
             
     | 
| 
       148 
157 
     | 
    
         | 
| 
       149 
158 
     | 
    
         
             
            def set_dp_buffer_len(
         
     | 
| 
       150 
159 
     | 
    
         
             
                global_dp_buffer_len: int,
         
     | 
| 
         @@ -188,6 +197,14 @@ def get_dp_device() -> torch.device: 
     | 
|
| 
       188 
197 
     | 
    
         
             
                return _DpGatheredBufferWrapper.get_dp_device()
         
     | 
| 
       189 
198 
     | 
    
         | 
| 
       190 
199 
     | 
    
         | 
| 
      
 200 
     | 
    
         
            +
            def set_is_extend_in_batch(is_extend_in_batch: bool):
         
     | 
| 
      
 201 
     | 
    
         
            +
                _DpGatheredBufferWrapper.set_is_extend_in_batch(is_extend_in_batch)
         
     | 
| 
      
 202 
     | 
    
         
            +
             
     | 
| 
      
 203 
     | 
    
         
            +
             
     | 
| 
      
 204 
     | 
    
         
            +
            def get_is_extend_in_batch() -> bool:
         
     | 
| 
      
 205 
     | 
    
         
            +
                return _DpGatheredBufferWrapper.get_is_extend_in_batch()
         
     | 
| 
      
 206 
     | 
    
         
            +
             
     | 
| 
      
 207 
     | 
    
         
            +
             
     | 
| 
       191 
208 
     | 
    
         
             
            def compute_dp_attention_world_info(enable_dp_attention, tp_rank, tp_size, dp_size):
         
     | 
| 
       192 
209 
     | 
    
         
             
                if not enable_dp_attention:
         
     | 
| 
       193 
210 
     | 
    
         
             
                    return tp_rank, tp_size, 0
         
     | 
    
        sglang/srt/layers/layernorm.py
    CHANGED
    
    | 
         @@ -42,13 +42,16 @@ _is_cpu_amx_available = cpu_has_amx_support() 
     | 
|
| 
       42 
42 
     | 
    
         
             
            _is_cpu = is_cpu()
         
     | 
| 
       43 
43 
     | 
    
         
             
            _is_xpu = is_xpu()
         
     | 
| 
       44 
44 
     | 
    
         | 
| 
       45 
     | 
    
         
            -
            if _is_cuda:
         
     | 
| 
       46 
     | 
    
         
            -
                if _is_flashinfer_available:
         
     | 
| 
       47 
     | 
    
         
            -
             
     | 
| 
       48 
     | 
    
         
            -
                else:
         
     | 
| 
       49 
     | 
    
         
            -
             
     | 
| 
       50 
     | 
    
         
            -
             
     | 
| 
       51 
     | 
    
         
            -
             
     | 
| 
      
 45 
     | 
    
         
            +
            if _is_cuda or _is_xpu:
         
     | 
| 
      
 46 
     | 
    
         
            +
                # if _is_flashinfer_available:
         
     | 
| 
      
 47 
     | 
    
         
            +
                #     from flashinfer.norm import fused_add_rmsnorm
         
     | 
| 
      
 48 
     | 
    
         
            +
                # else:
         
     | 
| 
      
 49 
     | 
    
         
            +
                from sgl_kernel import (
         
     | 
| 
      
 50 
     | 
    
         
            +
                    fused_add_rmsnorm,
         
     | 
| 
      
 51 
     | 
    
         
            +
                    gemma_fused_add_rmsnorm,
         
     | 
| 
      
 52 
     | 
    
         
            +
                    gemma_rmsnorm,
         
     | 
| 
      
 53 
     | 
    
         
            +
                    rmsnorm,
         
     | 
| 
      
 54 
     | 
    
         
            +
                )
         
     | 
| 
       52 
55 
     | 
    
         
             
            if _use_aiter:
         
     | 
| 
       53 
56 
     | 
    
         
             
                from aiter import rmsnorm2d_fwd as rms_norm
         
     | 
| 
       54 
57 
     | 
    
         
             
                from aiter import rmsnorm2d_fwd_with_add as fused_add_rms_norm
         
     | 
| 
         @@ -70,9 +73,16 @@ class RMSNorm(CustomOp): 
     | 
|
| 
       70 
73 
     | 
    
         
             
                    hidden_size: int,
         
     | 
| 
       71 
74 
     | 
    
         
             
                    eps: float = 1e-6,
         
     | 
| 
       72 
75 
     | 
    
         
             
                    var_hidden_size: Optional[int] = None,
         
     | 
| 
      
 76 
     | 
    
         
            +
                    cast_x_before_out_mul: bool = False,
         
     | 
| 
      
 77 
     | 
    
         
            +
                    fp32_residual: bool = False,
         
     | 
| 
      
 78 
     | 
    
         
            +
                    weight_dtype: Optional = None,
         
     | 
| 
      
 79 
     | 
    
         
            +
                    override_orig_dtype: Optional = None,
         
     | 
| 
       73 
80 
     | 
    
         
             
                ) -> None:
         
     | 
| 
       74 
81 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       75 
     | 
    
         
            -
                    self. 
     | 
| 
      
 82 
     | 
    
         
            +
                    self.cast_x_before_out_mul = cast_x_before_out_mul
         
     | 
| 
      
 83 
     | 
    
         
            +
                    self.fp32_residual = fp32_residual
         
     | 
| 
      
 84 
     | 
    
         
            +
                    self.override_orig_dtype = override_orig_dtype
         
     | 
| 
      
 85 
     | 
    
         
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size, dtype=weight_dtype))
         
     | 
| 
       76 
86 
     | 
    
         
             
                    self.variance_epsilon = eps
         
     | 
| 
       77 
87 
     | 
    
         
             
                    self.hidden_size = hidden_size
         
     | 
| 
       78 
88 
     | 
    
         
             
                    self.variance_size_override = (
         
     | 
| 
         @@ -162,11 +172,14 @@ class RMSNorm(CustomOp): 
     | 
|
| 
       162 
172 
     | 
    
         
             
                ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
         
     | 
| 
       163 
173 
     | 
    
         
             
                    if not x.is_contiguous():
         
     | 
| 
       164 
174 
     | 
    
         
             
                        x = x.contiguous()
         
     | 
| 
       165 
     | 
    
         
            -
                    orig_dtype = x.dtype
         
     | 
| 
      
 175 
     | 
    
         
            +
                    orig_dtype = self.override_orig_dtype or x.dtype
         
     | 
| 
       166 
176 
     | 
    
         
             
                    x = x.to(torch.float32)
         
     | 
| 
       167 
177 
     | 
    
         
             
                    if residual is not None:
         
     | 
| 
       168 
178 
     | 
    
         
             
                        x = x + residual.to(torch.float32)
         
     | 
| 
       169 
     | 
    
         
            -
                         
     | 
| 
      
 179 
     | 
    
         
            +
                        if self.fp32_residual:
         
     | 
| 
      
 180 
     | 
    
         
            +
                            residual = x.clone()
         
     | 
| 
      
 181 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 182 
     | 
    
         
            +
                            residual = x.to(orig_dtype)
         
     | 
| 
       170 
183 
     | 
    
         | 
| 
       171 
184 
     | 
    
         
             
                    hidden_size = x.shape[-1]
         
     | 
| 
       172 
185 
     | 
    
         
             
                    if hidden_size != self.hidden_size:
         
     | 
| 
         @@ -188,7 +201,12 @@ class RMSNorm(CustomOp): 
     | 
|
| 
       188 
201 
     | 
    
         | 
| 
       189 
202 
     | 
    
         
             
                    variance = x_var.pow(2).mean(dim=-1, keepdim=True)
         
     | 
| 
       190 
203 
     | 
    
         
             
                    x = x * torch.rsqrt(variance + self.variance_epsilon)
         
     | 
| 
       191 
     | 
    
         
            -
             
     | 
| 
      
 204 
     | 
    
         
            +
             
     | 
| 
      
 205 
     | 
    
         
            +
                    if self.cast_x_before_out_mul:
         
     | 
| 
      
 206 
     | 
    
         
            +
                        x = self.weight * x.to(orig_dtype)
         
     | 
| 
      
 207 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 208 
     | 
    
         
            +
                        x = (x * self.weight).to(orig_dtype)
         
     | 
| 
      
 209 
     | 
    
         
            +
             
     | 
| 
       192 
210 
     | 
    
         
             
                    if residual is None:
         
     | 
| 
       193 
211 
     | 
    
         
             
                        return x
         
     | 
| 
       194 
212 
     | 
    
         
             
                    else:
         
     | 
| 
         @@ -211,6 +229,19 @@ class RMSNorm(CustomOp): 
     | 
|
| 
       211 
229 
     | 
    
         
             
                    else:
         
     | 
| 
       212 
230 
     | 
    
         
             
                        return self.forward_native(x, residual)
         
     | 
| 
       213 
231 
     | 
    
         | 
| 
      
 232 
     | 
    
         
            +
                def forward_xpu(
         
     | 
| 
      
 233 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 234 
     | 
    
         
            +
                    x: torch.Tensor,
         
     | 
| 
      
 235 
     | 
    
         
            +
                    residual: Optional[torch.Tensor] = None,
         
     | 
| 
      
 236 
     | 
    
         
            +
                ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
         
     | 
| 
      
 237 
     | 
    
         
            +
                    if self.variance_size_override is not None:
         
     | 
| 
      
 238 
     | 
    
         
            +
                        return self.forward_native(x, residual)
         
     | 
| 
      
 239 
     | 
    
         
            +
                    if residual is not None:
         
     | 
| 
      
 240 
     | 
    
         
            +
                        fused_add_rmsnorm(x, residual, self.weight.data, self.variance_epsilon)
         
     | 
| 
      
 241 
     | 
    
         
            +
                        return x, residual
         
     | 
| 
      
 242 
     | 
    
         
            +
                    out = rmsnorm(x, self.weight.data, self.variance_epsilon)
         
     | 
| 
      
 243 
     | 
    
         
            +
                    return out
         
     | 
| 
      
 244 
     | 
    
         
            +
             
     | 
| 
       214 
245 
     | 
    
         
             
                def forward_with_allreduce_fusion(
         
     | 
| 
       215 
246 
     | 
    
         
             
                    self,
         
     | 
| 
       216 
247 
     | 
    
         
             
                    x: torch.Tensor,
         
     | 
| 
         @@ -258,6 +289,19 @@ class GemmaRMSNorm(CustomOp): 
     | 
|
| 
       258 
289 
     | 
    
         
             
                    if _is_hip:
         
     | 
| 
       259 
290 
     | 
    
         
             
                        self._forward_method = self.forward_native
         
     | 
| 
       260 
291 
     | 
    
         | 
| 
      
 292 
     | 
    
         
            +
                def _forward_impl(
         
     | 
| 
      
 293 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 294 
     | 
    
         
            +
                    x: torch.Tensor,
         
     | 
| 
      
 295 
     | 
    
         
            +
                    residual: Optional[torch.Tensor] = None,
         
     | 
| 
      
 296 
     | 
    
         
            +
                ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
         
     | 
| 
      
 297 
     | 
    
         
            +
                    if residual is not None:
         
     | 
| 
      
 298 
     | 
    
         
            +
                        gemma_fused_add_rmsnorm(
         
     | 
| 
      
 299 
     | 
    
         
            +
                            x, residual, self.weight.data, self.variance_epsilon
         
     | 
| 
      
 300 
     | 
    
         
            +
                        )
         
     | 
| 
      
 301 
     | 
    
         
            +
                        return x, residual
         
     | 
| 
      
 302 
     | 
    
         
            +
                    out = gemma_rmsnorm(x, self.weight.data, self.variance_epsilon)
         
     | 
| 
      
 303 
     | 
    
         
            +
                    return out
         
     | 
| 
      
 304 
     | 
    
         
            +
             
     | 
| 
       261 
305 
     | 
    
         
             
                def forward_native(
         
     | 
| 
       262 
306 
     | 
    
         
             
                    self,
         
     | 
| 
       263 
307 
     | 
    
         
             
                    x: torch.Tensor,
         
     | 
| 
         @@ -280,13 +324,7 @@ class GemmaRMSNorm(CustomOp): 
     | 
|
| 
       280 
324 
     | 
    
         
             
                    x: torch.Tensor,
         
     | 
| 
       281 
325 
     | 
    
         
             
                    residual: Optional[torch.Tensor] = None,
         
     | 
| 
       282 
326 
     | 
    
         
             
                ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
         
     | 
| 
       283 
     | 
    
         
            -
                     
     | 
| 
       284 
     | 
    
         
            -
                        gemma_fused_add_rmsnorm(
         
     | 
| 
       285 
     | 
    
         
            -
                            x, residual, self.weight.data, self.variance_epsilon
         
     | 
| 
       286 
     | 
    
         
            -
                        )
         
     | 
| 
       287 
     | 
    
         
            -
                        return x, residual
         
     | 
| 
       288 
     | 
    
         
            -
                    out = gemma_rmsnorm(x, self.weight.data, self.variance_epsilon)
         
     | 
| 
       289 
     | 
    
         
            -
                    return out
         
     | 
| 
      
 327 
     | 
    
         
            +
                    return self._forward_impl(x, residual)
         
     | 
| 
       290 
328 
     | 
    
         | 
| 
       291 
329 
     | 
    
         
             
                def forward_npu(
         
     | 
| 
       292 
330 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -300,6 +338,13 @@ class GemmaRMSNorm(CustomOp): 
     | 
|
| 
       300 
338 
     | 
    
         
             
                    x, _ = torch_npu.npu_gemma_rms_norm(x, self.weight, self.variance_epsilon)
         
     | 
| 
       301 
339 
     | 
    
         
             
                    return x if residual is None else (x, residual)
         
     | 
| 
       302 
340 
     | 
    
         | 
| 
      
 341 
     | 
    
         
            +
                def forward_xpu(
         
     | 
| 
      
 342 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 343 
     | 
    
         
            +
                    x: torch.Tensor,
         
     | 
| 
      
 344 
     | 
    
         
            +
                    residual: Optional[torch.Tensor] = None,
         
     | 
| 
      
 345 
     | 
    
         
            +
                ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
         
     | 
| 
      
 346 
     | 
    
         
            +
                    return self._forward_impl(x, residual)
         
     | 
| 
      
 347 
     | 
    
         
            +
             
     | 
| 
       303 
348 
     | 
    
         | 
| 
       304 
349 
     | 
    
         
             
            class Gemma3RMSNorm(CustomOp):
         
     | 
| 
       305 
350 
     | 
    
         
             
                def __init__(self, dim: int, eps: float = 1e-6):
         
     | 
| 
         @@ -335,4 +380,4 @@ if not ( 
     | 
|
| 
       335 
380 
     | 
    
         
             
                logger.info(
         
     | 
| 
       336 
381 
     | 
    
         
             
                    "sgl-kernel layernorm implementation is not available on current platform. Fallback to other kernel libraries."
         
     | 
| 
       337 
382 
     | 
    
         
             
                )
         
     | 
| 
       338 
     | 
    
         
            -
                from vllm.model_executor.layers.layernorm import GemmaRMSNorm, RMSNorm
         
     | 
| 
      
 383 
     | 
    
         
            +
                from vllm.model_executor.layers.layernorm import GemmaRMSNorm, RMSNorm  # noqa: F401
         
     | 
    
        sglang/srt/layers/linear.py
    CHANGED
    
    | 
         @@ -32,7 +32,7 @@ from sglang.srt.layers.parameter import ( 
     | 
|
| 
       32 
32 
     | 
    
         
             
            )
         
     | 
| 
       33 
33 
     | 
    
         
             
            from sglang.srt.layers.quantization.unquant import UnquantizedLinearMethod
         
     | 
| 
       34 
34 
     | 
    
         
             
            from sglang.srt.layers.utils import pad_or_narrow_weight
         
     | 
| 
       35 
     | 
    
         
            -
            from sglang.srt.utils import is_cpu, is_npu, set_weight_attrs
         
     | 
| 
      
 35 
     | 
    
         
            +
            from sglang.srt.utils import get_bool_env_var, is_cpu, is_hip, is_npu, set_weight_attrs
         
     | 
| 
       36 
36 
     | 
    
         | 
| 
       37 
37 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       38 
38 
     | 
    
         
             
                from sglang.srt.layers.quantization.base_config import (
         
     | 
| 
         @@ -40,12 +40,18 @@ if TYPE_CHECKING: 
     | 
|
| 
       40 
40 
     | 
    
         
             
                    QuantizeMethodBase,
         
     | 
| 
       41 
41 
     | 
    
         
             
                )
         
     | 
| 
       42 
42 
     | 
    
         | 
| 
      
 43 
     | 
    
         
            +
            _is_hip = is_hip()
         
     | 
| 
      
 44 
     | 
    
         
            +
            _disable_hip_linear_quant = _is_hip and get_bool_env_var(
         
     | 
| 
      
 45 
     | 
    
         
            +
                "SGLANG_ROCM_DISABLE_LINEARQUANT"
         
     | 
| 
      
 46 
     | 
    
         
            +
            )
         
     | 
| 
      
 47 
     | 
    
         
            +
             
     | 
| 
       43 
48 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       44 
49 
     | 
    
         | 
| 
       45 
50 
     | 
    
         
             
            WEIGHT_LOADER_V2_SUPPORTED = [
         
     | 
| 
       46 
51 
     | 
    
         
             
                "CompressedTensorsLinearMethod",
         
     | 
| 
       47 
52 
     | 
    
         
             
                "AWQMarlinLinearMethod",
         
     | 
| 
       48 
53 
     | 
    
         
             
                "AWQLinearMethod",
         
     | 
| 
      
 54 
     | 
    
         
            +
                "AWQLinearAscendMethod",
         
     | 
| 
       49 
55 
     | 
    
         
             
                "GPTQMarlinLinearMethod",
         
     | 
| 
       50 
56 
     | 
    
         
             
                "Fp8LinearMethod",
         
     | 
| 
       51 
57 
     | 
    
         
             
                "BlockInt8LinearMethod",
         
     | 
| 
         @@ -824,6 +830,7 @@ class QKVParallelLinear(ColumnParallelLinear): 
     | 
|
| 
       824 
830 
     | 
    
         
             
                        self.num_kv_heads * self.head_size * tp_size,  # v_proj
         
     | 
| 
       825 
831 
     | 
    
         
             
                    ]
         
     | 
| 
       826 
832 
     | 
    
         
             
                    self.use_presharded_weights = load_presharded_attn
         
     | 
| 
      
 833 
     | 
    
         
            +
                    quant_config = None if _disable_hip_linear_quant else quant_config
         
     | 
| 
       827 
834 
     | 
    
         | 
| 
       828 
835 
     | 
    
         
             
                    super().__init__(
         
     | 
| 
       829 
836 
     | 
    
         
             
                        input_size=input_size,
         
     | 
| 
         @@ -1225,6 +1232,7 @@ class RowParallelLinear(LinearBase): 
     | 
|
| 
       1225 
1232 
     | 
    
         
             
                    tp_size: Optional[int] = None,
         
     | 
| 
       1226 
1233 
     | 
    
         
             
                    use_presharded_weights: bool = False,
         
     | 
| 
       1227 
1234 
     | 
    
         
             
                ):
         
     | 
| 
      
 1235 
     | 
    
         
            +
                    quant_config = None if _disable_hip_linear_quant else quant_config
         
     | 
| 
       1228 
1236 
     | 
    
         
             
                    super().__init__(
         
     | 
| 
       1229 
1237 
     | 
    
         
             
                        input_size, output_size, skip_bias_add, params_dtype, quant_config, prefix
         
     | 
| 
       1230 
1238 
     | 
    
         
             
                    )
         
     | 
| 
         @@ -38,17 +38,15 @@ from sglang.srt.layers.dp_attention import ( 
     | 
|
| 
       38 
38 
     | 
    
         
             
                get_dp_device,
         
     | 
| 
       39 
39 
     | 
    
         
             
                get_dp_dtype,
         
     | 
| 
       40 
40 
     | 
    
         
             
                get_dp_hidden_size,
         
     | 
| 
       41 
     | 
    
         
            -
                get_global_dp_buffer,
         
     | 
| 
       42 
41 
     | 
    
         
             
                get_local_attention_dp_size,
         
     | 
| 
       43 
     | 
    
         
            -
                set_dp_buffer_len,
         
     | 
| 
       44 
42 
     | 
    
         
             
            )
         
     | 
| 
       45 
43 
     | 
    
         
             
            from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
         
     | 
| 
       46 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       47 
44 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import (
         
     | 
| 
       48 
45 
     | 
    
         
             
                CaptureHiddenMode,
         
     | 
| 
       49 
46 
     | 
    
         
             
                ForwardBatch,
         
     | 
| 
       50 
47 
     | 
    
         
             
                ForwardMode,
         
     | 
| 
       51 
48 
     | 
    
         
             
            )
         
     | 
| 
      
 49 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
       52 
50 
     | 
    
         
             
            from sglang.srt.utils import dump_to_file, is_npu, use_intel_amx_backend
         
     | 
| 
       53 
51 
     | 
    
         | 
| 
       54 
52 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
         @@ -60,13 +58,14 @@ _is_npu = is_npu() 
     | 
|
| 
       60 
58 
     | 
    
         
             
            class LogitsProcessorOutput:
         
     | 
| 
       61 
59 
     | 
    
         
             
                ## Part 1: This part will be assigned in python/sglang/srt/layers/logits_processor.py::LogitsProcessor
         
     | 
| 
       62 
60 
     | 
    
         
             
                # The logits of the next tokens.       shape: [#seq, vocab_size]
         
     | 
| 
       63 
     | 
    
         
            -
                 
     | 
| 
      
 61 
     | 
    
         
            +
                # Can be None for certain prefill-only requests (e.g., multi-item scoring) that don't need next token generation
         
     | 
| 
      
 62 
     | 
    
         
            +
                next_token_logits: Optional[torch.Tensor]
         
     | 
| 
       64 
63 
     | 
    
         
             
                # Used by speculative decoding (EAGLE)
         
     | 
| 
       65 
64 
     | 
    
         
             
                # The last hidden layers
         
     | 
| 
       66 
65 
     | 
    
         
             
                hidden_states: Optional[torch.Tensor] = None
         
     | 
| 
       67 
66 
     | 
    
         | 
| 
       68 
67 
     | 
    
         
             
                ## Part 2: This part will be assigned in python/sglang/srt/layers/sampler.py::Sampler
         
     | 
| 
       69 
     | 
    
         
            -
                # he log probs of output tokens, if  
     | 
| 
      
 68 
     | 
    
         
            +
                # he log probs of output tokens, if SGLANG_RETURN_ORIGINAL_LOGPROB = True, will get the log probs before applying temperature. If False, will get the log probs before applying temperature.
         
     | 
| 
       70 
69 
     | 
    
         
             
                next_token_logprobs: Optional[torch.Tensor] = None
         
     | 
| 
       71 
70 
     | 
    
         
             
                # The logprobs and ids of the top-k tokens in output positions. shape: [#seq, k]
         
     | 
| 
       72 
71 
     | 
    
         
             
                next_token_top_logprobs_val: Optional[List] = None
         
     | 
| 
         @@ -85,7 +84,10 @@ class LogitsProcessorOutput: 
     | 
|
| 
       85 
84 
     | 
    
         
             
                input_top_logprobs_val: List = None
         
     | 
| 
       86 
85 
     | 
    
         
             
                input_top_logprobs_idx: List = None
         
     | 
| 
       87 
86 
     | 
    
         
             
                # The logprobs and ids of the requested token ids in input positions. shape: [#seq, n] (n is the number of requested token ids)
         
     | 
| 
       88 
     | 
    
         
            -
                 
     | 
| 
      
 87 
     | 
    
         
            +
                # Can contain either lists or GPU tensors (for delayed GPU-to-CPU transfer optimization)
         
     | 
| 
      
 88 
     | 
    
         
            +
                input_token_ids_logprobs_val: Optional[List[Union[List[float], torch.Tensor]]] = (
         
     | 
| 
      
 89 
     | 
    
         
            +
                    None
         
     | 
| 
      
 90 
     | 
    
         
            +
                )
         
     | 
| 
       89 
91 
     | 
    
         
             
                input_token_ids_logprobs_idx: Optional[List] = None
         
     | 
| 
       90 
92 
     | 
    
         | 
| 
       91 
93 
     | 
    
         | 
| 
         @@ -127,10 +129,16 @@ class LogitsMetadata: 
     | 
|
| 
       127 
129 
     | 
    
         
             
                # for padding
         
     | 
| 
       128 
130 
     | 
    
         
             
                padded_static_len: int = -1
         
     | 
| 
       129 
131 
     | 
    
         | 
| 
      
 132 
     | 
    
         
            +
                # Whether this batch is prefill-only (no token generation needed)
         
     | 
| 
      
 133 
     | 
    
         
            +
                is_prefill_only: bool = False
         
     | 
| 
      
 134 
     | 
    
         
            +
             
     | 
| 
       130 
135 
     | 
    
         
             
                @classmethod
         
     | 
| 
       131 
136 
     | 
    
         
             
                def from_forward_batch(cls, forward_batch: ForwardBatch):
         
     | 
| 
       132 
137 
     | 
    
         
             
                    if (
         
     | 
| 
       133 
     | 
    
         
            -
                         
     | 
| 
      
 138 
     | 
    
         
            +
                        (
         
     | 
| 
      
 139 
     | 
    
         
            +
                            forward_batch.forward_mode.is_extend()
         
     | 
| 
      
 140 
     | 
    
         
            +
                            or forward_batch.forward_mode.is_split_prefill()
         
     | 
| 
      
 141 
     | 
    
         
            +
                        )
         
     | 
| 
       134 
142 
     | 
    
         
             
                        and forward_batch.return_logprob
         
     | 
| 
       135 
143 
     | 
    
         
             
                        and not forward_batch.forward_mode.is_target_verify()
         
     | 
| 
       136 
144 
     | 
    
         
             
                    ):
         
     | 
| 
         @@ -169,6 +177,7 @@ class LogitsMetadata: 
     | 
|
| 
       169 
177 
     | 
    
         
             
                        token_ids_logprobs=forward_batch.token_ids_logprobs,
         
     | 
| 
       170 
178 
     | 
    
         
             
                        extend_input_logprob_token_ids_gpu=forward_batch.extend_input_logprob_token_ids_gpu,
         
     | 
| 
       171 
179 
     | 
    
         
             
                        padded_static_len=forward_batch.padded_static_len,
         
     | 
| 
      
 180 
     | 
    
         
            +
                        is_prefill_only=forward_batch.is_prefill_only,
         
     | 
| 
       172 
181 
     | 
    
         
             
                        global_num_tokens_gpu=forward_batch.global_num_tokens_gpu,
         
     | 
| 
       173 
182 
     | 
    
         
             
                        dp_local_start_pos=forward_batch.dp_local_start_pos,
         
     | 
| 
       174 
183 
     | 
    
         
             
                        dp_local_num_tokens=forward_batch.dp_local_num_tokens,
         
     | 
| 
         @@ -219,8 +228,8 @@ class LogitsProcessor(nn.Module): 
     | 
|
| 
       219 
228 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       220 
229 
     | 
    
         
             
                    self.config = config
         
     | 
| 
       221 
230 
     | 
    
         
             
                    self.logit_scale = logit_scale
         
     | 
| 
       222 
     | 
    
         
            -
                    self.use_attn_tp_group =  
     | 
| 
       223 
     | 
    
         
            -
                    self.use_fp32_lm_head =  
     | 
| 
      
 231 
     | 
    
         
            +
                    self.use_attn_tp_group = get_global_server_args().enable_dp_lm_head
         
     | 
| 
      
 232 
     | 
    
         
            +
                    self.use_fp32_lm_head = get_global_server_args().enable_fp32_lm_head
         
     | 
| 
       224 
233 
     | 
    
         
             
                    if self.use_attn_tp_group:
         
     | 
| 
       225 
234 
     | 
    
         
             
                        self.attn_tp_size = get_attention_tp_size()
         
     | 
| 
       226 
235 
     | 
    
         
             
                        self.do_tensor_parallel_all_gather = (
         
     | 
| 
         @@ -243,8 +252,110 @@ class LogitsProcessor(nn.Module): 
     | 
|
| 
       243 
252 
     | 
    
         
             
                    ):
         
     | 
| 
       244 
253 
     | 
    
         
             
                        self.final_logit_softcapping = None
         
     | 
| 
       245 
254 
     | 
    
         | 
| 
       246 
     | 
    
         
            -
                    self.debug_tensor_dump_output_folder =  
     | 
| 
       247 
     | 
    
         
            -
                         
     | 
| 
      
 255 
     | 
    
         
            +
                    self.debug_tensor_dump_output_folder = (
         
     | 
| 
      
 256 
     | 
    
         
            +
                        get_global_server_args().debug_tensor_dump_output_folder
         
     | 
| 
      
 257 
     | 
    
         
            +
                    )
         
     | 
| 
      
 258 
     | 
    
         
            +
             
     | 
| 
      
 259 
     | 
    
         
            +
                def compute_logprobs_for_multi_item_scoring(
         
     | 
| 
      
 260 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 261 
     | 
    
         
            +
                    input_ids,
         
     | 
| 
      
 262 
     | 
    
         
            +
                    hidden_states,
         
     | 
| 
      
 263 
     | 
    
         
            +
                    lm_head: VocabParallelEmbedding,
         
     | 
| 
      
 264 
     | 
    
         
            +
                    logits_metadata: Union[LogitsMetadata, ForwardBatch],
         
     | 
| 
      
 265 
     | 
    
         
            +
                    delimiter_token: int,
         
     | 
| 
      
 266 
     | 
    
         
            +
                ):
         
     | 
| 
      
 267 
     | 
    
         
            +
                    """
         
     | 
| 
      
 268 
     | 
    
         
            +
                    Compute logprobs for multi-item scoring using delimiter-based token extraction.
         
     | 
| 
      
 269 
     | 
    
         
            +
             
     | 
| 
      
 270 
     | 
    
         
            +
                    This method is designed for scenarios where you want to score multiple items/candidates
         
     | 
| 
      
 271 
     | 
    
         
            +
                    against a single query by combining them into one sequence separated by delimiters.
         
     | 
| 
      
 272 
     | 
    
         
            +
             
     | 
| 
      
 273 
     | 
    
         
            +
                    Sequence format: Query<delimiter>Item1<delimiter>Item2<delimiter>...
         
     | 
| 
      
 274 
     | 
    
         
            +
                    Scoring positions: Extracts logprobs at positions before each <delimiter>
         
     | 
| 
      
 275 
     | 
    
         
            +
             
     | 
| 
      
 276 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 277 
     | 
    
         
            +
                        input_ids (torch.Tensor): Input token IDs containing query and items separated by delimiters.
         
     | 
| 
      
 278 
     | 
    
         
            +
                            Shape: [total_sequence_length] for single request or [batch_total_length] for batch.
         
     | 
| 
      
 279 
     | 
    
         
            +
                        hidden_states (torch.Tensor): Hidden states from the model.
         
     | 
| 
      
 280 
     | 
    
         
            +
                            Shape: [sequence_length, hidden_dim].
         
     | 
| 
      
 281 
     | 
    
         
            +
                        lm_head (VocabParallelEmbedding): Language model head for computing logits.
         
     | 
| 
      
 282 
     | 
    
         
            +
                        logits_metadata (Union[LogitsMetadata, ForwardBatch]): Metadata containing batch info
         
     | 
| 
      
 283 
     | 
    
         
            +
                            and token ID specifications for logprob extraction.
         
     | 
| 
      
 284 
     | 
    
         
            +
                        delimiter_token (int): Token ID used as delimiter between query and items.
         
     | 
| 
      
 285 
     | 
    
         
            +
             
     | 
| 
      
 286 
     | 
    
         
            +
                    Returns:
         
     | 
| 
      
 287 
     | 
    
         
            +
                        LogitsProcessorOutput: Contains:
         
     | 
| 
      
 288 
     | 
    
         
            +
                            - next_token_logits: None (not needed for scoring-only requests)
         
     | 
| 
      
 289 
     | 
    
         
            +
                            - input_token_logprobs: Logprobs of delimiter tokens at scoring positions
         
     | 
| 
      
 290 
     | 
    
         
            +
                            - input_top_logprobs_val: Top-k logprobs at delimiter positions (if requested)
         
     | 
| 
      
 291 
     | 
    
         
            +
                            - input_top_logprobs_idx: Top-k token indices at delimiter positions (if requested)
         
     | 
| 
      
 292 
     | 
    
         
            +
                            - input_token_ids_logprobs_val: Logprobs for user-requested token IDs (if any)
         
     | 
| 
      
 293 
     | 
    
         
            +
                            - input_token_ids_logprobs_idx: Indices for user-requested token IDs (if any)
         
     | 
| 
      
 294 
     | 
    
         
            +
                    """
         
     | 
| 
      
 295 
     | 
    
         
            +
                    multi_item_indices = (input_ids == delimiter_token).nonzero(as_tuple=True)[
         
     | 
| 
      
 296 
     | 
    
         
            +
                        0
         
     | 
| 
      
 297 
     | 
    
         
            +
                    ] - 1
         
     | 
| 
      
 298 
     | 
    
         
            +
                    # Extract hidden states at delimiter positions for multi-item scoring
         
     | 
| 
      
 299 
     | 
    
         
            +
                    sliced_hidden = hidden_states[multi_item_indices]
         
     | 
| 
      
 300 
     | 
    
         
            +
             
     | 
| 
      
 301 
     | 
    
         
            +
                    sliced_logits = self._get_logits(sliced_hidden, lm_head, logits_metadata)
         
     | 
| 
      
 302 
     | 
    
         
            +
                    sliced_logprobs = torch.nn.functional.log_softmax(sliced_logits, dim=-1)
         
     | 
| 
      
 303 
     | 
    
         
            +
             
     | 
| 
      
 304 
     | 
    
         
            +
                    # Initialize return values
         
     | 
| 
      
 305 
     | 
    
         
            +
                    input_token_ids_logprobs_val = []
         
     | 
| 
      
 306 
     | 
    
         
            +
                    input_token_ids_logprobs_idx = []
         
     | 
| 
      
 307 
     | 
    
         
            +
                    input_top_logprobs_val = None
         
     | 
| 
      
 308 
     | 
    
         
            +
                    input_top_logprobs_idx = None
         
     | 
| 
      
 309 
     | 
    
         
            +
             
     | 
| 
      
 310 
     | 
    
         
            +
                    # Recalculate extend_logprob_pruned_lens_cpu to match delimiter counts per request
         
     | 
| 
      
 311 
     | 
    
         
            +
                    # Original contains sequence lengths, but we need delimiter counts for sliced_logprobs
         
     | 
| 
      
 312 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 313 
     | 
    
         
            +
                        logits_metadata.token_ids_logprobs
         
     | 
| 
      
 314 
     | 
    
         
            +
                        or logits_metadata.extend_return_top_logprob
         
     | 
| 
      
 315 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 316 
     | 
    
         
            +
                        logits_metadata.extend_logprob_pruned_lens_cpu = []
         
     | 
| 
      
 317 
     | 
    
         
            +
             
     | 
| 
      
 318 
     | 
    
         
            +
                        if logits_metadata.extend_seq_lens_cpu is not None:
         
     | 
| 
      
 319 
     | 
    
         
            +
                            # Multi-request batch: count delimiters per request
         
     | 
| 
      
 320 
     | 
    
         
            +
                            input_pt = 0
         
     | 
| 
      
 321 
     | 
    
         
            +
                            for req_seq_len in logits_metadata.extend_seq_lens_cpu:
         
     | 
| 
      
 322 
     | 
    
         
            +
                                req_input_ids = input_ids[input_pt : input_pt + req_seq_len]
         
     | 
| 
      
 323 
     | 
    
         
            +
                                delimiter_count = (req_input_ids == delimiter_token).sum().item()
         
     | 
| 
      
 324 
     | 
    
         
            +
                                logits_metadata.extend_logprob_pruned_lens_cpu.append(
         
     | 
| 
      
 325 
     | 
    
         
            +
                                    delimiter_count
         
     | 
| 
      
 326 
     | 
    
         
            +
                                )
         
     | 
| 
      
 327 
     | 
    
         
            +
                                input_pt += req_seq_len
         
     | 
| 
      
 328 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 329 
     | 
    
         
            +
                            # Single request case: one request gets all delimiters
         
     | 
| 
      
 330 
     | 
    
         
            +
                            total_delimiters = (input_ids == delimiter_token).sum().item()
         
     | 
| 
      
 331 
     | 
    
         
            +
                            logits_metadata.extend_logprob_pruned_lens_cpu = [total_delimiters]
         
     | 
| 
      
 332 
     | 
    
         
            +
             
     | 
| 
      
 333 
     | 
    
         
            +
                    # Get the logprobs of specified token ids
         
     | 
| 
      
 334 
     | 
    
         
            +
                    if logits_metadata.extend_token_ids_logprob:
         
     | 
| 
      
 335 
     | 
    
         
            +
                        (
         
     | 
| 
      
 336 
     | 
    
         
            +
                            input_token_ids_logprobs_val,
         
     | 
| 
      
 337 
     | 
    
         
            +
                            input_token_ids_logprobs_idx,
         
     | 
| 
      
 338 
     | 
    
         
            +
                        ) = self.get_token_ids_logprobs(
         
     | 
| 
      
 339 
     | 
    
         
            +
                            sliced_logprobs, logits_metadata, delay_cpu_copy=True
         
     | 
| 
      
 340 
     | 
    
         
            +
                        )
         
     | 
| 
      
 341 
     | 
    
         
            +
             
     | 
| 
      
 342 
     | 
    
         
            +
                    # Get the logprob of top-k tokens
         
     | 
| 
      
 343 
     | 
    
         
            +
                    if logits_metadata.extend_return_top_logprob:
         
     | 
| 
      
 344 
     | 
    
         
            +
                        (
         
     | 
| 
      
 345 
     | 
    
         
            +
                            input_top_logprobs_val,
         
     | 
| 
      
 346 
     | 
    
         
            +
                            input_top_logprobs_idx,
         
     | 
| 
      
 347 
     | 
    
         
            +
                        ) = self.get_top_logprobs(sliced_logprobs, logits_metadata)
         
     | 
| 
      
 348 
     | 
    
         
            +
             
     | 
| 
      
 349 
     | 
    
         
            +
                    # For input_token_logprobs, use delimiter token logprobs
         
     | 
| 
      
 350 
     | 
    
         
            +
                    input_token_logprobs = sliced_logprobs[:, delimiter_token]
         
     | 
| 
      
 351 
     | 
    
         
            +
             
     | 
| 
      
 352 
     | 
    
         
            +
                    return LogitsProcessorOutput(
         
     | 
| 
      
 353 
     | 
    
         
            +
                        next_token_logits=None,  # Multi-item scoring doesn't need next token logits
         
     | 
| 
      
 354 
     | 
    
         
            +
                        input_token_logprobs=input_token_logprobs,
         
     | 
| 
      
 355 
     | 
    
         
            +
                        input_top_logprobs_val=input_top_logprobs_val,
         
     | 
| 
      
 356 
     | 
    
         
            +
                        input_top_logprobs_idx=input_top_logprobs_idx,
         
     | 
| 
      
 357 
     | 
    
         
            +
                        input_token_ids_logprobs_val=input_token_ids_logprobs_val,
         
     | 
| 
      
 358 
     | 
    
         
            +
                        input_token_ids_logprobs_idx=input_token_ids_logprobs_idx,
         
     | 
| 
       248 
359 
     | 
    
         
             
                    )
         
     | 
| 
       249 
360 
     | 
    
         | 
| 
       250 
361 
     | 
    
         
             
                def forward(
         
     | 
| 
         @@ -257,10 +368,19 @@ class LogitsProcessor(nn.Module): 
     | 
|
| 
       257 
368 
     | 
    
         
             
                ) -> LogitsProcessorOutput:
         
     | 
| 
       258 
369 
     | 
    
         
             
                    if isinstance(logits_metadata, ForwardBatch):
         
     | 
| 
       259 
370 
     | 
    
         
             
                        logits_metadata = LogitsMetadata.from_forward_batch(logits_metadata)
         
     | 
| 
      
 371 
     | 
    
         
            +
             
     | 
| 
      
 372 
     | 
    
         
            +
                    # Check if multi-item scoring is enabled via server args (only for prefill-only requests)
         
     | 
| 
      
 373 
     | 
    
         
            +
                    multi_item_delimiter = get_global_server_args().multi_item_scoring_delimiter
         
     | 
| 
      
 374 
     | 
    
         
            +
                    if multi_item_delimiter is not None and logits_metadata.is_prefill_only:
         
     | 
| 
      
 375 
     | 
    
         
            +
                        return self.compute_logprobs_for_multi_item_scoring(
         
     | 
| 
      
 376 
     | 
    
         
            +
                            input_ids, hidden_states, lm_head, logits_metadata, multi_item_delimiter
         
     | 
| 
      
 377 
     | 
    
         
            +
                        )
         
     | 
| 
      
 378 
     | 
    
         
            +
             
     | 
| 
       260 
379 
     | 
    
         
             
                    # Get the last hidden states and last logits for the next token prediction
         
     | 
| 
       261 
380 
     | 
    
         
             
                    if (
         
     | 
| 
       262 
381 
     | 
    
         
             
                        logits_metadata.forward_mode.is_decode_or_idle()
         
     | 
| 
       263 
382 
     | 
    
         
             
                        or logits_metadata.forward_mode.is_target_verify()
         
     | 
| 
      
 383 
     | 
    
         
            +
                        or logits_metadata.forward_mode.is_draft_extend_v2()
         
     | 
| 
       264 
384 
     | 
    
         
             
                    ):
         
     | 
| 
       265 
385 
     | 
    
         
             
                        pruned_states = hidden_states
         
     | 
| 
       266 
386 
     | 
    
         
             
                        if aux_hidden_states is not None:
         
     | 
| 
         @@ -269,8 +389,8 @@ class LogitsProcessor(nn.Module): 
     | 
|
| 
       269 
389 
     | 
    
         
             
                        input_logprob_indices = None
         
     | 
| 
       270 
390 
     | 
    
         
             
                    elif (
         
     | 
| 
       271 
391 
     | 
    
         
             
                        logits_metadata.forward_mode.is_extend()
         
     | 
| 
       272 
     | 
    
         
            -
                         
     | 
| 
       273 
     | 
    
         
            -
                    ):
         
     | 
| 
      
 392 
     | 
    
         
            +
                        or logits_metadata.forward_mode.is_split_prefill()
         
     | 
| 
      
 393 
     | 
    
         
            +
                    ) and not logits_metadata.extend_return_logprob:
         
     | 
| 
       274 
394 
     | 
    
         
             
                        # Prefill without input logprobs.
         
     | 
| 
       275 
395 
     | 
    
         
             
                        if logits_metadata.padded_static_len < 0:
         
     | 
| 
       276 
396 
     | 
    
         
             
                            last_index = torch.cumsum(logits_metadata.extend_seq_lens, dim=0) - 1
         
     | 
| 
         @@ -473,6 +593,11 @@ class LogitsProcessor(nn.Module): 
     | 
|
| 
       473 
593 
     | 
    
         
             
                                None,  # bias
         
     | 
| 
       474 
594 
     | 
    
         
             
                                True,  # is_vnni
         
     | 
| 
       475 
595 
     | 
    
         
             
                            )
         
     | 
| 
      
 596 
     | 
    
         
            +
                        elif get_global_server_args().rl_on_policy_target == "fsdp":
         
     | 
| 
      
 597 
     | 
    
         
            +
                            # Due to tie-weight, we may not be able to change lm_head's weight dtype
         
     | 
| 
      
 598 
     | 
    
         
            +
                            logits = torch.matmul(
         
     | 
| 
      
 599 
     | 
    
         
            +
                                hidden_states.bfloat16(), lm_head.weight.T.bfloat16()
         
     | 
| 
      
 600 
     | 
    
         
            +
                            )
         
     | 
| 
       476 
601 
     | 
    
         
             
                        else:
         
     | 
| 
       477 
602 
     | 
    
         
             
                            logits = torch.matmul(
         
     | 
| 
       478 
603 
     | 
    
         
             
                                hidden_states.to(lm_head.weight.dtype), lm_head.weight.T
         
     | 
| 
         @@ -584,7 +709,9 @@ class LogitsProcessor(nn.Module): 
     | 
|
| 
       584 
709 
     | 
    
         | 
| 
       585 
710 
     | 
    
         
             
                @staticmethod
         
     | 
| 
       586 
711 
     | 
    
         
             
                def get_token_ids_logprobs(
         
     | 
| 
       587 
     | 
    
         
            -
                    all_logprobs: torch.Tensor, 
     | 
| 
      
 712 
     | 
    
         
            +
                    all_logprobs: torch.Tensor,
         
     | 
| 
      
 713 
     | 
    
         
            +
                    logits_metadata: LogitsMetadata,
         
     | 
| 
      
 714 
     | 
    
         
            +
                    delay_cpu_copy: bool = False,
         
     | 
| 
       588 
715 
     | 
    
         
             
                ):
         
     | 
| 
       589 
716 
     | 
    
         
             
                    input_token_ids_logprobs_val, input_token_ids_logprobs_idx = [], []
         
     | 
| 
       590 
717 
     | 
    
         
             
                    pt = 0
         
     | 
| 
         @@ -597,9 +724,17 @@ class LogitsProcessor(nn.Module): 
     | 
|
| 
       597 
724 
     | 
    
         
             
                            input_token_ids_logprobs_idx.append([])
         
     | 
| 
       598 
725 
     | 
    
         
             
                            continue
         
     | 
| 
       599 
726 
     | 
    
         | 
| 
       600 
     | 
    
         
            -
                         
     | 
| 
       601 
     | 
    
         
            -
                             
     | 
| 
       602 
     | 
    
         
            -
                         
     | 
| 
      
 727 
     | 
    
         
            +
                        position_logprobs = all_logprobs[
         
     | 
| 
      
 728 
     | 
    
         
            +
                            pt : pt + pruned_len, token_ids
         
     | 
| 
      
 729 
     | 
    
         
            +
                        ]  # Shape: [pruned_len, num_tokens]
         
     | 
| 
      
 730 
     | 
    
         
            +
             
     | 
| 
      
 731 
     | 
    
         
            +
                        if delay_cpu_copy:
         
     | 
| 
      
 732 
     | 
    
         
            +
                            # Keep as tensor to delay GPU-to-CPU transfer
         
     | 
| 
      
 733 
     | 
    
         
            +
                            input_token_ids_logprobs_val.append(position_logprobs)
         
     | 
| 
      
 734 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 735 
     | 
    
         
            +
                            # Convert to list immediately (default behavior)
         
     | 
| 
      
 736 
     | 
    
         
            +
                            input_token_ids_logprobs_val.append(position_logprobs.tolist())
         
     | 
| 
      
 737 
     | 
    
         
            +
             
     | 
| 
       603 
738 
     | 
    
         
             
                        input_token_ids_logprobs_idx.append([token_ids for _ in range(pruned_len)])
         
     | 
| 
       604 
739 
     | 
    
         
             
                        pt += pruned_len
         
     | 
| 
       605 
740 
     | 
    
         | 
| 
         @@ -0,0 +1,11 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            """
         
     | 
| 
      
 2 
     | 
    
         
            +
            ModelOpt related constants
         
     | 
| 
      
 3 
     | 
    
         
            +
            """
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            QUANT_CFG_CHOICES = {
         
     | 
| 
      
 6 
     | 
    
         
            +
                "fp8": "FP8_DEFAULT_CFG",
         
     | 
| 
      
 7 
     | 
    
         
            +
                "int4_awq": "INT4_AWQ_CFG",  # TODO: add support for int4_awq
         
     | 
| 
      
 8 
     | 
    
         
            +
                "w4a8_awq": "W4A8_AWQ_BETA_CFG",  # TODO: add support for w4a8_awq
         
     | 
| 
      
 9 
     | 
    
         
            +
                "nvfp4": "NVFP4_DEFAULT_CFG",
         
     | 
| 
      
 10 
     | 
    
         
            +
                "nvfp4_awq": "NVFP4_AWQ_LITE_CFG",  # TODO: add support for nvfp4_awq
         
     | 
| 
      
 11 
     | 
    
         
            +
            }
         
     |