sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -1,23 +1,30 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            from typing import Callable, List, Optional, Tuple 
     | 
| 
      
 1 
     | 
    
         
            +
            from typing import Callable, List, Optional, Tuple
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
3 
     | 
    
         
             
            import torch
         
     | 
| 
       4 
4 
     | 
    
         
             
            import torch.nn as nn
         
     | 
| 
       5 
5 
     | 
    
         | 
| 
       6 
     | 
    
         
            -
            from sglang.srt.configs. 
     | 
| 
       7 
     | 
    
         
            -
             
     | 
| 
      
 6 
     | 
    
         
            +
            from sglang.srt.configs.mamba_utils import (
         
     | 
| 
      
 7 
     | 
    
         
            +
                Mamba2CacheParams,
         
     | 
| 
      
 8 
     | 
    
         
            +
                extra_groups_for_head_shards,
         
     | 
| 
      
 9 
     | 
    
         
            +
            )
         
     | 
| 
       8 
10 
     | 
    
         
             
            from sglang.srt.distributed import (
         
     | 
| 
      
 11 
     | 
    
         
            +
                divide,
         
     | 
| 
       9 
12 
     | 
    
         
             
                get_tensor_model_parallel_rank,
         
     | 
| 
       10 
13 
     | 
    
         
             
                get_tensor_model_parallel_world_size,
         
     | 
| 
       11 
     | 
    
         
            -
                tensor_model_parallel_all_gather,
         
     | 
| 
       12 
     | 
    
         
            -
                tensor_model_parallel_all_reduce,
         
     | 
| 
       13 
14 
     | 
    
         
             
            )
         
     | 
| 
       14 
15 
     | 
    
         
             
            from sglang.srt.distributed.utils import divide
         
     | 
| 
       15 
     | 
    
         
            -
            from sglang.srt.layers.attention.fla.layernorm_gated import layernorm_fn
         
     | 
| 
       16 
16 
     | 
    
         
             
            from sglang.srt.layers.attention.mamba.causal_conv1d import (
         
     | 
| 
       17 
17 
     | 
    
         
             
                causal_conv1d_fn,
         
     | 
| 
       18 
18 
     | 
    
         
             
                causal_conv1d_update,
         
     | 
| 
       19 
19 
     | 
    
         
             
            )
         
     | 
| 
       20 
     | 
    
         
            -
            from sglang.srt.layers.attention.mamba. 
     | 
| 
      
 20 
     | 
    
         
            +
            from sglang.srt.layers.attention.mamba.causal_conv1d_triton import (
         
     | 
| 
      
 21 
     | 
    
         
            +
                causal_conv1d_fn as causal_conv1d_fn_triton,
         
     | 
| 
      
 22 
     | 
    
         
            +
            )
         
     | 
| 
      
 23 
     | 
    
         
            +
            from sglang.srt.layers.attention.mamba.causal_conv1d_triton import (
         
     | 
| 
      
 24 
     | 
    
         
            +
                causal_conv1d_update as causal_conv1d_update_triton,
         
     | 
| 
      
 25 
     | 
    
         
            +
            )
         
     | 
| 
      
 26 
     | 
    
         
            +
            from sglang.srt.layers.attention.mamba.mamba2_metadata import Mamba2Metadata
         
     | 
| 
      
 27 
     | 
    
         
            +
            from sglang.srt.layers.attention.mamba.mixer2_rms_norm_gated import Mixer2RMSNormGated
         
     | 
| 
       21 
28 
     | 
    
         
             
            from sglang.srt.layers.attention.mamba.ops import (
         
     | 
| 
       22 
29 
     | 
    
         
             
                mamba_chunk_scan_combined,
         
     | 
| 
       23 
30 
     | 
    
         
             
                selective_state_update,
         
     | 
| 
         @@ -28,7 +35,7 @@ from sglang.srt.layers.linear import ( 
     | 
|
| 
       28 
35 
     | 
    
         
             
                RowParallelLinear,
         
     | 
| 
       29 
36 
     | 
    
         
             
            )
         
     | 
| 
       30 
37 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
       31 
     | 
    
         
            -
            from sglang.srt. 
     | 
| 
      
 38 
     | 
    
         
            +
            from sglang.srt.mem_cache.memory_pool import MambaPool
         
     | 
| 
       32 
39 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import (
         
     | 
| 
       33 
40 
     | 
    
         
             
                composed_weight_loader,
         
     | 
| 
       34 
41 
     | 
    
         
             
                sharded_weight_loader,
         
     | 
| 
         @@ -97,110 +104,6 @@ def mamba_v2_sharded_weight_loader( 
     | 
|
| 
       97 
104 
     | 
    
         
             
                return loader
         
     | 
| 
       98 
105 
     | 
    
         | 
| 
       99 
106 
     | 
    
         | 
| 
       100 
     | 
    
         
            -
            class Mixer2RMSNormGated(CustomOp):
         
     | 
| 
       101 
     | 
    
         
            -
             
     | 
| 
       102 
     | 
    
         
            -
                def __init__(
         
     | 
| 
       103 
     | 
    
         
            -
                    self,
         
     | 
| 
       104 
     | 
    
         
            -
                    full_hidden_size: int,
         
     | 
| 
       105 
     | 
    
         
            -
                    full_n_groups: int,
         
     | 
| 
       106 
     | 
    
         
            -
                    use_rms_norm: bool = True,
         
     | 
| 
       107 
     | 
    
         
            -
                    eps: float = 1e-6,
         
     | 
| 
       108 
     | 
    
         
            -
                ):
         
     | 
| 
       109 
     | 
    
         
            -
                    super().__init__()
         
     | 
| 
       110 
     | 
    
         
            -
                    self.tp_size = get_tensor_model_parallel_world_size()
         
     | 
| 
       111 
     | 
    
         
            -
                    self.tp_rank = get_tensor_model_parallel_rank()
         
     | 
| 
       112 
     | 
    
         
            -
                    self.full_hidden_size = full_hidden_size
         
     | 
| 
       113 
     | 
    
         
            -
                    self.group_size = full_hidden_size // full_n_groups
         
     | 
| 
       114 
     | 
    
         
            -
                    self.per_rank_hidden_size = full_hidden_size // self.tp_size
         
     | 
| 
       115 
     | 
    
         
            -
                    self.n_groups = full_hidden_size // self.group_size
         
     | 
| 
       116 
     | 
    
         
            -
             
     | 
| 
       117 
     | 
    
         
            -
                    self.variance_epsilon = eps
         
     | 
| 
       118 
     | 
    
         
            -
                    self.use_rms_norm = use_rms_norm
         
     | 
| 
       119 
     | 
    
         
            -
                    if self.use_rms_norm:
         
     | 
| 
       120 
     | 
    
         
            -
                        # Register norm weight only if we're actually applying RMSNorm
         
     | 
| 
       121 
     | 
    
         
            -
                        self.weight = nn.Parameter(torch.ones(self.per_rank_hidden_size))
         
     | 
| 
       122 
     | 
    
         
            -
                        set_weight_attrs(self.weight, {"weight_loader": sharded_weight_loader(0)})
         
     | 
| 
       123 
     | 
    
         
            -
                    else:
         
     | 
| 
       124 
     | 
    
         
            -
                        # Avoid checkpoint mismatch by skipping unused parameter
         
     | 
| 
       125 
     | 
    
         
            -
                        self.register_parameter("weight", None)
         
     | 
| 
       126 
     | 
    
         
            -
                    assert (
         
     | 
| 
       127 
     | 
    
         
            -
                        self.full_hidden_size % self.tp_size == 0
         
     | 
| 
       128 
     | 
    
         
            -
                    ), "Tensor parallel world size must divide hidden size."
         
     | 
| 
       129 
     | 
    
         
            -
             
     | 
| 
       130 
     | 
    
         
            -
                def forward_native(
         
     | 
| 
       131 
     | 
    
         
            -
                    self,
         
     | 
| 
       132 
     | 
    
         
            -
                    x: torch.Tensor,
         
     | 
| 
       133 
     | 
    
         
            -
                    gate: torch.Tensor,
         
     | 
| 
       134 
     | 
    
         
            -
                ):
         
     | 
| 
       135 
     | 
    
         
            -
                    # Three tensor-parallel cases:
         
     | 
| 
       136 
     | 
    
         
            -
                    #   1. n_groups is 1
         
     | 
| 
       137 
     | 
    
         
            -
                    #      In this case we parallelize along the reduction dim.
         
     | 
| 
       138 
     | 
    
         
            -
                    #      Each rank computes a local sum of squares followed by AllReduce
         
     | 
| 
       139 
     | 
    
         
            -
                    #   2. tp_size divides n_groups
         
     | 
| 
       140 
     | 
    
         
            -
                    #      Each rank only reduces within its local group(s).
         
     | 
| 
       141 
     | 
    
         
            -
                    #      No collective ops necessary.
         
     | 
| 
       142 
     | 
    
         
            -
                    #   3. The general case can be pretty complicated so we AllGather
         
     | 
| 
       143 
     | 
    
         
            -
                    #      the input and then redundantly compute the RMSNorm.
         
     | 
| 
       144 
     | 
    
         
            -
                    input_dtype = x.dtype
         
     | 
| 
       145 
     | 
    
         
            -
                    x = x * nn.functional.silu(gate.to(torch.float32))
         
     | 
| 
       146 
     | 
    
         
            -
                    if not self.use_rms_norm:
         
     | 
| 
       147 
     | 
    
         
            -
                        return x.to(input_dtype)
         
     | 
| 
       148 
     | 
    
         
            -
             
     | 
| 
       149 
     | 
    
         
            -
                    if self.n_groups == 1:
         
     | 
| 
       150 
     | 
    
         
            -
                        if self.tp_size > 1:
         
     | 
| 
       151 
     | 
    
         
            -
                            # Compute local sum and then reduce to obtain global sum
         
     | 
| 
       152 
     | 
    
         
            -
                            local_sums = x.pow(2).sum(dim=-1, keepdim=True)
         
     | 
| 
       153 
     | 
    
         
            -
                            global_sums = tensor_model_parallel_all_reduce(local_sums)
         
     | 
| 
       154 
     | 
    
         
            -
                            # Calculate the variance
         
     | 
| 
       155 
     | 
    
         
            -
                            count = self.tp_size * x.shape[-1]
         
     | 
| 
       156 
     | 
    
         
            -
                            variance = global_sums / count
         
     | 
| 
       157 
     | 
    
         
            -
             
     | 
| 
       158 
     | 
    
         
            -
                        else:
         
     | 
| 
       159 
     | 
    
         
            -
                            variance = x.pow(2).mean(-1, keepdim=True)
         
     | 
| 
       160 
     | 
    
         
            -
                        x = x * torch.rsqrt(variance + self.variance_epsilon)
         
     | 
| 
       161 
     | 
    
         
            -
                    else:
         
     | 
| 
       162 
     | 
    
         
            -
                        redundant_tp: bool = self.n_groups % self.tp_size != 0
         
     | 
| 
       163 
     | 
    
         
            -
                        if redundant_tp:
         
     | 
| 
       164 
     | 
    
         
            -
                            # To handle the general case, redundantly apply the variance
         
     | 
| 
       165 
     | 
    
         
            -
                            x = tensor_model_parallel_all_gather(x, -1)
         
     | 
| 
       166 
     | 
    
         
            -
             
     | 
| 
       167 
     | 
    
         
            -
                        *prefix_dims, hidden_dim = x.shape
         
     | 
| 
       168 
     | 
    
         
            -
                        group_count = hidden_dim // self.group_size
         
     | 
| 
       169 
     | 
    
         
            -
                        x_grouped = x.view(*prefix_dims, group_count, self.group_size)
         
     | 
| 
       170 
     | 
    
         
            -
                        variance = x_grouped.pow(2).mean(-1, keepdim=True)
         
     | 
| 
       171 
     | 
    
         
            -
                        x_grouped = x_grouped * torch.rsqrt(variance + self.variance_epsilon)
         
     | 
| 
       172 
     | 
    
         
            -
                        x = x_grouped.view(*prefix_dims, hidden_dim)
         
     | 
| 
       173 
     | 
    
         
            -
             
     | 
| 
       174 
     | 
    
         
            -
                        if redundant_tp:
         
     | 
| 
       175 
     | 
    
         
            -
                            start = self.per_rank_hidden_size * self.tp_rank
         
     | 
| 
       176 
     | 
    
         
            -
                            end = start + self.per_rank_hidden_size
         
     | 
| 
       177 
     | 
    
         
            -
                            x = x[..., start:end]
         
     | 
| 
       178 
     | 
    
         
            -
             
     | 
| 
       179 
     | 
    
         
            -
                    return self.weight * x.to(input_dtype)
         
     | 
| 
       180 
     | 
    
         
            -
             
     | 
| 
       181 
     | 
    
         
            -
                def forward_cuda(
         
     | 
| 
       182 
     | 
    
         
            -
                    self,
         
     | 
| 
       183 
     | 
    
         
            -
                    x: torch.Tensor,
         
     | 
| 
       184 
     | 
    
         
            -
                    gate: torch.Tensor,
         
     | 
| 
       185 
     | 
    
         
            -
                ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
         
     | 
| 
       186 
     | 
    
         
            -
                    input_dtype = x.dtype
         
     | 
| 
       187 
     | 
    
         
            -
                    if not self.use_rms_norm:
         
     | 
| 
       188 
     | 
    
         
            -
                        # Keep gate in float32 for numerical stability during silu
         
     | 
| 
       189 
     | 
    
         
            -
                        return x * nn.functional.silu(gate.to(torch.float32)).to(input_dtype)
         
     | 
| 
       190 
     | 
    
         
            -
             
     | 
| 
       191 
     | 
    
         
            -
                    if ((self.n_groups % self.tp_size) != 0) or self.n_groups != 1:
         
     | 
| 
       192 
     | 
    
         
            -
                        return self.forward_native(x, gate)
         
     | 
| 
       193 
     | 
    
         
            -
             
     | 
| 
       194 
     | 
    
         
            -
                    return layernorm_fn(
         
     | 
| 
       195 
     | 
    
         
            -
                        x,
         
     | 
| 
       196 
     | 
    
         
            -
                        self.weight.data,
         
     | 
| 
       197 
     | 
    
         
            -
                        bias=None,
         
     | 
| 
       198 
     | 
    
         
            -
                        z=gate,
         
     | 
| 
       199 
     | 
    
         
            -
                        eps=self.variance_epsilon,
         
     | 
| 
       200 
     | 
    
         
            -
                        norm_before_gate=False,
         
     | 
| 
       201 
     | 
    
         
            -
                    )
         
     | 
| 
       202 
     | 
    
         
            -
             
     | 
| 
       203 
     | 
    
         
            -
             
     | 
| 
       204 
107 
     | 
    
         
             
            class MambaMixer2(torch.nn.Module):
         
     | 
| 
       205 
108 
     | 
    
         
             
                """
         
     | 
| 
       206 
109 
     | 
    
         
             
                Compute ∆, A, B, C, and D the state space parameters and compute
         
     | 
| 
         @@ -214,22 +117,14 @@ class MambaMixer2(torch.nn.Module): 
     | 
|
| 
       214 
117 
     | 
    
         | 
| 
       215 
118 
     | 
    
         
             
                def __init__(
         
     | 
| 
       216 
119 
     | 
    
         
             
                    self,
         
     | 
| 
      
 120 
     | 
    
         
            +
                    cache_params: Mamba2CacheParams,
         
     | 
| 
       217 
121 
     | 
    
         
             
                    hidden_size: int,
         
     | 
| 
       218 
     | 
    
         
            -
                    ssm_state_size: int,
         
     | 
| 
       219 
     | 
    
         
            -
                    conv_kernel_size: int,
         
     | 
| 
       220 
     | 
    
         
            -
                    intermediate_size: int,
         
     | 
| 
       221 
122 
     | 
    
         
             
                    use_conv_bias: bool,
         
     | 
| 
       222 
123 
     | 
    
         
             
                    use_bias: bool,
         
     | 
| 
       223 
     | 
    
         
            -
                    chunk_size: int,
         
     | 
| 
       224 
     | 
    
         
            -
                    layer_id: int,
         
     | 
| 
       225 
124 
     | 
    
         
             
                    n_groups: int = 1,
         
     | 
| 
       226 
     | 
    
         
            -
                    num_heads: int = 128,
         
     | 
| 
       227 
     | 
    
         
            -
                    head_dim: int = 64,
         
     | 
| 
       228 
125 
     | 
    
         
             
                    rms_norm_eps: float = 1e-5,
         
     | 
| 
       229 
126 
     | 
    
         
             
                    activation: str = "silu",
         
     | 
| 
       230 
127 
     | 
    
         
             
                    use_rms_norm: bool = True,
         
     | 
| 
       231 
     | 
    
         
            -
                    model_config: Optional[ModelConfig] = None,
         
     | 
| 
       232 
     | 
    
         
            -
                    #  cache_config: Optional[CacheConfig] = None,
         
     | 
| 
       233 
128 
     | 
    
         
             
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
       234 
129 
     | 
    
         
             
                    prefix: str = "",
         
     | 
| 
       235 
130 
     | 
    
         
             
                ):
         
     | 
| 
         @@ -252,6 +147,9 @@ class MambaMixer2(torch.nn.Module): 
     | 
|
| 
       252 
147 
     | 
    
         
             
                    self.tp_size = get_tensor_model_parallel_world_size()
         
     | 
| 
       253 
148 
     | 
    
         
             
                    self.tp_rank = get_tensor_model_parallel_rank()
         
     | 
| 
       254 
149 
     | 
    
         | 
| 
      
 150 
     | 
    
         
            +
                    self.num_heads = num_heads = cache_params.shape.num_heads
         
     | 
| 
      
 151 
     | 
    
         
            +
                    self.head_dim = cache_params.shape.head_dim
         
     | 
| 
      
 152 
     | 
    
         
            +
             
     | 
| 
       255 
153 
     | 
    
         
             
                    assert (
         
     | 
| 
       256 
154 
     | 
    
         
             
                        num_heads % self.tp_size == 0
         
     | 
| 
       257 
155 
     | 
    
         
             
                    ), "Tensor parallel world size must divide num heads."
         
     | 
| 
         @@ -261,57 +159,76 @@ class MambaMixer2(torch.nn.Module): 
     | 
|
| 
       261 
159 
     | 
    
         
             
                        "then num_groups must equal 1."
         
     | 
| 
       262 
160 
     | 
    
         
             
                    )
         
     | 
| 
       263 
161 
     | 
    
         | 
| 
       264 
     | 
    
         
            -
                     
     | 
| 
       265 
     | 
    
         
            -
             
     | 
| 
       266 
     | 
    
         
            -
                     
     | 
| 
       267 
     | 
    
         
            -
             
     | 
| 
      
 162 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 163 
     | 
    
         
            +
                        (n_groups % self.tp_size == 0) or self.tp_size == 1 or quant_config is None
         
     | 
| 
      
 164 
     | 
    
         
            +
                    ), (
         
     | 
| 
      
 165 
     | 
    
         
            +
                        "Tensor parallel currently supported for quantized models only "
         
     | 
| 
      
 166 
     | 
    
         
            +
                        "if tensor parallel world size divides num groups."
         
     | 
| 
      
 167 
     | 
    
         
            +
                    )
         
     | 
| 
       268 
168 
     | 
    
         | 
| 
       269 
     | 
    
         
            -
                    self. 
     | 
| 
       270 
     | 
    
         
            -
                    self. 
     | 
| 
       271 
     | 
    
         
            -
                    self.num_heads = num_heads
         
     | 
| 
       272 
     | 
    
         
            -
                    self.chunk_size = chunk_size
         
     | 
| 
      
 169 
     | 
    
         
            +
                    self.ssm_state_size = cache_params.shape.ssm_state_size
         
     | 
| 
      
 170 
     | 
    
         
            +
                    self.activation = activation
         
     | 
| 
       273 
171 
     | 
    
         | 
| 
      
 172 
     | 
    
         
            +
                    conv_kernel_size = cache_params.shape.conv_kernel
         
     | 
| 
      
 173 
     | 
    
         
            +
                    self.intermediate_size = intermediate_size = (
         
     | 
| 
      
 174 
     | 
    
         
            +
                        cache_params.shape.intermediate_size
         
     | 
| 
      
 175 
     | 
    
         
            +
                    )
         
     | 
| 
       274 
176 
     | 
    
         
             
                    self.n_groups = n_groups
         
     | 
| 
       275 
177 
     | 
    
         
             
                    if n_groups % self.tp_size != 0:
         
     | 
| 
       276 
178 
     | 
    
         
             
                        # - for TP we shard conv_dim by sharding on n_groups,
         
     | 
| 
       277 
179 
     | 
    
         
             
                        # - but if n_groups cannot divide tp_size, we need to
         
     | 
| 
       278 
180 
     | 
    
         
             
                        #   extend some extra groups
         
     | 
| 
       279 
     | 
    
         
            -
                        groups =  
     | 
| 
       280 
     | 
    
         
            -
                            n_groups, self.tp_size
         
     | 
| 
       281 
     | 
    
         
            -
                        )
         
     | 
| 
      
 181 
     | 
    
         
            +
                        groups = extra_groups_for_head_shards(n_groups, self.tp_size)
         
     | 
| 
       282 
182 
     | 
    
         
             
                        self.n_groups = n_groups + groups
         
     | 
| 
       283 
     | 
    
         
            -
             
     | 
| 
       284 
183 
     | 
    
         
             
                    self.groups_ssm_state_size = self.n_groups * self.ssm_state_size
         
     | 
| 
       285 
     | 
    
         
            -
                    self.conv_dim =  
     | 
| 
       286 
     | 
    
         
            -
             
     | 
| 
       287 
     | 
    
         
            -
                    self. 
     | 
| 
       288 
     | 
    
         
            -
                         
     | 
| 
       289 
     | 
    
         
            -
             
     | 
| 
       290 
     | 
    
         
            -
                             
     | 
| 
       291 
     | 
    
         
            -
             
     | 
| 
       292 
     | 
    
         
            -
             
     | 
| 
       293 
     | 
    
         
            -
             
     | 
| 
       294 
     | 
    
         
            -
             
     | 
| 
       295 
     | 
    
         
            -
             
     | 
| 
       296 
     | 
    
         
            -
             
     | 
| 
       297 
     | 
    
         
            -
             
     | 
| 
      
 184 
     | 
    
         
            +
                    self.conv_dim = cache_params.shape.conv_dim
         
     | 
| 
      
 185 
     | 
    
         
            +
             
     | 
| 
      
 186 
     | 
    
         
            +
                    if n_groups % self.tp_size == 0:
         
     | 
| 
      
 187 
     | 
    
         
            +
                        self.conv1d = MergedColumnParallelLinear(
         
     | 
| 
      
 188 
     | 
    
         
            +
                            input_size=conv_kernel_size,
         
     | 
| 
      
 189 
     | 
    
         
            +
                            output_sizes=[
         
     | 
| 
      
 190 
     | 
    
         
            +
                                intermediate_size,
         
     | 
| 
      
 191 
     | 
    
         
            +
                                self.groups_ssm_state_size,
         
     | 
| 
      
 192 
     | 
    
         
            +
                                self.groups_ssm_state_size,
         
     | 
| 
      
 193 
     | 
    
         
            +
                            ],
         
     | 
| 
      
 194 
     | 
    
         
            +
                            bias=use_conv_bias,
         
     | 
| 
      
 195 
     | 
    
         
            +
                            quant_config=None,
         
     | 
| 
      
 196 
     | 
    
         
            +
                            prefix=f"{prefix}.conv1d",
         
     | 
| 
      
 197 
     | 
    
         
            +
                        )
         
     | 
| 
       298 
198 
     | 
    
         | 
| 
       299 
     | 
    
         
            -
             
     | 
| 
       300 
     | 
    
         
            -
             
     | 
| 
       301 
     | 
    
         
            -
             
     | 
| 
       302 
     | 
    
         
            -
             
     | 
| 
       303 
     | 
    
         
            -
             
     | 
| 
       304 
     | 
    
         
            -
             
     | 
| 
       305 
     | 
    
         
            -
             
     | 
| 
       306 
     | 
    
         
            -
             
     | 
| 
       307 
     | 
    
         
            -
             
     | 
| 
       308 
     | 
    
         
            -
             
     | 
| 
       309 
     | 
    
         
            -
             
     | 
| 
       310 
     | 
    
         
            -
             
     | 
| 
       311 
     | 
    
         
            -
             
     | 
| 
      
 199 
     | 
    
         
            +
                        self.in_proj = MergedColumnParallelLinear(
         
     | 
| 
      
 200 
     | 
    
         
            +
                            input_size=hidden_size,
         
     | 
| 
      
 201 
     | 
    
         
            +
                            output_sizes=[
         
     | 
| 
      
 202 
     | 
    
         
            +
                                intermediate_size,
         
     | 
| 
      
 203 
     | 
    
         
            +
                                intermediate_size,
         
     | 
| 
      
 204 
     | 
    
         
            +
                                self.groups_ssm_state_size,
         
     | 
| 
      
 205 
     | 
    
         
            +
                                self.groups_ssm_state_size,
         
     | 
| 
      
 206 
     | 
    
         
            +
                                self.num_heads,
         
     | 
| 
      
 207 
     | 
    
         
            +
                            ],
         
     | 
| 
      
 208 
     | 
    
         
            +
                            bias=use_bias,
         
     | 
| 
      
 209 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 210 
     | 
    
         
            +
                            prefix=f"{prefix}.in_proj",
         
     | 
| 
      
 211 
     | 
    
         
            +
                        )
         
     | 
| 
      
 212 
     | 
    
         
            +
                    else:
         
     | 
| 
       312 
213 
     | 
    
         
             
                        # This is the n_groups == 1 case,
         
     | 
| 
       313 
214 
     | 
    
         
             
                        # where we need to duplicate groups if TP>1.
         
     | 
| 
       314 
215 
     | 
    
         | 
| 
      
 216 
     | 
    
         
            +
                        self.conv1d = ColumnParallelLinear(
         
     | 
| 
      
 217 
     | 
    
         
            +
                            input_size=conv_kernel_size,
         
     | 
| 
      
 218 
     | 
    
         
            +
                            output_size=self.conv_dim,
         
     | 
| 
      
 219 
     | 
    
         
            +
                            bias=use_conv_bias,
         
     | 
| 
      
 220 
     | 
    
         
            +
                            quant_config=None,
         
     | 
| 
      
 221 
     | 
    
         
            +
                            prefix=f"{prefix}.conv1d",
         
     | 
| 
      
 222 
     | 
    
         
            +
                        )
         
     | 
| 
      
 223 
     | 
    
         
            +
             
     | 
| 
      
 224 
     | 
    
         
            +
                        self.in_proj = ColumnParallelLinear(
         
     | 
| 
      
 225 
     | 
    
         
            +
                            input_size=hidden_size,
         
     | 
| 
      
 226 
     | 
    
         
            +
                            output_size=intermediate_size + self.conv_dim + self.num_heads,
         
     | 
| 
      
 227 
     | 
    
         
            +
                            bias=use_bias,
         
     | 
| 
      
 228 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 229 
     | 
    
         
            +
                            prefix=f"{prefix}.in_proj",
         
     | 
| 
      
 230 
     | 
    
         
            +
                        )
         
     | 
| 
      
 231 
     | 
    
         
            +
             
     | 
| 
       315 
232 
     | 
    
         
             
                        # - because in_proj is a concatenation of 3 weights, we
         
     | 
| 
       316 
233 
     | 
    
         
             
                        #   need to interleave them before sharding
         
     | 
| 
       317 
234 
     | 
    
         
             
                        # - use the custom weight loader mamba_v2_sharded_weight_loader
         
     | 
| 
         @@ -421,47 +338,27 @@ class MambaMixer2(torch.nn.Module): 
     | 
|
| 
       421 
338 
     | 
    
         
             
                        intermediate_size, n_groups, self.use_rms_norm, eps=rms_norm_eps
         
     | 
| 
       422 
339 
     | 
    
         
             
                    )
         
     | 
| 
       423 
340 
     | 
    
         | 
| 
       424 
     | 
    
         
            -
                    # The tuple is (conv_state, ssm_state)
         
     | 
| 
       425 
     | 
    
         
            -
                    self.kv_cache = (torch.tensor([]), torch.tensor([]))
         
     | 
| 
       426 
     | 
    
         
            -
             
     | 
| 
       427 
     | 
    
         
            -
                    self.model_config = model_config
         
     | 
| 
       428 
341 
     | 
    
         
             
                    self.prefix = prefix
         
     | 
| 
       429 
342 
     | 
    
         | 
| 
       430 
     | 
    
         
            -
                def forward_native(
         
     | 
| 
       431 
     | 
    
         
            -
                    self,
         
     | 
| 
       432 
     | 
    
         
            -
                    hidden_states: torch.Tensor,
         
     | 
| 
       433 
     | 
    
         
            -
                    output: torch.Tensor,
         
     | 
| 
       434 
     | 
    
         
            -
                    mup_vector: Optional[torch.Tensor] = None,
         
     | 
| 
       435 
     | 
    
         
            -
                ):
         
     | 
| 
       436 
     | 
    
         
            -
                    pass
         
     | 
| 
       437 
     | 
    
         
            -
             
     | 
| 
       438 
343 
     | 
    
         
             
                def forward(
         
     | 
| 
       439 
344 
     | 
    
         
             
                    self,
         
     | 
| 
      
 345 
     | 
    
         
            +
                    *,
         
     | 
| 
       440 
346 
     | 
    
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 
       441 
347 
     | 
    
         
             
                    output: torch.Tensor,
         
     | 
| 
       442 
     | 
    
         
            -
                     
     | 
| 
      
 348 
     | 
    
         
            +
                    layer_cache: MambaPool.State,
         
     | 
| 
      
 349 
     | 
    
         
            +
                    metadata: Mamba2Metadata,
         
     | 
| 
       443 
350 
     | 
    
         
             
                    mup_vector: Optional[torch.Tensor] = None,
         
     | 
| 
      
 351 
     | 
    
         
            +
                    use_triton_causal_conv: bool = False,
         
     | 
| 
       444 
352 
     | 
    
         
             
                ):
         
     | 
| 
       445 
     | 
    
         
            -
                    #  
     | 
| 
       446 
     | 
    
         
            -
                     
     | 
| 
       447 
     | 
    
         
            -
                     
     | 
| 
       448 
     | 
    
         
            -
                     
     | 
| 
       449 
     | 
    
         
            -
                     
     | 
| 
       450 
     | 
    
         
            -
             
     | 
| 
       451 
     | 
    
         
            -
                     
     | 
| 
       452 
     | 
    
         
            -
                        self.layer_id
         
     | 
| 
       453 
     | 
    
         
            -
                    )
         
     | 
| 
      
 353 
     | 
    
         
            +
                    # metadata contains metadata necessary for the mamba2 triton
         
     | 
| 
      
 354 
     | 
    
         
            +
                    # kernels to operate in continuous batching and in chunked prefill
         
     | 
| 
      
 355 
     | 
    
         
            +
                    # modes; they are computed at top-level model forward since they
         
     | 
| 
      
 356 
     | 
    
         
            +
                    # stay the same and reused for all mamba layers in the same iteration
         
     | 
| 
      
 357 
     | 
    
         
            +
                    state_indices_tensor = metadata.mamba_cache_indices
         
     | 
| 
      
 358 
     | 
    
         
            +
                    conv_state = layer_cache.conv
         
     | 
| 
      
 359 
     | 
    
         
            +
                    ssm_state = layer_cache.temporal
         
     | 
| 
       454 
360 
     | 
    
         | 
| 
       455 
     | 
    
         
            -
                     
     | 
| 
       456 
     | 
    
         
            -
                        ssm_state.size(1) == self.ssm_state_size
         
     | 
| 
       457 
     | 
    
         
            -
                    ), f"dstate must be {self.ssm_state_size}, got {ssm_state.size(1)}"
         
     | 
| 
       458 
     | 
    
         
            -
             
     | 
| 
       459 
     | 
    
         
            -
                    query_start_loc = attn_metadata.query_start_loc
         
     | 
| 
       460 
     | 
    
         
            -
             
     | 
| 
       461 
     | 
    
         
            -
                    chunk_size = self.chunk_size
         
     | 
| 
       462 
     | 
    
         
            -
             
     | 
| 
       463 
     | 
    
         
            -
                    # TODO: properly support this
         
     | 
| 
       464 
     | 
    
         
            -
                    prep_initial_states = False
         
     | 
| 
      
 361 
     | 
    
         
            +
                    query_start_loc = metadata.query_start_loc
         
     | 
| 
       465 
362 
     | 
    
         | 
| 
       466 
363 
     | 
    
         
             
                    # 1. Gated MLP's linear projection
         
     | 
| 
       467 
364 
     | 
    
         
             
                    projected_states, _ = self.in_proj(hidden_states)
         
     | 
| 
         @@ -493,6 +390,38 @@ class MambaMixer2(torch.nn.Module): 
     | 
|
| 
       493 
390 
     | 
    
         
             
                        dim=-1,
         
     | 
| 
       494 
391 
     | 
    
         
             
                    )
         
     | 
| 
       495 
392 
     | 
    
         | 
| 
      
 393 
     | 
    
         
            +
                    num_prefills = metadata.num_prefills  # request count
         
     | 
| 
      
 394 
     | 
    
         
            +
                    num_decodes = metadata.num_decodes  # token count (=request)
         
     | 
| 
      
 395 
     | 
    
         
            +
                    num_prefill_tokens = metadata.num_prefill_tokens  # token count
         
     | 
| 
      
 396 
     | 
    
         
            +
                    has_prefill = num_prefills > 0
         
     | 
| 
      
 397 
     | 
    
         
            +
                    has_decode = num_decodes > 0
         
     | 
| 
      
 398 
     | 
    
         
            +
                    num_actual_tokens = num_prefill_tokens + num_decodes
         
     | 
| 
      
 399 
     | 
    
         
            +
                    assert num_actual_tokens == projected_states.shape[0]
         
     | 
| 
      
 400 
     | 
    
         
            +
             
     | 
| 
      
 401 
     | 
    
         
            +
                    # NOTE: V0 put prefill before decode
         
     | 
| 
      
 402 
     | 
    
         
            +
                    # Separate prefill and decode by splitting varlen input
         
     | 
| 
      
 403 
     | 
    
         
            +
                    # Split along token dimension
         
     | 
| 
      
 404 
     | 
    
         
            +
                    hidden_states_B_C_p, hidden_states_B_C_d = torch.split(
         
     | 
| 
      
 405 
     | 
    
         
            +
                        hidden_states_B_C,
         
     | 
| 
      
 406 
     | 
    
         
            +
                        [num_prefill_tokens, num_decodes],
         
     | 
| 
      
 407 
     | 
    
         
            +
                        dim=0,
         
     | 
| 
      
 408 
     | 
    
         
            +
                    )
         
     | 
| 
      
 409 
     | 
    
         
            +
                    dt_p, dt_d = torch.split(
         
     | 
| 
      
 410 
     | 
    
         
            +
                        dt,
         
     | 
| 
      
 411 
     | 
    
         
            +
                        [num_prefill_tokens, num_decodes],
         
     | 
| 
      
 412 
     | 
    
         
            +
                        dim=0,
         
     | 
| 
      
 413 
     | 
    
         
            +
                    )
         
     | 
| 
      
 414 
     | 
    
         
            +
                    # Split along batch dimension
         
     | 
| 
      
 415 
     | 
    
         
            +
                    state_indices_tensor_p, state_indices_tensor_d = torch.split(
         
     | 
| 
      
 416 
     | 
    
         
            +
                        state_indices_tensor,
         
     | 
| 
      
 417 
     | 
    
         
            +
                        [num_prefills, num_decodes],
         
     | 
| 
      
 418 
     | 
    
         
            +
                        dim=0,
         
     | 
| 
      
 419 
     | 
    
         
            +
                    )
         
     | 
| 
      
 420 
     | 
    
         
            +
                    query_start_loc_p = query_start_loc[: num_prefills + 1] if has_prefill else None
         
     | 
| 
      
 421 
     | 
    
         
            +
             
     | 
| 
      
 422 
     | 
    
         
            +
                    # Preallocate output tensor to avoid memcpy cost for merging prefill
         
     | 
| 
      
 423 
     | 
    
         
            +
                    # and decode outputs
         
     | 
| 
      
 424 
     | 
    
         
            +
             
     | 
| 
       496 
425 
     | 
    
         
             
                    preallocated_ssm_out = torch.empty(
         
     | 
| 
       497 
426 
     | 
    
         
             
                        [
         
     | 
| 
       498 
427 
     | 
    
         
             
                            projected_states.shape[0],
         
     | 
| 
         @@ -501,128 +430,147 @@ class MambaMixer2(torch.nn.Module): 
     | 
|
| 
       501 
430 
     | 
    
         
             
                        dtype=hidden_states.dtype,
         
     | 
| 
       502 
431 
     | 
    
         
             
                        device=hidden_states.device,
         
     | 
| 
       503 
432 
     | 
    
         
             
                    )
         
     | 
| 
      
 433 
     | 
    
         
            +
                    preallocated_ssm_out_p, preallocated_ssm_out_d = torch.split(
         
     | 
| 
      
 434 
     | 
    
         
            +
                        preallocated_ssm_out,
         
     | 
| 
      
 435 
     | 
    
         
            +
                        [num_prefill_tokens, num_decodes],
         
     | 
| 
      
 436 
     | 
    
         
            +
                        dim=0,
         
     | 
| 
      
 437 
     | 
    
         
            +
                    )
         
     | 
| 
       504 
438 
     | 
    
         | 
| 
       505 
439 
     | 
    
         
             
                    # Process prefill requests
         
     | 
| 
       506 
     | 
    
         
            -
                    if  
     | 
| 
      
 440 
     | 
    
         
            +
                    if has_prefill:
         
     | 
| 
      
 441 
     | 
    
         
            +
                        mixed_metadata = metadata.mixed_metadata
         
     | 
| 
      
 442 
     | 
    
         
            +
                        assert mixed_metadata is not None
         
     | 
| 
       507 
443 
     | 
    
         
             
                        # 2. Convolution sequence transformation
         
     | 
| 
       508 
444 
     | 
    
         
             
                        # - "cache_indices" updates the conv_state cache in positions
         
     | 
| 
       509 
445 
     | 
    
         
             
                        #   pointed to by "state_indices_tensor"
         
     | 
| 
       510 
     | 
    
         
            -
                         
     | 
| 
       511 
     | 
    
         
            -
                         
     | 
| 
       512 
     | 
    
         
            -
                        cache_indices =  
     | 
| 
       513 
     | 
    
         
            -
             
     | 
| 
       514 
     | 
    
         
            -
                        x = hidden_states_B_C.transpose(
         
     | 
| 
      
 446 
     | 
    
         
            +
                        has_initial_states_p = mixed_metadata.has_initial_states
         
     | 
| 
      
 447 
     | 
    
         
            +
                        prep_initial_states = mixed_metadata.prep_initial_states
         
     | 
| 
      
 448 
     | 
    
         
            +
                        cache_indices = state_indices_tensor_p
         
     | 
| 
      
 449 
     | 
    
         
            +
                        x = hidden_states_B_C_p.transpose(
         
     | 
| 
       515 
450 
     | 
    
         
             
                            0, 1
         
     | 
| 
       516 
451 
     | 
    
         
             
                        )  # this is the form that causal-conv see
         
     | 
| 
       517 
     | 
    
         
            -
                         
     | 
| 
      
 452 
     | 
    
         
            +
                        ccfn = (
         
     | 
| 
      
 453 
     | 
    
         
            +
                            causal_conv1d_fn
         
     | 
| 
      
 454 
     | 
    
         
            +
                            if not use_triton_causal_conv
         
     | 
| 
      
 455 
     | 
    
         
            +
                            else causal_conv1d_fn_triton
         
     | 
| 
      
 456 
     | 
    
         
            +
                        )
         
     | 
| 
      
 457 
     | 
    
         
            +
                        hidden_states_B_C_p = ccfn(
         
     | 
| 
       518 
458 
     | 
    
         
             
                            x,
         
     | 
| 
       519 
459 
     | 
    
         
             
                            conv_weights,
         
     | 
| 
       520 
460 
     | 
    
         
             
                            self.conv1d.bias,
         
     | 
| 
       521 
461 
     | 
    
         
             
                            activation=self.activation,
         
     | 
| 
       522 
462 
     | 
    
         
             
                            conv_states=conv_state,
         
     | 
| 
       523 
     | 
    
         
            -
                            has_initial_state= 
     | 
| 
      
 463 
     | 
    
         
            +
                            has_initial_state=has_initial_states_p,
         
     | 
| 
       524 
464 
     | 
    
         
             
                            cache_indices=cache_indices,
         
     | 
| 
       525 
     | 
    
         
            -
                            query_start_loc= 
     | 
| 
       526 
     | 
    
         
            -
                            seq_lens_cpu= 
     | 
| 
       527 
     | 
    
         
            -
                        ).transpose(0, 1)
         
     | 
| 
      
 465 
     | 
    
         
            +
                            query_start_loc=query_start_loc_p,
         
     | 
| 
      
 466 
     | 
    
         
            +
                            seq_lens_cpu=mixed_metadata.extend_seq_lens_cpu,
         
     | 
| 
      
 467 
     | 
    
         
            +
                        ).transpose(0, 1)[:num_prefill_tokens]
         
     | 
| 
       528 
468 
     | 
    
         | 
| 
       529 
     | 
    
         
            -
                         
     | 
| 
      
 469 
     | 
    
         
            +
                        hidden_states_p, B_p, C_p = split_hidden_states_B_C_fn(hidden_states_B_C_p)
         
     | 
| 
       530 
470 
     | 
    
         | 
| 
       531 
471 
     | 
    
         
             
                        # 3. State Space Model sequence transformation
         
     | 
| 
       532 
472 
     | 
    
         
             
                        initial_states = None
         
     | 
| 
       533 
     | 
    
         
            -
             
     | 
| 
       534 
     | 
    
         
            -
                        if has_initial_states is not None and prep_initial_states:
         
     | 
| 
      
 473 
     | 
    
         
            +
                        if has_initial_states_p is not None and prep_initial_states:
         
     | 
| 
       535 
474 
     | 
    
         
             
                            initial_states = torch.where(
         
     | 
| 
       536 
     | 
    
         
            -
                                 
     | 
| 
       537 
     | 
    
         
            -
                                ssm_state[ 
     | 
| 
      
 475 
     | 
    
         
            +
                                has_initial_states_p[:, None, None, None],
         
     | 
| 
      
 476 
     | 
    
         
            +
                                ssm_state[state_indices_tensor_p],
         
     | 
| 
       538 
477 
     | 
    
         
             
                                0,
         
     | 
| 
       539 
478 
     | 
    
         
             
                            )
         
     | 
| 
       540 
479 
     | 
    
         | 
| 
       541 
480 
     | 
    
         
             
                        # NOTE: final output is an in-place update of out tensor
         
     | 
| 
       542 
481 
     | 
    
         
             
                        varlen_state = mamba_chunk_scan_combined(
         
     | 
| 
       543 
     | 
    
         
            -
                             
     | 
| 
      
 482 
     | 
    
         
            +
                            hidden_states_p.view(
         
     | 
| 
       544 
483 
     | 
    
         
             
                                1, num_prefill_tokens, self.num_heads // self.tp_size, self.head_dim
         
     | 
| 
       545 
484 
     | 
    
         
             
                            ),
         
     | 
| 
       546 
     | 
    
         
            -
                             
     | 
| 
      
 485 
     | 
    
         
            +
                            dt_p.unsqueeze(0),
         
     | 
| 
       547 
486 
     | 
    
         
             
                            self.A,
         
     | 
| 
       548 
     | 
    
         
            -
                             
     | 
| 
       549 
     | 
    
         
            -
                             
     | 
| 
       550 
     | 
    
         
            -
                            chunk_size=chunk_size,
         
     | 
| 
      
 487 
     | 
    
         
            +
                            B_p.view(1, num_prefill_tokens, self.n_groups // self.tp_size, -1),
         
     | 
| 
      
 488 
     | 
    
         
            +
                            C_p.view(1, num_prefill_tokens, self.n_groups // self.tp_size, -1),
         
     | 
| 
      
 489 
     | 
    
         
            +
                            chunk_size=mixed_metadata.chunk_size,
         
     | 
| 
       551 
490 
     | 
    
         
             
                            D=self.D,
         
     | 
| 
       552 
491 
     | 
    
         
             
                            z=None,
         
     | 
| 
       553 
492 
     | 
    
         
             
                            dt_bias=self.dt_bias,
         
     | 
| 
       554 
     | 
    
         
            -
                             
     | 
| 
      
 493 
     | 
    
         
            +
                            seq_idx=mixed_metadata.seq_idx,
         
     | 
| 
      
 494 
     | 
    
         
            +
                            chunk_indices=mixed_metadata.chunk_indices,
         
     | 
| 
      
 495 
     | 
    
         
            +
                            chunk_offsets=mixed_metadata.chunk_offsets,
         
     | 
| 
      
 496 
     | 
    
         
            +
                            cu_seqlens=query_start_loc_p,
         
     | 
| 
       555 
497 
     | 
    
         
             
                            initial_states=initial_states,
         
     | 
| 
       556 
498 
     | 
    
         
             
                            return_varlen_states=True,
         
     | 
| 
       557 
499 
     | 
    
         
             
                            return_final_states=False,
         
     | 
| 
       558 
500 
     | 
    
         
             
                            dt_softplus=True,
         
     | 
| 
       559 
501 
     | 
    
         
             
                            dt_limit=(0.0, float("inf")),
         
     | 
| 
       560 
     | 
    
         
            -
                            out= 
     | 
| 
      
 502 
     | 
    
         
            +
                            out=preallocated_ssm_out_p.view(
         
     | 
| 
      
 503 
     | 
    
         
            +
                                1, num_prefill_tokens, -1, self.head_dim
         
     | 
| 
      
 504 
     | 
    
         
            +
                            ),
         
     | 
| 
       561 
505 
     | 
    
         
             
                            state_dtype=ssm_state.dtype,
         
     | 
| 
       562 
506 
     | 
    
         
             
                        )
         
     | 
| 
       563 
507 
     | 
    
         | 
| 
       564 
508 
     | 
    
         
             
                        # update ssm states
         
     | 
| 
       565 
509 
     | 
    
         
             
                        # - varlen state is a (num_prefills, nheads, headdim, dstate) tensor
         
     | 
| 
       566 
     | 
    
         
            -
                        ssm_state[ 
     | 
| 
       567 
     | 
    
         
            -
             
     | 
| 
       568 
     | 
    
         
            -
             
     | 
| 
      
 510 
     | 
    
         
            +
                        ssm_state[state_indices_tensor_p] = varlen_state
         
     | 
| 
      
 511 
     | 
    
         
            +
             
     | 
| 
      
 512 
     | 
    
         
            +
                    # Process decode requests
         
     | 
| 
      
 513 
     | 
    
         
            +
                    if has_decode:
         
     | 
| 
       569 
514 
     | 
    
         
             
                        # 2. Convolution sequence transformation
         
     | 
| 
       570 
     | 
    
         
            -
                         
     | 
| 
       571 
     | 
    
         
            -
                             
     | 
| 
      
 515 
     | 
    
         
            +
                        ccu = (
         
     | 
| 
      
 516 
     | 
    
         
            +
                            causal_conv1d_update
         
     | 
| 
      
 517 
     | 
    
         
            +
                            if not use_triton_causal_conv
         
     | 
| 
      
 518 
     | 
    
         
            +
                            else causal_conv1d_update_triton
         
     | 
| 
      
 519 
     | 
    
         
            +
                        )
         
     | 
| 
      
 520 
     | 
    
         
            +
                        hidden_states_B_C_d = ccu(
         
     | 
| 
      
 521 
     | 
    
         
            +
                            hidden_states_B_C_d,
         
     | 
| 
       572 
522 
     | 
    
         
             
                            conv_state,
         
     | 
| 
       573 
523 
     | 
    
         
             
                            conv_weights,
         
     | 
| 
       574 
524 
     | 
    
         
             
                            self.conv1d.bias,
         
     | 
| 
       575 
525 
     | 
    
         
             
                            self.activation,
         
     | 
| 
       576 
     | 
    
         
            -
                            conv_state_indices= 
     | 
| 
      
 526 
     | 
    
         
            +
                            conv_state_indices=state_indices_tensor_d,
         
     | 
| 
       577 
527 
     | 
    
         
             
                        )
         
     | 
| 
       578 
528 
     | 
    
         | 
| 
       579 
     | 
    
         
            -
                         
     | 
| 
      
 529 
     | 
    
         
            +
                        hidden_states_d, B_d, C_d = split_hidden_states_B_C_fn(hidden_states_B_C_d)
         
     | 
| 
       580 
530 
     | 
    
         | 
| 
       581 
531 
     | 
    
         
             
                        # 3. State Space Model sequence transformation
         
     | 
| 
       582 
532 
     | 
    
         
             
                        n_groups = self.n_groups // self.tp_size
         
     | 
| 
       583 
     | 
    
         
            -
                         
     | 
| 
      
 533 
     | 
    
         
            +
                        A_d = (
         
     | 
| 
       584 
534 
     | 
    
         
             
                            self.A[:, None, ...][:, :, None]
         
     | 
| 
       585 
535 
     | 
    
         
             
                            .expand(-1, self.head_dim, self.ssm_state_size)
         
     | 
| 
       586 
536 
     | 
    
         
             
                            .to(dtype=torch.float32)
         
     | 
| 
       587 
537 
     | 
    
         
             
                        )
         
     | 
| 
       588 
     | 
    
         
            -
                         
     | 
| 
      
 538 
     | 
    
         
            +
                        dt_d = dt_d[:, :, None].expand(-1, -1, self.head_dim)
         
     | 
| 
       589 
539 
     | 
    
         
             
                        dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
         
     | 
| 
       590 
     | 
    
         
            -
                         
     | 
| 
       591 
     | 
    
         
            -
                         
     | 
| 
       592 
     | 
    
         
            -
                         
     | 
| 
       593 
     | 
    
         
            -
                         
     | 
| 
      
 540 
     | 
    
         
            +
                        D_d = self.D[:, None, ...].expand(-1, self.head_dim)
         
     | 
| 
      
 541 
     | 
    
         
            +
                        B_d = B_d.view(-1, n_groups, B_d.shape[1] // n_groups)
         
     | 
| 
      
 542 
     | 
    
         
            +
                        C_d = C_d.view(-1, n_groups, C_d.shape[1] // n_groups)
         
     | 
| 
      
 543 
     | 
    
         
            +
                        hidden_states_d = hidden_states_d.view(
         
     | 
| 
       594 
544 
     | 
    
         
             
                            -1, self.num_heads // self.tp_size, self.head_dim
         
     | 
| 
       595 
545 
     | 
    
         
             
                        )
         
     | 
| 
       596 
546 
     | 
    
         | 
| 
       597 
547 
     | 
    
         
             
                        # - the hidden is reshaped into (bs, num_heads, head_dim)
         
     | 
| 
       598 
     | 
    
         
            -
                        # -  
     | 
| 
      
 548 
     | 
    
         
            +
                        # - layer_state.ssm_state's slots will be selected
         
     | 
| 
       599 
549 
     | 
    
         
             
                        #   using state_indices_tensor_d
         
     | 
| 
       600 
550 
     | 
    
         
             
                        # NOTE: final output is an in-place update of out tensor
         
     | 
| 
       601 
551 
     | 
    
         
             
                        selective_state_update(
         
     | 
| 
       602 
     | 
    
         
            -
                            ssm_state 
     | 
| 
       603 
     | 
    
         
            -
                             
     | 
| 
       604 
     | 
    
         
            -
                             
     | 
| 
       605 
     | 
    
         
            -
                             
     | 
| 
       606 
     | 
    
         
            -
                             
     | 
| 
       607 
     | 
    
         
            -
                             
     | 
| 
       608 
     | 
    
         
            -
                             
     | 
| 
      
 552 
     | 
    
         
            +
                            ssm_state,
         
     | 
| 
      
 553 
     | 
    
         
            +
                            hidden_states_d,
         
     | 
| 
      
 554 
     | 
    
         
            +
                            dt_d,
         
     | 
| 
      
 555 
     | 
    
         
            +
                            A_d,
         
     | 
| 
      
 556 
     | 
    
         
            +
                            B_d,
         
     | 
| 
      
 557 
     | 
    
         
            +
                            C_d,
         
     | 
| 
      
 558 
     | 
    
         
            +
                            D_d,
         
     | 
| 
       609 
559 
     | 
    
         
             
                            z=None,
         
     | 
| 
       610 
560 
     | 
    
         
             
                            dt_bias=dt_bias,
         
     | 
| 
       611 
561 
     | 
    
         
             
                            dt_softplus=True,
         
     | 
| 
       612 
     | 
    
         
            -
                            state_batch_indices= 
     | 
| 
       613 
     | 
    
         
            -
                            out= 
     | 
| 
      
 562 
     | 
    
         
            +
                            state_batch_indices=state_indices_tensor_d,
         
     | 
| 
      
 563 
     | 
    
         
            +
                            out=preallocated_ssm_out_d.view(num_decodes, -1, self.head_dim),
         
     | 
| 
       614 
564 
     | 
    
         
             
                        )
         
     | 
| 
       615 
     | 
    
         
            -
                    elif forward_batch.forward_mode.is_idle():
         
     | 
| 
       616 
     | 
    
         
            -
                        preallocated_ssm_out = preallocated_ssm_out
         
     | 
| 
       617 
565 
     | 
    
         | 
| 
       618 
566 
     | 
    
         
             
                    # 4. gated MLP
         
     | 
| 
       619 
567 
     | 
    
         
             
                    # GatedRMSNorm internally applying SiLU to the gate
         
     | 
| 
       620 
568 
     | 
    
         
             
                    # SiLU is applied internally before normalization, unlike standard
         
     | 
| 
       621 
569 
     | 
    
         
             
                    # norm usage
         
     | 
| 
       622 
     | 
    
         
            -
                    hidden_states = self.norm(preallocated_ssm_out, gate)
         
     | 
| 
      
 570 
     | 
    
         
            +
                    hidden_states = self.norm(preallocated_ssm_out, gate[:num_actual_tokens])
         
     | 
| 
       623 
571 
     | 
    
         | 
| 
       624 
572 
     | 
    
         
             
                    # 5. Final linear projection
         
     | 
| 
       625 
     | 
    
         
            -
                    output[:], _ = self.out_proj(hidden_states)
         
     | 
| 
      
 573 
     | 
    
         
            +
                    output[:num_actual_tokens], _ = self.out_proj(hidden_states)
         
     | 
| 
       626 
574 
     | 
    
         | 
| 
       627 
575 
     | 
    
         
             
                @property
         
     | 
| 
       628 
576 
     | 
    
         
             
                def mamba_type(self) -> str:
         
     |