sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,211 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Copyright 2025 SGLang Team
         
     | 
| 
      
 2 
     | 
    
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 
      
 3 
     | 
    
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 
      
 4 
     | 
    
         
            +
            # You may obtain a copy of the License at
         
     | 
| 
      
 5 
     | 
    
         
            +
            #
         
     | 
| 
      
 6 
     | 
    
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 
      
 7 
     | 
    
         
            +
            #
         
     | 
| 
      
 8 
     | 
    
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 
      
 9 
     | 
    
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 
      
 10 
     | 
    
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 
      
 11 
     | 
    
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 
      
 12 
     | 
    
         
            +
            # limitations under the License.
         
     | 
| 
      
 13 
     | 
    
         
            +
            # ==============================================================================
         
     | 
| 
      
 14 
     | 
    
         
            +
            # Adapted from https://github.com/vllm-project/vllm/blob/2c58742dff8613a3bd7496f2008ce927e18d38d1/vllm/model_executor/layers/mamba/mamba2_metadata.py
         
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
             
     | 
| 
      
 17 
     | 
    
         
            +
            import math
         
     | 
| 
      
 18 
     | 
    
         
            +
            from dataclasses import dataclass
         
     | 
| 
      
 19 
     | 
    
         
            +
             
     | 
| 
      
 20 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 21 
     | 
    
         
            +
             
     | 
| 
      
 22 
     | 
    
         
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
      
 23 
     | 
    
         
            +
             
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
            @dataclass(kw_only=True)
         
     | 
| 
      
 26 
     | 
    
         
            +
            class ForwardMetadata:
         
     | 
| 
      
 27 
     | 
    
         
            +
                query_start_loc: torch.Tensor
         
     | 
| 
      
 28 
     | 
    
         
            +
                mamba_cache_indices: torch.Tensor
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
             
     | 
| 
      
 31 
     | 
    
         
            +
            @dataclass(kw_only=True)
         
     | 
| 
      
 32 
     | 
    
         
            +
            class Mamba2Metadata(ForwardMetadata):
         
     | 
| 
      
 33 
     | 
    
         
            +
                """stable metadata across all mamba2 layers in the forward pass"""
         
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
                num_prefills: int
         
     | 
| 
      
 36 
     | 
    
         
            +
                num_prefill_tokens: int
         
     | 
| 
      
 37 
     | 
    
         
            +
                num_decodes: int
         
     | 
| 
      
 38 
     | 
    
         
            +
             
     | 
| 
      
 39 
     | 
    
         
            +
                @dataclass(kw_only=True, frozen=True)
         
     | 
| 
      
 40 
     | 
    
         
            +
                class MixedMetadata:
         
     | 
| 
      
 41 
     | 
    
         
            +
                    has_initial_states: torch.Tensor
         
     | 
| 
      
 42 
     | 
    
         
            +
                    prep_initial_states: bool
         
     | 
| 
      
 43 
     | 
    
         
            +
             
     | 
| 
      
 44 
     | 
    
         
            +
                    chunk_size: int
         
     | 
| 
      
 45 
     | 
    
         
            +
                    seq_idx: torch.Tensor
         
     | 
| 
      
 46 
     | 
    
         
            +
                    chunk_indices: torch.Tensor
         
     | 
| 
      
 47 
     | 
    
         
            +
                    chunk_offsets: torch.Tensor
         
     | 
| 
      
 48 
     | 
    
         
            +
             
     | 
| 
      
 49 
     | 
    
         
            +
                    extend_seq_lens_cpu: list[int]
         
     | 
| 
      
 50 
     | 
    
         
            +
             
     | 
| 
      
 51 
     | 
    
         
            +
                mixed_metadata: MixedMetadata | None = None
         
     | 
| 
      
 52 
     | 
    
         
            +
                """`mixed_metadata` is used for extend/mixed requests"""
         
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 55 
     | 
    
         
            +
                def _query_start_loc_to_chunk_indices_offsets(
         
     | 
| 
      
 56 
     | 
    
         
            +
                    query_start_loc: torch.Tensor, chunk_size: int, total_seqlens: int
         
     | 
| 
      
 57 
     | 
    
         
            +
                ) -> tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
      
 58 
     | 
    
         
            +
                    """
         
     | 
| 
      
 59 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 60 
     | 
    
         
            +
                        query_start_loc (torch.Tensor): 1D tensor of cumulative sequence
         
     | 
| 
      
 61 
     | 
    
         
            +
                            lengths, shape (num_seqs + 1,).
         
     | 
| 
      
 62 
     | 
    
         
            +
                            The first element should be 0. Each entry represents the starting
         
     | 
| 
      
 63 
     | 
    
         
            +
                            index of a sequence in the flattened token array.
         
     | 
| 
      
 64 
     | 
    
         
            +
                        chunk_size (int): The size of each physical mamba chunk
         
     | 
| 
      
 65 
     | 
    
         
            +
                            (number of tokens per chunk).
         
     | 
| 
      
 66 
     | 
    
         
            +
                        total_seqlens (int): The total number of tokens in the batch.
         
     | 
| 
      
 67 
     | 
    
         
            +
             
     | 
| 
      
 68 
     | 
    
         
            +
                    Returns:
         
     | 
| 
      
 69 
     | 
    
         
            +
                        Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
         
     | 
| 
      
 70 
     | 
    
         
            +
                            - chunk_indices (torch.Tensor): 1D tensor of indices
         
     | 
| 
      
 71 
     | 
    
         
            +
                                indicating the physical chunk for each logical chunk.
         
     | 
| 
      
 72 
     | 
    
         
            +
                            - chunk_offsets (torch.Tensor): 1D tensor of offsets
         
     | 
| 
      
 73 
     | 
    
         
            +
                                indicating the starting index of each logical chunk within
         
     | 
| 
      
 74 
     | 
    
         
            +
                                its physical chunk.
         
     | 
| 
      
 75 
     | 
    
         
            +
             
     | 
| 
      
 76 
     | 
    
         
            +
                    This function computes the chunk indices and offsets for the given
         
     | 
| 
      
 77 
     | 
    
         
            +
                    query_start_loc and chunk_size. Both are tensors of integers with length N,
         
     | 
| 
      
 78 
     | 
    
         
            +
                    where N is the number of logical (pseudo) chunks.
         
     | 
| 
      
 79 
     | 
    
         
            +
                    A logical chunk is a sequence of tokens that are all part of the same
         
     | 
| 
      
 80 
     | 
    
         
            +
                    sequence and are all in the same physical mamba chunk.
         
     | 
| 
      
 81 
     | 
    
         
            +
                    In other words, a logical chunk changes every time we cross a sequence
         
     | 
| 
      
 82 
     | 
    
         
            +
                    boundary or a physical mamba chunk boundary.
         
     | 
| 
      
 83 
     | 
    
         
            +
                    Logical chunks are needed to handle batched requests with initial states
         
     | 
| 
      
 84 
     | 
    
         
            +
                    (see _state_passing_fwd and _chunk_scan_fwd).
         
     | 
| 
      
 85 
     | 
    
         
            +
                    The chunk_indices tensor contains the index of the physical chunk for each
         
     | 
| 
      
 86 
     | 
    
         
            +
                    logical chunk.
         
     | 
| 
      
 87 
     | 
    
         
            +
                    The chunk_offsets tensor contains the offset (AKA starting index) of the
         
     | 
| 
      
 88 
     | 
    
         
            +
                    logical chunk in the physical chunk.
         
     | 
| 
      
 89 
     | 
    
         
            +
             
     | 
| 
      
 90 
     | 
    
         
            +
                    Example:
         
     | 
| 
      
 91 
     | 
    
         
            +
                    query_start_loc = [0, 5, 10]
         
     | 
| 
      
 92 
     | 
    
         
            +
                    chunk_size = 8
         
     | 
| 
      
 93 
     | 
    
         
            +
                    total_seqlens = 10
         
     | 
| 
      
 94 
     | 
    
         
            +
                    -> chunk_indices = [0, 0, 1]
         
     | 
| 
      
 95 
     | 
    
         
            +
                    -> chunk_offsets = [0, 5, 0]
         
     | 
| 
      
 96 
     | 
    
         
            +
             
     | 
| 
      
 97 
     | 
    
         
            +
                    In this example, we have 2 sequences, each with 5 tokens. The physical
         
     | 
| 
      
 98 
     | 
    
         
            +
                    chunk size is 8 tokens.
         
     | 
| 
      
 99 
     | 
    
         
            +
                    We have three logical chunks:
         
     | 
| 
      
 100 
     | 
    
         
            +
                    - the first logical chunk starts at token 0 in the first physical chunk
         
     | 
| 
      
 101 
     | 
    
         
            +
                        and contains all 5 tokens from the first sequence
         
     | 
| 
      
 102 
     | 
    
         
            +
                    - the second logical chunk starts at token 5 in the first physical chunk
         
     | 
| 
      
 103 
     | 
    
         
            +
                        and contains first 3 tokens from the second sequence
         
     | 
| 
      
 104 
     | 
    
         
            +
                    - the third logical chunk starts at token 0 in the second physical chunk
         
     | 
| 
      
 105 
     | 
    
         
            +
                        and contains the remaining 2 tokens from the second sequence
         
     | 
| 
      
 106 
     | 
    
         
            +
                    """
         
     | 
| 
      
 107 
     | 
    
         
            +
             
     | 
| 
      
 108 
     | 
    
         
            +
                    cu_seqlens = query_start_loc[1:]  # remove prepended 0
         
     | 
| 
      
 109 
     | 
    
         
            +
             
     | 
| 
      
 110 
     | 
    
         
            +
                    # outputs will have length expansion of chunks that do not divide
         
     | 
| 
      
 111 
     | 
    
         
            +
                    # chunk_size
         
     | 
| 
      
 112 
     | 
    
         
            +
                    N = (
         
     | 
| 
      
 113 
     | 
    
         
            +
                        math.ceil(total_seqlens / chunk_size)
         
     | 
| 
      
 114 
     | 
    
         
            +
                        + (cu_seqlens[:-1] % chunk_size > 0).sum()
         
     | 
| 
      
 115 
     | 
    
         
            +
                    )
         
     | 
| 
      
 116 
     | 
    
         
            +
                    chunk_indices = torch.arange(N, dtype=torch.int, device=query_start_loc.device)
         
     | 
| 
      
 117 
     | 
    
         
            +
                    chunk_offsets = torch.zeros(
         
     | 
| 
      
 118 
     | 
    
         
            +
                        (N,), dtype=torch.int, device=query_start_loc.device
         
     | 
| 
      
 119 
     | 
    
         
            +
                    )
         
     | 
| 
      
 120 
     | 
    
         
            +
             
     | 
| 
      
 121 
     | 
    
         
            +
                    p = 0  # num of insertions
         
     | 
| 
      
 122 
     | 
    
         
            +
                    for s, e in zip(cu_seqlens[:-1], cu_seqlens[1:]):
         
     | 
| 
      
 123 
     | 
    
         
            +
             
     | 
| 
      
 124 
     | 
    
         
            +
                        # if does not divide chunk_size, then there is one chunk insertion
         
     | 
| 
      
 125 
     | 
    
         
            +
                        p += s % chunk_size > 0
         
     | 
| 
      
 126 
     | 
    
         
            +
             
     | 
| 
      
 127 
     | 
    
         
            +
                        # get the dimensions
         
     | 
| 
      
 128 
     | 
    
         
            +
                        # - the + 1 for _e is to shift the boundary by one chunk
         
     | 
| 
      
 129 
     | 
    
         
            +
                        # - this shifting is not needed if chunk_size divides e
         
     | 
| 
      
 130 
     | 
    
         
            +
                        _s, _e = s // chunk_size + p, e // chunk_size + p + (e % chunk_size > 0)
         
     | 
| 
      
 131 
     | 
    
         
            +
             
     | 
| 
      
 132 
     | 
    
         
            +
                        # adjust indices and offsets
         
     | 
| 
      
 133 
     | 
    
         
            +
                        chunk_indices[_s:_e] -= p
         
     | 
| 
      
 134 
     | 
    
         
            +
                        chunk_offsets[_s] = s % chunk_size
         
     | 
| 
      
 135 
     | 
    
         
            +
             
     | 
| 
      
 136 
     | 
    
         
            +
                    return chunk_indices, chunk_offsets
         
     | 
| 
      
 137 
     | 
    
         
            +
             
     | 
| 
      
 138 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 139 
     | 
    
         
            +
                def prepare_decode(
         
     | 
| 
      
 140 
     | 
    
         
            +
                    query_start_loc: torch.Tensor,
         
     | 
| 
      
 141 
     | 
    
         
            +
                    mamba_cache_indices: torch.Tensor,
         
     | 
| 
      
 142 
     | 
    
         
            +
                    seq_lens: torch.Tensor,
         
     | 
| 
      
 143 
     | 
    
         
            +
                ) -> "Mamba2Metadata":
         
     | 
| 
      
 144 
     | 
    
         
            +
                    """This path is run during CUDA graph capture, i.e. decode only, so `num_prefills` is 0"""
         
     | 
| 
      
 145 
     | 
    
         
            +
                    return Mamba2Metadata(
         
     | 
| 
      
 146 
     | 
    
         
            +
                        query_start_loc=query_start_loc,
         
     | 
| 
      
 147 
     | 
    
         
            +
                        mamba_cache_indices=mamba_cache_indices,
         
     | 
| 
      
 148 
     | 
    
         
            +
                        num_decodes=len(seq_lens),
         
     | 
| 
      
 149 
     | 
    
         
            +
                        num_prefills=0,
         
     | 
| 
      
 150 
     | 
    
         
            +
                        num_prefill_tokens=0,
         
     | 
| 
      
 151 
     | 
    
         
            +
                    )
         
     | 
| 
      
 152 
     | 
    
         
            +
             
     | 
| 
      
 153 
     | 
    
         
            +
                @classmethod
         
     | 
| 
      
 154 
     | 
    
         
            +
                def prepare_mixed(
         
     | 
| 
      
 155 
     | 
    
         
            +
                    cls,
         
     | 
| 
      
 156 
     | 
    
         
            +
                    query_start_loc: torch.Tensor,
         
     | 
| 
      
 157 
     | 
    
         
            +
                    mamba_cache_indices: torch.Tensor,
         
     | 
| 
      
 158 
     | 
    
         
            +
                    chunk_size: int,
         
     | 
| 
      
 159 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 160 
     | 
    
         
            +
                ) -> "Mamba2Metadata":
         
     | 
| 
      
 161 
     | 
    
         
            +
                    """This path cannot run with CUDA graph, as it contains extend requests."""
         
     | 
| 
      
 162 
     | 
    
         
            +
                    if forward_batch.extend_num_tokens is None:
         
     | 
| 
      
 163 
     | 
    
         
            +
                        return cls.prepare_decode(
         
     | 
| 
      
 164 
     | 
    
         
            +
                            query_start_loc, mamba_cache_indices, forward_batch.seq_lens
         
     | 
| 
      
 165 
     | 
    
         
            +
                        )
         
     | 
| 
      
 166 
     | 
    
         
            +
                    num_prefills = len(forward_batch.extend_seq_lens)
         
     | 
| 
      
 167 
     | 
    
         
            +
                    num_prefill_tokens = forward_batch.extend_num_tokens
         
     | 
| 
      
 168 
     | 
    
         
            +
                    num_decodes = len(forward_batch.seq_lens) - num_prefills
         
     | 
| 
      
 169 
     | 
    
         
            +
                    context_lens_tensor = forward_batch.extend_prefix_lens
         
     | 
| 
      
 170 
     | 
    
         
            +
                    assert context_lens_tensor is not None
         
     | 
| 
      
 171 
     | 
    
         
            +
                    # precompute flag to avoid device syncs later
         
     | 
| 
      
 172 
     | 
    
         
            +
                    has_initial_states = context_lens_tensor > 0
         
     | 
| 
      
 173 
     | 
    
         
            +
                    prep_initial_states = torch.any(has_initial_states[:num_prefills]).item()
         
     | 
| 
      
 174 
     | 
    
         
            +
             
     | 
| 
      
 175 
     | 
    
         
            +
                    query_start_loc = query_start_loc[: num_prefills + 1]
         
     | 
| 
      
 176 
     | 
    
         
            +
                    seq_idx = torch.repeat_interleave(
         
     | 
| 
      
 177 
     | 
    
         
            +
                        torch.arange(
         
     | 
| 
      
 178 
     | 
    
         
            +
                            num_prefills, dtype=torch.int32, device=query_start_loc.device
         
     | 
| 
      
 179 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 180 
     | 
    
         
            +
                        query_start_loc.diff(),
         
     | 
| 
      
 181 
     | 
    
         
            +
                        output_size=num_prefill_tokens,
         
     | 
| 
      
 182 
     | 
    
         
            +
                    )
         
     | 
| 
      
 183 
     | 
    
         
            +
                    seq_idx.unsqueeze_(0)
         
     | 
| 
      
 184 
     | 
    
         
            +
             
     | 
| 
      
 185 
     | 
    
         
            +
                    # We compute metadata for chunked prefill once at the top level model
         
     | 
| 
      
 186 
     | 
    
         
            +
                    # forward and reuse them in mamba layers. If not needed, they will be
         
     | 
| 
      
 187 
     | 
    
         
            +
                    # ignored inside mamba kernels.
         
     | 
| 
      
 188 
     | 
    
         
            +
                    chunk_offsets, chunk_indices = None, None
         
     | 
| 
      
 189 
     | 
    
         
            +
                    if prep_initial_states:
         
     | 
| 
      
 190 
     | 
    
         
            +
                        chunk_indices, chunk_offsets = (
         
     | 
| 
      
 191 
     | 
    
         
            +
                            cls._query_start_loc_to_chunk_indices_offsets(
         
     | 
| 
      
 192 
     | 
    
         
            +
                                query_start_loc, chunk_size, num_prefill_tokens
         
     | 
| 
      
 193 
     | 
    
         
            +
                            )
         
     | 
| 
      
 194 
     | 
    
         
            +
                        )
         
     | 
| 
      
 195 
     | 
    
         
            +
             
     | 
| 
      
 196 
     | 
    
         
            +
                    return Mamba2Metadata(
         
     | 
| 
      
 197 
     | 
    
         
            +
                        query_start_loc=query_start_loc,
         
     | 
| 
      
 198 
     | 
    
         
            +
                        mamba_cache_indices=mamba_cache_indices,
         
     | 
| 
      
 199 
     | 
    
         
            +
                        num_prefills=num_prefills,
         
     | 
| 
      
 200 
     | 
    
         
            +
                        num_prefill_tokens=num_prefill_tokens,
         
     | 
| 
      
 201 
     | 
    
         
            +
                        num_decodes=num_decodes,
         
     | 
| 
      
 202 
     | 
    
         
            +
                        mixed_metadata=cls.MixedMetadata(
         
     | 
| 
      
 203 
     | 
    
         
            +
                            has_initial_states=has_initial_states,
         
     | 
| 
      
 204 
     | 
    
         
            +
                            prep_initial_states=prep_initial_states,
         
     | 
| 
      
 205 
     | 
    
         
            +
                            chunk_size=chunk_size,
         
     | 
| 
      
 206 
     | 
    
         
            +
                            seq_idx=seq_idx,
         
     | 
| 
      
 207 
     | 
    
         
            +
                            chunk_indices=chunk_indices,
         
     | 
| 
      
 208 
     | 
    
         
            +
                            chunk_offsets=chunk_offsets,
         
     | 
| 
      
 209 
     | 
    
         
            +
                            extend_seq_lens_cpu=forward_batch.extend_seq_lens_cpu,
         
     | 
| 
      
 210 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 211 
     | 
    
         
            +
                    )
         
     | 
| 
         @@ -0,0 +1,120 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from typing import Union
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            from sglang.srt.custom_op import CustomOp
         
     | 
| 
      
 6 
     | 
    
         
            +
            from sglang.srt.distributed.communication_op import (
         
     | 
| 
      
 7 
     | 
    
         
            +
                tensor_model_parallel_all_gather,
         
     | 
| 
      
 8 
     | 
    
         
            +
                tensor_model_parallel_all_reduce,
         
     | 
| 
      
 9 
     | 
    
         
            +
            )
         
     | 
| 
      
 10 
     | 
    
         
            +
            from sglang.srt.distributed.parallel_state import (
         
     | 
| 
      
 11 
     | 
    
         
            +
                get_tensor_model_parallel_rank,
         
     | 
| 
      
 12 
     | 
    
         
            +
                get_tensor_model_parallel_world_size,
         
     | 
| 
      
 13 
     | 
    
         
            +
            )
         
     | 
| 
      
 14 
     | 
    
         
            +
            from sglang.srt.layers.attention.fla.layernorm_gated import rms_norm_gated
         
     | 
| 
      
 15 
     | 
    
         
            +
            from sglang.srt.model_loader.weight_utils import sharded_weight_loader
         
     | 
| 
      
 16 
     | 
    
         
            +
            from sglang.srt.utils.common import set_weight_attrs
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
             
     | 
| 
      
 19 
     | 
    
         
            +
            class Mixer2RMSNormGated(CustomOp):
         
     | 
| 
      
 20 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 21 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 22 
     | 
    
         
            +
                    full_hidden_size: int,
         
     | 
| 
      
 23 
     | 
    
         
            +
                    full_n_groups: int,
         
     | 
| 
      
 24 
     | 
    
         
            +
                    use_rms_norm: bool = True,
         
     | 
| 
      
 25 
     | 
    
         
            +
                    eps: float = 1e-6,
         
     | 
| 
      
 26 
     | 
    
         
            +
                ):
         
     | 
| 
      
 27 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 28 
     | 
    
         
            +
                    self.tp_size = get_tensor_model_parallel_world_size()
         
     | 
| 
      
 29 
     | 
    
         
            +
                    self.tp_rank = get_tensor_model_parallel_rank()
         
     | 
| 
      
 30 
     | 
    
         
            +
                    self.full_hidden_size = full_hidden_size
         
     | 
| 
      
 31 
     | 
    
         
            +
                    self.group_size = full_hidden_size // full_n_groups
         
     | 
| 
      
 32 
     | 
    
         
            +
                    self.per_rank_hidden_size = full_hidden_size // self.tp_size
         
     | 
| 
      
 33 
     | 
    
         
            +
                    self.n_groups = full_hidden_size // self.group_size
         
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
                    self.variance_epsilon = eps
         
     | 
| 
      
 36 
     | 
    
         
            +
                    self.use_rms_norm = use_rms_norm
         
     | 
| 
      
 37 
     | 
    
         
            +
                    if self.use_rms_norm:
         
     | 
| 
      
 38 
     | 
    
         
            +
                        # Register norm weight only if we're actually applying RMSNorm
         
     | 
| 
      
 39 
     | 
    
         
            +
                        self.weight = torch.nn.Parameter(torch.ones(self.per_rank_hidden_size))
         
     | 
| 
      
 40 
     | 
    
         
            +
                        set_weight_attrs(self.weight, {"weight_loader": sharded_weight_loader(0)})
         
     | 
| 
      
 41 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 42 
     | 
    
         
            +
                        # Avoid checkpoint mismatch by skipping unused parameter
         
     | 
| 
      
 43 
     | 
    
         
            +
                        self.register_parameter("weight", None)
         
     | 
| 
      
 44 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 45 
     | 
    
         
            +
                        self.full_hidden_size % self.tp_size == 0
         
     | 
| 
      
 46 
     | 
    
         
            +
                    ), "Tensor parallel world size must divide hidden size."
         
     | 
| 
      
 47 
     | 
    
         
            +
             
     | 
| 
      
 48 
     | 
    
         
            +
                def forward_native(
         
     | 
| 
      
 49 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 50 
     | 
    
         
            +
                    x: torch.Tensor,
         
     | 
| 
      
 51 
     | 
    
         
            +
                    gate: torch.Tensor,
         
     | 
| 
      
 52 
     | 
    
         
            +
                ):
         
     | 
| 
      
 53 
     | 
    
         
            +
                    # Three tensor-parallel cases:
         
     | 
| 
      
 54 
     | 
    
         
            +
                    #   1. n_groups is 1
         
     | 
| 
      
 55 
     | 
    
         
            +
                    #      In this case we parallelize along the reduction dim.
         
     | 
| 
      
 56 
     | 
    
         
            +
                    #      Each rank computes a local sum of squares followed by AllReduce
         
     | 
| 
      
 57 
     | 
    
         
            +
                    #   2. tp_size divides n_groups
         
     | 
| 
      
 58 
     | 
    
         
            +
                    #      Each rank only reduces within its local group(s).
         
     | 
| 
      
 59 
     | 
    
         
            +
                    #      No collective ops necessary.
         
     | 
| 
      
 60 
     | 
    
         
            +
                    #   3. The general case can be pretty complicated so we AllGather
         
     | 
| 
      
 61 
     | 
    
         
            +
                    #      the input and then redundantly compute the RMSNorm.
         
     | 
| 
      
 62 
     | 
    
         
            +
                    input_dtype = x.dtype
         
     | 
| 
      
 63 
     | 
    
         
            +
                    x = x * torch.nn.functional.silu(gate.to(torch.float32))
         
     | 
| 
      
 64 
     | 
    
         
            +
                    if not self.use_rms_norm:
         
     | 
| 
      
 65 
     | 
    
         
            +
                        return x.to(input_dtype)
         
     | 
| 
      
 66 
     | 
    
         
            +
             
     | 
| 
      
 67 
     | 
    
         
            +
                    if self.n_groups == 1:
         
     | 
| 
      
 68 
     | 
    
         
            +
                        if self.tp_size > 1:
         
     | 
| 
      
 69 
     | 
    
         
            +
                            # Compute local sum and then reduce to obtain global sum
         
     | 
| 
      
 70 
     | 
    
         
            +
                            local_sums = x.pow(2).sum(dim=-1, keepdim=True)
         
     | 
| 
      
 71 
     | 
    
         
            +
                            global_sums = tensor_model_parallel_all_reduce(local_sums)
         
     | 
| 
      
 72 
     | 
    
         
            +
                            # Calculate the variance
         
     | 
| 
      
 73 
     | 
    
         
            +
                            count = self.tp_size * x.shape[-1]
         
     | 
| 
      
 74 
     | 
    
         
            +
                            variance = global_sums / count
         
     | 
| 
      
 75 
     | 
    
         
            +
             
     | 
| 
      
 76 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 77 
     | 
    
         
            +
                            variance = x.pow(2).mean(-1, keepdim=True)
         
     | 
| 
      
 78 
     | 
    
         
            +
                        x = x * torch.rsqrt(variance + self.variance_epsilon)
         
     | 
| 
      
 79 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 80 
     | 
    
         
            +
                        redundant_tp: bool = self.n_groups % self.tp_size != 0
         
     | 
| 
      
 81 
     | 
    
         
            +
                        if redundant_tp:
         
     | 
| 
      
 82 
     | 
    
         
            +
                            # To handle the general case, redundantly apply the variance
         
     | 
| 
      
 83 
     | 
    
         
            +
                            x = tensor_model_parallel_all_gather(x, -1)
         
     | 
| 
      
 84 
     | 
    
         
            +
             
     | 
| 
      
 85 
     | 
    
         
            +
                        *prefix_dims, hidden_dim = x.shape
         
     | 
| 
      
 86 
     | 
    
         
            +
                        group_count = hidden_dim // self.group_size
         
     | 
| 
      
 87 
     | 
    
         
            +
                        x_grouped = x.view(*prefix_dims, group_count, self.group_size)
         
     | 
| 
      
 88 
     | 
    
         
            +
                        variance = x_grouped.pow(2).mean(-1, keepdim=True)
         
     | 
| 
      
 89 
     | 
    
         
            +
                        x_grouped = x_grouped * torch.rsqrt(variance + self.variance_epsilon)
         
     | 
| 
      
 90 
     | 
    
         
            +
                        x = x_grouped.view(*prefix_dims, hidden_dim)
         
     | 
| 
      
 91 
     | 
    
         
            +
             
     | 
| 
      
 92 
     | 
    
         
            +
                        if redundant_tp:
         
     | 
| 
      
 93 
     | 
    
         
            +
                            start = self.per_rank_hidden_size * self.tp_rank
         
     | 
| 
      
 94 
     | 
    
         
            +
                            end = start + self.per_rank_hidden_size
         
     | 
| 
      
 95 
     | 
    
         
            +
                            x = x[..., start:end]
         
     | 
| 
      
 96 
     | 
    
         
            +
             
     | 
| 
      
 97 
     | 
    
         
            +
                    return self.weight * x.to(input_dtype)
         
     | 
| 
      
 98 
     | 
    
         
            +
             
     | 
| 
      
 99 
     | 
    
         
            +
                def forward_cuda(
         
     | 
| 
      
 100 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 101 
     | 
    
         
            +
                    x: torch.Tensor,
         
     | 
| 
      
 102 
     | 
    
         
            +
                    gate: torch.Tensor,
         
     | 
| 
      
 103 
     | 
    
         
            +
                ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
         
     | 
| 
      
 104 
     | 
    
         
            +
                    input_dtype = x.dtype
         
     | 
| 
      
 105 
     | 
    
         
            +
                    if not self.use_rms_norm:
         
     | 
| 
      
 106 
     | 
    
         
            +
                        # Keep gate in float32 for numerical stability during silu
         
     | 
| 
      
 107 
     | 
    
         
            +
                        return x * torch.nn.functional.silu(gate.to(torch.float32)).to(input_dtype)
         
     | 
| 
      
 108 
     | 
    
         
            +
             
     | 
| 
      
 109 
     | 
    
         
            +
                    if ((self.n_groups % self.tp_size) != 0) or self.n_groups != 1:
         
     | 
| 
      
 110 
     | 
    
         
            +
                        return self.forward_native(x, gate)
         
     | 
| 
      
 111 
     | 
    
         
            +
             
     | 
| 
      
 112 
     | 
    
         
            +
                    return rms_norm_gated(
         
     | 
| 
      
 113 
     | 
    
         
            +
                        x=x,
         
     | 
| 
      
 114 
     | 
    
         
            +
                        weight=self.weight.data,
         
     | 
| 
      
 115 
     | 
    
         
            +
                        bias=None,
         
     | 
| 
      
 116 
     | 
    
         
            +
                        z=gate,
         
     | 
| 
      
 117 
     | 
    
         
            +
                        eps=self.variance_epsilon,
         
     | 
| 
      
 118 
     | 
    
         
            +
                        norm_before_gate=False,
         
     | 
| 
      
 119 
     | 
    
         
            +
                        is_rms_norm=True,
         
     | 
| 
      
 120 
     | 
    
         
            +
                    )
         
     | 
| 
         @@ -15,56 +15,6 @@ import triton 
     | 
|
| 
       15 
15 
     | 
    
         
             
            import triton.language as tl
         
     | 
| 
       16 
16 
     | 
    
         | 
| 
       17 
17 
     | 
    
         | 
| 
       18 
     | 
    
         
            -
            # @triton.autotune(
         
     | 
| 
       19 
     | 
    
         
            -
            #     configs=[
         
     | 
| 
       20 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       21 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64},
         
     | 
| 
       22 
     | 
    
         
            -
            #             num_stages=3,
         
     | 
| 
       23 
     | 
    
         
            -
            #             num_warps=8,
         
     | 
| 
       24 
     | 
    
         
            -
            #         ),
         
     | 
| 
       25 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       26 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32},
         
     | 
| 
       27 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       28 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       29 
     | 
    
         
            -
            #         ),
         
     | 
| 
       30 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       31 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
         
     | 
| 
       32 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       33 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       34 
     | 
    
         
            -
            #         ),
         
     | 
| 
       35 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       36 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
         
     | 
| 
       37 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       38 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       39 
     | 
    
         
            -
            #         ),
         
     | 
| 
       40 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       41 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
         
     | 
| 
       42 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       43 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       44 
     | 
    
         
            -
            #         ),
         
     | 
| 
       45 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       46 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
         
     | 
| 
       47 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       48 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       49 
     | 
    
         
            -
            #         ),
         
     | 
| 
       50 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       51 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
         
     | 
| 
       52 
     | 
    
         
            -
            #             num_stages=5,
         
     | 
| 
       53 
     | 
    
         
            -
            #             num_warps=2,
         
     | 
| 
       54 
     | 
    
         
            -
            #         ),
         
     | 
| 
       55 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       56 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
         
     | 
| 
       57 
     | 
    
         
            -
            #             num_stages=5,
         
     | 
| 
       58 
     | 
    
         
            -
            #             num_warps=2,
         
     | 
| 
       59 
     | 
    
         
            -
            #         ),
         
     | 
| 
       60 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       61 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
         
     | 
| 
       62 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       63 
     | 
    
         
            -
            #             num_warps=2,
         
     | 
| 
       64 
     | 
    
         
            -
            #         ),
         
     | 
| 
       65 
     | 
    
         
            -
            #     ],
         
     | 
| 
       66 
     | 
    
         
            -
            #     key=["chunk_size", "K", "IS_CAUSAL"],
         
     | 
| 
       67 
     | 
    
         
            -
            # )
         
     | 
| 
       68 
18 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       69 
19 
     | 
    
         
             
            def _bmm_chunk_fwd_kernel(
         
     | 
| 
       70 
20 
     | 
    
         
             
                # Pointers to matrices
         
     | 
| 
         @@ -16,66 +16,6 @@ from packaging import version 
     | 
|
| 
       16 
16 
     | 
    
         
             
            TRITON_22 = version.parse(triton.__version__) >= version.parse("2.2.0")
         
     | 
| 
       17 
17 
     | 
    
         | 
| 
       18 
18 
     | 
    
         | 
| 
       19 
     | 
    
         
            -
            # @triton.autotune(
         
     | 
| 
       20 
     | 
    
         
            -
            #     configs=[
         
     | 
| 
       21 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       22 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64},
         
     | 
| 
       23 
     | 
    
         
            -
            #             num_stages=3,
         
     | 
| 
       24 
     | 
    
         
            -
            #             num_warps=8,
         
     | 
| 
       25 
     | 
    
         
            -
            #         ),
         
     | 
| 
       26 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       27 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32},
         
     | 
| 
       28 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       29 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       30 
     | 
    
         
            -
            #         ),
         
     | 
| 
       31 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       32 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
         
     | 
| 
       33 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       34 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       35 
     | 
    
         
            -
            #         ),
         
     | 
| 
       36 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       37 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
         
     | 
| 
       38 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       39 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       40 
     | 
    
         
            -
            #         ),
         
     | 
| 
       41 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       42 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
         
     | 
| 
       43 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       44 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       45 
     | 
    
         
            -
            #         ),
         
     | 
| 
       46 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       47 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 64},
         
     | 
| 
       48 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       49 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       50 
     | 
    
         
            -
            #         ),
         
     | 
| 
       51 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       52 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 64},
         
     | 
| 
       53 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       54 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       55 
     | 
    
         
            -
            #         ),
         
     | 
| 
       56 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       57 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
         
     | 
| 
       58 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       59 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       60 
     | 
    
         
            -
            #         ),
         
     | 
| 
       61 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       62 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
         
     | 
| 
       63 
     | 
    
         
            -
            #             num_stages=5,
         
     | 
| 
       64 
     | 
    
         
            -
            #             num_warps=2,
         
     | 
| 
       65 
     | 
    
         
            -
            #         ),
         
     | 
| 
       66 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       67 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
         
     | 
| 
       68 
     | 
    
         
            -
            #             num_stages=5,
         
     | 
| 
       69 
     | 
    
         
            -
            #             num_warps=2,
         
     | 
| 
       70 
     | 
    
         
            -
            #         ),
         
     | 
| 
       71 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       72 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
         
     | 
| 
       73 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       74 
     | 
    
         
            -
            #             num_warps=2,
         
     | 
| 
       75 
     | 
    
         
            -
            #         ),
         
     | 
| 
       76 
     | 
    
         
            -
            #     ],
         
     | 
| 
       77 
     | 
    
         
            -
            #     key=["chunk_size", "hdim", "dstate", "IS_CAUSAL"],
         
     | 
| 
       78 
     | 
    
         
            -
            # )
         
     | 
| 
       79 
19 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       80 
20 
     | 
    
         
             
            def _chunk_scan_fwd_kernel(
         
     | 
| 
       81 
21 
     | 
    
         
             
                # Pointers to matrices
         
     | 
| 
         @@ -17,17 +17,6 @@ import triton.language as tl 
     | 
|
| 
       17 
17 
     | 
    
         
             
            from .mamba_ssm import softplus
         
     | 
| 
       18 
18 
     | 
    
         | 
| 
       19 
19 
     | 
    
         | 
| 
       20 
     | 
    
         
            -
            # @triton.autotune(
         
     | 
| 
       21 
     | 
    
         
            -
            #     configs=[
         
     | 
| 
       22 
     | 
    
         
            -
            #         triton.Config({"BLOCK_SIZE_H": 2}),
         
     | 
| 
       23 
     | 
    
         
            -
            #         triton.Config({"BLOCK_SIZE_H": 4}),
         
     | 
| 
       24 
     | 
    
         
            -
            #         triton.Config({"BLOCK_SIZE_H": 8}),
         
     | 
| 
       25 
     | 
    
         
            -
            #         triton.Config({"BLOCK_SIZE_H": 16}),
         
     | 
| 
       26 
     | 
    
         
            -
            #         triton.Config({"BLOCK_SIZE_H": 32}),
         
     | 
| 
       27 
     | 
    
         
            -
            #         triton.Config({"BLOCK_SIZE_H": 64}),
         
     | 
| 
       28 
     | 
    
         
            -
            #     ],
         
     | 
| 
       29 
     | 
    
         
            -
            #     key=["chunk_size", "nheads"],
         
     | 
| 
       30 
     | 
    
         
            -
            # )
         
     | 
| 
       31 
20 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       32 
21 
     | 
    
         
             
            def _chunk_cumsum_fwd_kernel(
         
     | 
| 
       33 
22 
     | 
    
         
             
                # Pointers to matrices
         
     | 
| 
         @@ -120,56 +109,6 @@ def _chunk_cumsum_fwd_kernel( 
     | 
|
| 
       120 
109 
     | 
    
         
             
                )
         
     | 
| 
       121 
110 
     | 
    
         | 
| 
       122 
111 
     | 
    
         | 
| 
       123 
     | 
    
         
            -
            # @triton.autotune(
         
     | 
| 
       124 
     | 
    
         
            -
            #     configs=[
         
     | 
| 
       125 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       126 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64},
         
     | 
| 
       127 
     | 
    
         
            -
            #             num_stages=3,
         
     | 
| 
       128 
     | 
    
         
            -
            #             num_warps=8,
         
     | 
| 
       129 
     | 
    
         
            -
            #         ),
         
     | 
| 
       130 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       131 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32},
         
     | 
| 
       132 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       133 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       134 
     | 
    
         
            -
            #         ),
         
     | 
| 
       135 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       136 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
         
     | 
| 
       137 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       138 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       139 
     | 
    
         
            -
            #         ),
         
     | 
| 
       140 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       141 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
         
     | 
| 
       142 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       143 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       144 
     | 
    
         
            -
            #         ),
         
     | 
| 
       145 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       146 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
         
     | 
| 
       147 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       148 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       149 
     | 
    
         
            -
            #         ),
         
     | 
| 
       150 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       151 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
         
     | 
| 
       152 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       153 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       154 
     | 
    
         
            -
            #         ),
         
     | 
| 
       155 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       156 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
         
     | 
| 
       157 
     | 
    
         
            -
            #             num_stages=5,
         
     | 
| 
       158 
     | 
    
         
            -
            #             num_warps=2,
         
     | 
| 
       159 
     | 
    
         
            -
            #         ),
         
     | 
| 
       160 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       161 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
         
     | 
| 
       162 
     | 
    
         
            -
            #             num_stages=5,
         
     | 
| 
       163 
     | 
    
         
            -
            #             num_warps=2,
         
     | 
| 
       164 
     | 
    
         
            -
            #         ),
         
     | 
| 
       165 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       166 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
         
     | 
| 
       167 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       168 
     | 
    
         
            -
            #             num_warps=2,
         
     | 
| 
       169 
     | 
    
         
            -
            #         ),
         
     | 
| 
       170 
     | 
    
         
            -
            #     ],
         
     | 
| 
       171 
     | 
    
         
            -
            #     key=["hdim", "dstate", "chunk_size"],
         
     | 
| 
       172 
     | 
    
         
            -
            # )
         
     | 
| 
       173 
112 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       174 
113 
     | 
    
         
             
            def _chunk_state_fwd_kernel(
         
     | 
| 
       175 
114 
     | 
    
         
             
                # Pointers to matrices
         
     | 
| 
         @@ -320,56 +259,6 @@ def _chunk_state_fwd_kernel( 
     | 
|
| 
       320 
259 
     | 
    
         
             
                tl.store(states_ptrs, states, mask=c_mask)
         
     | 
| 
       321 
260 
     | 
    
         | 
| 
       322 
261 
     | 
    
         | 
| 
       323 
     | 
    
         
            -
            # @triton.autotune(
         
     | 
| 
       324 
     | 
    
         
            -
            #     configs=[
         
     | 
| 
       325 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       326 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64},
         
     | 
| 
       327 
     | 
    
         
            -
            #             num_stages=3,
         
     | 
| 
       328 
     | 
    
         
            -
            #             num_warps=8,
         
     | 
| 
       329 
     | 
    
         
            -
            #         ),
         
     | 
| 
       330 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       331 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32},
         
     | 
| 
       332 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       333 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       334 
     | 
    
         
            -
            #         ),
         
     | 
| 
       335 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       336 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
         
     | 
| 
       337 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       338 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       339 
     | 
    
         
            -
            #         ),
         
     | 
| 
       340 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       341 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
         
     | 
| 
       342 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       343 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       344 
     | 
    
         
            -
            #         ),
         
     | 
| 
       345 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       346 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32},
         
     | 
| 
       347 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       348 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       349 
     | 
    
         
            -
            #         ),
         
     | 
| 
       350 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       351 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
         
     | 
| 
       352 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       353 
     | 
    
         
            -
            #             num_warps=4,
         
     | 
| 
       354 
     | 
    
         
            -
            #         ),
         
     | 
| 
       355 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       356 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32},
         
     | 
| 
       357 
     | 
    
         
            -
            #             num_stages=5,
         
     | 
| 
       358 
     | 
    
         
            -
            #             num_warps=2,
         
     | 
| 
       359 
     | 
    
         
            -
            #         ),
         
     | 
| 
       360 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       361 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
         
     | 
| 
       362 
     | 
    
         
            -
            #             num_stages=5,
         
     | 
| 
       363 
     | 
    
         
            -
            #             num_warps=2,
         
     | 
| 
       364 
     | 
    
         
            -
            #         ),
         
     | 
| 
       365 
     | 
    
         
            -
            #         triton.Config(
         
     | 
| 
       366 
     | 
    
         
            -
            #             {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32},
         
     | 
| 
       367 
     | 
    
         
            -
            #             num_stages=4,
         
     | 
| 
       368 
     | 
    
         
            -
            #             num_warps=2,
         
     | 
| 
       369 
     | 
    
         
            -
            #         ),
         
     | 
| 
       370 
     | 
    
         
            -
            #     ],
         
     | 
| 
       371 
     | 
    
         
            -
            #     key=["hdim", "dstate", "chunk_size"],
         
     | 
| 
       372 
     | 
    
         
            -
            # )
         
     | 
| 
       373 
262 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       374 
263 
     | 
    
         
             
            def _chunk_state_varlen_kernel(
         
     | 
| 
       375 
264 
     | 
    
         
             
                # Pointers to matrices
         
     | 
| 
         @@ -13,17 +13,6 @@ import triton 
     | 
|
| 
       13 
13 
     | 
    
         
             
            import triton.language as tl
         
     | 
| 
       14 
14 
     | 
    
         | 
| 
       15 
15 
     | 
    
         | 
| 
       16 
     | 
    
         
            -
            # @triton.autotune(
         
     | 
| 
       17 
     | 
    
         
            -
            #     configs=[
         
     | 
| 
       18 
     | 
    
         
            -
            #         triton.Config({"BLOCK_SIZE": 64}),
         
     | 
| 
       19 
     | 
    
         
            -
            #         triton.Config({"BLOCK_SIZE": 128}),
         
     | 
| 
       20 
     | 
    
         
            -
            #         triton.Config({"BLOCK_SIZE": 256}),
         
     | 
| 
       21 
     | 
    
         
            -
            #         triton.Config({"BLOCK_SIZE": 512}),
         
     | 
| 
       22 
     | 
    
         
            -
            #         triton.Config({"BLOCK_SIZE": 1024}),
         
     | 
| 
       23 
     | 
    
         
            -
            #         triton.Config({"BLOCK_SIZE": 2048}),
         
     | 
| 
       24 
     | 
    
         
            -
            #     ],
         
     | 
| 
       25 
     | 
    
         
            -
            #     key=["dim"],
         
     | 
| 
       26 
     | 
    
         
            -
            # )
         
     | 
| 
       27 
16 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       28 
17 
     | 
    
         
             
            def _state_passing_fwd_kernel(
         
     | 
| 
       29 
18 
     | 
    
         
             
                # Pointers to matrices
         
     |