sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -15,9 +15,12 @@ limitations under the License. 
     | 
|
| 
       15 
15 
     | 
    
         | 
| 
       16 
16 
     | 
    
         
             
            from __future__ import annotations
         
     | 
| 
       17 
17 
     | 
    
         | 
| 
      
 18 
     | 
    
         
            +
            from dataclasses import dataclass
         
     | 
| 
      
 19 
     | 
    
         
            +
             
     | 
| 
      
 20 
     | 
    
         
            +
            from sglang.srt.configs.mamba_utils import Mamba2CacheParams
         
     | 
| 
       18 
21 
     | 
    
         
             
            from sglang.srt.layers.attention.nsa import index_buf_accessor
         
     | 
| 
       19 
22 
     | 
    
         
             
            from sglang.srt.layers.attention.nsa.quant_k_cache import quantize_k_cache
         
     | 
| 
       20 
     | 
    
         
            -
            from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
         
     | 
| 
      
 23 
     | 
    
         
            +
            from sglang.srt.utils.torch_memory_saver_adapter import TorchMemorySaverAdapter
         
     | 
| 
       21 
24 
     | 
    
         | 
| 
       22 
25 
     | 
    
         
             
            """
         
     | 
| 
       23 
26 
     | 
    
         
             
            Memory pool.
         
     | 
| 
         @@ -44,6 +47,8 @@ from sglang.srt.utils import get_bool_env_var, is_cuda, is_npu, next_power_of_2 
     | 
|
| 
       44 
47 
     | 
    
         | 
| 
       45 
48 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       46 
49 
     | 
    
         
             
                from sglang.srt.managers.cache_controller import LayerDoneCounter
         
     | 
| 
      
 50 
     | 
    
         
            +
                from sglang.srt.managers.schedule_batch import Req
         
     | 
| 
      
 51 
     | 
    
         
            +
             
     | 
| 
       47 
52 
     | 
    
         | 
| 
       48 
53 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       49 
54 
     | 
    
         | 
| 
         @@ -109,92 +114,135 @@ class ReqToTokenPool: 
     | 
|
| 
       109 
114 
     | 
    
         | 
| 
       110 
115 
     | 
    
         | 
| 
       111 
116 
     | 
    
         
             
            class MambaPool:
         
     | 
| 
      
 117 
     | 
    
         
            +
                @dataclass(frozen=True, kw_only=True)
         
     | 
| 
      
 118 
     | 
    
         
            +
                class State:
         
     | 
| 
      
 119 
     | 
    
         
            +
                    conv: torch.Tensor
         
     | 
| 
      
 120 
     | 
    
         
            +
                    temporal: torch.Tensor
         
     | 
| 
      
 121 
     | 
    
         
            +
             
     | 
| 
      
 122 
     | 
    
         
            +
                    def at_layer_idx(self, layer: int):
         
     | 
| 
      
 123 
     | 
    
         
            +
                        return type(self)(**{k: v[layer] for k, v in vars(self).items()})
         
     | 
| 
      
 124 
     | 
    
         
            +
             
     | 
| 
      
 125 
     | 
    
         
            +
                    def mem_usage_bytes(self):
         
     | 
| 
      
 126 
     | 
    
         
            +
                        return sum(get_tensor_size_bytes(t) for t in vars(self).values())
         
     | 
| 
      
 127 
     | 
    
         
            +
             
     | 
| 
      
 128 
     | 
    
         
            +
                @dataclass(frozen=True, kw_only=True)
         
     | 
| 
      
 129 
     | 
    
         
            +
                class SpeculativeState(State):
         
     | 
| 
      
 130 
     | 
    
         
            +
                    intermediate_ssm: torch.Tensor
         
     | 
| 
      
 131 
     | 
    
         
            +
                    intermediate_conv_window: torch.Tensor
         
     | 
| 
      
 132 
     | 
    
         
            +
             
     | 
| 
       112 
133 
     | 
    
         
             
                def __init__(
         
     | 
| 
       113 
134 
     | 
    
         
             
                    self,
         
     | 
| 
      
 135 
     | 
    
         
            +
                    *,
         
     | 
| 
       114 
136 
     | 
    
         
             
                    size: int,
         
     | 
| 
       115 
     | 
    
         
            -
                     
     | 
| 
       116 
     | 
    
         
            -
                    ssm_dtype: torch.dtype,
         
     | 
| 
       117 
     | 
    
         
            -
                    num_mamba_layers: int,
         
     | 
| 
       118 
     | 
    
         
            -
                    conv_state_shape: Tuple[int, int],
         
     | 
| 
       119 
     | 
    
         
            -
                    temporal_state_shape: Tuple[int, int],
         
     | 
| 
      
 137 
     | 
    
         
            +
                    cache_params: "Mamba2CacheParams",
         
     | 
| 
       120 
138 
     | 
    
         
             
                    device: str,
         
     | 
| 
       121 
139 
     | 
    
         
             
                    speculative_num_draft_tokens: Optional[int] = None,
         
     | 
| 
       122 
140 
     | 
    
         
             
                ):
         
     | 
| 
       123 
     | 
    
         
            -
                     
     | 
| 
       124 
     | 
    
         
            -
             
     | 
| 
       125 
     | 
    
         
            -
             
     | 
| 
       126 
     | 
    
         
            -
             
     | 
| 
       127 
     | 
    
         
            -
                    )
         
     | 
| 
       128 
     | 
    
         
            -
             
     | 
| 
       129 
     | 
    
         
            -
             
     | 
| 
       130 
     | 
    
         
            -
             
     | 
| 
       131 
     | 
    
         
            -
                         
     | 
| 
      
 141 
     | 
    
         
            +
                    conv_state_shape = cache_params.shape.conv
         
     | 
| 
      
 142 
     | 
    
         
            +
                    temporal_state_shape = cache_params.shape.temporal
         
     | 
| 
      
 143 
     | 
    
         
            +
                    conv_dtype = cache_params.dtype.conv
         
     | 
| 
      
 144 
     | 
    
         
            +
                    ssm_dtype = cache_params.dtype.temporal
         
     | 
| 
      
 145 
     | 
    
         
            +
                    num_mamba_layers = len(cache_params.layers)
         
     | 
| 
      
 146 
     | 
    
         
            +
             
     | 
| 
      
 147 
     | 
    
         
            +
                    # for disagg with nvlink
         
     | 
| 
      
 148 
     | 
    
         
            +
                    self.enable_custom_mem_pool = get_bool_env_var(
         
     | 
| 
      
 149 
     | 
    
         
            +
                        "SGLANG_MOONCAKE_CUSTOM_MEM_POOL", "false"
         
     | 
| 
       132 
150 
     | 
    
         
             
                    )
         
     | 
| 
       133 
     | 
    
         
            -
                    if  
     | 
| 
       134 
     | 
    
         
            -
                        #  
     | 
| 
       135 
     | 
    
         
            -
                         
     | 
| 
       136 
     | 
    
         
            -
             
     | 
| 
       137 
     | 
    
         
            -
             
     | 
| 
       138 
     | 
    
         
            -
             
     | 
| 
       139 
     | 
    
         
            -
             
     | 
| 
       140 
     | 
    
         
            -
             
     | 
| 
       141 
     | 
    
         
            -
             
     | 
| 
       142 
     | 
    
         
            -
             
     | 
| 
       143 
     | 
    
         
            -
             
     | 
| 
       144 
     | 
    
         
            -
             
     | 
| 
       145 
     | 
    
         
            -
             
     | 
| 
       146 
     | 
    
         
            -
             
     | 
| 
       147 
     | 
    
         
            -
                        )
         
     | 
| 
       148 
     | 
    
         
            -
                         
     | 
| 
       149 
     | 
    
         
            -
                         
     | 
| 
       150 
     | 
    
         
            -
             
     | 
| 
       151 
     | 
    
         
            -
                            size=(
         
     | 
| 
       152 
     | 
    
         
            -
                                num_mamba_layers,
         
     | 
| 
       153 
     | 
    
         
            -
                                size + 1,
         
     | 
| 
       154 
     | 
    
         
            -
                                speculative_num_draft_tokens,
         
     | 
| 
       155 
     | 
    
         
            -
                                conv_state_shape[0],
         
     | 
| 
       156 
     | 
    
         
            -
                                conv_state_shape[1],
         
     | 
| 
       157 
     | 
    
         
            -
                            ),
         
     | 
| 
      
 151 
     | 
    
         
            +
                    if self.enable_custom_mem_pool:
         
     | 
| 
      
 152 
     | 
    
         
            +
                        # TODO(shangming): abstract custom allocator class for more backends
         
     | 
| 
      
 153 
     | 
    
         
            +
                        from mooncake.allocator import NVLinkAllocator
         
     | 
| 
      
 154 
     | 
    
         
            +
             
     | 
| 
      
 155 
     | 
    
         
            +
                        allocator = NVLinkAllocator.get_allocator(self.device)
         
     | 
| 
      
 156 
     | 
    
         
            +
                        self.custom_mem_pool = torch.cuda.MemPool(allocator.allocator())
         
     | 
| 
      
 157 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 158 
     | 
    
         
            +
                        self.custom_mem_pool = None
         
     | 
| 
      
 159 
     | 
    
         
            +
             
     | 
| 
      
 160 
     | 
    
         
            +
                    with (
         
     | 
| 
      
 161 
     | 
    
         
            +
                        torch.cuda.use_mem_pool(self.custom_mem_pool)
         
     | 
| 
      
 162 
     | 
    
         
            +
                        if self.enable_custom_mem_pool
         
     | 
| 
      
 163 
     | 
    
         
            +
                        else nullcontext()
         
     | 
| 
      
 164 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 165 
     | 
    
         
            +
                        # assume conv_state = (dim, state_len)
         
     | 
| 
      
 166 
     | 
    
         
            +
                        assert conv_state_shape[0] > conv_state_shape[1]
         
     | 
| 
      
 167 
     | 
    
         
            +
                        conv_state = torch.zeros(
         
     | 
| 
      
 168 
     | 
    
         
            +
                            size=(num_mamba_layers, size + 1) + conv_state_shape,
         
     | 
| 
       158 
169 
     | 
    
         
             
                            dtype=conv_dtype,
         
     | 
| 
       159 
     | 
    
         
            -
                            device= 
     | 
| 
       160 
     | 
    
         
            -
                        )
         
     | 
| 
       161 
     | 
    
         
            -
                        self.mamba_cache = (
         
     | 
| 
       162 
     | 
    
         
            -
                            conv_state,
         
     | 
| 
       163 
     | 
    
         
            -
                            temporal_state,
         
     | 
| 
       164 
     | 
    
         
            -
                            intermediate_ssm_state_cache,
         
     | 
| 
       165 
     | 
    
         
            -
                            intermediate_conv_window_cache,
         
     | 
| 
      
 170 
     | 
    
         
            +
                            device=device,
         
     | 
| 
       166 
171 
     | 
    
         
             
                        )
         
     | 
| 
       167 
     | 
    
         
            -
                         
     | 
| 
       168 
     | 
    
         
            -
                             
     | 
| 
       169 
     | 
    
         
            -
                             
     | 
| 
       170 
     | 
    
         
            -
                             
     | 
| 
       171 
     | 
    
         
            -
                            f"intermediate_ssm_state_cache size: {get_tensor_size_bytes(intermediate_ssm_state_cache) / GB:.2f}GB "
         
     | 
| 
       172 
     | 
    
         
            -
                            f"intermediate_conv_window_cache size: {get_tensor_size_bytes(intermediate_conv_window_cache) / GB:.2f}GB "
         
     | 
| 
      
 172 
     | 
    
         
            +
                        temporal_state = torch.zeros(
         
     | 
| 
      
 173 
     | 
    
         
            +
                            size=(num_mamba_layers, size + 1) + temporal_state_shape,
         
     | 
| 
      
 174 
     | 
    
         
            +
                            dtype=ssm_dtype,
         
     | 
| 
      
 175 
     | 
    
         
            +
                            device=device,
         
     | 
| 
       173 
176 
     | 
    
         
             
                        )
         
     | 
| 
       174 
     | 
    
         
            -
             
     | 
| 
       175 
     | 
    
         
            -
             
     | 
| 
       176 
     | 
    
         
            -
             
     | 
| 
       177 
     | 
    
         
            -
                             
     | 
| 
       178 
     | 
    
         
            -
             
     | 
| 
       179 
     | 
    
         
            -
             
     | 
| 
      
 177 
     | 
    
         
            +
                        if speculative_num_draft_tokens is not None:
         
     | 
| 
      
 178 
     | 
    
         
            +
                            # Cache intermediate SSM states per draft token during target verify
         
     | 
| 
      
 179 
     | 
    
         
            +
                            # Shape: [num_layers, size + 1, speculative_num_draft_tokens, HV, K, V]
         
     | 
| 
      
 180 
     | 
    
         
            +
                            intermediate_ssm_state_cache = torch.zeros(
         
     | 
| 
      
 181 
     | 
    
         
            +
                                size=(
         
     | 
| 
      
 182 
     | 
    
         
            +
                                    num_mamba_layers,
         
     | 
| 
      
 183 
     | 
    
         
            +
                                    size + 1,
         
     | 
| 
      
 184 
     | 
    
         
            +
                                    speculative_num_draft_tokens,
         
     | 
| 
      
 185 
     | 
    
         
            +
                                    temporal_state_shape[0],
         
     | 
| 
      
 186 
     | 
    
         
            +
                                    temporal_state_shape[1],
         
     | 
| 
      
 187 
     | 
    
         
            +
                                    temporal_state_shape[2],
         
     | 
| 
      
 188 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 189 
     | 
    
         
            +
                                dtype=ssm_dtype,
         
     | 
| 
      
 190 
     | 
    
         
            +
                                device="cuda",
         
     | 
| 
      
 191 
     | 
    
         
            +
                            )
         
     | 
| 
      
 192 
     | 
    
         
            +
                            # Cache intermediate conv windows (last K-1 inputs) per draft token during target verify
         
     | 
| 
      
 193 
     | 
    
         
            +
                            # Shape: [num_layers, size + 1, speculative_num_draft_tokens, dim, K-1]
         
     | 
| 
      
 194 
     | 
    
         
            +
                            intermediate_conv_window_cache = torch.zeros(
         
     | 
| 
      
 195 
     | 
    
         
            +
                                size=(
         
     | 
| 
      
 196 
     | 
    
         
            +
                                    num_mamba_layers,
         
     | 
| 
      
 197 
     | 
    
         
            +
                                    size + 1,
         
     | 
| 
      
 198 
     | 
    
         
            +
                                    speculative_num_draft_tokens,
         
     | 
| 
      
 199 
     | 
    
         
            +
                                    conv_state_shape[0],
         
     | 
| 
      
 200 
     | 
    
         
            +
                                    conv_state_shape[1],
         
     | 
| 
      
 201 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 202 
     | 
    
         
            +
                                dtype=conv_dtype,
         
     | 
| 
      
 203 
     | 
    
         
            +
                                device="cuda",
         
     | 
| 
      
 204 
     | 
    
         
            +
                            )
         
     | 
| 
      
 205 
     | 
    
         
            +
                            self.mamba_cache = self.SpeculativeState(
         
     | 
| 
      
 206 
     | 
    
         
            +
                                conv=conv_state,
         
     | 
| 
      
 207 
     | 
    
         
            +
                                temporal=temporal_state,
         
     | 
| 
      
 208 
     | 
    
         
            +
                                intermediate_ssm=intermediate_ssm_state_cache,
         
     | 
| 
      
 209 
     | 
    
         
            +
                                intermediate_conv_window=intermediate_conv_window_cache,
         
     | 
| 
      
 210 
     | 
    
         
            +
                            )
         
     | 
| 
      
 211 
     | 
    
         
            +
                            logger.info(
         
     | 
| 
      
 212 
     | 
    
         
            +
                                f"Mamba Cache is allocated. "
         
     | 
| 
      
 213 
     | 
    
         
            +
                                f"max_mamba_cache_size: {size}, "
         
     | 
| 
      
 214 
     | 
    
         
            +
                                f"conv_state size: {get_tensor_size_bytes(conv_state) / GB:.2f}GB, "
         
     | 
| 
      
 215 
     | 
    
         
            +
                                f"ssm_state size: {get_tensor_size_bytes(temporal_state) / GB:.2f}GB "
         
     | 
| 
      
 216 
     | 
    
         
            +
                                f"intermediate_ssm_state_cache size: {get_tensor_size_bytes(intermediate_ssm_state_cache) / GB:.2f}GB "
         
     | 
| 
      
 217 
     | 
    
         
            +
                                f"intermediate_conv_window_cache size: {get_tensor_size_bytes(intermediate_conv_window_cache) / GB:.2f}GB "
         
     | 
| 
      
 218 
     | 
    
         
            +
                            )
         
     | 
| 
      
 219 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 220 
     | 
    
         
            +
                            self.mamba_cache = self.State(conv=conv_state, temporal=temporal_state)
         
     | 
| 
      
 221 
     | 
    
         
            +
                            logger.info(
         
     | 
| 
      
 222 
     | 
    
         
            +
                                f"Mamba Cache is allocated. "
         
     | 
| 
      
 223 
     | 
    
         
            +
                                f"max_mamba_cache_size: {size}, "
         
     | 
| 
      
 224 
     | 
    
         
            +
                                f"conv_state size: {get_tensor_size_bytes(conv_state) / GB:.2f}GB, "
         
     | 
| 
      
 225 
     | 
    
         
            +
                                f"ssm_state size: {get_tensor_size_bytes(temporal_state) / GB:.2f}GB "
         
     | 
| 
      
 226 
     | 
    
         
            +
                            )
         
     | 
| 
      
 227 
     | 
    
         
            +
                        self.size = size
         
     | 
| 
      
 228 
     | 
    
         
            +
                        self.device = device
         
     | 
| 
      
 229 
     | 
    
         
            +
                        self.free_slots = torch.arange(
         
     | 
| 
      
 230 
     | 
    
         
            +
                            self.size, dtype=torch.int64, device=self.device
         
     | 
| 
       180 
231 
     | 
    
         
             
                        )
         
     | 
| 
       181 
     | 
    
         
            -
             
     | 
| 
       182 
     | 
    
         
            -
             
     | 
| 
       183 
     | 
    
         
            -
                    self.mem_usage = self.get_mamba_size() / GB
         
     | 
| 
       184 
     | 
    
         
            -
             
     | 
| 
       185 
     | 
    
         
            -
                def get_mamba_params_all_layers(self):
         
     | 
| 
       186 
     | 
    
         
            -
                    return [self.mamba_cache[i] for i in range(len(self.mamba_cache))]
         
     | 
| 
      
 232 
     | 
    
         
            +
                        self.mem_usage = self.mamba_cache.mem_usage_bytes() / GB
         
     | 
| 
      
 233 
     | 
    
         
            +
                        self.num_mamba_layers = num_mamba_layers
         
     | 
| 
       187 
234 
     | 
    
         | 
| 
       188 
     | 
    
         
            -
                def  
     | 
| 
       189 
     | 
    
         
            -
                     
     | 
| 
      
 235 
     | 
    
         
            +
                def get_speculative_mamba2_params_all_layers(self) -> SpeculativeState:
         
     | 
| 
      
 236 
     | 
    
         
            +
                    assert isinstance(self.mamba_cache, self.SpeculativeState)
         
     | 
| 
      
 237 
     | 
    
         
            +
                    return self.mamba_cache
         
     | 
| 
       190 
238 
     | 
    
         | 
| 
       191 
     | 
    
         
            -
                def  
     | 
| 
       192 
     | 
    
         
            -
                    return  
     | 
| 
      
 239 
     | 
    
         
            +
                def mamba2_layer_cache(self, layer_id: int):
         
     | 
| 
      
 240 
     | 
    
         
            +
                    return self.mamba_cache.at_layer_idx(layer_id)
         
     | 
| 
       193 
241 
     | 
    
         | 
| 
       194 
242 
     | 
    
         
             
                def available_size(self):
         
     | 
| 
       195 
243 
     | 
    
         
             
                    return len(self.free_slots)
         
     | 
| 
       196 
244 
     | 
    
         | 
| 
       197 
     | 
    
         
            -
                def alloc(self, need_size: int) -> Optional[ 
     | 
| 
      
 245 
     | 
    
         
            +
                def alloc(self, need_size: int) -> Optional[torch.Tensor]:
         
     | 
| 
       198 
246 
     | 
    
         
             
                    if need_size > len(self.free_slots):
         
     | 
| 
       199 
247 
     | 
    
         
             
                        return None
         
     | 
| 
       200 
248 
     | 
    
         | 
| 
         @@ -203,15 +251,46 @@ class MambaPool: 
     | 
|
| 
       203 
251 
     | 
    
         | 
| 
       204 
252 
     | 
    
         
             
                    return select_index
         
     | 
| 
       205 
253 
     | 
    
         | 
| 
       206 
     | 
    
         
            -
                def free(self, free_index:  
     | 
| 
       207 
     | 
    
         
            -
                    if  
     | 
| 
       208 
     | 
    
         
            -
                         
     | 
| 
       209 
     | 
    
         
            -
                     
     | 
| 
       210 
     | 
    
         
            -
             
     | 
| 
       211 
     | 
    
         
            -
             
     | 
| 
      
 254 
     | 
    
         
            +
                def free(self, free_index: torch.Tensor):
         
     | 
| 
      
 255 
     | 
    
         
            +
                    if free_index.numel() == 0:
         
     | 
| 
      
 256 
     | 
    
         
            +
                        return
         
     | 
| 
      
 257 
     | 
    
         
            +
                    self.free_slots = torch.cat((self.free_slots, free_index))
         
     | 
| 
      
 258 
     | 
    
         
            +
                    self.mamba_cache.conv[:, free_index] = self.mamba_cache.temporal[
         
     | 
| 
      
 259 
     | 
    
         
            +
                        :, free_index
         
     | 
| 
      
 260 
     | 
    
         
            +
                    ] = 0
         
     | 
| 
       212 
261 
     | 
    
         | 
| 
       213 
262 
     | 
    
         
             
                def clear(self):
         
     | 
| 
       214 
     | 
    
         
            -
                    self.free_slots =  
     | 
| 
      
 263 
     | 
    
         
            +
                    self.free_slots = torch.arange(self.size, dtype=torch.int64, device=self.device)
         
     | 
| 
      
 264 
     | 
    
         
            +
             
     | 
| 
      
 265 
     | 
    
         
            +
                def copy_from(self, src_index: torch.Tensor, dst_index: torch.Tensor):
         
     | 
| 
      
 266 
     | 
    
         
            +
                    self.mamba_cache.conv[:, dst_index] = self.mamba_cache.conv[:, src_index]
         
     | 
| 
      
 267 
     | 
    
         
            +
                    self.mamba_cache.temporal[:, dst_index] = self.mamba_cache.temporal[
         
     | 
| 
      
 268 
     | 
    
         
            +
                        :, src_index
         
     | 
| 
      
 269 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 270 
     | 
    
         
            +
                    return
         
     | 
| 
      
 271 
     | 
    
         
            +
             
     | 
| 
      
 272 
     | 
    
         
            +
                def fork_from(self, src_index: torch.Tensor) -> Optional[torch.Tensor]:
         
     | 
| 
      
 273 
     | 
    
         
            +
                    dst_index = self.alloc(1)
         
     | 
| 
      
 274 
     | 
    
         
            +
                    if dst_index == None:
         
     | 
| 
      
 275 
     | 
    
         
            +
                        return None
         
     | 
| 
      
 276 
     | 
    
         
            +
                    self.copy_from(src_index, dst_index)
         
     | 
| 
      
 277 
     | 
    
         
            +
                    return dst_index
         
     | 
| 
      
 278 
     | 
    
         
            +
             
     | 
| 
      
 279 
     | 
    
         
            +
                def get_contiguous_buf_infos(self):
         
     | 
| 
      
 280 
     | 
    
         
            +
                    state_tensors = [
         
     | 
| 
      
 281 
     | 
    
         
            +
                        getattr(self.mamba_cache, field) for field in vars(self.mamba_cache)
         
     | 
| 
      
 282 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 283 
     | 
    
         
            +
                    data_ptrs, data_lens, item_lens = [], [], []
         
     | 
| 
      
 284 
     | 
    
         
            +
             
     | 
| 
      
 285 
     | 
    
         
            +
                    for _, state_tensor in enumerate(state_tensors):
         
     | 
| 
      
 286 
     | 
    
         
            +
                        data_ptrs += [
         
     | 
| 
      
 287 
     | 
    
         
            +
                            state_tensor[i].data_ptr() for i in range(self.num_mamba_layers)
         
     | 
| 
      
 288 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 289 
     | 
    
         
            +
                        data_lens += [state_tensor[i].nbytes for i in range(self.num_mamba_layers)]
         
     | 
| 
      
 290 
     | 
    
         
            +
                        item_lens += [
         
     | 
| 
      
 291 
     | 
    
         
            +
                            state_tensor[i][0].nbytes for i in range(self.num_mamba_layers)
         
     | 
| 
      
 292 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 293 
     | 
    
         
            +
                    return data_ptrs, data_lens, item_lens
         
     | 
| 
       215 
294 
     | 
    
         | 
| 
       216 
295 
     | 
    
         | 
| 
       217 
296 
     | 
    
         
             
            class HybridReqToTokenPool(ReqToTokenPool):
         
     | 
| 
         @@ -219,16 +298,14 @@ class HybridReqToTokenPool(ReqToTokenPool): 
     | 
|
| 
       219 
298 
     | 
    
         | 
| 
       220 
299 
     | 
    
         
             
                def __init__(
         
     | 
| 
       221 
300 
     | 
    
         
             
                    self,
         
     | 
| 
      
 301 
     | 
    
         
            +
                    *,
         
     | 
| 
       222 
302 
     | 
    
         
             
                    size: int,
         
     | 
| 
      
 303 
     | 
    
         
            +
                    mamba_size: int,
         
     | 
| 
       223 
304 
     | 
    
         
             
                    max_context_len: int,
         
     | 
| 
       224 
305 
     | 
    
         
             
                    device: str,
         
     | 
| 
       225 
306 
     | 
    
         
             
                    enable_memory_saver: bool,
         
     | 
| 
       226 
     | 
    
         
            -
                     
     | 
| 
       227 
     | 
    
         
            -
                     
     | 
| 
       228 
     | 
    
         
            -
                    mamba_layers: List[int],
         
     | 
| 
       229 
     | 
    
         
            -
                    conv_state_shape: Tuple[int, int],
         
     | 
| 
       230 
     | 
    
         
            -
                    temporal_state_shape: Tuple[int, int],
         
     | 
| 
       231 
     | 
    
         
            -
                    speculative_num_draft_tokens: int,
         
     | 
| 
      
 307 
     | 
    
         
            +
                    cache_params: "Mamba2CacheParams",
         
     | 
| 
      
 308 
     | 
    
         
            +
                    speculative_num_draft_tokens: int = None,
         
     | 
| 
       232 
309 
     | 
    
         
             
                ):
         
     | 
| 
       233 
310 
     | 
    
         
             
                    super().__init__(
         
     | 
| 
       234 
311 
     | 
    
         
             
                        size=size,
         
     | 
| 
         @@ -236,31 +313,37 @@ class HybridReqToTokenPool(ReqToTokenPool): 
     | 
|
| 
       236 
313 
     | 
    
         
             
                        device=device,
         
     | 
| 
       237 
314 
     | 
    
         
             
                        enable_memory_saver=enable_memory_saver,
         
     | 
| 
       238 
315 
     | 
    
         
             
                    )
         
     | 
| 
      
 316 
     | 
    
         
            +
                    self._init_mamba_pool(
         
     | 
| 
      
 317 
     | 
    
         
            +
                        size=mamba_size,
         
     | 
| 
      
 318 
     | 
    
         
            +
                        cache_params=cache_params,
         
     | 
| 
      
 319 
     | 
    
         
            +
                        device=device,
         
     | 
| 
      
 320 
     | 
    
         
            +
                        speculative_num_draft_tokens=speculative_num_draft_tokens,
         
     | 
| 
      
 321 
     | 
    
         
            +
                    )
         
     | 
| 
       239 
322 
     | 
    
         | 
| 
      
 323 
     | 
    
         
            +
                def _init_mamba_pool(
         
     | 
| 
      
 324 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 325 
     | 
    
         
            +
                    size: int,
         
     | 
| 
      
 326 
     | 
    
         
            +
                    cache_params: "Mamba2CacheParams",
         
     | 
| 
      
 327 
     | 
    
         
            +
                    device: str,
         
     | 
| 
      
 328 
     | 
    
         
            +
                    speculative_num_draft_tokens: int = None,
         
     | 
| 
      
 329 
     | 
    
         
            +
                ):
         
     | 
| 
       240 
330 
     | 
    
         
             
                    self.mamba_pool = MambaPool(
         
     | 
| 
       241 
     | 
    
         
            -
                        size,
         
     | 
| 
       242 
     | 
    
         
            -
                         
     | 
| 
       243 
     | 
    
         
            -
                         
     | 
| 
       244 
     | 
    
         
            -
                         
     | 
| 
       245 
     | 
    
         
            -
                        conv_state_shape,
         
     | 
| 
       246 
     | 
    
         
            -
                        temporal_state_shape,
         
     | 
| 
       247 
     | 
    
         
            -
                        device,
         
     | 
| 
       248 
     | 
    
         
            -
                        speculative_num_draft_tokens,
         
     | 
| 
      
 331 
     | 
    
         
            +
                        size=size,
         
     | 
| 
      
 332 
     | 
    
         
            +
                        cache_params=cache_params,
         
     | 
| 
      
 333 
     | 
    
         
            +
                        device=device,
         
     | 
| 
      
 334 
     | 
    
         
            +
                        speculative_num_draft_tokens=speculative_num_draft_tokens,
         
     | 
| 
       249 
335 
     | 
    
         
             
                    )
         
     | 
| 
       250 
     | 
    
         
            -
                    self.mamba_map = {layer_id: i for i, layer_id in enumerate( 
     | 
| 
      
 336 
     | 
    
         
            +
                    self.mamba_map = {layer_id: i for i, layer_id in enumerate(cache_params.layers)}
         
     | 
| 
       251 
337 
     | 
    
         | 
| 
       252 
338 
     | 
    
         
             
                    self.device = device
         
     | 
| 
       253 
339 
     | 
    
         
             
                    self.req_index_to_mamba_index_mapping: torch.Tensor = torch.zeros(
         
     | 
| 
       254 
340 
     | 
    
         
             
                        size, dtype=torch.int32, device=self.device
         
     | 
| 
       255 
341 
     | 
    
         
             
                    )
         
     | 
| 
       256 
342 
     | 
    
         | 
| 
       257 
     | 
    
         
            -
                    self.rid_to_mamba_index_mapping: Dict[str, int] = {}
         
     | 
| 
       258 
     | 
    
         
            -
                    self.mamba_index_to_rid_mapping: Dict[int, str] = {}
         
     | 
| 
       259 
     | 
    
         
            -
             
     | 
| 
       260 
343 
     | 
    
         
             
                # For chunk prefill req, we do not need to allocate mamba cache,
         
     | 
| 
       261 
344 
     | 
    
         
             
                # We could use allocated mamba cache instead.
         
     | 
| 
       262 
345 
     | 
    
         
             
                def alloc(
         
     | 
| 
       263 
     | 
    
         
            -
                    self, need_size: int, reqs: Optional[List[ 
     | 
| 
      
 346 
     | 
    
         
            +
                    self, need_size: int, reqs: Optional[List[Req]] = None
         
     | 
| 
       264 
347 
     | 
    
         
             
                ) -> Optional[List[int]]:
         
     | 
| 
       265 
348 
     | 
    
         
             
                    select_index = super().alloc(need_size)
         
     | 
| 
       266 
349 
     | 
    
         
             
                    if select_index == None:
         
     | 
| 
         @@ -268,14 +351,14 @@ class HybridReqToTokenPool(ReqToTokenPool): 
     | 
|
| 
       268 
351 
     | 
    
         | 
| 
       269 
352 
     | 
    
         
             
                    mamba_index = []
         
     | 
| 
       270 
353 
     | 
    
         
             
                    for req in reqs:
         
     | 
| 
       271 
     | 
    
         
            -
                         
     | 
| 
       272 
     | 
    
         
            -
                        if  
     | 
| 
       273 
     | 
    
         
            -
                            mid =  
     | 
| 
       274 
     | 
    
         
            -
                         
     | 
| 
       275 
     | 
    
         
            -
                            mid =  
     | 
| 
       276 
     | 
    
         
            -
                             
     | 
| 
       277 
     | 
    
         
            -
             
     | 
| 
       278 
     | 
    
         
            -
             
     | 
| 
      
 354 
     | 
    
         
            +
                        mid = None
         
     | 
| 
      
 355 
     | 
    
         
            +
                        if req.mamba_pool_idx is not None:  # for radix cache
         
     | 
| 
      
 356 
     | 
    
         
            +
                            mid = req.mamba_pool_idx
         
     | 
| 
      
 357 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 358 
     | 
    
         
            +
                            mid = self.mamba_pool.alloc(1)[0]
         
     | 
| 
      
 359 
     | 
    
         
            +
                            req.mamba_pool_idx = mid
         
     | 
| 
      
 360 
     | 
    
         
            +
                        if mid is not None:
         
     | 
| 
      
 361 
     | 
    
         
            +
                            mamba_index.append(mid)
         
     | 
| 
       279 
362 
     | 
    
         
             
                    assert len(select_index) == len(
         
     | 
| 
       280 
363 
     | 
    
         
             
                        mamba_index
         
     | 
| 
       281 
364 
     | 
    
         
             
                    ), f"Not enough space for mamba cache, try to increase --max-mamba-cache-size."
         
     | 
| 
         @@ -287,26 +370,21 @@ class HybridReqToTokenPool(ReqToTokenPool): 
     | 
|
| 
       287 
370 
     | 
    
         
             
                def get_mamba_indices(self, req_indices: torch.Tensor) -> torch.Tensor:
         
     | 
| 
       288 
371 
     | 
    
         
             
                    return self.req_index_to_mamba_index_mapping[req_indices]
         
     | 
| 
       289 
372 
     | 
    
         | 
| 
       290 
     | 
    
         
            -
                def  
     | 
| 
      
 373 
     | 
    
         
            +
                def mamba2_layer_cache(self, layer_id: int):
         
     | 
| 
       291 
374 
     | 
    
         
             
                    assert layer_id in self.mamba_map
         
     | 
| 
       292 
     | 
    
         
            -
                    return self.mamba_pool. 
     | 
| 
      
 375 
     | 
    
         
            +
                    return self.mamba_pool.mamba2_layer_cache(self.mamba_map[layer_id])
         
     | 
| 
       293 
376 
     | 
    
         | 
| 
       294 
     | 
    
         
            -
                def  
     | 
| 
       295 
     | 
    
         
            -
                    return self.mamba_pool. 
     | 
| 
      
 377 
     | 
    
         
            +
                def get_speculative_mamba2_params_all_layers(self) -> MambaPool.SpeculativeState:
         
     | 
| 
      
 378 
     | 
    
         
            +
                    return self.mamba_pool.get_speculative_mamba2_params_all_layers()
         
     | 
| 
       296 
379 
     | 
    
         | 
| 
       297 
380 
     | 
    
         
             
                # For chunk prefill, we can not free mamba cache, we need use it in the future
         
     | 
| 
       298 
381 
     | 
    
         
             
                def free(self, free_index: Union[int, List[int]], free_mamba_cache: bool = True):
         
     | 
| 
      
 382 
     | 
    
         
            +
                    if isinstance(free_index, (int,)):
         
     | 
| 
      
 383 
     | 
    
         
            +
                        free_index = [free_index]
         
     | 
| 
       299 
384 
     | 
    
         
             
                    super().free(free_index)
         
     | 
| 
       300 
385 
     | 
    
         
             
                    if free_mamba_cache:
         
     | 
| 
       301 
386 
     | 
    
         
             
                        mamba_index = self.req_index_to_mamba_index_mapping[free_index]
         
     | 
| 
       302 
     | 
    
         
            -
                         
     | 
| 
       303 
     | 
    
         
            -
                        if isinstance(mamba_index_list, int):
         
     | 
| 
       304 
     | 
    
         
            -
                            mamba_index_list = [mamba_index_list]
         
     | 
| 
       305 
     | 
    
         
            -
                        self.mamba_pool.free(mamba_index_list)
         
     | 
| 
       306 
     | 
    
         
            -
                        for mid in mamba_index_list:
         
     | 
| 
       307 
     | 
    
         
            -
                            rid = self.mamba_index_to_rid_mapping[mid]
         
     | 
| 
       308 
     | 
    
         
            -
                            self.mamba_index_to_rid_mapping.pop(mid)
         
     | 
| 
       309 
     | 
    
         
            -
                            self.rid_to_mamba_index_mapping.pop(rid)
         
     | 
| 
      
 387 
     | 
    
         
            +
                        self.mamba_pool.free(mamba_index)
         
     | 
| 
       310 
388 
     | 
    
         | 
| 
       311 
389 
     | 
    
         
             
                def clear(self):
         
     | 
| 
       312 
390 
     | 
    
         
             
                    super().clear()
         
     | 
| 
         @@ -349,6 +427,19 @@ class KVCache(abc.ABC): 
     | 
|
| 
       349 
427 
     | 
    
         
             
                    # default state for optional layer-wise transfer control
         
     | 
| 
       350 
428 
     | 
    
         
             
                    self.layer_transfer_counter = None
         
     | 
| 
       351 
429 
     | 
    
         | 
| 
      
 430 
     | 
    
         
            +
                    # for disagg with nvlink
         
     | 
| 
      
 431 
     | 
    
         
            +
                    self.enable_custom_mem_pool = get_bool_env_var(
         
     | 
| 
      
 432 
     | 
    
         
            +
                        "SGLANG_MOONCAKE_CUSTOM_MEM_POOL", "false"
         
     | 
| 
      
 433 
     | 
    
         
            +
                    )
         
     | 
| 
      
 434 
     | 
    
         
            +
                    if self.enable_custom_mem_pool:
         
     | 
| 
      
 435 
     | 
    
         
            +
                        # TODO(shangming): abstract custom allocator class for more backends
         
     | 
| 
      
 436 
     | 
    
         
            +
                        from mooncake.allocator import NVLinkAllocator
         
     | 
| 
      
 437 
     | 
    
         
            +
             
     | 
| 
      
 438 
     | 
    
         
            +
                        allocator = NVLinkAllocator.get_allocator(self.device)
         
     | 
| 
      
 439 
     | 
    
         
            +
                        self.custom_mem_pool = torch.cuda.MemPool(allocator.allocator())
         
     | 
| 
      
 440 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 441 
     | 
    
         
            +
                        self.custom_mem_pool = None
         
     | 
| 
      
 442 
     | 
    
         
            +
             
     | 
| 
       352 
443 
     | 
    
         
             
                def _finalize_allocation_log(self, num_tokens: int):
         
     | 
| 
       353 
444 
     | 
    
         
             
                    """Common logging and mem_usage computation for KV cache allocation.
         
     | 
| 
       354 
445 
     | 
    
         
             
                    Supports both tuple (K, V) size returns and single KV size returns.
         
     | 
| 
         @@ -400,6 +491,9 @@ class KVCache(abc.ABC): 
     | 
|
| 
       400 
491 
     | 
    
         
             
                def load_cpu_copy(self, kv_cache_cpu, indices):
         
     | 
| 
       401 
492 
     | 
    
         
             
                    raise NotImplementedError()
         
     | 
| 
       402 
493 
     | 
    
         | 
| 
      
 494 
     | 
    
         
            +
                def maybe_get_custom_mem_pool(self):
         
     | 
| 
      
 495 
     | 
    
         
            +
                    return self.custom_mem_pool
         
     | 
| 
      
 496 
     | 
    
         
            +
             
     | 
| 
       403 
497 
     | 
    
         | 
| 
       404 
498 
     | 
    
         
             
            class MHATokenToKVPool(KVCache):
         
     | 
| 
       405 
499 
     | 
    
         | 
| 
         @@ -415,6 +509,7 @@ class MHATokenToKVPool(KVCache): 
     | 
|
| 
       415 
509 
     | 
    
         
             
                    enable_memory_saver: bool,
         
     | 
| 
       416 
510 
     | 
    
         
             
                    start_layer: Optional[int] = None,
         
     | 
| 
       417 
511 
     | 
    
         
             
                    end_layer: Optional[int] = None,
         
     | 
| 
      
 512 
     | 
    
         
            +
                    enable_kv_cache_copy: bool = False,
         
     | 
| 
       418 
513 
     | 
    
         
             
                ):
         
     | 
| 
       419 
514 
     | 
    
         
             
                    super().__init__(
         
     | 
| 
       420 
515 
     | 
    
         
             
                        size,
         
     | 
| 
         @@ -429,25 +524,61 @@ class MHATokenToKVPool(KVCache): 
     | 
|
| 
       429 
524 
     | 
    
         
             
                    self.head_num = head_num
         
     | 
| 
       430 
525 
     | 
    
         
             
                    self.head_dim = head_dim
         
     | 
| 
       431 
526 
     | 
    
         | 
| 
       432 
     | 
    
         
            -
                    # for disagg with nvlink
         
     | 
| 
       433 
     | 
    
         
            -
                    self.enable_custom_mem_pool = get_bool_env_var(
         
     | 
| 
       434 
     | 
    
         
            -
                        "SGLANG_MOONCAKE_CUSTOM_MEM_POOL", "false"
         
     | 
| 
       435 
     | 
    
         
            -
                    )
         
     | 
| 
       436 
     | 
    
         
            -
                    if self.enable_custom_mem_pool:
         
     | 
| 
       437 
     | 
    
         
            -
                        # TODO(shangming): abstract custom allocator class for more backends
         
     | 
| 
       438 
     | 
    
         
            -
                        from mooncake.allocator import NVLinkAllocator
         
     | 
| 
       439 
     | 
    
         
            -
             
     | 
| 
       440 
     | 
    
         
            -
                        allocator = NVLinkAllocator.get_allocator(self.device)
         
     | 
| 
       441 
     | 
    
         
            -
                        self.custom_mem_pool = torch.cuda.MemPool(allocator.allocator())
         
     | 
| 
       442 
     | 
    
         
            -
                    else:
         
     | 
| 
       443 
     | 
    
         
            -
                        self.custom_mem_pool = None
         
     | 
| 
       444 
     | 
    
         
            -
             
     | 
| 
       445 
527 
     | 
    
         
             
                    self._create_buffers()
         
     | 
| 
       446 
528 
     | 
    
         | 
| 
       447 
529 
     | 
    
         
             
                    self.device_module = torch.get_device_module(self.device)
         
     | 
| 
       448 
530 
     | 
    
         
             
                    self.alt_stream = self.device_module.Stream() if _is_cuda else None
         
     | 
| 
      
 531 
     | 
    
         
            +
             
     | 
| 
      
 532 
     | 
    
         
            +
                    if enable_kv_cache_copy:
         
     | 
| 
      
 533 
     | 
    
         
            +
                        self._init_kv_copy_and_warmup()
         
     | 
| 
      
 534 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 535 
     | 
    
         
            +
                        self._kv_copy_config = None
         
     | 
| 
      
 536 
     | 
    
         
            +
             
     | 
| 
       449 
537 
     | 
    
         
             
                    self._finalize_allocation_log(size)
         
     | 
| 
       450 
538 
     | 
    
         | 
| 
      
 539 
     | 
    
         
            +
                def _init_kv_copy_and_warmup(self):
         
     | 
| 
      
 540 
     | 
    
         
            +
                    # Heuristics for KV copy tiling
         
     | 
| 
      
 541 
     | 
    
         
            +
                    _KV_COPY_STRIDE_THRESHOLD_LARGE = 8192
         
     | 
| 
      
 542 
     | 
    
         
            +
                    _KV_COPY_STRIDE_THRESHOLD_MEDIUM = 4096
         
     | 
| 
      
 543 
     | 
    
         
            +
                    _KV_COPY_TILE_SIZE_LARGE = 512
         
     | 
| 
      
 544 
     | 
    
         
            +
                    _KV_COPY_TILE_SIZE_MEDIUM = 256
         
     | 
| 
      
 545 
     | 
    
         
            +
                    _KV_COPY_TILE_SIZE_SMALL = 128
         
     | 
| 
      
 546 
     | 
    
         
            +
                    _KV_COPY_NUM_WARPS_LARGE_TILE = 8
         
     | 
| 
      
 547 
     | 
    
         
            +
                    _KV_COPY_NUM_WARPS_SMALL_TILE = 4
         
     | 
| 
      
 548 
     | 
    
         
            +
             
     | 
| 
      
 549 
     | 
    
         
            +
                    stride_bytes = int(self.data_strides[0].item())
         
     | 
| 
      
 550 
     | 
    
         
            +
                    if stride_bytes >= _KV_COPY_STRIDE_THRESHOLD_LARGE:
         
     | 
| 
      
 551 
     | 
    
         
            +
                        bytes_per_tile = _KV_COPY_TILE_SIZE_LARGE
         
     | 
| 
      
 552 
     | 
    
         
            +
                    elif stride_bytes >= _KV_COPY_STRIDE_THRESHOLD_MEDIUM:
         
     | 
| 
      
 553 
     | 
    
         
            +
                        bytes_per_tile = _KV_COPY_TILE_SIZE_MEDIUM
         
     | 
| 
      
 554 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 555 
     | 
    
         
            +
                        bytes_per_tile = _KV_COPY_TILE_SIZE_SMALL
         
     | 
| 
      
 556 
     | 
    
         
            +
             
     | 
| 
      
 557 
     | 
    
         
            +
                    self._kv_copy_config = {
         
     | 
| 
      
 558 
     | 
    
         
            +
                        "bytes_per_tile": bytes_per_tile,
         
     | 
| 
      
 559 
     | 
    
         
            +
                        "byte_tiles": (stride_bytes + bytes_per_tile - 1) // bytes_per_tile,
         
     | 
| 
      
 560 
     | 
    
         
            +
                        "num_warps": (
         
     | 
| 
      
 561 
     | 
    
         
            +
                            _KV_COPY_NUM_WARPS_SMALL_TILE
         
     | 
| 
      
 562 
     | 
    
         
            +
                            if bytes_per_tile <= _KV_COPY_TILE_SIZE_MEDIUM
         
     | 
| 
      
 563 
     | 
    
         
            +
                            else _KV_COPY_NUM_WARPS_LARGE_TILE
         
     | 
| 
      
 564 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 565 
     | 
    
         
            +
                    }
         
     | 
| 
      
 566 
     | 
    
         
            +
             
     | 
| 
      
 567 
     | 
    
         
            +
                    dummy_loc = torch.zeros(1, dtype=torch.int32, device=self.device)
         
     | 
| 
      
 568 
     | 
    
         
            +
                    grid = (self.data_ptrs.numel(), self._kv_copy_config["byte_tiles"])
         
     | 
| 
      
 569 
     | 
    
         
            +
             
     | 
| 
      
 570 
     | 
    
         
            +
                    copy_all_layer_kv_cache_tiled[grid](
         
     | 
| 
      
 571 
     | 
    
         
            +
                        self.data_ptrs,
         
     | 
| 
      
 572 
     | 
    
         
            +
                        self.data_strides,
         
     | 
| 
      
 573 
     | 
    
         
            +
                        dummy_loc,
         
     | 
| 
      
 574 
     | 
    
         
            +
                        dummy_loc,
         
     | 
| 
      
 575 
     | 
    
         
            +
                        1,
         
     | 
| 
      
 576 
     | 
    
         
            +
                        1,
         
     | 
| 
      
 577 
     | 
    
         
            +
                        BYTES_PER_TILE=self._kv_copy_config["bytes_per_tile"],
         
     | 
| 
      
 578 
     | 
    
         
            +
                        num_warps=self._kv_copy_config["num_warps"],
         
     | 
| 
      
 579 
     | 
    
         
            +
                        num_stages=2,
         
     | 
| 
      
 580 
     | 
    
         
            +
                    )
         
     | 
| 
      
 581 
     | 
    
         
            +
             
     | 
| 
       451 
582 
     | 
    
         
             
                def _create_buffers(self):
         
     | 
| 
       452 
583 
     | 
    
         
             
                    with self.memory_saver_adapter.region(GPU_MEMORY_TYPE_KV_CACHE):
         
     | 
| 
       453 
584 
     | 
    
         
             
                        with (
         
     | 
| 
         @@ -535,9 +666,6 @@ class MHATokenToKVPool(KVCache): 
     | 
|
| 
       535 
666 
     | 
    
         
             
                    ]
         
     | 
| 
       536 
667 
     | 
    
         
             
                    return kv_data_ptrs, kv_data_lens, kv_item_lens
         
     | 
| 
       537 
668 
     | 
    
         | 
| 
       538 
     | 
    
         
            -
                def maybe_get_custom_mem_pool(self):
         
     | 
| 
       539 
     | 
    
         
            -
                    return self.custom_mem_pool
         
     | 
| 
       540 
     | 
    
         
            -
             
     | 
| 
       541 
669 
     | 
    
         
             
                def get_cpu_copy(self, indices):
         
     | 
| 
       542 
670 
     | 
    
         
             
                    torch.cuda.synchronize()
         
     | 
| 
       543 
671 
     | 
    
         
             
                    kv_cache_cpu = []
         
     | 
| 
         @@ -642,13 +770,28 @@ class MHATokenToKVPool(KVCache): 
     | 
|
| 
       642 
770 
     | 
    
         
             
                        self.v_buffer[layer_id - self.start_layer][loc] = cache_v
         
     | 
| 
       643 
771 
     | 
    
         | 
| 
       644 
772 
     | 
    
         
             
                def move_kv_cache(self, tgt_loc: torch.Tensor, src_loc: torch.Tensor):
         
     | 
| 
       645 
     | 
    
         
            -
                     
     | 
| 
      
 773 
     | 
    
         
            +
                    N = tgt_loc.numel()
         
     | 
| 
      
 774 
     | 
    
         
            +
                    if N == 0:
         
     | 
| 
      
 775 
     | 
    
         
            +
                        return
         
     | 
| 
      
 776 
     | 
    
         
            +
             
     | 
| 
      
 777 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 778 
     | 
    
         
            +
                        self._kv_copy_config is not None
         
     | 
| 
      
 779 
     | 
    
         
            +
                    ), "KV copy not initialized. Set enable_kv_cache_copy=True in __init__"
         
     | 
| 
      
 780 
     | 
    
         
            +
             
     | 
| 
      
 781 
     | 
    
         
            +
                    cfg = self._kv_copy_config
         
     | 
| 
      
 782 
     | 
    
         
            +
                    N_upper = next_power_of_2(N)
         
     | 
| 
      
 783 
     | 
    
         
            +
                    grid = (self.data_ptrs.numel(), cfg["byte_tiles"])
         
     | 
| 
      
 784 
     | 
    
         
            +
             
     | 
| 
      
 785 
     | 
    
         
            +
                    copy_all_layer_kv_cache_tiled[grid](
         
     | 
| 
       646 
786 
     | 
    
         
             
                        self.data_ptrs,
         
     | 
| 
       647 
787 
     | 
    
         
             
                        self.data_strides,
         
     | 
| 
       648 
788 
     | 
    
         
             
                        tgt_loc,
         
     | 
| 
       649 
789 
     | 
    
         
             
                        src_loc,
         
     | 
| 
       650 
     | 
    
         
            -
                         
     | 
| 
       651 
     | 
    
         
            -
                         
     | 
| 
      
 790 
     | 
    
         
            +
                        N,
         
     | 
| 
      
 791 
     | 
    
         
            +
                        N_upper,
         
     | 
| 
      
 792 
     | 
    
         
            +
                        BYTES_PER_TILE=cfg["bytes_per_tile"],
         
     | 
| 
      
 793 
     | 
    
         
            +
                        num_warps=cfg["num_warps"],
         
     | 
| 
      
 794 
     | 
    
         
            +
                        num_stages=2,
         
     | 
| 
       652 
795 
     | 
    
         
             
                    )
         
     | 
| 
       653 
796 
     | 
    
         | 
| 
       654 
797 
     | 
    
         | 
| 
         @@ -665,12 +808,18 @@ class HybridLinearKVPool(KVCache): 
     | 
|
| 
       665 
808 
     | 
    
         
             
                    full_attention_layer_ids: List[int],
         
     | 
| 
       666 
809 
     | 
    
         
             
                    enable_kvcache_transpose: bool,
         
     | 
| 
       667 
810 
     | 
    
         
             
                    device: str,
         
     | 
| 
      
 811 
     | 
    
         
            +
                    mamba_pool: MambaPool,
         
     | 
| 
       668 
812 
     | 
    
         
             
                ):
         
     | 
| 
       669 
813 
     | 
    
         
             
                    self.size = size
         
     | 
| 
       670 
814 
     | 
    
         
             
                    self.dtype = dtype
         
     | 
| 
       671 
815 
     | 
    
         
             
                    self.device = device
         
     | 
| 
       672 
816 
     | 
    
         
             
                    self.full_layer_nums = len(full_attention_layer_ids)
         
     | 
| 
       673 
817 
     | 
    
         
             
                    self.page_size = page_size
         
     | 
| 
      
 818 
     | 
    
         
            +
                    # TODO support pp?
         
     | 
| 
      
 819 
     | 
    
         
            +
                    self.start_layer = 0
         
     | 
| 
      
 820 
     | 
    
         
            +
                    self.head_num = head_num
         
     | 
| 
      
 821 
     | 
    
         
            +
                    self.head_dim = head_dim
         
     | 
| 
      
 822 
     | 
    
         
            +
                    self.mamba_pool = mamba_pool
         
     | 
| 
       674 
823 
     | 
    
         
             
                    # TODO MHATransposedTokenToKVPool if enable_kvcache_transpose is True
         
     | 
| 
       675 
824 
     | 
    
         
             
                    assert not enable_kvcache_transpose
         
     | 
| 
       676 
825 
     | 
    
         
             
                    if _is_npu:
         
     | 
| 
         @@ -699,6 +848,15 @@ class HybridLinearKVPool(KVCache): 
     | 
|
| 
       699 
848 
     | 
    
         
             
                def get_contiguous_buf_infos(self):
         
     | 
| 
       700 
849 
     | 
    
         
             
                    return self.full_kv_pool.get_contiguous_buf_infos()
         
     | 
| 
       701 
850 
     | 
    
         | 
| 
      
 851 
     | 
    
         
            +
                def get_state_buf_infos(self):
         
     | 
| 
      
 852 
     | 
    
         
            +
                    mamba_data_ptrs, mamba_data_lens, mamba_item_lens = (
         
     | 
| 
      
 853 
     | 
    
         
            +
                        self.mamba_pool.get_contiguous_buf_infos()
         
     | 
| 
      
 854 
     | 
    
         
            +
                    )
         
     | 
| 
      
 855 
     | 
    
         
            +
                    return mamba_data_ptrs, mamba_data_lens, mamba_item_lens
         
     | 
| 
      
 856 
     | 
    
         
            +
             
     | 
| 
      
 857 
     | 
    
         
            +
                def maybe_get_custom_mem_pool(self):
         
     | 
| 
      
 858 
     | 
    
         
            +
                    return self.full_kv_pool.maybe_get_custom_mem_pool()
         
     | 
| 
      
 859 
     | 
    
         
            +
             
     | 
| 
       702 
860 
     | 
    
         
             
                def _transfer_full_attention_id(self, layer_id: int):
         
     | 
| 
       703 
861 
     | 
    
         
             
                    if layer_id not in self.full_attention_layer_id_mapping:
         
     | 
| 
       704 
862 
     | 
    
         
             
                        raise ValueError(
         
     | 
| 
         @@ -749,28 +907,57 @@ class SWAKVPool(KVCache): 
     | 
|
| 
       749 
907 
     | 
    
         
             
                    self,
         
     | 
| 
       750 
908 
     | 
    
         
             
                    size: int,
         
     | 
| 
       751 
909 
     | 
    
         
             
                    size_swa: int,
         
     | 
| 
      
 910 
     | 
    
         
            +
                    dtype: torch.dtype,
         
     | 
| 
      
 911 
     | 
    
         
            +
                    head_num: int,
         
     | 
| 
      
 912 
     | 
    
         
            +
                    head_dim: int,
         
     | 
| 
       752 
913 
     | 
    
         
             
                    swa_attention_layer_ids: List[int],
         
     | 
| 
       753 
914 
     | 
    
         
             
                    full_attention_layer_ids: List[int],
         
     | 
| 
       754 
915 
     | 
    
         
             
                    enable_kvcache_transpose: bool,
         
     | 
| 
      
 916 
     | 
    
         
            +
                    device: str,
         
     | 
| 
       755 
917 
     | 
    
         
             
                    token_to_kv_pool_class: KVCache = MHATokenToKVPool,
         
     | 
| 
       756 
918 
     | 
    
         
             
                    **kwargs,
         
     | 
| 
       757 
919 
     | 
    
         
             
                ):
         
     | 
| 
       758 
920 
     | 
    
         
             
                    self.size = size
         
     | 
| 
       759 
921 
     | 
    
         
             
                    self.size_swa = size_swa
         
     | 
| 
      
 922 
     | 
    
         
            +
                    self.dtype = dtype
         
     | 
| 
      
 923 
     | 
    
         
            +
                    self.head_num = head_num
         
     | 
| 
      
 924 
     | 
    
         
            +
                    self.head_dim = head_dim
         
     | 
| 
      
 925 
     | 
    
         
            +
                    self.device = device
         
     | 
| 
       760 
926 
     | 
    
         
             
                    self.swa_layer_nums = len(swa_attention_layer_ids)
         
     | 
| 
       761 
927 
     | 
    
         
             
                    self.full_layer_nums = len(full_attention_layer_ids)
         
     | 
| 
      
 928 
     | 
    
         
            +
                    self.start_layer = 0
         
     | 
| 
      
 929 
     | 
    
         
            +
                    self.page_size = 1
         
     | 
| 
      
 930 
     | 
    
         
            +
             
     | 
| 
       762 
931 
     | 
    
         
             
                    kwargs["page_size"] = 1
         
     | 
| 
       763 
932 
     | 
    
         
             
                    kwargs["enable_memory_saver"] = False
         
     | 
| 
      
 933 
     | 
    
         
            +
                    kwargs["head_num"] = head_num
         
     | 
| 
      
 934 
     | 
    
         
            +
                    kwargs["head_dim"] = head_dim
         
     | 
| 
      
 935 
     | 
    
         
            +
                    kwargs["device"] = device
         
     | 
| 
       764 
936 
     | 
    
         
             
                    # TODO MHATransposedTokenToKVPool if enable_kvcache_transpose is True
         
     | 
| 
       765 
937 
     | 
    
         
             
                    assert not enable_kvcache_transpose
         
     | 
| 
       766 
938 
     | 
    
         | 
| 
      
 939 
     | 
    
         
            +
                    # for disagg with nvlink
         
     | 
| 
      
 940 
     | 
    
         
            +
                    self.enable_custom_mem_pool = get_bool_env_var(
         
     | 
| 
      
 941 
     | 
    
         
            +
                        "SGLANG_MOONCAKE_CUSTOM_MEM_POOL", "false"
         
     | 
| 
      
 942 
     | 
    
         
            +
                    )
         
     | 
| 
      
 943 
     | 
    
         
            +
                    if self.enable_custom_mem_pool:
         
     | 
| 
      
 944 
     | 
    
         
            +
                        # TODO(shangming): abstract custom allocator class for more backends
         
     | 
| 
      
 945 
     | 
    
         
            +
                        from mooncake.allocator import NVLinkAllocator
         
     | 
| 
      
 946 
     | 
    
         
            +
             
     | 
| 
      
 947 
     | 
    
         
            +
                        allocator = NVLinkAllocator.get_allocator(self.device)
         
     | 
| 
      
 948 
     | 
    
         
            +
                        self.custom_mem_pool = torch.cuda.MemPool(allocator.allocator())
         
     | 
| 
      
 949 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 950 
     | 
    
         
            +
                        self.custom_mem_pool = None
         
     | 
| 
      
 951 
     | 
    
         
            +
             
     | 
| 
       767 
952 
     | 
    
         
             
                    self.swa_kv_pool = token_to_kv_pool_class(
         
     | 
| 
       768 
953 
     | 
    
         
             
                        size=size_swa,
         
     | 
| 
      
 954 
     | 
    
         
            +
                        dtype=dtype,
         
     | 
| 
       769 
955 
     | 
    
         
             
                        layer_num=self.swa_layer_nums,
         
     | 
| 
       770 
956 
     | 
    
         
             
                        **kwargs,
         
     | 
| 
       771 
957 
     | 
    
         
             
                    )
         
     | 
| 
       772 
958 
     | 
    
         
             
                    self.full_kv_pool = token_to_kv_pool_class(
         
     | 
| 
       773 
959 
     | 
    
         
             
                        size=size,
         
     | 
| 
      
 960 
     | 
    
         
            +
                        dtype=dtype,
         
     | 
| 
       774 
961 
     | 
    
         
             
                        layer_num=self.full_layer_nums,
         
     | 
| 
       775 
962 
     | 
    
         
             
                        **kwargs,
         
     | 
| 
       776 
963 
     | 
    
         
             
                    )
         
     | 
| 
         @@ -783,6 +970,9 @@ class SWAKVPool(KVCache): 
     | 
|
| 
       783 
970 
     | 
    
         | 
| 
       784 
971 
     | 
    
         
             
                    k_size, v_size = self.get_kv_size_bytes()
         
     | 
| 
       785 
972 
     | 
    
         
             
                    self.mem_usage = (k_size + v_size) / GB
         
     | 
| 
      
 973 
     | 
    
         
            +
                    logger.info(
         
     | 
| 
      
 974 
     | 
    
         
            +
                        f"SWAKVPool mem usage: {self.mem_usage} GB, swa size: {self.size_swa}, full size: {self.size}"
         
     | 
| 
      
 975 
     | 
    
         
            +
                    )
         
     | 
| 
       786 
976 
     | 
    
         | 
| 
       787 
977 
     | 
    
         
             
                def get_kv_size_bytes(self):
         
     | 
| 
       788 
978 
     | 
    
         
             
                    k_size, v_size = self.full_kv_pool.get_kv_size_bytes()
         
     | 
| 
         @@ -793,15 +983,19 @@ class SWAKVPool(KVCache): 
     | 
|
| 
       793 
983 
     | 
    
         
             
                    full_kv_data_ptrs, full_kv_data_lens, full_kv_item_lens = (
         
     | 
| 
       794 
984 
     | 
    
         
             
                        self.full_kv_pool.get_contiguous_buf_infos()
         
     | 
| 
       795 
985 
     | 
    
         
             
                    )
         
     | 
| 
      
 986 
     | 
    
         
            +
             
     | 
| 
      
 987 
     | 
    
         
            +
                    kv_data_ptrs = full_kv_data_ptrs
         
     | 
| 
      
 988 
     | 
    
         
            +
                    kv_data_lens = full_kv_data_lens
         
     | 
| 
      
 989 
     | 
    
         
            +
                    kv_item_lens = full_kv_item_lens
         
     | 
| 
      
 990 
     | 
    
         
            +
             
     | 
| 
      
 991 
     | 
    
         
            +
                    return kv_data_ptrs, kv_data_lens, kv_item_lens
         
     | 
| 
      
 992 
     | 
    
         
            +
             
     | 
| 
      
 993 
     | 
    
         
            +
                def get_state_buf_infos(self):
         
     | 
| 
       796 
994 
     | 
    
         
             
                    swa_kv_data_ptrs, swa_kv_data_lens, swa_kv_item_lens = (
         
     | 
| 
       797 
995 
     | 
    
         
             
                        self.swa_kv_pool.get_contiguous_buf_infos()
         
     | 
| 
       798 
996 
     | 
    
         
             
                    )
         
     | 
| 
       799 
997 
     | 
    
         | 
| 
       800 
     | 
    
         
            -
                     
     | 
| 
       801 
     | 
    
         
            -
                    kv_data_lens = full_kv_data_lens + swa_kv_data_lens
         
     | 
| 
       802 
     | 
    
         
            -
                    kv_item_lens = full_kv_item_lens + swa_kv_item_lens
         
     | 
| 
       803 
     | 
    
         
            -
             
     | 
| 
       804 
     | 
    
         
            -
                    return kv_data_ptrs, kv_data_lens, kv_item_lens
         
     | 
| 
      
 998 
     | 
    
         
            +
                    return swa_kv_data_ptrs, swa_kv_data_lens, swa_kv_item_lens
         
     | 
| 
       805 
999 
     | 
    
         | 
| 
       806 
1000 
     | 
    
         
             
                def get_key_buffer(self, layer_id: int):
         
     | 
| 
       807 
1001 
     | 
    
         
             
                    layer_id_pool, is_swa = self.layers_mapping[layer_id]
         
     | 
| 
         @@ -1019,6 +1213,65 @@ def set_mla_kv_buffer_triton( 
     | 
|
| 
       1019 
1213 
     | 
    
         
             
                )
         
     | 
| 
       1020 
1214 
     | 
    
         | 
| 
       1021 
1215 
     | 
    
         | 
| 
      
 1216 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 1217 
     | 
    
         
            +
            def get_mla_kv_buffer_kernel(
         
     | 
| 
      
 1218 
     | 
    
         
            +
                kv_buffer_ptr,
         
     | 
| 
      
 1219 
     | 
    
         
            +
                cache_k_nope_ptr,
         
     | 
| 
      
 1220 
     | 
    
         
            +
                cache_k_rope_ptr,
         
     | 
| 
      
 1221 
     | 
    
         
            +
                loc_ptr,
         
     | 
| 
      
 1222 
     | 
    
         
            +
                buffer_stride: tl.constexpr,
         
     | 
| 
      
 1223 
     | 
    
         
            +
                nope_stride: tl.constexpr,
         
     | 
| 
      
 1224 
     | 
    
         
            +
                rope_stride: tl.constexpr,
         
     | 
| 
      
 1225 
     | 
    
         
            +
                nope_dim: tl.constexpr,
         
     | 
| 
      
 1226 
     | 
    
         
            +
                rope_dim: tl.constexpr,
         
     | 
| 
      
 1227 
     | 
    
         
            +
            ):
         
     | 
| 
      
 1228 
     | 
    
         
            +
                pid_loc = tl.program_id(0)
         
     | 
| 
      
 1229 
     | 
    
         
            +
                loc = tl.load(loc_ptr + pid_loc)
         
     | 
| 
      
 1230 
     | 
    
         
            +
                loc_src_ptr = kv_buffer_ptr + loc * buffer_stride
         
     | 
| 
      
 1231 
     | 
    
         
            +
             
     | 
| 
      
 1232 
     | 
    
         
            +
                nope_offs = tl.arange(0, nope_dim)
         
     | 
| 
      
 1233 
     | 
    
         
            +
                nope_src_ptr = loc_src_ptr + nope_offs
         
     | 
| 
      
 1234 
     | 
    
         
            +
                nope_src = tl.load(nope_src_ptr)
         
     | 
| 
      
 1235 
     | 
    
         
            +
             
     | 
| 
      
 1236 
     | 
    
         
            +
                tl.store(
         
     | 
| 
      
 1237 
     | 
    
         
            +
                    cache_k_nope_ptr + pid_loc * nope_stride + nope_offs,
         
     | 
| 
      
 1238 
     | 
    
         
            +
                    nope_src,
         
     | 
| 
      
 1239 
     | 
    
         
            +
                )
         
     | 
| 
      
 1240 
     | 
    
         
            +
             
     | 
| 
      
 1241 
     | 
    
         
            +
                rope_offs = tl.arange(0, rope_dim)
         
     | 
| 
      
 1242 
     | 
    
         
            +
                rope_src_ptr = loc_src_ptr + nope_dim + rope_offs
         
     | 
| 
      
 1243 
     | 
    
         
            +
                rope_src = tl.load(rope_src_ptr)
         
     | 
| 
      
 1244 
     | 
    
         
            +
                tl.store(
         
     | 
| 
      
 1245 
     | 
    
         
            +
                    cache_k_rope_ptr + pid_loc * rope_stride + rope_offs,
         
     | 
| 
      
 1246 
     | 
    
         
            +
                    rope_src,
         
     | 
| 
      
 1247 
     | 
    
         
            +
                )
         
     | 
| 
      
 1248 
     | 
    
         
            +
             
     | 
| 
      
 1249 
     | 
    
         
            +
             
     | 
| 
      
 1250 
     | 
    
         
            +
            def get_mla_kv_buffer_triton(
         
     | 
| 
      
 1251 
     | 
    
         
            +
                kv_buffer: torch.Tensor,
         
     | 
| 
      
 1252 
     | 
    
         
            +
                loc: torch.Tensor,
         
     | 
| 
      
 1253 
     | 
    
         
            +
                cache_k_nope: torch.Tensor,
         
     | 
| 
      
 1254 
     | 
    
         
            +
                cache_k_rope: torch.Tensor,
         
     | 
| 
      
 1255 
     | 
    
         
            +
            ):
         
     | 
| 
      
 1256 
     | 
    
         
            +
                # The source data type will be implicitly converted to the target data type.
         
     | 
| 
      
 1257 
     | 
    
         
            +
                nope_dim = cache_k_nope.shape[-1]  # 512
         
     | 
| 
      
 1258 
     | 
    
         
            +
                rope_dim = cache_k_rope.shape[-1]  # 64
         
     | 
| 
      
 1259 
     | 
    
         
            +
                n_loc = loc.numel()
         
     | 
| 
      
 1260 
     | 
    
         
            +
                grid = (n_loc,)
         
     | 
| 
      
 1261 
     | 
    
         
            +
             
     | 
| 
      
 1262 
     | 
    
         
            +
                get_mla_kv_buffer_kernel[grid](
         
     | 
| 
      
 1263 
     | 
    
         
            +
                    kv_buffer,
         
     | 
| 
      
 1264 
     | 
    
         
            +
                    cache_k_nope,
         
     | 
| 
      
 1265 
     | 
    
         
            +
                    cache_k_rope,
         
     | 
| 
      
 1266 
     | 
    
         
            +
                    loc,
         
     | 
| 
      
 1267 
     | 
    
         
            +
                    kv_buffer.stride(0),
         
     | 
| 
      
 1268 
     | 
    
         
            +
                    cache_k_nope.stride(0),
         
     | 
| 
      
 1269 
     | 
    
         
            +
                    cache_k_rope.stride(0),
         
     | 
| 
      
 1270 
     | 
    
         
            +
                    nope_dim,
         
     | 
| 
      
 1271 
     | 
    
         
            +
                    rope_dim,
         
     | 
| 
      
 1272 
     | 
    
         
            +
                )
         
     | 
| 
      
 1273 
     | 
    
         
            +
             
     | 
| 
      
 1274 
     | 
    
         
            +
             
     | 
| 
       1022 
1275 
     | 
    
         
             
            class MLATokenToKVPool(KVCache):
         
     | 
| 
       1023 
1276 
     | 
    
         
             
                def __init__(
         
     | 
| 
       1024 
1277 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -1057,19 +1310,6 @@ class MLATokenToKVPool(KVCache): 
     | 
|
| 
       1057 
1310 
     | 
    
         
             
                        else (kv_lora_rank + qk_rope_head_dim)
         
     | 
| 
       1058 
1311 
     | 
    
         
             
                    )
         
     | 
| 
       1059 
1312 
     | 
    
         | 
| 
       1060 
     | 
    
         
            -
                    # for disagg with nvlink
         
     | 
| 
       1061 
     | 
    
         
            -
                    self.enable_custom_mem_pool = get_bool_env_var(
         
     | 
| 
       1062 
     | 
    
         
            -
                        "SGLANG_MOONCAKE_CUSTOM_MEM_POOL", "false"
         
     | 
| 
       1063 
     | 
    
         
            -
                    )
         
     | 
| 
       1064 
     | 
    
         
            -
                    if self.enable_custom_mem_pool:
         
     | 
| 
       1065 
     | 
    
         
            -
                        # TODO(shangming): abstract custom allocator class for more backends
         
     | 
| 
       1066 
     | 
    
         
            -
                        from mooncake.allocator import NVLinkAllocator
         
     | 
| 
       1067 
     | 
    
         
            -
             
     | 
| 
       1068 
     | 
    
         
            -
                        allocator = NVLinkAllocator.get_allocator(self.device)
         
     | 
| 
       1069 
     | 
    
         
            -
                        self.custom_mem_pool = torch.cuda.MemPool(allocator.allocator())
         
     | 
| 
       1070 
     | 
    
         
            -
                    else:
         
     | 
| 
       1071 
     | 
    
         
            -
                        self.custom_mem_pool = None
         
     | 
| 
       1072 
     | 
    
         
            -
             
     | 
| 
       1073 
1313 
     | 
    
         
             
                    with self.memory_saver_adapter.region(GPU_MEMORY_TYPE_KV_CACHE):
         
     | 
| 
       1074 
1314 
     | 
    
         
             
                        with (
         
     | 
| 
       1075 
1315 
     | 
    
         
             
                            torch.cuda.use_mem_pool(self.custom_mem_pool)
         
     | 
| 
         @@ -1091,7 +1331,9 @@ class MLATokenToKVPool(KVCache): 
     | 
|
| 
       1091 
1331 
     | 
    
         
             
                        dtype=torch.uint64,
         
     | 
| 
       1092 
1332 
     | 
    
         
             
                        device=self.device,
         
     | 
| 
       1093 
1333 
     | 
    
         
             
                    )
         
     | 
| 
       1094 
     | 
    
         
            -
                     
     | 
| 
      
 1334 
     | 
    
         
            +
                    if not use_nsa:
         
     | 
| 
      
 1335 
     | 
    
         
            +
                        # NSA will allocate indexer KV cache later and then log the total size
         
     | 
| 
      
 1336 
     | 
    
         
            +
                        self._finalize_allocation_log(size)
         
     | 
| 
       1095 
1337 
     | 
    
         | 
| 
       1096 
1338 
     | 
    
         
             
                def get_kv_size_bytes(self):
         
     | 
| 
       1097 
1339 
     | 
    
         
             
                    assert hasattr(self, "kv_buffer")
         
     | 
| 
         @@ -1110,9 +1352,6 @@ class MLATokenToKVPool(KVCache): 
     | 
|
| 
       1110 
1352 
     | 
    
         
             
                    ]
         
     | 
| 
       1111 
1353 
     | 
    
         
             
                    return kv_data_ptrs, kv_data_lens, kv_item_lens
         
     | 
| 
       1112 
1354 
     | 
    
         | 
| 
       1113 
     | 
    
         
            -
                def maybe_get_custom_mem_pool(self):
         
     | 
| 
       1114 
     | 
    
         
            -
                    return self.custom_mem_pool
         
     | 
| 
       1115 
     | 
    
         
            -
             
     | 
| 
       1116 
1355 
     | 
    
         
             
                def get_key_buffer(self, layer_id: int):
         
     | 
| 
       1117 
1356 
     | 
    
         
             
                    if self.layer_transfer_counter is not None:
         
     | 
| 
       1118 
1357 
     | 
    
         
             
                        self.layer_transfer_counter.wait_until(layer_id - self.start_layer)
         
     | 
| 
         @@ -1183,6 +1422,29 @@ class MLATokenToKVPool(KVCache): 
     | 
|
| 
       1183 
1422 
     | 
    
         
             
                            cache_k_rope,
         
     | 
| 
       1184 
1423 
     | 
    
         
             
                        )
         
     | 
| 
       1185 
1424 
     | 
    
         | 
| 
      
 1425 
     | 
    
         
            +
                def get_mla_kv_buffer(
         
     | 
| 
      
 1426 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 1427 
     | 
    
         
            +
                    layer: RadixAttention,
         
     | 
| 
      
 1428 
     | 
    
         
            +
                    loc: torch.Tensor,
         
     | 
| 
      
 1429 
     | 
    
         
            +
                    dst_dtype: Optional[torch.dtype] = None,
         
     | 
| 
      
 1430 
     | 
    
         
            +
                ):
         
     | 
| 
      
 1431 
     | 
    
         
            +
                    # get k nope and k rope from the kv buffer, and optionally cast them to dst_dtype.
         
     | 
| 
      
 1432 
     | 
    
         
            +
                    layer_id = layer.layer_id
         
     | 
| 
      
 1433 
     | 
    
         
            +
                    kv_buffer = self.get_key_buffer(layer_id)
         
     | 
| 
      
 1434 
     | 
    
         
            +
                    dst_dtype = dst_dtype or self.dtype
         
     | 
| 
      
 1435 
     | 
    
         
            +
                    cache_k_nope = torch.empty(
         
     | 
| 
      
 1436 
     | 
    
         
            +
                        (loc.shape[0], 1, self.kv_lora_rank),
         
     | 
| 
      
 1437 
     | 
    
         
            +
                        dtype=dst_dtype,
         
     | 
| 
      
 1438 
     | 
    
         
            +
                        device=kv_buffer.device,
         
     | 
| 
      
 1439 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1440 
     | 
    
         
            +
                    cache_k_rope = torch.empty(
         
     | 
| 
      
 1441 
     | 
    
         
            +
                        (loc.shape[0], 1, self.qk_rope_head_dim),
         
     | 
| 
      
 1442 
     | 
    
         
            +
                        dtype=dst_dtype,
         
     | 
| 
      
 1443 
     | 
    
         
            +
                        device=kv_buffer.device,
         
     | 
| 
      
 1444 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1445 
     | 
    
         
            +
                    get_mla_kv_buffer_triton(kv_buffer, loc, cache_k_nope, cache_k_rope)
         
     | 
| 
      
 1446 
     | 
    
         
            +
                    return cache_k_nope, cache_k_rope
         
     | 
| 
      
 1447 
     | 
    
         
            +
             
     | 
| 
       1186 
1448 
     | 
    
         
             
                def get_cpu_copy(self, indices):
         
     | 
| 
       1187 
1449 
     | 
    
         
             
                    torch.cuda.synchronize()
         
     | 
| 
       1188 
1450 
     | 
    
         
             
                    kv_cache_cpu = []
         
     | 
| 
         @@ -1212,6 +1474,9 @@ class MLATokenToKVPool(KVCache): 
     | 
|
| 
       1212 
1474 
     | 
    
         | 
| 
       1213 
1475 
     | 
    
         | 
| 
       1214 
1476 
     | 
    
         
             
            class NSATokenToKVPool(MLATokenToKVPool):
         
     | 
| 
      
 1477 
     | 
    
         
            +
                quant_block_size = 128
         
     | 
| 
      
 1478 
     | 
    
         
            +
                index_k_with_scale_buffer_dtype = torch.uint8
         
     | 
| 
      
 1479 
     | 
    
         
            +
             
     | 
| 
       1215 
1480 
     | 
    
         
             
                def __init__(
         
     | 
| 
       1216 
1481 
     | 
    
         
             
                    self,
         
     | 
| 
       1217 
1482 
     | 
    
         
             
                    size: int,
         
     | 
| 
         @@ -1245,27 +1510,33 @@ class NSATokenToKVPool(MLATokenToKVPool): 
     | 
|
| 
       1245 
1510 
     | 
    
         
             
                    # num head == 1 and head dim == 128 for index_k in NSA
         
     | 
| 
       1246 
1511 
     | 
    
         
             
                    assert index_head_dim == 128
         
     | 
| 
       1247 
1512 
     | 
    
         | 
| 
       1248 
     | 
    
         
            -
                    self.quant_block_size = 128
         
     | 
| 
       1249 
     | 
    
         
            -
             
     | 
| 
       1250 
1513 
     | 
    
         
             
                    assert self.page_size == 64
         
     | 
| 
       1251 
     | 
    
         
            -
                     
     | 
| 
       1252 
     | 
    
         
            -
                        torch. 
     | 
| 
       1253 
     | 
    
         
            -
             
     | 
| 
       1254 
     | 
    
         
            -
             
     | 
| 
       1255 
     | 
    
         
            -
             
     | 
| 
       1256 
     | 
    
         
            -
             
     | 
| 
       1257 
     | 
    
         
            -
                             
     | 
| 
       1258 
     | 
    
         
            -
             
     | 
| 
       1259 
     | 
    
         
            -
             
     | 
| 
       1260 
     | 
    
         
            -
                                ( 
     | 
| 
       1261 
     | 
    
         
            -
                                 
     | 
| 
       1262 
     | 
    
         
            -
                                *  
     | 
| 
       1263 
     | 
    
         
            -
             
     | 
| 
       1264 
     | 
    
         
            -
             
     | 
| 
       1265 
     | 
    
         
            -
             
     | 
| 
       1266 
     | 
    
         
            -
             
     | 
| 
       1267 
     | 
    
         
            -
             
     | 
| 
       1268 
     | 
    
         
            -
             
     | 
| 
      
 1514 
     | 
    
         
            +
                    with (
         
     | 
| 
      
 1515 
     | 
    
         
            +
                        torch.cuda.use_mem_pool(self.custom_mem_pool)
         
     | 
| 
      
 1516 
     | 
    
         
            +
                        if self.custom_mem_pool
         
     | 
| 
      
 1517 
     | 
    
         
            +
                        else nullcontext()
         
     | 
| 
      
 1518 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 1519 
     | 
    
         
            +
                        self.index_k_with_scale_buffer = [
         
     | 
| 
      
 1520 
     | 
    
         
            +
                            torch.zeros(
         
     | 
| 
      
 1521 
     | 
    
         
            +
                                # Layout:
         
     | 
| 
      
 1522 
     | 
    
         
            +
                                #     ref: test_attention.py :: kv_cache_cast_to_fp8
         
     | 
| 
      
 1523 
     | 
    
         
            +
                                #     shape: (num_pages, page_size 64 * head_dim 128 + page_size 64 * fp32_nbytes 4)
         
     | 
| 
      
 1524 
     | 
    
         
            +
                                #     data: for page i,
         
     | 
| 
      
 1525 
     | 
    
         
            +
                                #         * buf[i, :page_size * head_dim] for fp8 data
         
     | 
| 
      
 1526 
     | 
    
         
            +
                                #         * buf[i, page_size * head_dim:].view(float32) for scale
         
     | 
| 
      
 1527 
     | 
    
         
            +
                                (
         
     | 
| 
      
 1528 
     | 
    
         
            +
                                    (size + page_size + 1) // self.page_size,
         
     | 
| 
      
 1529 
     | 
    
         
            +
                                    self.page_size
         
     | 
| 
      
 1530 
     | 
    
         
            +
                                    * (
         
     | 
| 
      
 1531 
     | 
    
         
            +
                                        index_head_dim + index_head_dim // self.quant_block_size * 4
         
     | 
| 
      
 1532 
     | 
    
         
            +
                                    ),
         
     | 
| 
      
 1533 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 1534 
     | 
    
         
            +
                                dtype=self.index_k_with_scale_buffer_dtype,
         
     | 
| 
      
 1535 
     | 
    
         
            +
                                device=device,
         
     | 
| 
      
 1536 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1537 
     | 
    
         
            +
                            for _ in range(layer_num)
         
     | 
| 
      
 1538 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 1539 
     | 
    
         
            +
                    self._finalize_allocation_log(size)
         
     | 
| 
       1269 
1540 
     | 
    
         | 
| 
       1270 
1541 
     | 
    
         
             
                def get_index_k_with_scale_buffer(self, layer_id: int) -> torch.Tensor:
         
     | 
| 
       1271 
1542 
     | 
    
         
             
                    if self.layer_transfer_counter is not None:
         
     | 
| 
         @@ -1307,6 +1578,24 @@ class NSATokenToKVPool(MLATokenToKVPool): 
     | 
|
| 
       1307 
1578 
     | 
    
         
             
                        pool=self, buf=buf, loc=loc, index_k=index_k, index_k_scale=index_k_scale
         
     | 
| 
       1308 
1579 
     | 
    
         
             
                    )
         
     | 
| 
       1309 
1580 
     | 
    
         | 
| 
      
 1581 
     | 
    
         
            +
                def get_state_buf_infos(self):
         
     | 
| 
      
 1582 
     | 
    
         
            +
                    data_ptrs = [
         
     | 
| 
      
 1583 
     | 
    
         
            +
                        self.index_k_with_scale_buffer[i].data_ptr() for i in range(self.layer_num)
         
     | 
| 
      
 1584 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 1585 
     | 
    
         
            +
                    data_lens = [
         
     | 
| 
      
 1586 
     | 
    
         
            +
                        self.index_k_with_scale_buffer[i].nbytes for i in range(self.layer_num)
         
     | 
| 
      
 1587 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 1588 
     | 
    
         
            +
                    item_lens = [
         
     | 
| 
      
 1589 
     | 
    
         
            +
                        self.index_k_with_scale_buffer[i][0].nbytes for i in range(self.layer_num)
         
     | 
| 
      
 1590 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 1591 
     | 
    
         
            +
                    return data_ptrs, data_lens, item_lens
         
     | 
| 
      
 1592 
     | 
    
         
            +
             
     | 
| 
      
 1593 
     | 
    
         
            +
                def get_kv_size_bytes(self):
         
     | 
| 
      
 1594 
     | 
    
         
            +
                    kv_size_bytes = super().get_kv_size_bytes()
         
     | 
| 
      
 1595 
     | 
    
         
            +
                    for index_k_cache in self.index_k_with_scale_buffer:
         
     | 
| 
      
 1596 
     | 
    
         
            +
                        kv_size_bytes += get_tensor_size_bytes(index_k_cache)
         
     | 
| 
      
 1597 
     | 
    
         
            +
                    return kv_size_bytes
         
     | 
| 
      
 1598 
     | 
    
         
            +
             
     | 
| 
       1310 
1599 
     | 
    
         | 
| 
       1311 
1600 
     | 
    
         
             
            class AscendMLAPagedTokenToKVPool(MLATokenToKVPool):
         
     | 
| 
       1312 
1601 
     | 
    
         
             
                def __init__(
         
     | 
| 
         @@ -1531,27 +1820,38 @@ class DoubleSparseTokenToKVPool(KVCache): 
     | 
|
| 
       1531 
1820 
     | 
    
         
             
                    )
         
     | 
| 
       1532 
1821 
     | 
    
         | 
| 
       1533 
1822 
     | 
    
         
             
                    with self.memory_saver_adapter.region(GPU_MEMORY_TYPE_KV_CACHE):
         
     | 
| 
       1534 
     | 
    
         
            -
                         
     | 
| 
       1535 
     | 
    
         
            -
             
     | 
| 
       1536 
     | 
    
         
            -
                             
     | 
| 
       1537 
     | 
    
         
            -
             
     | 
| 
       1538 
     | 
    
         
            -
             
     | 
| 
       1539 
     | 
    
         
            -
                            for  
     | 
| 
       1540 
     | 
    
         
            -
             
     | 
| 
       1541 
     | 
    
         
            -
             
     | 
| 
       1542 
     | 
    
         
            -
             
     | 
| 
       1543 
     | 
    
         
            -
             
     | 
| 
       1544 
     | 
    
         
            -
             
     | 
| 
       1545 
     | 
    
         
            -
             
     | 
| 
       1546 
     | 
    
         
            -
             
     | 
| 
      
 1823 
     | 
    
         
            +
                        with (
         
     | 
| 
      
 1824 
     | 
    
         
            +
                            torch.cuda.use_mem_pool(self.custom_mem_pool)
         
     | 
| 
      
 1825 
     | 
    
         
            +
                            if self.enable_custom_mem_pool
         
     | 
| 
      
 1826 
     | 
    
         
            +
                            else nullcontext()
         
     | 
| 
      
 1827 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 1828 
     | 
    
         
            +
                            # [size, head_num, head_dim] for each layer
         
     | 
| 
      
 1829 
     | 
    
         
            +
                            self.k_buffer = [
         
     | 
| 
      
 1830 
     | 
    
         
            +
                                torch.zeros(
         
     | 
| 
      
 1831 
     | 
    
         
            +
                                    (size + page_size, head_num, head_dim),
         
     | 
| 
      
 1832 
     | 
    
         
            +
                                    dtype=dtype,
         
     | 
| 
      
 1833 
     | 
    
         
            +
                                    device=device,
         
     | 
| 
      
 1834 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1835 
     | 
    
         
            +
                                for _ in range(layer_num)
         
     | 
| 
      
 1836 
     | 
    
         
            +
                            ]
         
     | 
| 
      
 1837 
     | 
    
         
            +
                            self.v_buffer = [
         
     | 
| 
      
 1838 
     | 
    
         
            +
                                torch.zeros(
         
     | 
| 
      
 1839 
     | 
    
         
            +
                                    (size + page_size, head_num, head_dim),
         
     | 
| 
      
 1840 
     | 
    
         
            +
                                    dtype=dtype,
         
     | 
| 
      
 1841 
     | 
    
         
            +
                                    device=device,
         
     | 
| 
      
 1842 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1843 
     | 
    
         
            +
                                for _ in range(layer_num)
         
     | 
| 
      
 1844 
     | 
    
         
            +
                            ]
         
     | 
| 
       1547 
1845 
     | 
    
         | 
| 
       1548 
     | 
    
         
            -
             
     | 
| 
       1549 
     | 
    
         
            -
             
     | 
| 
       1550 
     | 
    
         
            -
             
     | 
| 
       1551 
     | 
    
         
            -
             
     | 
| 
       1552 
     | 
    
         
            -
             
     | 
| 
       1553 
     | 
    
         
            -
             
     | 
| 
       1554 
     | 
    
         
            -
             
     | 
| 
      
 1846 
     | 
    
         
            +
                            # [size, head_num, heavy_channel_num] for each layer
         
     | 
| 
      
 1847 
     | 
    
         
            +
                            self.label_buffer = [
         
     | 
| 
      
 1848 
     | 
    
         
            +
                                torch.zeros(
         
     | 
| 
      
 1849 
     | 
    
         
            +
                                    (size + 1, head_num, heavy_channel_num),
         
     | 
| 
      
 1850 
     | 
    
         
            +
                                    dtype=dtype,
         
     | 
| 
      
 1851 
     | 
    
         
            +
                                    device=device,
         
     | 
| 
      
 1852 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1853 
     | 
    
         
            +
                                for _ in range(layer_num)
         
     | 
| 
      
 1854 
     | 
    
         
            +
                            ]
         
     | 
| 
       1555 
1855 
     | 
    
         | 
| 
       1556 
1856 
     | 
    
         
             
                def get_key_buffer(self, layer_id: int):
         
     | 
| 
       1557 
1857 
     | 
    
         
             
                    return self.k_buffer[layer_id - self.start_layer]
         
     | 
| 
         @@ -1584,38 +1884,36 @@ class DoubleSparseTokenToKVPool(KVCache): 
     | 
|
| 
       1584 
1884 
     | 
    
         | 
| 
       1585 
1885 
     | 
    
         | 
| 
       1586 
1886 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       1587 
     | 
    
         
            -
            def  
     | 
| 
      
 1887 
     | 
    
         
            +
            def copy_all_layer_kv_cache_tiled(
         
     | 
| 
       1588 
1888 
     | 
    
         
             
                data_ptrs,
         
     | 
| 
       1589 
1889 
     | 
    
         
             
                strides,
         
     | 
| 
       1590 
1890 
     | 
    
         
             
                tgt_loc_ptr,
         
     | 
| 
       1591 
1891 
     | 
    
         
             
                src_loc_ptr,
         
     | 
| 
       1592 
1892 
     | 
    
         
             
                num_locs,
         
     | 
| 
       1593 
1893 
     | 
    
         
             
                num_locs_upper: tl.constexpr,
         
     | 
| 
      
 1894 
     | 
    
         
            +
                BYTES_PER_TILE: tl.constexpr,
         
     | 
| 
       1594 
1895 
     | 
    
         
             
            ):
         
     | 
| 
       1595 
     | 
    
         
            -
                 
     | 
| 
       1596 
     | 
    
         
            -
             
     | 
| 
      
 1896 
     | 
    
         
            +
                """2D tiled kernel. Safe for in-place copy."""
         
     | 
| 
       1597 
1897 
     | 
    
         
             
                bid = tl.program_id(0)
         
     | 
| 
      
 1898 
     | 
    
         
            +
                tid = tl.program_id(1)
         
     | 
| 
      
 1899 
     | 
    
         
            +
             
     | 
| 
       1598 
1900 
     | 
    
         
             
                stride = tl.load(strides + bid)
         
     | 
| 
      
 1901 
     | 
    
         
            +
                base_ptr = tl.load(data_ptrs + bid)
         
     | 
| 
      
 1902 
     | 
    
         
            +
                base_ptr = tl.cast(base_ptr, tl.pointer_type(tl.uint8))
         
     | 
| 
       1599 
1903 
     | 
    
         | 
| 
       1600 
     | 
    
         
            -
                 
     | 
| 
       1601 
     | 
    
         
            -
                 
     | 
| 
      
 1904 
     | 
    
         
            +
                byte_off = tid * BYTES_PER_TILE + tl.arange(0, BYTES_PER_TILE)
         
     | 
| 
      
 1905 
     | 
    
         
            +
                mask_byte = byte_off < stride
         
     | 
| 
      
 1906 
     | 
    
         
            +
                tl.multiple_of(byte_off, 16)
         
     | 
| 
       1602 
1907 
     | 
    
         | 
| 
       1603 
     | 
    
         
            -
                 
     | 
| 
       1604 
     | 
    
         
            -
                 
     | 
| 
       1605 
     | 
    
         
            -
                src_locs = tl.load(src_loc_ptr + num_locs_offset, mask=num_locs_offset < num_locs)
         
     | 
| 
      
 1908 
     | 
    
         
            +
                loc_idx = tl.arange(0, num_locs_upper)
         
     | 
| 
      
 1909 
     | 
    
         
            +
                mask_loc = loc_idx < num_locs
         
     | 
| 
       1606 
1910 
     | 
    
         | 
| 
       1607 
     | 
    
         
            -
                 
     | 
| 
       1608 
     | 
    
         
            -
                 
     | 
| 
      
 1911 
     | 
    
         
            +
                src = tl.load(src_loc_ptr + loc_idx, mask=mask_loc, other=0)
         
     | 
| 
      
 1912 
     | 
    
         
            +
                tgt = tl.load(tgt_loc_ptr + loc_idx, mask=mask_loc, other=0)
         
     | 
| 
       1609 
1913 
     | 
    
         | 
| 
       1610 
     | 
    
         
            -
                 
     | 
| 
       1611 
     | 
    
         
            -
                 
     | 
| 
       1612 
     | 
    
         
            -
             
     | 
| 
       1613 
     | 
    
         
            -
             
     | 
| 
       1614 
     | 
    
         
            -
             
     | 
| 
       1615 
     | 
    
         
            -
             
     | 
| 
       1616 
     | 
    
         
            -
                    )
         
     | 
| 
       1617 
     | 
    
         
            -
                    tl.store(
         
     | 
| 
       1618 
     | 
    
         
            -
                        data_ptr + tgt_locs[:, None] * stride + copy_offset[None, :],
         
     | 
| 
       1619 
     | 
    
         
            -
                        value,
         
     | 
| 
       1620 
     | 
    
         
            -
                        mask=mask,
         
     | 
| 
       1621 
     | 
    
         
            -
                    )
         
     | 
| 
      
 1914 
     | 
    
         
            +
                src_ptr = base_ptr + src[:, None] * stride + byte_off[None, :]
         
     | 
| 
      
 1915 
     | 
    
         
            +
                tgt_ptr = base_ptr + tgt[:, None] * stride + byte_off[None, :]
         
     | 
| 
      
 1916 
     | 
    
         
            +
             
     | 
| 
      
 1917 
     | 
    
         
            +
                mask = mask_loc[:, None] & mask_byte[None, :]
         
     | 
| 
      
 1918 
     | 
    
         
            +
                vals = tl.load(src_ptr, mask=mask)
         
     | 
| 
      
 1919 
     | 
    
         
            +
                tl.store(tgt_ptr, vals, mask=mask)
         
     |