sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -10,19 +10,21 @@ from typing import TYPE_CHECKING, Optional, Union 
     | 
|
| 
       10 
10 
     | 
    
         | 
| 
       11 
11 
     | 
    
         
             
            import torch
         
     | 
| 
       12 
12 
     | 
    
         
             
            import triton
         
     | 
| 
      
 13 
     | 
    
         
            +
            import triton.language as tl
         
     | 
| 
       13 
14 
     | 
    
         | 
| 
       14 
15 
     | 
    
         
             
            from sglang.srt.layers.attention.flashinfer_mla_backend import (
         
     | 
| 
       15 
16 
     | 
    
         
             
                FlashInferMLAAttnBackend,
         
     | 
| 
       16 
17 
     | 
    
         
             
                FlashInferMLAMultiStepDraftBackend,
         
     | 
| 
       17 
18 
     | 
    
         
             
            )
         
     | 
| 
       18 
19 
     | 
    
         
             
            from sglang.srt.layers.attention.utils import (
         
     | 
| 
       19 
     | 
    
         
            -
                TRITON_PAD_NUM_PAGE_PER_BLOCK,
         
     | 
| 
       20 
20 
     | 
    
         
             
                create_flashmla_kv_indices_triton,
         
     | 
| 
      
 21 
     | 
    
         
            +
                get_num_page_per_block_flashmla,
         
     | 
| 
       21 
22 
     | 
    
         
             
            )
         
     | 
| 
       22 
23 
     | 
    
         
             
            from sglang.srt.layers.dp_attention import get_attention_tp_size
         
     | 
| 
       23 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       24 
24 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
         
     | 
| 
      
 25 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
       25 
26 
     | 
    
         
             
            from sglang.srt.utils import is_cuda, is_flashinfer_available
         
     | 
| 
      
 27 
     | 
    
         
            +
            from sglang.srt.utils.common import cached_triton_kernel
         
     | 
| 
       26 
28 
     | 
    
         | 
| 
       27 
29 
     | 
    
         
             
            if is_flashinfer_available():
         
     | 
| 
       28 
30 
     | 
    
         
             
                import flashinfer
         
     | 
| 
         @@ -48,6 +50,153 @@ DEFAULT_WORKSPACE_SIZE_MB = 128  # Memory workspace size in MB 
     | 
|
| 
       48 
50 
     | 
    
         
             
            # compute the LCM with other padding constraints.
         
     | 
| 
       49 
51 
     | 
    
         
             
            TRTLLM_BLOCK_CONSTRAINT = 128
         
     | 
| 
       50 
52 
     | 
    
         | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
            @cached_triton_kernel(lambda _, kwargs: (kwargs["BLOCK_SIZE"]))
         
     | 
| 
      
 55 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 56 
     | 
    
         
            +
            def pad_draft_extend_query_kernel(
         
     | 
| 
      
 57 
     | 
    
         
            +
                q_ptr,  # Input query tensor [total_seq_len, num_heads, head_dim]
         
     | 
| 
      
 58 
     | 
    
         
            +
                padded_q_ptr,  # Output padded query tensor [batch_size, max_seq_len, num_heads, head_dim]
         
     | 
| 
      
 59 
     | 
    
         
            +
                seq_lens_q_ptr,  # Sequence lengths for each sequence [batch_size]
         
     | 
| 
      
 60 
     | 
    
         
            +
                cumsum_ptr,  # Cumulative sum of accept lengths [batch_size + 1]
         
     | 
| 
      
 61 
     | 
    
         
            +
                batch_size,
         
     | 
| 
      
 62 
     | 
    
         
            +
                max_seq_len,
         
     | 
| 
      
 63 
     | 
    
         
            +
                num_heads,
         
     | 
| 
      
 64 
     | 
    
         
            +
                head_dim,
         
     | 
| 
      
 65 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
      
 66 
     | 
    
         
            +
            ):
         
     | 
| 
      
 67 
     | 
    
         
            +
                """Triton kernel for padding draft extended query tensor with parallelized head and dim processing."""
         
     | 
| 
      
 68 
     | 
    
         
            +
                # Use 3D program IDs: (batch_seq, head_block, dim_block)
         
     | 
| 
      
 69 
     | 
    
         
            +
                batch_seq_pid = tl.program_id(0)
         
     | 
| 
      
 70 
     | 
    
         
            +
                head_pid = tl.program_id(1)
         
     | 
| 
      
 71 
     | 
    
         
            +
                dim_pid = tl.program_id(2)
         
     | 
| 
      
 72 
     | 
    
         
            +
             
     | 
| 
      
 73 
     | 
    
         
            +
                batch_id = batch_seq_pid // max_seq_len
         
     | 
| 
      
 74 
     | 
    
         
            +
                seq_pos = batch_seq_pid % max_seq_len
         
     | 
| 
      
 75 
     | 
    
         
            +
             
     | 
| 
      
 76 
     | 
    
         
            +
                if batch_id >= batch_size:
         
     | 
| 
      
 77 
     | 
    
         
            +
                    return
         
     | 
| 
      
 78 
     | 
    
         
            +
             
     | 
| 
      
 79 
     | 
    
         
            +
                # Load accept length for this batch
         
     | 
| 
      
 80 
     | 
    
         
            +
                seq_len = tl.load(seq_lens_q_ptr + batch_id)
         
     | 
| 
      
 81 
     | 
    
         
            +
             
     | 
| 
      
 82 
     | 
    
         
            +
                if seq_pos >= seq_len:
         
     | 
| 
      
 83 
     | 
    
         
            +
                    return
         
     | 
| 
      
 84 
     | 
    
         
            +
             
     | 
| 
      
 85 
     | 
    
         
            +
                # Load cumulative sum to get start position in input tensor
         
     | 
| 
      
 86 
     | 
    
         
            +
                input_start = tl.load(cumsum_ptr + batch_id)
         
     | 
| 
      
 87 
     | 
    
         
            +
                input_pos = input_start + seq_pos
         
     | 
| 
      
 88 
     | 
    
         
            +
             
     | 
| 
      
 89 
     | 
    
         
            +
                # Calculate head and dim block ranges
         
     | 
| 
      
 90 
     | 
    
         
            +
                head_start = head_pid * BLOCK_SIZE
         
     | 
| 
      
 91 
     | 
    
         
            +
                head_end = tl.minimum(head_start + BLOCK_SIZE, num_heads)
         
     | 
| 
      
 92 
     | 
    
         
            +
                head_mask = tl.arange(0, BLOCK_SIZE) < (head_end - head_start)
         
     | 
| 
      
 93 
     | 
    
         
            +
             
     | 
| 
      
 94 
     | 
    
         
            +
                dim_start = dim_pid * BLOCK_SIZE
         
     | 
| 
      
 95 
     | 
    
         
            +
                dim_end = tl.minimum(dim_start + BLOCK_SIZE, head_dim)
         
     | 
| 
      
 96 
     | 
    
         
            +
                dim_mask = tl.arange(0, BLOCK_SIZE) < (dim_end - dim_start)
         
     | 
| 
      
 97 
     | 
    
         
            +
             
     | 
| 
      
 98 
     | 
    
         
            +
                # Calculate input offset
         
     | 
| 
      
 99 
     | 
    
         
            +
                input_offset = (
         
     | 
| 
      
 100 
     | 
    
         
            +
                    input_pos * num_heads * head_dim
         
     | 
| 
      
 101 
     | 
    
         
            +
                    + (head_start + tl.arange(0, BLOCK_SIZE))[:, None] * head_dim
         
     | 
| 
      
 102 
     | 
    
         
            +
                    + (dim_start + tl.arange(0, BLOCK_SIZE))[None, :]
         
     | 
| 
      
 103 
     | 
    
         
            +
                )
         
     | 
| 
      
 104 
     | 
    
         
            +
             
     | 
| 
      
 105 
     | 
    
         
            +
                # Load data
         
     | 
| 
      
 106 
     | 
    
         
            +
                data = tl.load(
         
     | 
| 
      
 107 
     | 
    
         
            +
                    q_ptr + input_offset,
         
     | 
| 
      
 108 
     | 
    
         
            +
                    mask=head_mask[:, None] & dim_mask[None, :],
         
     | 
| 
      
 109 
     | 
    
         
            +
                    other=0.0,
         
     | 
| 
      
 110 
     | 
    
         
            +
                )
         
     | 
| 
      
 111 
     | 
    
         
            +
             
     | 
| 
      
 112 
     | 
    
         
            +
                # Calculate output offset
         
     | 
| 
      
 113 
     | 
    
         
            +
                output_offset = (
         
     | 
| 
      
 114 
     | 
    
         
            +
                    batch_id * max_seq_len * num_heads * head_dim
         
     | 
| 
      
 115 
     | 
    
         
            +
                    + seq_pos * num_heads * head_dim
         
     | 
| 
      
 116 
     | 
    
         
            +
                    + (head_start + tl.arange(0, BLOCK_SIZE))[:, None] * head_dim
         
     | 
| 
      
 117 
     | 
    
         
            +
                    + (dim_start + tl.arange(0, BLOCK_SIZE))[None, :]
         
     | 
| 
      
 118 
     | 
    
         
            +
                )
         
     | 
| 
      
 119 
     | 
    
         
            +
             
     | 
| 
      
 120 
     | 
    
         
            +
                # Store data
         
     | 
| 
      
 121 
     | 
    
         
            +
                tl.store(
         
     | 
| 
      
 122 
     | 
    
         
            +
                    padded_q_ptr + output_offset,
         
     | 
| 
      
 123 
     | 
    
         
            +
                    data,
         
     | 
| 
      
 124 
     | 
    
         
            +
                    mask=head_mask[:, None] & dim_mask[None, :],
         
     | 
| 
      
 125 
     | 
    
         
            +
                )
         
     | 
| 
      
 126 
     | 
    
         
            +
             
     | 
| 
      
 127 
     | 
    
         
            +
             
     | 
| 
      
 128 
     | 
    
         
            +
            @cached_triton_kernel(lambda _, kwargs: (kwargs["BLOCK_SIZE"]))
         
     | 
| 
      
 129 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 130 
     | 
    
         
            +
            def unpad_draft_extend_output_kernel(
         
     | 
| 
      
 131 
     | 
    
         
            +
                raw_out_ptr,  # Input raw output tensor (batch_size, token_per_batch, tp_q_head_num, v_head_dim)
         
     | 
| 
      
 132 
     | 
    
         
            +
                output_ptr,  # Output tensor (-1, tp_q_head_num, v_head_dim)
         
     | 
| 
      
 133 
     | 
    
         
            +
                accept_length_ptr,  # Accept lengths for each sequence [batch_size]
         
     | 
| 
      
 134 
     | 
    
         
            +
                cumsum_ptr,  # Cumulative sum of accept lengths [batch_size + 1]
         
     | 
| 
      
 135 
     | 
    
         
            +
                batch_size,
         
     | 
| 
      
 136 
     | 
    
         
            +
                token_per_batch,
         
     | 
| 
      
 137 
     | 
    
         
            +
                tp_q_head_num,
         
     | 
| 
      
 138 
     | 
    
         
            +
                v_head_dim,
         
     | 
| 
      
 139 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
      
 140 
     | 
    
         
            +
            ):
         
     | 
| 
      
 141 
     | 
    
         
            +
                """Triton kernel for unpadding draft extended output tensor with parallelized head and dim processing."""
         
     | 
| 
      
 142 
     | 
    
         
            +
                batch_seq_pid = tl.program_id(0)
         
     | 
| 
      
 143 
     | 
    
         
            +
                head_pid = tl.program_id(1)
         
     | 
| 
      
 144 
     | 
    
         
            +
                dim_pid = tl.program_id(2)
         
     | 
| 
      
 145 
     | 
    
         
            +
             
     | 
| 
      
 146 
     | 
    
         
            +
                batch_id = batch_seq_pid // token_per_batch
         
     | 
| 
      
 147 
     | 
    
         
            +
                seq_pos = batch_seq_pid % token_per_batch
         
     | 
| 
      
 148 
     | 
    
         
            +
             
     | 
| 
      
 149 
     | 
    
         
            +
                if batch_id >= batch_size:
         
     | 
| 
      
 150 
     | 
    
         
            +
                    return
         
     | 
| 
      
 151 
     | 
    
         
            +
             
     | 
| 
      
 152 
     | 
    
         
            +
                # Load accept length for this batch
         
     | 
| 
      
 153 
     | 
    
         
            +
                accept_len = tl.load(accept_length_ptr + batch_id)
         
     | 
| 
      
 154 
     | 
    
         
            +
             
     | 
| 
      
 155 
     | 
    
         
            +
                if seq_pos >= accept_len:
         
     | 
| 
      
 156 
     | 
    
         
            +
                    return
         
     | 
| 
      
 157 
     | 
    
         
            +
             
     | 
| 
      
 158 
     | 
    
         
            +
                # Load cumulative sum to get start position in output tensor
         
     | 
| 
      
 159 
     | 
    
         
            +
                output_start = tl.load(cumsum_ptr + batch_id)
         
     | 
| 
      
 160 
     | 
    
         
            +
                output_pos = output_start + seq_pos
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
                # Calculate head and dim block ranges
         
     | 
| 
      
 163 
     | 
    
         
            +
                head_start = head_pid * BLOCK_SIZE
         
     | 
| 
      
 164 
     | 
    
         
            +
                head_end = tl.minimum(head_start + BLOCK_SIZE, tp_q_head_num)
         
     | 
| 
      
 165 
     | 
    
         
            +
                head_mask = tl.arange(0, BLOCK_SIZE) < (head_end - head_start)
         
     | 
| 
      
 166 
     | 
    
         
            +
             
     | 
| 
      
 167 
     | 
    
         
            +
                dim_start = dim_pid * BLOCK_SIZE
         
     | 
| 
      
 168 
     | 
    
         
            +
                dim_end = tl.minimum(dim_start + BLOCK_SIZE, v_head_dim)
         
     | 
| 
      
 169 
     | 
    
         
            +
                dim_mask = tl.arange(0, BLOCK_SIZE) < (dim_end - dim_start)
         
     | 
| 
      
 170 
     | 
    
         
            +
             
     | 
| 
      
 171 
     | 
    
         
            +
                # Calculate input offset: (batch_id, seq_pos, head_id, dim_id)
         
     | 
| 
      
 172 
     | 
    
         
            +
                input_offset = (
         
     | 
| 
      
 173 
     | 
    
         
            +
                    batch_id * token_per_batch * tp_q_head_num * v_head_dim
         
     | 
| 
      
 174 
     | 
    
         
            +
                    + seq_pos * tp_q_head_num * v_head_dim
         
     | 
| 
      
 175 
     | 
    
         
            +
                    + (head_start + tl.arange(0, BLOCK_SIZE))[:, None] * v_head_dim
         
     | 
| 
      
 176 
     | 
    
         
            +
                    + (dim_start + tl.arange(0, BLOCK_SIZE))[None, :]
         
     | 
| 
      
 177 
     | 
    
         
            +
                )
         
     | 
| 
      
 178 
     | 
    
         
            +
             
     | 
| 
      
 179 
     | 
    
         
            +
                # Load data
         
     | 
| 
      
 180 
     | 
    
         
            +
                data = tl.load(
         
     | 
| 
      
 181 
     | 
    
         
            +
                    raw_out_ptr + input_offset,
         
     | 
| 
      
 182 
     | 
    
         
            +
                    mask=head_mask[:, None] & dim_mask[None, :],
         
     | 
| 
      
 183 
     | 
    
         
            +
                    other=0.0,
         
     | 
| 
      
 184 
     | 
    
         
            +
                )
         
     | 
| 
      
 185 
     | 
    
         
            +
             
     | 
| 
      
 186 
     | 
    
         
            +
                output_offset = (
         
     | 
| 
      
 187 
     | 
    
         
            +
                    output_pos * tp_q_head_num * v_head_dim
         
     | 
| 
      
 188 
     | 
    
         
            +
                    + (head_start + tl.arange(0, BLOCK_SIZE))[:, None] * v_head_dim
         
     | 
| 
      
 189 
     | 
    
         
            +
                    + (dim_start + tl.arange(0, BLOCK_SIZE))[None, :]
         
     | 
| 
      
 190 
     | 
    
         
            +
                )
         
     | 
| 
      
 191 
     | 
    
         
            +
             
     | 
| 
      
 192 
     | 
    
         
            +
                # Store data
         
     | 
| 
      
 193 
     | 
    
         
            +
                tl.store(
         
     | 
| 
      
 194 
     | 
    
         
            +
                    output_ptr + output_offset,
         
     | 
| 
      
 195 
     | 
    
         
            +
                    data,
         
     | 
| 
      
 196 
     | 
    
         
            +
                    mask=head_mask[:, None] & dim_mask[None, :],
         
     | 
| 
      
 197 
     | 
    
         
            +
                )
         
     | 
| 
      
 198 
     | 
    
         
            +
             
     | 
| 
      
 199 
     | 
    
         
            +
             
     | 
| 
       51 
200 
     | 
    
         
             
            global_zero_init_workspace_buffer = None
         
     | 
| 
       52 
201 
     | 
    
         | 
| 
       53 
202 
     | 
    
         | 
| 
         @@ -65,7 +214,11 @@ class TRTLLMMLADecodeMetadata: 
     | 
|
| 
       65 
214 
     | 
    
         
             
                """Metadata for TRTLLM MLA decode operations."""
         
     | 
| 
       66 
215 
     | 
    
         | 
| 
       67 
216 
     | 
    
         
             
                block_kv_indices: Optional[torch.Tensor] = None
         
     | 
| 
       68 
     | 
    
         
            -
                 
     | 
| 
      
 217 
     | 
    
         
            +
                max_seq_len_k: Optional[int] = None
         
     | 
| 
      
 218 
     | 
    
         
            +
                max_seq_len_q: Optional[int] = None
         
     | 
| 
      
 219 
     | 
    
         
            +
                sum_seq_lens_q: Optional[int] = None
         
     | 
| 
      
 220 
     | 
    
         
            +
                cu_seqlens_q: Optional[torch.Tensor] = None
         
     | 
| 
      
 221 
     | 
    
         
            +
                seq_lens_q: Optional[torch.Tensor] = None
         
     | 
| 
       69 
222 
     | 
    
         | 
| 
       70 
223 
     | 
    
         | 
| 
       71 
224 
     | 
    
         
             
            class TRTLLMMLABackend(FlashInferMLAAttnBackend):
         
     | 
| 
         @@ -120,12 +273,14 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       120 
273 
     | 
    
         
             
                    # CUDA graph state
         
     | 
| 
       121 
274 
     | 
    
         
             
                    self.decode_cuda_graph_metadata = {}
         
     | 
| 
       122 
275 
     | 
    
         
             
                    self.decode_cuda_graph_kv_indices = None
         
     | 
| 
      
 276 
     | 
    
         
            +
                    self.padded_q_buffer = None
         
     | 
| 
      
 277 
     | 
    
         
            +
                    self.unpad_output_buffer = None
         
     | 
| 
       123 
278 
     | 
    
         
             
                    self.forward_prefill_metadata: Optional[TRTLLMMLAPrefillMetadata] = None
         
     | 
| 
       124 
279 
     | 
    
         
             
                    self.forward_decode_metadata: Union[TRTLLMMLADecodeMetadata, None] = None
         
     | 
| 
       125 
280 
     | 
    
         | 
| 
       126 
     | 
    
         
            -
                    self.disable_chunked_prefix_cache =  
     | 
| 
       127 
     | 
    
         
            -
                         
     | 
| 
       128 
     | 
    
         
            -
                     
     | 
| 
      
 281 
     | 
    
         
            +
                    self.disable_chunked_prefix_cache = (
         
     | 
| 
      
 282 
     | 
    
         
            +
                        get_global_server_args().disable_chunked_prefix_cache
         
     | 
| 
      
 283 
     | 
    
         
            +
                    )
         
     | 
| 
       129 
284 
     | 
    
         | 
| 
       130 
285 
     | 
    
         
             
                    self.num_draft_tokens = model_runner.server_args.speculative_num_draft_tokens
         
     | 
| 
       131 
286 
     | 
    
         | 
| 
         @@ -143,9 +298,10 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       143 
298 
     | 
    
         | 
| 
       144 
299 
     | 
    
         
             
                    # Apply dual constraints (take LCM to satisfy both):
         
     | 
| 
       145 
300 
     | 
    
         
             
                    # 1. TRT-LLM: block_num % (128 / page_size) == 0
         
     | 
| 
       146 
     | 
    
         
            -
                    # 2. Triton:  
     | 
| 
      
 301 
     | 
    
         
            +
                    # 2. Triton: number of pages per block
         
     | 
| 
       147 
302 
     | 
    
         
             
                    trtllm_constraint = TRTLLM_BLOCK_CONSTRAINT // self.page_size
         
     | 
| 
       148 
     | 
    
         
            -
                     
     | 
| 
      
 303 
     | 
    
         
            +
                    triton_constraint = get_num_page_per_block_flashmla(self.page_size)
         
     | 
| 
      
 304 
     | 
    
         
            +
                    constraint_lcm = math.lcm(trtllm_constraint, triton_constraint)
         
     | 
| 
       149 
305 
     | 
    
         | 
| 
       150 
306 
     | 
    
         
             
                    if blocks % constraint_lcm != 0:
         
     | 
| 
       151 
307 
     | 
    
         
             
                        blocks = triton.cdiv(blocks, constraint_lcm) * constraint_lcm
         
     | 
| 
         @@ -184,7 +340,6 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       184 
340 
     | 
    
         
             
                        block_kv_indices,
         
     | 
| 
       185 
341 
     | 
    
         
             
                        self.req_to_token.stride(0),
         
     | 
| 
       186 
342 
     | 
    
         
             
                        max_blocks,
         
     | 
| 
       187 
     | 
    
         
            -
                        NUM_PAGE_PER_BLOCK=TRITON_PAD_NUM_PAGE_PER_BLOCK,
         
     | 
| 
       188 
343 
     | 
    
         
             
                        PAGED_SIZE=self.page_size,
         
     | 
| 
       189 
344 
     | 
    
         
             
                    )
         
     | 
| 
       190 
345 
     | 
    
         | 
| 
         @@ -203,6 +358,21 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       203 
358 
     | 
    
         
             
                    self.decode_cuda_graph_kv_indices = torch.full(
         
     | 
| 
       204 
359 
     | 
    
         
             
                        (max_bs, max_blocks_per_seq), -1, dtype=torch.int32, device=self.device
         
     | 
| 
       205 
360 
     | 
    
         
             
                    )
         
     | 
| 
      
 361 
     | 
    
         
            +
                    num_tokens_per_bs = max_num_tokens // max_bs
         
     | 
| 
      
 362 
     | 
    
         
            +
             
     | 
| 
      
 363 
     | 
    
         
            +
                    # Buffer for padded query: (max_bs, max_draft_tokens, num_q_heads, v_head_dim)
         
     | 
| 
      
 364 
     | 
    
         
            +
                    self.padded_q_buffer = torch.zeros(
         
     | 
| 
      
 365 
     | 
    
         
            +
                        (max_bs, num_tokens_per_bs, self.num_q_heads, self.kv_cache_dim),
         
     | 
| 
      
 366 
     | 
    
         
            +
                        dtype=self.data_type,
         
     | 
| 
      
 367 
     | 
    
         
            +
                        device=self.device,
         
     | 
| 
      
 368 
     | 
    
         
            +
                    )
         
     | 
| 
      
 369 
     | 
    
         
            +
             
     | 
| 
      
 370 
     | 
    
         
            +
                    # Buffer for unpadded output: (max_num_tokens, num_q_heads, v_head_dim)
         
     | 
| 
      
 371 
     | 
    
         
            +
                    self.unpad_output_buffer = torch.zeros(
         
     | 
| 
      
 372 
     | 
    
         
            +
                        (max_num_tokens, self.num_q_heads, 512),
         
     | 
| 
      
 373 
     | 
    
         
            +
                        dtype=self.data_type,
         
     | 
| 
      
 374 
     | 
    
         
            +
                        device=self.device,
         
     | 
| 
      
 375 
     | 
    
         
            +
                    )
         
     | 
| 
       206 
376 
     | 
    
         | 
| 
       207 
377 
     | 
    
         
             
                    super().init_cuda_graph_state(max_bs, max_num_tokens, kv_indices_buf)
         
     | 
| 
       208 
378 
     | 
    
         | 
| 
         @@ -219,7 +389,11 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       219 
389 
     | 
    
         
             
                    """Initialize metadata for CUDA graph capture."""
         
     | 
| 
       220 
390 
     | 
    
         | 
| 
       221 
391 
     | 
    
         
             
                    # Delegate to parent for non-decode modes.
         
     | 
| 
       222 
     | 
    
         
            -
                    if  
     | 
| 
      
 392 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 393 
     | 
    
         
            +
                        not forward_mode.is_decode_or_idle()
         
     | 
| 
      
 394 
     | 
    
         
            +
                        and not forward_mode.is_target_verify()
         
     | 
| 
      
 395 
     | 
    
         
            +
                        and not forward_mode.is_draft_extend(include_v2=True)
         
     | 
| 
      
 396 
     | 
    
         
            +
                    ):
         
     | 
| 
       223 
397 
     | 
    
         
             
                        return super().init_forward_metadata_capture_cuda_graph(
         
     | 
| 
       224 
398 
     | 
    
         
             
                            bs,
         
     | 
| 
       225 
399 
     | 
    
         
             
                            num_tokens,
         
     | 
| 
         @@ -246,19 +420,27 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       246 
420 
     | 
    
         
             
                        block_kv_indices,
         
     | 
| 
       247 
421 
     | 
    
         
             
                        self.req_to_token.stride(0),
         
     | 
| 
       248 
422 
     | 
    
         
             
                        max_blocks_per_seq,
         
     | 
| 
       249 
     | 
    
         
            -
                        NUM_PAGE_PER_BLOCK=TRITON_PAD_NUM_PAGE_PER_BLOCK,
         
     | 
| 
       250 
423 
     | 
    
         
             
                        PAGED_SIZE=self.page_size,
         
     | 
| 
       251 
424 
     | 
    
         
             
                    )
         
     | 
| 
       252 
425 
     | 
    
         | 
| 
       253 
     | 
    
         
            -
                    # Record the true maximum sequence length for this capture batch so that
         
     | 
| 
       254 
     | 
    
         
            -
                    # the kernel launch path (which requires an int not a tensor) can reuse
         
     | 
| 
       255 
     | 
    
         
            -
                    # it safely during both capture and replay.
         
     | 
| 
       256 
     | 
    
         
            -
                    max_seq_len_val = int(seq_lens.max().item())
         
     | 
| 
       257 
     | 
    
         
            -
             
     | 
| 
       258 
426 
     | 
    
         
             
                    metadata = TRTLLMMLADecodeMetadata(
         
     | 
| 
       259 
427 
     | 
    
         
             
                        block_kv_indices,
         
     | 
| 
       260 
     | 
    
         
            -
                         
     | 
| 
      
 428 
     | 
    
         
            +
                        self.max_context_len,
         
     | 
| 
       261 
429 
     | 
    
         
             
                    )
         
     | 
| 
      
 430 
     | 
    
         
            +
                    if forward_mode.is_draft_extend(include_v2=True):
         
     | 
| 
      
 431 
     | 
    
         
            +
                        num_tokens_per_bs = num_tokens // bs
         
     | 
| 
      
 432 
     | 
    
         
            +
                        metadata.max_seq_len_q = num_tokens_per_bs + 1
         
     | 
| 
      
 433 
     | 
    
         
            +
                        metadata.sum_seq_lens_q = num_tokens_per_bs * bs
         
     | 
| 
      
 434 
     | 
    
         
            +
                        metadata.cu_seqlens_q = torch.arange(
         
     | 
| 
      
 435 
     | 
    
         
            +
                            0,
         
     | 
| 
      
 436 
     | 
    
         
            +
                            bs * num_tokens_per_bs + 1,
         
     | 
| 
      
 437 
     | 
    
         
            +
                            num_tokens_per_bs,
         
     | 
| 
      
 438 
     | 
    
         
            +
                            dtype=torch.int32,
         
     | 
| 
      
 439 
     | 
    
         
            +
                            device=seq_lens.device,
         
     | 
| 
      
 440 
     | 
    
         
            +
                        )
         
     | 
| 
      
 441 
     | 
    
         
            +
                        metadata.seq_lens_q = torch.full(
         
     | 
| 
      
 442 
     | 
    
         
            +
                            (bs,), num_tokens_per_bs, dtype=torch.int32, device=seq_lens.device
         
     | 
| 
      
 443 
     | 
    
         
            +
                        )
         
     | 
| 
       262 
444 
     | 
    
         
             
                    self.decode_cuda_graph_metadata[bs] = metadata
         
     | 
| 
       263 
445 
     | 
    
         
             
                    self.forward_decode_metadata = metadata
         
     | 
| 
       264 
446 
     | 
    
         | 
| 
         @@ -275,7 +457,11 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       275 
457 
     | 
    
         
             
                ):
         
     | 
| 
       276 
458 
     | 
    
         
             
                    """Replay CUDA graph with new inputs."""
         
     | 
| 
       277 
459 
     | 
    
         
             
                    # Delegate to parent for non-decode modes.
         
     | 
| 
       278 
     | 
    
         
            -
                    if  
     | 
| 
      
 460 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 461 
     | 
    
         
            +
                        not forward_mode.is_decode_or_idle()
         
     | 
| 
      
 462 
     | 
    
         
            +
                        and not forward_mode.is_target_verify()
         
     | 
| 
      
 463 
     | 
    
         
            +
                        and not forward_mode.is_draft_extend(include_v2=True)
         
     | 
| 
      
 464 
     | 
    
         
            +
                    ):
         
     | 
| 
       279 
465 
     | 
    
         
             
                        return super().init_forward_metadata_replay_cuda_graph(
         
     | 
| 
       280 
466 
     | 
    
         
             
                            bs,
         
     | 
| 
       281 
467 
     | 
    
         
             
                            req_pool_indices,
         
     | 
| 
         @@ -293,6 +479,19 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       293 
479 
     | 
    
         | 
| 
       294 
480 
     | 
    
         
             
                    metadata = self.decode_cuda_graph_metadata[bs]
         
     | 
| 
       295 
481 
     | 
    
         | 
| 
      
 482 
     | 
    
         
            +
                    if forward_mode.is_draft_extend(include_v2=True):
         
     | 
| 
      
 483 
     | 
    
         
            +
                        accept_length = spec_info.accept_length[:bs]
         
     | 
| 
      
 484 
     | 
    
         
            +
                        if spec_info.accept_length_cpu:
         
     | 
| 
      
 485 
     | 
    
         
            +
                            metadata.max_seq_len_q = max(spec_info.accept_length_cpu[:bs])
         
     | 
| 
      
 486 
     | 
    
         
            +
                            metadata.sum_seq_lens_q = sum(spec_info.accept_length_cpu[:bs])
         
     | 
| 
      
 487 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 488 
     | 
    
         
            +
                            metadata.max_seq_len_q = 1
         
     | 
| 
      
 489 
     | 
    
         
            +
                            metadata.sum_seq_lens_q = bs
         
     | 
| 
      
 490 
     | 
    
         
            +
                        metadata.cu_seqlens_q[1:].copy_(
         
     | 
| 
      
 491 
     | 
    
         
            +
                            torch.cumsum(accept_length, dim=0, dtype=torch.int32)
         
     | 
| 
      
 492 
     | 
    
         
            +
                        )
         
     | 
| 
      
 493 
     | 
    
         
            +
                        metadata.seq_lens_q.copy_(accept_length)
         
     | 
| 
      
 494 
     | 
    
         
            +
             
     | 
| 
       296 
495 
     | 
    
         
             
                    # Update block indices for new sequences.
         
     | 
| 
       297 
496 
     | 
    
         
             
                    create_flashmla_kv_indices_triton[(bs,)](
         
     | 
| 
       298 
497 
     | 
    
         
             
                        self.req_to_token,
         
     | 
| 
         @@ -302,17 +501,9 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       302 
501 
     | 
    
         
             
                        metadata.block_kv_indices,
         
     | 
| 
       303 
502 
     | 
    
         
             
                        self.req_to_token.stride(0),
         
     | 
| 
       304 
503 
     | 
    
         
             
                        metadata.block_kv_indices.shape[1],
         
     | 
| 
       305 
     | 
    
         
            -
                        NUM_PAGE_PER_BLOCK=TRITON_PAD_NUM_PAGE_PER_BLOCK,
         
     | 
| 
       306 
504 
     | 
    
         
             
                        PAGED_SIZE=self.page_size,
         
     | 
| 
       307 
505 
     | 
    
         
             
                    )
         
     | 
| 
       308 
506 
     | 
    
         | 
| 
       309 
     | 
    
         
            -
                    # Update stored max_seq_len so subsequent kernel calls use the correct value
         
     | 
| 
       310 
     | 
    
         
            -
                    # Prefer CPU tensor to avoid GPU synchronization when available.
         
     | 
| 
       311 
     | 
    
         
            -
                    if seq_lens_cpu is not None:
         
     | 
| 
       312 
     | 
    
         
            -
                        metadata.max_seq_len = int(seq_lens_cpu.max().item())
         
     | 
| 
       313 
     | 
    
         
            -
                    else:
         
     | 
| 
       314 
     | 
    
         
            -
                        metadata.max_seq_len = int(seq_lens.max().item())
         
     | 
| 
       315 
     | 
    
         
            -
             
     | 
| 
       316 
507 
     | 
    
         
             
                def get_cuda_graph_seq_len_fill_value(self) -> int:
         
     | 
| 
       317 
508 
     | 
    
         
             
                    """Get the fill value for sequence lengths in CUDA graph."""
         
     | 
| 
       318 
509 
     | 
    
         
             
                    return 1
         
     | 
| 
         @@ -323,7 +514,7 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       323 
514 
     | 
    
         
             
                    if (
         
     | 
| 
       324 
515 
     | 
    
         
             
                        forward_batch.forward_mode.is_extend()
         
     | 
| 
       325 
516 
     | 
    
         
             
                        and not forward_batch.forward_mode.is_target_verify()
         
     | 
| 
       326 
     | 
    
         
            -
                        and not forward_batch.forward_mode.is_draft_extend()
         
     | 
| 
      
 517 
     | 
    
         
            +
                        and not forward_batch.forward_mode.is_draft_extend(include_v2=True)
         
     | 
| 
       327 
518 
     | 
    
         
             
                    ):
         
     | 
| 
       328 
519 
     | 
    
         
             
                        if self.disable_chunked_prefix_cache:
         
     | 
| 
       329 
520 
     | 
    
         
             
                            super().init_forward_metadata(forward_batch)
         
     | 
| 
         @@ -344,6 +535,7 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       344 
535 
     | 
    
         
             
                    elif (
         
     | 
| 
       345 
536 
     | 
    
         
             
                        forward_batch.forward_mode.is_decode_or_idle()
         
     | 
| 
       346 
537 
     | 
    
         
             
                        or forward_batch.forward_mode.is_target_verify()
         
     | 
| 
      
 538 
     | 
    
         
            +
                        or forward_batch.forward_mode.is_draft_extend(include_v2=True)
         
     | 
| 
       347 
539 
     | 
    
         
             
                    ):
         
     | 
| 
       348 
540 
     | 
    
         
             
                        bs = forward_batch.batch_size
         
     | 
| 
       349 
541 
     | 
    
         | 
| 
         @@ -372,6 +564,23 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       372 
564 
     | 
    
         
             
                        self.forward_decode_metadata = TRTLLMMLADecodeMetadata(
         
     | 
| 
       373 
565 
     | 
    
         
             
                            block_kv_indices, max_seq_len_val
         
     | 
| 
       374 
566 
     | 
    
         
             
                        )
         
     | 
| 
      
 567 
     | 
    
         
            +
                        if forward_batch.forward_mode.is_draft_extend(include_v2=True):
         
     | 
| 
      
 568 
     | 
    
         
            +
                            max_seq = forward_batch.seq_lens_cpu.max().item()
         
     | 
| 
      
 569 
     | 
    
         
            +
             
     | 
| 
      
 570 
     | 
    
         
            +
                            sum_seq_lens_q = sum(forward_batch.extend_seq_lens_cpu)
         
     | 
| 
      
 571 
     | 
    
         
            +
                            max_seq_len_q = max(forward_batch.extend_seq_lens_cpu)
         
     | 
| 
      
 572 
     | 
    
         
            +
                            cu_seqlens_q = torch.nn.functional.pad(
         
     | 
| 
      
 573 
     | 
    
         
            +
                                torch.cumsum(
         
     | 
| 
      
 574 
     | 
    
         
            +
                                    forward_batch.extend_seq_lens, dim=0, dtype=torch.int32
         
     | 
| 
      
 575 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 576 
     | 
    
         
            +
                                (1, 0),
         
     | 
| 
      
 577 
     | 
    
         
            +
                            )
         
     | 
| 
      
 578 
     | 
    
         
            +
             
     | 
| 
      
 579 
     | 
    
         
            +
                            self.forward_decode_metadata.max_seq_len_q = max_seq_len_q
         
     | 
| 
      
 580 
     | 
    
         
            +
                            self.forward_decode_metadata.sum_seq_lens_q = sum_seq_lens_q
         
     | 
| 
      
 581 
     | 
    
         
            +
                            self.forward_decode_metadata.cu_seqlens_q = cu_seqlens_q
         
     | 
| 
      
 582 
     | 
    
         
            +
                            self.forward_decode_metadata.seq_lens_q = forward_batch.extend_seq_lens
         
     | 
| 
      
 583 
     | 
    
         
            +
             
     | 
| 
       375 
584 
     | 
    
         
             
                        forward_batch.decode_trtllm_mla_metadata = self.forward_decode_metadata
         
     | 
| 
       376 
585 
     | 
    
         
             
                    else:
         
     | 
| 
       377 
586 
     | 
    
         
             
                        return super().init_forward_metadata(forward_batch)
         
     | 
| 
         @@ -457,6 +666,86 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       457 
666 
     | 
    
         | 
| 
       458 
667 
     | 
    
         
             
                    return q_out, k_nope_out, k_rope_out
         
     | 
| 
       459 
668 
     | 
    
         | 
| 
      
 669 
     | 
    
         
            +
                def pad_draft_extend_query(
         
     | 
| 
      
 670 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 671 
     | 
    
         
            +
                    q: torch.Tensor,
         
     | 
| 
      
 672 
     | 
    
         
            +
                    padded_q: torch.Tensor,
         
     | 
| 
      
 673 
     | 
    
         
            +
                    seq_lens_q: torch.Tensor,
         
     | 
| 
      
 674 
     | 
    
         
            +
                    cu_seqlens_q: torch.Tensor,
         
     | 
| 
      
 675 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 676 
     | 
    
         
            +
                    """Pad draft extended query using Triton kernel."""
         
     | 
| 
      
 677 
     | 
    
         
            +
                    batch_size = cu_seqlens_q.shape[0] - 1
         
     | 
| 
      
 678 
     | 
    
         
            +
                    max_seq_len_q = padded_q.shape[1]
         
     | 
| 
      
 679 
     | 
    
         
            +
                    num_heads = padded_q.shape[2]
         
     | 
| 
      
 680 
     | 
    
         
            +
                    head_dim = padded_q.shape[3]
         
     | 
| 
      
 681 
     | 
    
         
            +
             
     | 
| 
      
 682 
     | 
    
         
            +
                    # Launch Triton kernel with 3D grid for parallelized head and dim processing
         
     | 
| 
      
 683 
     | 
    
         
            +
                    BLOCK_SIZE = 64
         
     | 
| 
      
 684 
     | 
    
         
            +
                    num_head_blocks = triton.cdiv(num_heads, BLOCK_SIZE)
         
     | 
| 
      
 685 
     | 
    
         
            +
                    num_dim_blocks = triton.cdiv(head_dim, BLOCK_SIZE)
         
     | 
| 
      
 686 
     | 
    
         
            +
                    grid = (batch_size * max_seq_len_q, num_head_blocks, num_dim_blocks)
         
     | 
| 
      
 687 
     | 
    
         
            +
             
     | 
| 
      
 688 
     | 
    
         
            +
                    pad_draft_extend_query_kernel[grid](
         
     | 
| 
      
 689 
     | 
    
         
            +
                        q_ptr=q,
         
     | 
| 
      
 690 
     | 
    
         
            +
                        padded_q_ptr=padded_q,
         
     | 
| 
      
 691 
     | 
    
         
            +
                        seq_lens_q_ptr=seq_lens_q,
         
     | 
| 
      
 692 
     | 
    
         
            +
                        cumsum_ptr=cu_seqlens_q,
         
     | 
| 
      
 693 
     | 
    
         
            +
                        batch_size=batch_size,
         
     | 
| 
      
 694 
     | 
    
         
            +
                        max_seq_len=max_seq_len_q,
         
     | 
| 
      
 695 
     | 
    
         
            +
                        num_heads=num_heads,
         
     | 
| 
      
 696 
     | 
    
         
            +
                        head_dim=head_dim,
         
     | 
| 
      
 697 
     | 
    
         
            +
                        BLOCK_SIZE=BLOCK_SIZE,
         
     | 
| 
      
 698 
     | 
    
         
            +
                    )
         
     | 
| 
      
 699 
     | 
    
         
            +
                    return padded_q
         
     | 
| 
      
 700 
     | 
    
         
            +
             
     | 
| 
      
 701 
     | 
    
         
            +
                def unpad_draft_extend_output(
         
     | 
| 
      
 702 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 703 
     | 
    
         
            +
                    raw_out: torch.Tensor,
         
     | 
| 
      
 704 
     | 
    
         
            +
                    cu_seqlens_q: torch.Tensor,
         
     | 
| 
      
 705 
     | 
    
         
            +
                    seq_lens_q: torch.Tensor,
         
     | 
| 
      
 706 
     | 
    
         
            +
                    sum_seq_lens_q: int,
         
     | 
| 
      
 707 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 708 
     | 
    
         
            +
                    """Unpad draft extended output using Triton kernel."""
         
     | 
| 
      
 709 
     | 
    
         
            +
                    # raw_out: (batch_size, token_per_batch, layer.tp_q_head_num, layer.v_head_dim)
         
     | 
| 
      
 710 
     | 
    
         
            +
                    batch_size = seq_lens_q.shape[0]
         
     | 
| 
      
 711 
     | 
    
         
            +
                    token_per_batch = raw_out.shape[1]  # max_seq_len
         
     | 
| 
      
 712 
     | 
    
         
            +
                    tp_q_head_num = raw_out.shape[2]  # num_heads
         
     | 
| 
      
 713 
     | 
    
         
            +
                    v_head_dim = raw_out.shape[3]  # head_dim
         
     | 
| 
      
 714 
     | 
    
         
            +
                    total_tokens = sum_seq_lens_q
         
     | 
| 
      
 715 
     | 
    
         
            +
             
     | 
| 
      
 716 
     | 
    
         
            +
                    # Check if we're in CUDA graph mode (buffers are pre-allocated)
         
     | 
| 
      
 717 
     | 
    
         
            +
                    if self.unpad_output_buffer is not None:
         
     | 
| 
      
 718 
     | 
    
         
            +
                        # Use pre-allocated buffer for CUDA graph compatibility
         
     | 
| 
      
 719 
     | 
    
         
            +
                        output = self.unpad_output_buffer[:total_tokens, :, :].to(
         
     | 
| 
      
 720 
     | 
    
         
            +
                            dtype=raw_out.dtype
         
     | 
| 
      
 721 
     | 
    
         
            +
                        )
         
     | 
| 
      
 722 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 723 
     | 
    
         
            +
                        # Dynamic allocation for non-CUDA graph mode
         
     | 
| 
      
 724 
     | 
    
         
            +
                        output = torch.empty(
         
     | 
| 
      
 725 
     | 
    
         
            +
                            (total_tokens, tp_q_head_num, v_head_dim),
         
     | 
| 
      
 726 
     | 
    
         
            +
                            dtype=raw_out.dtype,
         
     | 
| 
      
 727 
     | 
    
         
            +
                            device=raw_out.device,
         
     | 
| 
      
 728 
     | 
    
         
            +
                        )
         
     | 
| 
      
 729 
     | 
    
         
            +
             
     | 
| 
      
 730 
     | 
    
         
            +
                    # Launch Triton kernel with 3D grid for parallelized head and dim processing
         
     | 
| 
      
 731 
     | 
    
         
            +
                    BLOCK_SIZE = 64
         
     | 
| 
      
 732 
     | 
    
         
            +
                    num_head_blocks = triton.cdiv(tp_q_head_num, BLOCK_SIZE)
         
     | 
| 
      
 733 
     | 
    
         
            +
                    num_dim_blocks = triton.cdiv(v_head_dim, BLOCK_SIZE)
         
     | 
| 
      
 734 
     | 
    
         
            +
                    grid = (batch_size * token_per_batch, num_head_blocks, num_dim_blocks)
         
     | 
| 
      
 735 
     | 
    
         
            +
             
     | 
| 
      
 736 
     | 
    
         
            +
                    unpad_draft_extend_output_kernel[grid](
         
     | 
| 
      
 737 
     | 
    
         
            +
                        raw_out_ptr=raw_out,
         
     | 
| 
      
 738 
     | 
    
         
            +
                        output_ptr=output,
         
     | 
| 
      
 739 
     | 
    
         
            +
                        accept_length_ptr=seq_lens_q,
         
     | 
| 
      
 740 
     | 
    
         
            +
                        cumsum_ptr=cu_seqlens_q,
         
     | 
| 
      
 741 
     | 
    
         
            +
                        batch_size=batch_size,
         
     | 
| 
      
 742 
     | 
    
         
            +
                        token_per_batch=token_per_batch,
         
     | 
| 
      
 743 
     | 
    
         
            +
                        tp_q_head_num=tp_q_head_num,
         
     | 
| 
      
 744 
     | 
    
         
            +
                        v_head_dim=v_head_dim,
         
     | 
| 
      
 745 
     | 
    
         
            +
                        BLOCK_SIZE=BLOCK_SIZE,
         
     | 
| 
      
 746 
     | 
    
         
            +
                    )
         
     | 
| 
      
 747 
     | 
    
         
            +
                    return output[:total_tokens, :, :]
         
     | 
| 
      
 748 
     | 
    
         
            +
             
     | 
| 
       460 
749 
     | 
    
         
             
                def forward_decode(
         
     | 
| 
       461 
750 
     | 
    
         
             
                    self,
         
     | 
| 
       462 
751 
     | 
    
         
             
                    q: torch.Tensor,  # q_nope
         
     | 
| 
         @@ -550,7 +839,7 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       550 
839 
     | 
    
         
             
                        qk_rope_head_dim=self.qk_rope_head_dim,
         
     | 
| 
       551 
840 
     | 
    
         
             
                        block_tables=metadata.block_kv_indices,
         
     | 
| 
       552 
841 
     | 
    
         
             
                        seq_lens=forward_batch.seq_lens.to(torch.int32),
         
     | 
| 
       553 
     | 
    
         
            -
                        max_seq_len=metadata. 
     | 
| 
      
 842 
     | 
    
         
            +
                        max_seq_len=metadata.max_seq_len_k,
         
     | 
| 
       554 
843 
     | 
    
         
             
                        bmm1_scale=bmm1_scale,
         
     | 
| 
       555 
844 
     | 
    
         
             
                    )
         
     | 
| 
       556 
845 
     | 
    
         | 
| 
         @@ -571,11 +860,6 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       571 
860 
     | 
    
         
             
                    cos_sin_cache: Optional[torch.Tensor] = None,
         
     | 
| 
       572 
861 
     | 
    
         
             
                    is_neox: Optional[bool] = False,
         
     | 
| 
       573 
862 
     | 
    
         
             
                ) -> torch.Tensor:
         
     | 
| 
       574 
     | 
    
         
            -
                    if forward_batch.forward_mode.is_draft_extend():
         
     | 
| 
       575 
     | 
    
         
            -
                        return super().forward_extend(
         
     | 
| 
       576 
     | 
    
         
            -
                            q, k, v, layer, forward_batch, save_kv_cache, q_rope, k_rope
         
     | 
| 
       577 
     | 
    
         
            -
                        )
         
     | 
| 
       578 
     | 
    
         
            -
             
     | 
| 
       579 
863 
     | 
    
         
             
                    # TODO refactor to avoid code duplication
         
     | 
| 
       580 
864 
     | 
    
         
             
                    merge_query = q_rope is not None
         
     | 
| 
       581 
865 
     | 
    
         
             
                    if (
         
     | 
| 
         @@ -627,7 +911,10 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       627 
911 
     | 
    
         | 
| 
       628 
912 
     | 
    
         
             
                    v = v.view(-1, layer.tp_k_head_num, layer.v_head_dim)
         
     | 
| 
       629 
913 
     | 
    
         | 
| 
       630 
     | 
    
         
            -
                    if  
     | 
| 
      
 914 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 915 
     | 
    
         
            +
                        forward_batch.forward_mode.is_target_verify()
         
     | 
| 
      
 916 
     | 
    
         
            +
                        or forward_batch.forward_mode.is_draft_extend(include_v2=True)
         
     | 
| 
      
 917 
     | 
    
         
            +
                    ):
         
     | 
| 
       631 
918 
     | 
    
         
             
                        metadata = (
         
     | 
| 
       632 
919 
     | 
    
         
             
                            getattr(forward_batch, "decode_trtllm_mla_metadata", None)
         
     | 
| 
       633 
920 
     | 
    
         
             
                            or self.forward_decode_metadata
         
     | 
| 
         @@ -635,7 +922,6 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       635 
922 
     | 
    
         | 
| 
       636 
923 
     | 
    
         
             
                        # Ensure query has shape [bs, num_draft_tokens, num_q_heads, head_dim]
         
     | 
| 
       637 
924 
     | 
    
         
             
                        bs = forward_batch.batch_size
         
     | 
| 
       638 
     | 
    
         
            -
                        q = q.view(bs, -1, layer.tp_q_head_num, layer.head_dim)
         
     | 
| 
       639 
925 
     | 
    
         | 
| 
       640 
926 
     | 
    
         
             
                        k_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id)
         
     | 
| 
       641 
927 
     | 
    
         
             
                        kv_cache = k_cache.view(-1, self.page_size, self.kv_cache_dim).unsqueeze(1)
         
     | 
| 
         @@ -646,17 +932,42 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       646 
932 
     | 
    
         
             
                            if getattr(layer, "k_scale_float", None) is not None
         
     | 
| 
       647 
933 
     | 
    
         
             
                            else 1.0
         
     | 
| 
       648 
934 
     | 
    
         
             
                        )
         
     | 
| 
      
 935 
     | 
    
         
            +
                        q = q.to(self.data_type)
         
     | 
| 
       649 
936 
     | 
    
         | 
| 
       650 
937 
     | 
    
         
             
                        bmm1_scale = q_scale * k_scale * layer.scaling
         
     | 
| 
       651 
     | 
    
         
            -
             
     | 
| 
       652 
     | 
    
         
            -
             
     | 
| 
       653 
     | 
    
         
            -
             
     | 
| 
       654 
     | 
    
         
            -
             
     | 
| 
       655 
     | 
    
         
            -
             
     | 
| 
       656 
     | 
    
         
            -
             
     | 
| 
      
 938 
     | 
    
         
            +
                        if forward_batch.forward_mode.is_target_verify():
         
     | 
| 
      
 939 
     | 
    
         
            +
                            seq_lens = (
         
     | 
| 
      
 940 
     | 
    
         
            +
                                forward_batch.seq_lens.to(torch.int32)
         
     | 
| 
      
 941 
     | 
    
         
            +
                                + forward_batch.spec_info.draft_token_num
         
     | 
| 
      
 942 
     | 
    
         
            +
                            )
         
     | 
| 
      
 943 
     | 
    
         
            +
                            max_seq_len = (
         
     | 
| 
      
 944 
     | 
    
         
            +
                                metadata.max_seq_len_k + forward_batch.spec_info.draft_token_num
         
     | 
| 
      
 945 
     | 
    
         
            +
                            )
         
     | 
| 
      
 946 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 947 
     | 
    
         
            +
                            seq_lens = forward_batch.seq_lens.to(torch.int32)
         
     | 
| 
      
 948 
     | 
    
         
            +
                            max_seq_len = metadata.max_seq_len_k
         
     | 
| 
      
 949 
     | 
    
         
            +
                            # Check if we're in CUDA graph mode (buffers are pre-allocated)
         
     | 
| 
      
 950 
     | 
    
         
            +
                            if self.padded_q_buffer is not None:
         
     | 
| 
      
 951 
     | 
    
         
            +
                                # Use pre-allocated buffer for CUDA graph compatibility
         
     | 
| 
      
 952 
     | 
    
         
            +
                                padded_q = self.padded_q_buffer[
         
     | 
| 
      
 953 
     | 
    
         
            +
                                    :bs, : metadata.max_seq_len_q, :, :
         
     | 
| 
      
 954 
     | 
    
         
            +
                                ].to(dtype=q.dtype)
         
     | 
| 
      
 955 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 956 
     | 
    
         
            +
                                # Dynamic allocation for non-CUDA graph mode
         
     | 
| 
      
 957 
     | 
    
         
            +
                                padded_q = torch.zeros(
         
     | 
| 
      
 958 
     | 
    
         
            +
                                    bs,
         
     | 
| 
      
 959 
     | 
    
         
            +
                                    metadata.max_seq_len_q,
         
     | 
| 
      
 960 
     | 
    
         
            +
                                    layer.tp_q_head_num,
         
     | 
| 
      
 961 
     | 
    
         
            +
                                    layer.head_dim,
         
     | 
| 
      
 962 
     | 
    
         
            +
                                    dtype=q.dtype,
         
     | 
| 
      
 963 
     | 
    
         
            +
                                    device=q.device,
         
     | 
| 
      
 964 
     | 
    
         
            +
                                )
         
     | 
| 
      
 965 
     | 
    
         
            +
                            q = self.pad_draft_extend_query(
         
     | 
| 
      
 966 
     | 
    
         
            +
                                q, padded_q, metadata.seq_lens_q, metadata.cu_seqlens_q
         
     | 
| 
      
 967 
     | 
    
         
            +
                            )
         
     | 
| 
       657 
968 
     | 
    
         | 
| 
       658 
969 
     | 
    
         
             
                        # TODO may use `mla_rope_quantize_fp8` fusion
         
     | 
| 
       659 
     | 
    
         
            -
                        q = q. 
     | 
| 
      
 970 
     | 
    
         
            +
                        q = q.view(bs, -1, layer.tp_q_head_num, layer.head_dim)
         
     | 
| 
       660 
971 
     | 
    
         
             
                        assert kv_cache.dtype == self.data_type
         
     | 
| 
       661 
972 
     | 
    
         | 
| 
       662 
973 
     | 
    
         
             
                        raw_out = flashinfer.decode.trtllm_batch_decode_with_kv_cache_mla(
         
     | 
| 
         @@ -673,6 +984,14 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       673 
984 
     | 
    
         
             
                        )
         
     | 
| 
       674 
985 
     | 
    
         | 
| 
       675 
986 
     | 
    
         
             
                        # Reshape output directly without slicing
         
     | 
| 
      
 987 
     | 
    
         
            +
             
     | 
| 
      
 988 
     | 
    
         
            +
                        if forward_batch.forward_mode.is_draft_extend(include_v2=True):
         
     | 
| 
      
 989 
     | 
    
         
            +
                            raw_out = self.unpad_draft_extend_output(
         
     | 
| 
      
 990 
     | 
    
         
            +
                                raw_out,
         
     | 
| 
      
 991 
     | 
    
         
            +
                                metadata.cu_seqlens_q,
         
     | 
| 
      
 992 
     | 
    
         
            +
                                metadata.seq_lens_q,
         
     | 
| 
      
 993 
     | 
    
         
            +
                                metadata.sum_seq_lens_q,
         
     | 
| 
      
 994 
     | 
    
         
            +
                            )
         
     | 
| 
       676 
995 
     | 
    
         
             
                        output = raw_out.view(-1, layer.tp_q_head_num * layer.v_head_dim)
         
     | 
| 
       677 
996 
     | 
    
         
             
                        return output
         
     | 
| 
       678 
997 
     | 
    
         | 
| 
         @@ -735,7 +1054,7 @@ class TRTLLMMLAMultiStepDraftBackend(FlashInferMLAMultiStepDraftBackend): 
     | 
|
| 
       735 
1054 
     | 
    
         
             
                ):
         
     | 
| 
       736 
1055 
     | 
    
         
             
                    super().__init__(model_runner, topk, speculative_num_steps)
         
     | 
| 
       737 
1056 
     | 
    
         | 
| 
       738 
     | 
    
         
            -
                    for i in range(self.speculative_num_steps):
         
     | 
| 
      
 1057 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps - 1):
         
     | 
| 
       739 
1058 
     | 
    
         
             
                        self.attn_backends[i] = TRTLLMMLABackend(
         
     | 
| 
       740 
1059 
     | 
    
         
             
                            model_runner,
         
     | 
| 
       741 
1060 
     | 
    
         
             
                            skip_prefill=True,
         
     |