sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -32,12 +32,182 @@ if _is_cuda: 
     | 
|
| 
       32 
32 
     | 
    
         
             
            _is_hip = is_hip()
         
     | 
| 
       33 
33 
     | 
    
         | 
| 
       34 
34 
     | 
    
         | 
| 
      
 35 
     | 
    
         
            +
            def _get_block_sizes_for_extend_attention(Lq: int, Lv: int):
         
     | 
| 
      
 36 
     | 
    
         
            +
                """
         
     | 
| 
      
 37 
     | 
    
         
            +
                Get block sizes and configuration for extend attention kernels.
         
     | 
| 
      
 38 
     | 
    
         
            +
             
     | 
| 
      
 39 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 40 
     | 
    
         
            +
                    Lq: Query head dimension
         
     | 
| 
      
 41 
     | 
    
         
            +
                    Lv: Value head dimension
         
     | 
| 
      
 42 
     | 
    
         
            +
             
     | 
| 
      
 43 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 44 
     | 
    
         
            +
                    tuple: (BLOCK_DMODEL, BLOCK_DPE, BLOCK_DV, BLOCK_M, BLOCK_N, num_warps)
         
     | 
| 
      
 45 
     | 
    
         
            +
                """
         
     | 
| 
      
 46 
     | 
    
         
            +
                # Determine BLOCK_DMODEL and BLOCK_DPE based on head dimension
         
     | 
| 
      
 47 
     | 
    
         
            +
                if Lq == 576:
         
     | 
| 
      
 48 
     | 
    
         
            +
                    BLOCK_DMODEL = 512
         
     | 
| 
      
 49 
     | 
    
         
            +
                    BLOCK_DPE = 64
         
     | 
| 
      
 50 
     | 
    
         
            +
                elif Lq == 288:
         
     | 
| 
      
 51 
     | 
    
         
            +
                    BLOCK_DMODEL = 256
         
     | 
| 
      
 52 
     | 
    
         
            +
                    BLOCK_DPE = 32
         
     | 
| 
      
 53 
     | 
    
         
            +
                elif Lq == 192:
         
     | 
| 
      
 54 
     | 
    
         
            +
                    BLOCK_DMODEL = 128
         
     | 
| 
      
 55 
     | 
    
         
            +
                    BLOCK_DPE = 64
         
     | 
| 
      
 56 
     | 
    
         
            +
                else:
         
     | 
| 
      
 57 
     | 
    
         
            +
                    BLOCK_DMODEL = triton.next_power_of_2(Lq)
         
     | 
| 
      
 58 
     | 
    
         
            +
                    BLOCK_DPE = 0
         
     | 
| 
      
 59 
     | 
    
         
            +
             
     | 
| 
      
 60 
     | 
    
         
            +
                BLOCK_DV = triton.next_power_of_2(Lv)
         
     | 
| 
      
 61 
     | 
    
         
            +
             
     | 
| 
      
 62 
     | 
    
         
            +
                # Determine BLOCK_M, BLOCK_N, and num_warps based on hardware
         
     | 
| 
      
 63 
     | 
    
         
            +
                if _is_hip:
         
     | 
| 
      
 64 
     | 
    
         
            +
                    BLOCK_M, BLOCK_N = (64, 64)
         
     | 
| 
      
 65 
     | 
    
         
            +
                    num_warps = 4
         
     | 
| 
      
 66 
     | 
    
         
            +
                else:
         
     | 
| 
      
 67 
     | 
    
         
            +
                    if _is_cuda and CUDA_CAPABILITY[0] >= 9:
         
     | 
| 
      
 68 
     | 
    
         
            +
                        # Hopper architecture (H100, etc.)
         
     | 
| 
      
 69 
     | 
    
         
            +
                        if Lq <= 256:
         
     | 
| 
      
 70 
     | 
    
         
            +
                            BLOCK_M, BLOCK_N = (128, 64)
         
     | 
| 
      
 71 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 72 
     | 
    
         
            +
                            BLOCK_M, BLOCK_N = (32, 64)
         
     | 
| 
      
 73 
     | 
    
         
            +
                    elif _is_cuda and CUDA_CAPABILITY[0] >= 8:
         
     | 
| 
      
 74 
     | 
    
         
            +
                        # Ampere architecture (A100, etc.)
         
     | 
| 
      
 75 
     | 
    
         
            +
                        # sm86/sm89 has a much smaller shared memory size (100K) than sm80 (160K)
         
     | 
| 
      
 76 
     | 
    
         
            +
                        if CUDA_CAPABILITY[1] == 9 or CUDA_CAPABILITY[1] == 6:
         
     | 
| 
      
 77 
     | 
    
         
            +
                            if Lq <= 128:
         
     | 
| 
      
 78 
     | 
    
         
            +
                                BLOCK_M, BLOCK_N = (64, 128)
         
     | 
| 
      
 79 
     | 
    
         
            +
                            elif Lq <= 256:
         
     | 
| 
      
 80 
     | 
    
         
            +
                                BLOCK_M, BLOCK_N = (64, 64)
         
     | 
| 
      
 81 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 82 
     | 
    
         
            +
                                BLOCK_M, BLOCK_N = (32, 32)
         
     | 
| 
      
 83 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 84 
     | 
    
         
            +
                            if Lq <= 128:
         
     | 
| 
      
 85 
     | 
    
         
            +
                                BLOCK_M, BLOCK_N = (128, 128)
         
     | 
| 
      
 86 
     | 
    
         
            +
                            elif Lq <= 256:
         
     | 
| 
      
 87 
     | 
    
         
            +
                                BLOCK_M, BLOCK_N = (64, 64)
         
     | 
| 
      
 88 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 89 
     | 
    
         
            +
                                BLOCK_M, BLOCK_N = (32, 64)
         
     | 
| 
      
 90 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 91 
     | 
    
         
            +
                        # Older architectures
         
     | 
| 
      
 92 
     | 
    
         
            +
                        BLOCK_M, BLOCK_N = (64, 64) if Lq <= 128 else (32, 32)
         
     | 
| 
      
 93 
     | 
    
         
            +
             
     | 
| 
      
 94 
     | 
    
         
            +
                    num_warps = 4 if Lq <= 64 else 8
         
     | 
| 
      
 95 
     | 
    
         
            +
             
     | 
| 
      
 96 
     | 
    
         
            +
                return BLOCK_DMODEL, BLOCK_DPE, BLOCK_DV, BLOCK_M, BLOCK_N, num_warps
         
     | 
| 
      
 97 
     | 
    
         
            +
             
     | 
| 
      
 98 
     | 
    
         
            +
             
     | 
| 
       35 
99 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       36 
100 
     | 
    
         
             
            def tanh(x):
         
     | 
| 
       37 
101 
     | 
    
         
             
                # Tanh is just a scaled sigmoid
         
     | 
| 
       38 
102 
     | 
    
         
             
                return 2 * tl.sigmoid(2 * x) - 1
         
     | 
| 
       39 
103 
     | 
    
         | 
| 
       40 
104 
     | 
    
         | 
| 
      
 105 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 106 
     | 
    
         
            +
            def _copy_unified_indices_kernel(
         
     | 
| 
      
 107 
     | 
    
         
            +
                # Input buffers
         
     | 
| 
      
 108 
     | 
    
         
            +
                prefix_kv_indptr,
         
     | 
| 
      
 109 
     | 
    
         
            +
                prefix_kv_indices,
         
     | 
| 
      
 110 
     | 
    
         
            +
                extend_start_loc,
         
     | 
| 
      
 111 
     | 
    
         
            +
                extend_seq_lens,
         
     | 
| 
      
 112 
     | 
    
         
            +
                extend_kv_indices,
         
     | 
| 
      
 113 
     | 
    
         
            +
                unified_kv_indptr,
         
     | 
| 
      
 114 
     | 
    
         
            +
                # Output buffer
         
     | 
| 
      
 115 
     | 
    
         
            +
                unified_kv_indices,
         
     | 
| 
      
 116 
     | 
    
         
            +
                # Size
         
     | 
| 
      
 117 
     | 
    
         
            +
                bs,
         
     | 
| 
      
 118 
     | 
    
         
            +
            ):
         
     | 
| 
      
 119 
     | 
    
         
            +
                """
         
     | 
| 
      
 120 
     | 
    
         
            +
                Triton kernel to copy indices to unified buffer (parallel per sequence).
         
     | 
| 
      
 121 
     | 
    
         
            +
                Each thread block processes one sequence with vectorized loads/stores.
         
     | 
| 
      
 122 
     | 
    
         
            +
                """
         
     | 
| 
      
 123 
     | 
    
         
            +
                pid = tl.program_id(0)
         
     | 
| 
      
 124 
     | 
    
         
            +
             
     | 
| 
      
 125 
     | 
    
         
            +
                if pid >= bs:
         
     | 
| 
      
 126 
     | 
    
         
            +
                    return
         
     | 
| 
      
 127 
     | 
    
         
            +
             
     | 
| 
      
 128 
     | 
    
         
            +
                # Load sequence info
         
     | 
| 
      
 129 
     | 
    
         
            +
                prefix_start = tl.load(prefix_kv_indptr + pid)
         
     | 
| 
      
 130 
     | 
    
         
            +
                prefix_end = tl.load(prefix_kv_indptr + pid + 1)
         
     | 
| 
      
 131 
     | 
    
         
            +
                extend_start = tl.load(extend_start_loc + pid)
         
     | 
| 
      
 132 
     | 
    
         
            +
                extend_len = tl.load(extend_seq_lens + pid)
         
     | 
| 
      
 133 
     | 
    
         
            +
             
     | 
| 
      
 134 
     | 
    
         
            +
                prefix_len = prefix_end - prefix_start
         
     | 
| 
      
 135 
     | 
    
         
            +
                unified_start = tl.load(unified_kv_indptr + pid)
         
     | 
| 
      
 136 
     | 
    
         
            +
             
     | 
| 
      
 137 
     | 
    
         
            +
                # Copy indices in vectorized chunks
         
     | 
| 
      
 138 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr = 128
         
     | 
| 
      
 139 
     | 
    
         
            +
             
     | 
| 
      
 140 
     | 
    
         
            +
                # Process prefix indices
         
     | 
| 
      
 141 
     | 
    
         
            +
                for block_start in range(0, prefix_len, BLOCK_SIZE):
         
     | 
| 
      
 142 
     | 
    
         
            +
                    offs = block_start + tl.arange(0, BLOCK_SIZE)
         
     | 
| 
      
 143 
     | 
    
         
            +
                    mask = offs < prefix_len
         
     | 
| 
      
 144 
     | 
    
         
            +
             
     | 
| 
      
 145 
     | 
    
         
            +
                    src_idx = prefix_start + offs
         
     | 
| 
      
 146 
     | 
    
         
            +
                    dst_idx = unified_start + offs
         
     | 
| 
      
 147 
     | 
    
         
            +
             
     | 
| 
      
 148 
     | 
    
         
            +
                    vals = tl.load(prefix_kv_indices + src_idx, mask=mask, other=0)
         
     | 
| 
      
 149 
     | 
    
         
            +
                    tl.store(unified_kv_indices + dst_idx, vals, mask=mask)
         
     | 
| 
      
 150 
     | 
    
         
            +
             
     | 
| 
      
 151 
     | 
    
         
            +
                # Process extend indices
         
     | 
| 
      
 152 
     | 
    
         
            +
                for block_start in range(0, extend_len, BLOCK_SIZE):
         
     | 
| 
      
 153 
     | 
    
         
            +
                    offs = block_start + tl.arange(0, BLOCK_SIZE)
         
     | 
| 
      
 154 
     | 
    
         
            +
                    mask = offs < extend_len
         
     | 
| 
      
 155 
     | 
    
         
            +
             
     | 
| 
      
 156 
     | 
    
         
            +
                    src_idx = extend_start + offs
         
     | 
| 
      
 157 
     | 
    
         
            +
                    dst_idx = unified_start + prefix_len + offs
         
     | 
| 
      
 158 
     | 
    
         
            +
             
     | 
| 
      
 159 
     | 
    
         
            +
                    vals = tl.load(extend_kv_indices + src_idx, mask=mask, other=0)
         
     | 
| 
      
 160 
     | 
    
         
            +
                    tl.store(unified_kv_indices + dst_idx, vals, mask=mask)
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
             
     | 
| 
      
 163 
     | 
    
         
            +
            def build_unified_kv_indices(
         
     | 
| 
      
 164 
     | 
    
         
            +
                prefix_kv_indptr: torch.Tensor,
         
     | 
| 
      
 165 
     | 
    
         
            +
                prefix_kv_indices: torch.Tensor,
         
     | 
| 
      
 166 
     | 
    
         
            +
                extend_start_loc: torch.Tensor,
         
     | 
| 
      
 167 
     | 
    
         
            +
                extend_seq_lens: torch.Tensor,
         
     | 
| 
      
 168 
     | 
    
         
            +
                extend_kv_indices: torch.Tensor,
         
     | 
| 
      
 169 
     | 
    
         
            +
                bs: int,
         
     | 
| 
      
 170 
     | 
    
         
            +
            ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
         
     | 
| 
      
 171 
     | 
    
         
            +
                """
         
     | 
| 
      
 172 
     | 
    
         
            +
                Build unified KV indices efficiently:
         
     | 
| 
      
 173 
     | 
    
         
            +
                - Use PyTorch's optimized cumsum (NVIDIA CUB) for indptr
         
     | 
| 
      
 174 
     | 
    
         
            +
                - Use Triton kernel for parallel index copying
         
     | 
| 
      
 175 
     | 
    
         
            +
             
     | 
| 
      
 176 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 177 
     | 
    
         
            +
                    (unified_kv_indptr, unified_kv_indices, prefix_lens)
         
     | 
| 
      
 178 
     | 
    
         
            +
                """
         
     | 
| 
      
 179 
     | 
    
         
            +
                device = prefix_kv_indptr.device
         
     | 
| 
      
 180 
     | 
    
         
            +
             
     | 
| 
      
 181 
     | 
    
         
            +
                prefix_lens = prefix_kv_indptr[1 : bs + 1] - prefix_kv_indptr[:bs]
         
     | 
| 
      
 182 
     | 
    
         
            +
             
     | 
| 
      
 183 
     | 
    
         
            +
                # Create unified_kv_indptr avoiding direct assignment (for CUDA graph compatibility)
         
     | 
| 
      
 184 
     | 
    
         
            +
                unified_lens = prefix_lens + extend_seq_lens[:bs]
         
     | 
| 
      
 185 
     | 
    
         
            +
                unified_kv_indptr = torch.cat(
         
     | 
| 
      
 186 
     | 
    
         
            +
                    [
         
     | 
| 
      
 187 
     | 
    
         
            +
                        torch.zeros(1, dtype=torch.int32, device=device),
         
     | 
| 
      
 188 
     | 
    
         
            +
                        torch.cumsum(unified_lens, dim=0),
         
     | 
| 
      
 189 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 190 
     | 
    
         
            +
                )
         
     | 
| 
      
 191 
     | 
    
         
            +
             
     | 
| 
      
 192 
     | 
    
         
            +
                max_unified_len = len(prefix_kv_indices) + len(extend_kv_indices)
         
     | 
| 
      
 193 
     | 
    
         
            +
             
     | 
| 
      
 194 
     | 
    
         
            +
                unified_kv_indices = torch.empty(max_unified_len, dtype=torch.int64, device=device)
         
     | 
| 
      
 195 
     | 
    
         
            +
             
     | 
| 
      
 196 
     | 
    
         
            +
                # Launch Triton kernel for parallel index copying
         
     | 
| 
      
 197 
     | 
    
         
            +
                _copy_unified_indices_kernel[(bs,)](
         
     | 
| 
      
 198 
     | 
    
         
            +
                    prefix_kv_indptr,
         
     | 
| 
      
 199 
     | 
    
         
            +
                    prefix_kv_indices,
         
     | 
| 
      
 200 
     | 
    
         
            +
                    extend_start_loc,
         
     | 
| 
      
 201 
     | 
    
         
            +
                    extend_seq_lens,
         
     | 
| 
      
 202 
     | 
    
         
            +
                    extend_kv_indices,
         
     | 
| 
      
 203 
     | 
    
         
            +
                    unified_kv_indptr,
         
     | 
| 
      
 204 
     | 
    
         
            +
                    unified_kv_indices,
         
     | 
| 
      
 205 
     | 
    
         
            +
                    bs,
         
     | 
| 
      
 206 
     | 
    
         
            +
                )
         
     | 
| 
      
 207 
     | 
    
         
            +
             
     | 
| 
      
 208 
     | 
    
         
            +
                return unified_kv_indptr, unified_kv_indices, prefix_lens
         
     | 
| 
      
 209 
     | 
    
         
            +
             
     | 
| 
      
 210 
     | 
    
         
            +
             
     | 
| 
       41 
211 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       42 
212 
     | 
    
         
             
            def _fwd_kernel(
         
     | 
| 
       43 
213 
     | 
    
         
             
                Q_Extend,
         
     | 
| 
         @@ -402,50 +572,10 @@ def extend_attention_fwd( 
     | 
|
| 
       402 
572 
     | 
    
         
             
                    v_extend.shape[-1],
         
     | 
| 
       403 
573 
     | 
    
         
             
                )
         
     | 
| 
       404 
574 
     | 
    
         | 
| 
       405 
     | 
    
         
            -
                 
     | 
| 
       406 
     | 
    
         
            -
             
     | 
| 
       407 
     | 
    
         
            -
                     
     | 
| 
       408 
     | 
    
         
            -
                 
     | 
| 
       409 
     | 
    
         
            -
                    BLOCK_DMODEL = 256
         
     | 
| 
       410 
     | 
    
         
            -
                    BLOCK_DPE = 32
         
     | 
| 
       411 
     | 
    
         
            -
                elif Lq == 192:
         
     | 
| 
       412 
     | 
    
         
            -
                    BLOCK_DMODEL = 128
         
     | 
| 
       413 
     | 
    
         
            -
                    BLOCK_DPE = 64
         
     | 
| 
       414 
     | 
    
         
            -
                else:
         
     | 
| 
       415 
     | 
    
         
            -
                    BLOCK_DMODEL = triton.next_power_of_2(Lq)
         
     | 
| 
       416 
     | 
    
         
            -
                    BLOCK_DPE = 0
         
     | 
| 
       417 
     | 
    
         
            -
                BLOCK_DV = triton.next_power_of_2(Lv)
         
     | 
| 
       418 
     | 
    
         
            -
             
     | 
| 
       419 
     | 
    
         
            -
                if _is_hip:
         
     | 
| 
       420 
     | 
    
         
            -
                    BLOCK_M, BLOCK_N = (64, 64)
         
     | 
| 
       421 
     | 
    
         
            -
                    num_warps = 4
         
     | 
| 
       422 
     | 
    
         
            -
             
     | 
| 
       423 
     | 
    
         
            -
                else:
         
     | 
| 
       424 
     | 
    
         
            -
                    if _is_cuda and CUDA_CAPABILITY[0] >= 9:
         
     | 
| 
       425 
     | 
    
         
            -
                        if Lq <= 256:
         
     | 
| 
       426 
     | 
    
         
            -
                            BLOCK_M, BLOCK_N = (128, 64)
         
     | 
| 
       427 
     | 
    
         
            -
                        else:
         
     | 
| 
       428 
     | 
    
         
            -
                            BLOCK_M, BLOCK_N = (32, 64)
         
     | 
| 
       429 
     | 
    
         
            -
                    elif _is_cuda and CUDA_CAPABILITY[0] >= 8:
         
     | 
| 
       430 
     | 
    
         
            -
                        # sm86/sm89 has a much smaller shared memory size (100K) than sm80 (160K)
         
     | 
| 
       431 
     | 
    
         
            -
                        if CUDA_CAPABILITY[1] == 9 or CUDA_CAPABILITY[1] == 6:
         
     | 
| 
       432 
     | 
    
         
            -
                            if Lq <= 128:
         
     | 
| 
       433 
     | 
    
         
            -
                                BLOCK_M, BLOCK_N = (64, 128)
         
     | 
| 
       434 
     | 
    
         
            -
                            elif Lq <= 256:
         
     | 
| 
       435 
     | 
    
         
            -
                                BLOCK_M, BLOCK_N = (64, 64)
         
     | 
| 
       436 
     | 
    
         
            -
                            else:
         
     | 
| 
       437 
     | 
    
         
            -
                                BLOCK_M, BLOCK_N = (32, 32)
         
     | 
| 
       438 
     | 
    
         
            -
                        else:
         
     | 
| 
       439 
     | 
    
         
            -
                            if Lq <= 128:
         
     | 
| 
       440 
     | 
    
         
            -
                                BLOCK_M, BLOCK_N = (128, 128)
         
     | 
| 
       441 
     | 
    
         
            -
                            elif Lq <= 256:
         
     | 
| 
       442 
     | 
    
         
            -
                                BLOCK_M, BLOCK_N = (64, 64)
         
     | 
| 
       443 
     | 
    
         
            -
                            else:
         
     | 
| 
       444 
     | 
    
         
            -
                                BLOCK_M, BLOCK_N = (32, 64)
         
     | 
| 
       445 
     | 
    
         
            -
                    else:
         
     | 
| 
       446 
     | 
    
         
            -
                        BLOCK_M, BLOCK_N = (64, 64) if Lq <= 128 else (32, 32)
         
     | 
| 
       447 
     | 
    
         
            -
             
     | 
| 
       448 
     | 
    
         
            -
                    num_warps = 4 if Lk <= 64 else 8
         
     | 
| 
      
 575 
     | 
    
         
            +
                # Get block sizes and configuration
         
     | 
| 
      
 576 
     | 
    
         
            +
                BLOCK_DMODEL, BLOCK_DPE, BLOCK_DV, BLOCK_M, BLOCK_N, num_warps = (
         
     | 
| 
      
 577 
     | 
    
         
            +
                    _get_block_sizes_for_extend_attention(Lq, Lv)
         
     | 
| 
      
 578 
     | 
    
         
            +
                )
         
     | 
| 
       449 
579 
     | 
    
         | 
| 
       450 
580 
     | 
    
         
             
                sm_scale = sm_scale or 1.0 / (Lq**0.5)
         
     | 
| 
       451 
581 
     | 
    
         
             
                batch_size, head_num = qo_indptr.shape[0] - 1, q_extend.shape[1]
         
     | 
| 
         @@ -548,3 +678,368 @@ def redundant_attention( 
     | 
|
| 
       548 
678 
     | 
    
         
             
                    pl, pr = b_start_loc[i] + b_seq_len_prefix[i], b_start_loc[i] + b_seq_len[i]
         
     | 
| 
       549 
679 
     | 
    
         
             
                    o_extend[pt : pt + cur_seq_len_extend] = o_buffer[pl:pr]
         
     | 
| 
       550 
680 
     | 
    
         
             
                    pt += cur_seq_len_extend
         
     | 
| 
      
 681 
     | 
    
         
            +
             
     | 
| 
      
 682 
     | 
    
         
            +
             
     | 
| 
      
 683 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 684 
     | 
    
         
            +
            def _fwd_kernel_unified(
         
     | 
| 
      
 685 
     | 
    
         
            +
                Q,
         
     | 
| 
      
 686 
     | 
    
         
            +
                O,
         
     | 
| 
      
 687 
     | 
    
         
            +
                K_Buffer,
         
     | 
| 
      
 688 
     | 
    
         
            +
                V_Buffer,
         
     | 
| 
      
 689 
     | 
    
         
            +
                qo_indptr,
         
     | 
| 
      
 690 
     | 
    
         
            +
                kv_indptr,
         
     | 
| 
      
 691 
     | 
    
         
            +
                kv_indices,
         
     | 
| 
      
 692 
     | 
    
         
            +
                prefix_lens,
         
     | 
| 
      
 693 
     | 
    
         
            +
                mask_ptr,
         
     | 
| 
      
 694 
     | 
    
         
            +
                mask_indptr,
         
     | 
| 
      
 695 
     | 
    
         
            +
                sink_ptr,
         
     | 
| 
      
 696 
     | 
    
         
            +
                window_start_pos,
         
     | 
| 
      
 697 
     | 
    
         
            +
                sm_scale,
         
     | 
| 
      
 698 
     | 
    
         
            +
                kv_group_num,
         
     | 
| 
      
 699 
     | 
    
         
            +
                stride_qbs,
         
     | 
| 
      
 700 
     | 
    
         
            +
                stride_qh,
         
     | 
| 
      
 701 
     | 
    
         
            +
                stride_obs,
         
     | 
| 
      
 702 
     | 
    
         
            +
                stride_oh,
         
     | 
| 
      
 703 
     | 
    
         
            +
                stride_buf_kbs,
         
     | 
| 
      
 704 
     | 
    
         
            +
                stride_buf_kh,
         
     | 
| 
      
 705 
     | 
    
         
            +
                stride_buf_vbs,
         
     | 
| 
      
 706 
     | 
    
         
            +
                stride_buf_vh,
         
     | 
| 
      
 707 
     | 
    
         
            +
                SLIDING_WINDOW_SIZE: tl.constexpr,
         
     | 
| 
      
 708 
     | 
    
         
            +
                logit_cap: tl.constexpr,
         
     | 
| 
      
 709 
     | 
    
         
            +
                xai_temperature_len: tl.constexpr,
         
     | 
| 
      
 710 
     | 
    
         
            +
                Lq: tl.constexpr,
         
     | 
| 
      
 711 
     | 
    
         
            +
                Lv: tl.constexpr,
         
     | 
| 
      
 712 
     | 
    
         
            +
                BLOCK_DMODEL: tl.constexpr,
         
     | 
| 
      
 713 
     | 
    
         
            +
                BLOCK_DPE: tl.constexpr,
         
     | 
| 
      
 714 
     | 
    
         
            +
                BLOCK_DV: tl.constexpr,
         
     | 
| 
      
 715 
     | 
    
         
            +
                BLOCK_M: tl.constexpr,
         
     | 
| 
      
 716 
     | 
    
         
            +
                BLOCK_N: tl.constexpr,
         
     | 
| 
      
 717 
     | 
    
         
            +
                IS_CAUSAL: tl.constexpr,
         
     | 
| 
      
 718 
     | 
    
         
            +
                USE_CUSTOM_MASK: tl.constexpr,
         
     | 
| 
      
 719 
     | 
    
         
            +
                HAS_SINK: tl.constexpr,
         
     | 
| 
      
 720 
     | 
    
         
            +
            ):
         
     | 
| 
      
 721 
     | 
    
         
            +
                """
         
     | 
| 
      
 722 
     | 
    
         
            +
                Unified 1-stage kernel for deterministic extend attention.
         
     | 
| 
      
 723 
     | 
    
         
            +
                Both prefix and extend KV are accessed through the unified kv_indices.
         
     | 
| 
      
 724 
     | 
    
         
            +
                """
         
     | 
| 
      
 725 
     | 
    
         
            +
                cur_seq = tl.program_id(0)
         
     | 
| 
      
 726 
     | 
    
         
            +
                cur_head = tl.program_id(1)
         
     | 
| 
      
 727 
     | 
    
         
            +
                cur_block_m = tl.program_id(2)
         
     | 
| 
      
 728 
     | 
    
         
            +
                cur_kv_head = cur_head // kv_group_num
         
     | 
| 
      
 729 
     | 
    
         
            +
             
     | 
| 
      
 730 
     | 
    
         
            +
                # Load sequence information
         
     | 
| 
      
 731 
     | 
    
         
            +
                cur_seq_q_start_idx = tl.load(qo_indptr + cur_seq)
         
     | 
| 
      
 732 
     | 
    
         
            +
                cur_seq_q_len = tl.load(qo_indptr + cur_seq + 1) - cur_seq_q_start_idx
         
     | 
| 
      
 733 
     | 
    
         
            +
                cur_seq_kv_start_idx = tl.load(kv_indptr + cur_seq)
         
     | 
| 
      
 734 
     | 
    
         
            +
                cur_seq_kv_len = tl.load(kv_indptr + cur_seq + 1) - cur_seq_kv_start_idx
         
     | 
| 
      
 735 
     | 
    
         
            +
                cur_seq_prefix_len = tl.load(prefix_lens + cur_seq)
         
     | 
| 
      
 736 
     | 
    
         
            +
             
     | 
| 
      
 737 
     | 
    
         
            +
                # Load window start position for sliding window attention
         
     | 
| 
      
 738 
     | 
    
         
            +
                # This is the absolute position of the first key in the window (0 if no sliding window)
         
     | 
| 
      
 739 
     | 
    
         
            +
                cur_window_start = 0
         
     | 
| 
      
 740 
     | 
    
         
            +
                if SLIDING_WINDOW_SIZE > 0:
         
     | 
| 
      
 741 
     | 
    
         
            +
                    cur_window_start = tl.load(window_start_pos + cur_seq)
         
     | 
| 
      
 742 
     | 
    
         
            +
             
     | 
| 
      
 743 
     | 
    
         
            +
                # Load custom mask start index if using custom mask (for speculative decoding)
         
     | 
| 
      
 744 
     | 
    
         
            +
                if USE_CUSTOM_MASK:
         
     | 
| 
      
 745 
     | 
    
         
            +
                    cur_seq_mask_start_idx = tl.load(mask_indptr + cur_seq)
         
     | 
| 
      
 746 
     | 
    
         
            +
             
     | 
| 
      
 747 
     | 
    
         
            +
                offs_d = tl.arange(0, BLOCK_DMODEL)
         
     | 
| 
      
 748 
     | 
    
         
            +
                offs_dv = tl.arange(0, BLOCK_DV)
         
     | 
| 
      
 749 
     | 
    
         
            +
                offs_m = tl.arange(0, BLOCK_M)
         
     | 
| 
      
 750 
     | 
    
         
            +
                mask_m = (cur_block_m * BLOCK_M + offs_m) < cur_seq_q_len
         
     | 
| 
      
 751 
     | 
    
         
            +
                mask_d = offs_d < Lq
         
     | 
| 
      
 752 
     | 
    
         
            +
                mask_dv = offs_dv < Lv
         
     | 
| 
      
 753 
     | 
    
         
            +
             
     | 
| 
      
 754 
     | 
    
         
            +
                # XAI temperature handling
         
     | 
| 
      
 755 
     | 
    
         
            +
                if xai_temperature_len > 0:
         
     | 
| 
      
 756 
     | 
    
         
            +
                    offs_qidx = cur_seq_prefix_len + cur_block_m * BLOCK_M + offs_m
         
     | 
| 
      
 757 
     | 
    
         
            +
                    xai_temperature_reg = tl.where(
         
     | 
| 
      
 758 
     | 
    
         
            +
                        offs_qidx < xai_temperature_len,
         
     | 
| 
      
 759 
     | 
    
         
            +
                        1.0,
         
     | 
| 
      
 760 
     | 
    
         
            +
                        xai_temperature_len / (offs_qidx + 1.0),
         
     | 
| 
      
 761 
     | 
    
         
            +
                    )
         
     | 
| 
      
 762 
     | 
    
         
            +
             
     | 
| 
      
 763 
     | 
    
         
            +
                # Load Q
         
     | 
| 
      
 764 
     | 
    
         
            +
                offs_q = (
         
     | 
| 
      
 765 
     | 
    
         
            +
                    (cur_seq_q_start_idx + cur_block_m * BLOCK_M + offs_m[:, None]) * stride_qbs
         
     | 
| 
      
 766 
     | 
    
         
            +
                    + cur_head * stride_qh
         
     | 
| 
      
 767 
     | 
    
         
            +
                    + offs_d[None, :]
         
     | 
| 
      
 768 
     | 
    
         
            +
                )
         
     | 
| 
      
 769 
     | 
    
         
            +
                q = tl.load(Q + offs_q, mask=(mask_m[:, None]) & (mask_d[None, :]), other=0.0)
         
     | 
| 
      
 770 
     | 
    
         
            +
             
     | 
| 
      
 771 
     | 
    
         
            +
                if BLOCK_DPE > 0:
         
     | 
| 
      
 772 
     | 
    
         
            +
                    offs_dpe = BLOCK_DMODEL + tl.arange(0, BLOCK_DPE)
         
     | 
| 
      
 773 
     | 
    
         
            +
                    offs_qpe = (
         
     | 
| 
      
 774 
     | 
    
         
            +
                        (cur_seq_q_start_idx + cur_block_m * BLOCK_M + offs_m[:, None]) * stride_qbs
         
     | 
| 
      
 775 
     | 
    
         
            +
                        + cur_head * stride_qh
         
     | 
| 
      
 776 
     | 
    
         
            +
                        + offs_dpe[None, :]
         
     | 
| 
      
 777 
     | 
    
         
            +
                    )
         
     | 
| 
      
 778 
     | 
    
         
            +
                    qpe = tl.load(Q + offs_qpe, mask=mask_m[:, None], other=0.0)
         
     | 
| 
      
 779 
     | 
    
         
            +
             
     | 
| 
      
 780 
     | 
    
         
            +
                # Initialize accumulators
         
     | 
| 
      
 781 
     | 
    
         
            +
                offs_n = tl.arange(0, BLOCK_N)
         
     | 
| 
      
 782 
     | 
    
         
            +
                acc = tl.zeros([BLOCK_M, BLOCK_DV], dtype=tl.float32)
         
     | 
| 
      
 783 
     | 
    
         
            +
                deno = tl.zeros([BLOCK_M], dtype=tl.float32)
         
     | 
| 
      
 784 
     | 
    
         
            +
                e_max = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
         
     | 
| 
      
 785 
     | 
    
         
            +
             
     | 
| 
      
 786 
     | 
    
         
            +
                # Unified loop: process all KV tokens (prefix + extend)
         
     | 
| 
      
 787 
     | 
    
         
            +
                for start_n in range(0, cur_seq_kv_len, BLOCK_N):
         
     | 
| 
      
 788 
     | 
    
         
            +
                    start_n = tl.multiple_of(start_n, BLOCK_N)
         
     | 
| 
      
 789 
     | 
    
         
            +
                    mask_n = (start_n + offs_n) < cur_seq_kv_len
         
     | 
| 
      
 790 
     | 
    
         
            +
             
     | 
| 
      
 791 
     | 
    
         
            +
                    # Compute mask
         
     | 
| 
      
 792 
     | 
    
         
            +
                    final_mask = mask_m[:, None] & mask_n[None, :]
         
     | 
| 
      
 793 
     | 
    
         
            +
             
     | 
| 
      
 794 
     | 
    
         
            +
                    # Apply custom mask if provided
         
     | 
| 
      
 795 
     | 
    
         
            +
                    if USE_CUSTOM_MASK:
         
     | 
| 
      
 796 
     | 
    
         
            +
                        custom_mask = tl.load(
         
     | 
| 
      
 797 
     | 
    
         
            +
                            mask_ptr
         
     | 
| 
      
 798 
     | 
    
         
            +
                            + cur_seq_mask_start_idx
         
     | 
| 
      
 799 
     | 
    
         
            +
                            + (cur_block_m * BLOCK_M + offs_m[:, None]) * cur_seq_kv_len
         
     | 
| 
      
 800 
     | 
    
         
            +
                            + start_n
         
     | 
| 
      
 801 
     | 
    
         
            +
                            + offs_n[None, :],
         
     | 
| 
      
 802 
     | 
    
         
            +
                            mask=(mask_m[:, None] & mask_n[None, :]),
         
     | 
| 
      
 803 
     | 
    
         
            +
                            other=0,
         
     | 
| 
      
 804 
     | 
    
         
            +
                        )
         
     | 
| 
      
 805 
     | 
    
         
            +
                        final_mask &= custom_mask
         
     | 
| 
      
 806 
     | 
    
         
            +
             
     | 
| 
      
 807 
     | 
    
         
            +
                    # Apply causal mask for extend part
         
     | 
| 
      
 808 
     | 
    
         
            +
                    if IS_CAUSAL and not USE_CUSTOM_MASK:
         
     | 
| 
      
 809 
     | 
    
         
            +
                        # Determine if current KV block is in extend region
         
     | 
| 
      
 810 
     | 
    
         
            +
                        # Only apply causal mask when both Q and K are in extend region
         
     | 
| 
      
 811 
     | 
    
         
            +
                        q_idx = cur_block_m * BLOCK_M + offs_m[:, None]
         
     | 
| 
      
 812 
     | 
    
         
            +
                        k_idx_in_total = start_n + offs_n[None, :]
         
     | 
| 
      
 813 
     | 
    
         
            +
             
     | 
| 
      
 814 
     | 
    
         
            +
                        # Causal mask: q_idx >= (k_idx - prefix_len) when k_idx >= prefix_len
         
     | 
| 
      
 815 
     | 
    
         
            +
                        # For prefix region (k_idx < prefix_len), no causal mask
         
     | 
| 
      
 816 
     | 
    
         
            +
                        k_is_extend = k_idx_in_total >= cur_seq_prefix_len
         
     | 
| 
      
 817 
     | 
    
         
            +
                        k_idx_in_extend = k_idx_in_total - cur_seq_prefix_len
         
     | 
| 
      
 818 
     | 
    
         
            +
                        causal_mask = tl.where(
         
     | 
| 
      
 819 
     | 
    
         
            +
                            k_is_extend,
         
     | 
| 
      
 820 
     | 
    
         
            +
                            q_idx >= k_idx_in_extend,
         
     | 
| 
      
 821 
     | 
    
         
            +
                            True,  # No causal mask for prefix
         
     | 
| 
      
 822 
     | 
    
         
            +
                        )
         
     | 
| 
      
 823 
     | 
    
         
            +
                        final_mask &= causal_mask
         
     | 
| 
      
 824 
     | 
    
         
            +
             
     | 
| 
      
 825 
     | 
    
         
            +
                    if SLIDING_WINDOW_SIZE > 0:
         
     | 
| 
      
 826 
     | 
    
         
            +
                        # Sliding window mask with correct absolute positions
         
     | 
| 
      
 827 
     | 
    
         
            +
                        # Q absolute position: window_start + prefix_len + q_position_in_extend
         
     | 
| 
      
 828 
     | 
    
         
            +
                        q_abs_pos = (
         
     | 
| 
      
 829 
     | 
    
         
            +
                            cur_window_start
         
     | 
| 
      
 830 
     | 
    
         
            +
                            + cur_seq_prefix_len
         
     | 
| 
      
 831 
     | 
    
         
            +
                            + cur_block_m * BLOCK_M
         
     | 
| 
      
 832 
     | 
    
         
            +
                            + offs_m[:, None]
         
     | 
| 
      
 833 
     | 
    
         
            +
                        )
         
     | 
| 
      
 834 
     | 
    
         
            +
             
     | 
| 
      
 835 
     | 
    
         
            +
                        # K absolute position: window_start + k_index_in_unified_array
         
     | 
| 
      
 836 
     | 
    
         
            +
                        k_abs_pos = cur_window_start + start_n + offs_n[None, :]
         
     | 
| 
      
 837 
     | 
    
         
            +
             
     | 
| 
      
 838 
     | 
    
         
            +
                        # Sliding window: query can attend to keys within window_size
         
     | 
| 
      
 839 
     | 
    
         
            +
                        window_mask = q_abs_pos <= (k_abs_pos + SLIDING_WINDOW_SIZE)
         
     | 
| 
      
 840 
     | 
    
         
            +
                        final_mask &= window_mask
         
     | 
| 
      
 841 
     | 
    
         
            +
             
     | 
| 
      
 842 
     | 
    
         
            +
                    # Check if we can skip this tile
         
     | 
| 
      
 843 
     | 
    
         
            +
                    SKIP_TILE = False
         
     | 
| 
      
 844 
     | 
    
         
            +
                    if USE_CUSTOM_MASK or SLIDING_WINDOW_SIZE > 0:
         
     | 
| 
      
 845 
     | 
    
         
            +
                        SKIP_TILE = tl.max(tl.max(final_mask.to(tl.int32), axis=1), axis=0) == 0
         
     | 
| 
      
 846 
     | 
    
         
            +
             
     | 
| 
      
 847 
     | 
    
         
            +
                    if not SKIP_TILE:
         
     | 
| 
      
 848 
     | 
    
         
            +
                        # Load KV indices
         
     | 
| 
      
 849 
     | 
    
         
            +
                        offs_kv_loc = tl.load(
         
     | 
| 
      
 850 
     | 
    
         
            +
                            kv_indices + cur_seq_kv_start_idx + start_n + offs_n,
         
     | 
| 
      
 851 
     | 
    
         
            +
                            mask=mask_n,
         
     | 
| 
      
 852 
     | 
    
         
            +
                            other=0,
         
     | 
| 
      
 853 
     | 
    
         
            +
                        )
         
     | 
| 
      
 854 
     | 
    
         
            +
             
     | 
| 
      
 855 
     | 
    
         
            +
                        # Load K
         
     | 
| 
      
 856 
     | 
    
         
            +
                        offs_buf_k = (
         
     | 
| 
      
 857 
     | 
    
         
            +
                            offs_kv_loc[None, :] * stride_buf_kbs
         
     | 
| 
      
 858 
     | 
    
         
            +
                            + cur_kv_head * stride_buf_kh
         
     | 
| 
      
 859 
     | 
    
         
            +
                            + offs_d[:, None]
         
     | 
| 
      
 860 
     | 
    
         
            +
                        )
         
     | 
| 
      
 861 
     | 
    
         
            +
                        k = tl.load(
         
     | 
| 
      
 862 
     | 
    
         
            +
                            K_Buffer + offs_buf_k,
         
     | 
| 
      
 863 
     | 
    
         
            +
                            mask=(mask_n[None, :]) & (mask_d[:, None]),
         
     | 
| 
      
 864 
     | 
    
         
            +
                            other=0.0,
         
     | 
| 
      
 865 
     | 
    
         
            +
                        )
         
     | 
| 
      
 866 
     | 
    
         
            +
             
     | 
| 
      
 867 
     | 
    
         
            +
                        # Compute QK
         
     | 
| 
      
 868 
     | 
    
         
            +
                        qk = tl.dot(q.to(k.dtype), k)
         
     | 
| 
      
 869 
     | 
    
         
            +
                        if BLOCK_DPE > 0:
         
     | 
| 
      
 870 
     | 
    
         
            +
                            offs_kpe = (
         
     | 
| 
      
 871 
     | 
    
         
            +
                                offs_kv_loc[None, :] * stride_buf_kbs
         
     | 
| 
      
 872 
     | 
    
         
            +
                                + cur_kv_head * stride_buf_kh
         
     | 
| 
      
 873 
     | 
    
         
            +
                                + offs_dpe[:, None]
         
     | 
| 
      
 874 
     | 
    
         
            +
                            )
         
     | 
| 
      
 875 
     | 
    
         
            +
                            kpe = tl.load(
         
     | 
| 
      
 876 
     | 
    
         
            +
                                K_Buffer + offs_kpe,
         
     | 
| 
      
 877 
     | 
    
         
            +
                                mask=mask_n[None, :],
         
     | 
| 
      
 878 
     | 
    
         
            +
                                other=0.0,
         
     | 
| 
      
 879 
     | 
    
         
            +
                            )
         
     | 
| 
      
 880 
     | 
    
         
            +
                            qk += tl.dot(qpe.to(kpe.dtype), kpe)
         
     | 
| 
      
 881 
     | 
    
         
            +
             
     | 
| 
      
 882 
     | 
    
         
            +
                        qk *= sm_scale
         
     | 
| 
      
 883 
     | 
    
         
            +
             
     | 
| 
      
 884 
     | 
    
         
            +
                        if logit_cap > 0:
         
     | 
| 
      
 885 
     | 
    
         
            +
                            qk = logit_cap * tanh(qk / logit_cap)
         
     | 
| 
      
 886 
     | 
    
         
            +
             
     | 
| 
      
 887 
     | 
    
         
            +
                        if xai_temperature_len > 0:
         
     | 
| 
      
 888 
     | 
    
         
            +
                            qk *= xai_temperature_reg[:, None]
         
     | 
| 
      
 889 
     | 
    
         
            +
             
     | 
| 
      
 890 
     | 
    
         
            +
                        qk = tl.where(final_mask, qk, float("-inf"))
         
     | 
| 
      
 891 
     | 
    
         
            +
             
     | 
| 
      
 892 
     | 
    
         
            +
                        # Online softmax
         
     | 
| 
      
 893 
     | 
    
         
            +
                        row_max = tl.max(qk, 1)
         
     | 
| 
      
 894 
     | 
    
         
            +
                        row_max_fixed = tl.where(row_max == float("-inf"), -1e20, row_max)
         
     | 
| 
      
 895 
     | 
    
         
            +
                        n_e_max = tl.maximum(row_max_fixed, e_max)
         
     | 
| 
      
 896 
     | 
    
         
            +
             
     | 
| 
      
 897 
     | 
    
         
            +
                        re_scale = tl.exp(e_max - n_e_max)
         
     | 
| 
      
 898 
     | 
    
         
            +
                        p = tl.exp(qk - n_e_max[:, None])
         
     | 
| 
      
 899 
     | 
    
         
            +
                        deno = deno * re_scale + tl.sum(p, 1)
         
     | 
| 
      
 900 
     | 
    
         
            +
             
     | 
| 
      
 901 
     | 
    
         
            +
                        # Load V
         
     | 
| 
      
 902 
     | 
    
         
            +
                        offs_buf_v = (
         
     | 
| 
      
 903 
     | 
    
         
            +
                            offs_kv_loc[:, None] * stride_buf_vbs
         
     | 
| 
      
 904 
     | 
    
         
            +
                            + cur_kv_head * stride_buf_vh
         
     | 
| 
      
 905 
     | 
    
         
            +
                            + offs_dv[None, :]
         
     | 
| 
      
 906 
     | 
    
         
            +
                        )
         
     | 
| 
      
 907 
     | 
    
         
            +
                        v = tl.load(
         
     | 
| 
      
 908 
     | 
    
         
            +
                            V_Buffer + offs_buf_v,
         
     | 
| 
      
 909 
     | 
    
         
            +
                            mask=mask_n[:, None] & mask_dv[None, :],
         
     | 
| 
      
 910 
     | 
    
         
            +
                            other=0.0,
         
     | 
| 
      
 911 
     | 
    
         
            +
                        )
         
     | 
| 
      
 912 
     | 
    
         
            +
                        p = p.to(v.dtype)
         
     | 
| 
      
 913 
     | 
    
         
            +
                        acc = acc * re_scale[:, None] + tl.dot(p, v)
         
     | 
| 
      
 914 
     | 
    
         
            +
             
     | 
| 
      
 915 
     | 
    
         
            +
                        e_max = n_e_max
         
     | 
| 
      
 916 
     | 
    
         
            +
             
     | 
| 
      
 917 
     | 
    
         
            +
                # Handle sink tokens
         
     | 
| 
      
 918 
     | 
    
         
            +
                if HAS_SINK:
         
     | 
| 
      
 919 
     | 
    
         
            +
                    cur_sink = tl.load(sink_ptr + cur_head)
         
     | 
| 
      
 920 
     | 
    
         
            +
                    deno += tl.exp(cur_sink - e_max)
         
     | 
| 
      
 921 
     | 
    
         
            +
             
     | 
| 
      
 922 
     | 
    
         
            +
                # Store output
         
     | 
| 
      
 923 
     | 
    
         
            +
                offs_o = (
         
     | 
| 
      
 924 
     | 
    
         
            +
                    (cur_seq_q_start_idx + cur_block_m * BLOCK_M + offs_m[:, None]) * stride_obs
         
     | 
| 
      
 925 
     | 
    
         
            +
                    + cur_head * stride_oh
         
     | 
| 
      
 926 
     | 
    
         
            +
                    + offs_dv[None, :]
         
     | 
| 
      
 927 
     | 
    
         
            +
                )
         
     | 
| 
      
 928 
     | 
    
         
            +
                tl.store(
         
     | 
| 
      
 929 
     | 
    
         
            +
                    O + offs_o,
         
     | 
| 
      
 930 
     | 
    
         
            +
                    acc / deno[:, None],
         
     | 
| 
      
 931 
     | 
    
         
            +
                    mask=mask_m[:, None] & mask_dv[None, :],
         
     | 
| 
      
 932 
     | 
    
         
            +
                )
         
     | 
| 
      
 933 
     | 
    
         
            +
             
     | 
| 
      
 934 
     | 
    
         
            +
             
     | 
| 
      
 935 
     | 
    
         
            +
            def extend_attention_fwd_unified(
         
     | 
| 
      
 936 
     | 
    
         
            +
                q,
         
     | 
| 
      
 937 
     | 
    
         
            +
                o,
         
     | 
| 
      
 938 
     | 
    
         
            +
                k_buffer,
         
     | 
| 
      
 939 
     | 
    
         
            +
                v_buffer,
         
     | 
| 
      
 940 
     | 
    
         
            +
                qo_indptr,
         
     | 
| 
      
 941 
     | 
    
         
            +
                kv_indptr,
         
     | 
| 
      
 942 
     | 
    
         
            +
                kv_indices,
         
     | 
| 
      
 943 
     | 
    
         
            +
                prefix_lens,
         
     | 
| 
      
 944 
     | 
    
         
            +
                max_len_extend,
         
     | 
| 
      
 945 
     | 
    
         
            +
                custom_mask=None,
         
     | 
| 
      
 946 
     | 
    
         
            +
                mask_indptr=None,
         
     | 
| 
      
 947 
     | 
    
         
            +
                sm_scale=None,
         
     | 
| 
      
 948 
     | 
    
         
            +
                logit_cap=0.0,
         
     | 
| 
      
 949 
     | 
    
         
            +
                is_causal=True,
         
     | 
| 
      
 950 
     | 
    
         
            +
                sliding_window_size=-1,
         
     | 
| 
      
 951 
     | 
    
         
            +
                sinks=None,
         
     | 
| 
      
 952 
     | 
    
         
            +
                window_start_pos=None,
         
     | 
| 
      
 953 
     | 
    
         
            +
                xai_temperature_len=-1,
         
     | 
| 
      
 954 
     | 
    
         
            +
            ):
         
     | 
| 
      
 955 
     | 
    
         
            +
                """
         
     | 
| 
      
 956 
     | 
    
         
            +
                Unified 1-stage extend attention for deterministic inference.
         
     | 
| 
      
 957 
     | 
    
         
            +
             
     | 
| 
      
 958 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 959 
     | 
    
         
            +
                    q: Query tensor [num_tokens, num_heads, head_dim]
         
     | 
| 
      
 960 
     | 
    
         
            +
                    o: Output tensor [num_tokens, num_heads, head_dim]
         
     | 
| 
      
 961 
     | 
    
         
            +
                    k_buffer: Key cache buffer
         
     | 
| 
      
 962 
     | 
    
         
            +
                    v_buffer: Value cache buffer
         
     | 
| 
      
 963 
     | 
    
         
            +
                    qo_indptr: Query offsets [batch_size + 1]
         
     | 
| 
      
 964 
     | 
    
         
            +
                    kv_indptr: KV offsets [batch_size + 1] (includes both prefix and extend)
         
     | 
| 
      
 965 
     | 
    
         
            +
                    kv_indices: Unified KV indices (both prefix and extend)
         
     | 
| 
      
 966 
     | 
    
         
            +
                    prefix_lens: Prefix length for each sequence [batch_size]
         
     | 
| 
      
 967 
     | 
    
         
            +
                    max_len_extend: Maximum extend length
         
     | 
| 
      
 968 
     | 
    
         
            +
                    custom_mask: Custom attention mask (for speculative decoding tree attention)
         
     | 
| 
      
 969 
     | 
    
         
            +
                    mask_indptr: Mask offsets [batch_size + 1]
         
     | 
| 
      
 970 
     | 
    
         
            +
                    sm_scale: Softmax scale
         
     | 
| 
      
 971 
     | 
    
         
            +
                    logit_cap: Logit capping value
         
     | 
| 
      
 972 
     | 
    
         
            +
                    is_causal: Whether to apply causal mask
         
     | 
| 
      
 973 
     | 
    
         
            +
                    sliding_window_size: Sliding window size (-1 for no sliding window)
         
     | 
| 
      
 974 
     | 
    
         
            +
                    sinks: Sink tokens
         
     | 
| 
      
 975 
     | 
    
         
            +
                    window_start_pos: Absolute position of first key in sliding window [batch_size]
         
     | 
| 
      
 976 
     | 
    
         
            +
                                     (None if sliding window not used)
         
     | 
| 
      
 977 
     | 
    
         
            +
                    xai_temperature_len: XAI temperature length
         
     | 
| 
      
 978 
     | 
    
         
            +
                """
         
     | 
| 
      
 979 
     | 
    
         
            +
                Lq, Lv = q.shape[-1], v_buffer.shape[-1]
         
     | 
| 
      
 980 
     | 
    
         
            +
             
     | 
| 
      
 981 
     | 
    
         
            +
                # Get block sizes and configuration
         
     | 
| 
      
 982 
     | 
    
         
            +
                BLOCK_DMODEL, BLOCK_DPE, BLOCK_DV, BLOCK_M, BLOCK_N, num_warps = (
         
     | 
| 
      
 983 
     | 
    
         
            +
                    _get_block_sizes_for_extend_attention(Lq, Lv)
         
     | 
| 
      
 984 
     | 
    
         
            +
                )
         
     | 
| 
      
 985 
     | 
    
         
            +
             
     | 
| 
      
 986 
     | 
    
         
            +
                sm_scale = sm_scale or 1.0 / (Lq**0.5)
         
     | 
| 
      
 987 
     | 
    
         
            +
                batch_size, head_num = qo_indptr.shape[0] - 1, q.shape[1]
         
     | 
| 
      
 988 
     | 
    
         
            +
                kv_group_num = q.shape[1] // k_buffer.shape[1]
         
     | 
| 
      
 989 
     | 
    
         
            +
             
     | 
| 
      
 990 
     | 
    
         
            +
                USE_CUSTOM_MASK = custom_mask is not None
         
     | 
| 
      
 991 
     | 
    
         
            +
                HAS_SINK = sinks is not None
         
     | 
| 
      
 992 
     | 
    
         
            +
             
     | 
| 
      
 993 
     | 
    
         
            +
                # For sliding window attention, window_start_pos tracks the absolute position
         
     | 
| 
      
 994 
     | 
    
         
            +
                # of the first key in each sequence's window
         
     | 
| 
      
 995 
     | 
    
         
            +
                if sliding_window_size > 0 and window_start_pos is None:
         
     | 
| 
      
 996 
     | 
    
         
            +
                    # If not provided, assume window starts at position 0
         
     | 
| 
      
 997 
     | 
    
         
            +
                    window_start_pos = torch.zeros(batch_size, dtype=torch.int32, device=q.device)
         
     | 
| 
      
 998 
     | 
    
         
            +
             
     | 
| 
      
 999 
     | 
    
         
            +
                grid = (batch_size, head_num, triton.cdiv(max_len_extend, BLOCK_M))
         
     | 
| 
      
 1000 
     | 
    
         
            +
                num_stages = 1
         
     | 
| 
      
 1001 
     | 
    
         
            +
             
     | 
| 
      
 1002 
     | 
    
         
            +
                extra_kargs = {}
         
     | 
| 
      
 1003 
     | 
    
         
            +
                if _is_hip:
         
     | 
| 
      
 1004 
     | 
    
         
            +
                    extra_kargs = {"waves_per_eu": 1, "matrix_instr_nonkdim": 16, "kpack": 2}
         
     | 
| 
      
 1005 
     | 
    
         
            +
             
     | 
| 
      
 1006 
     | 
    
         
            +
                _fwd_kernel_unified[grid](
         
     | 
| 
      
 1007 
     | 
    
         
            +
                    q,
         
     | 
| 
      
 1008 
     | 
    
         
            +
                    o,
         
     | 
| 
      
 1009 
     | 
    
         
            +
                    k_buffer,
         
     | 
| 
      
 1010 
     | 
    
         
            +
                    v_buffer,
         
     | 
| 
      
 1011 
     | 
    
         
            +
                    qo_indptr,
         
     | 
| 
      
 1012 
     | 
    
         
            +
                    kv_indptr,
         
     | 
| 
      
 1013 
     | 
    
         
            +
                    kv_indices,
         
     | 
| 
      
 1014 
     | 
    
         
            +
                    prefix_lens,
         
     | 
| 
      
 1015 
     | 
    
         
            +
                    custom_mask,
         
     | 
| 
      
 1016 
     | 
    
         
            +
                    mask_indptr,
         
     | 
| 
      
 1017 
     | 
    
         
            +
                    sinks,
         
     | 
| 
      
 1018 
     | 
    
         
            +
                    window_start_pos,
         
     | 
| 
      
 1019 
     | 
    
         
            +
                    sm_scale,
         
     | 
| 
      
 1020 
     | 
    
         
            +
                    kv_group_num,
         
     | 
| 
      
 1021 
     | 
    
         
            +
                    q.stride(0),
         
     | 
| 
      
 1022 
     | 
    
         
            +
                    q.stride(1),
         
     | 
| 
      
 1023 
     | 
    
         
            +
                    o.stride(0),
         
     | 
| 
      
 1024 
     | 
    
         
            +
                    o.stride(1),
         
     | 
| 
      
 1025 
     | 
    
         
            +
                    k_buffer.stride(0),
         
     | 
| 
      
 1026 
     | 
    
         
            +
                    k_buffer.stride(1),
         
     | 
| 
      
 1027 
     | 
    
         
            +
                    v_buffer.stride(0),
         
     | 
| 
      
 1028 
     | 
    
         
            +
                    v_buffer.stride(1),
         
     | 
| 
      
 1029 
     | 
    
         
            +
                    SLIDING_WINDOW_SIZE=sliding_window_size,
         
     | 
| 
      
 1030 
     | 
    
         
            +
                    logit_cap=logit_cap,
         
     | 
| 
      
 1031 
     | 
    
         
            +
                    xai_temperature_len=xai_temperature_len,
         
     | 
| 
      
 1032 
     | 
    
         
            +
                    BLOCK_DMODEL=BLOCK_DMODEL,
         
     | 
| 
      
 1033 
     | 
    
         
            +
                    BLOCK_DPE=BLOCK_DPE,
         
     | 
| 
      
 1034 
     | 
    
         
            +
                    BLOCK_DV=BLOCK_DV,
         
     | 
| 
      
 1035 
     | 
    
         
            +
                    BLOCK_M=BLOCK_M,
         
     | 
| 
      
 1036 
     | 
    
         
            +
                    BLOCK_N=BLOCK_N,
         
     | 
| 
      
 1037 
     | 
    
         
            +
                    Lq=Lq,
         
     | 
| 
      
 1038 
     | 
    
         
            +
                    Lv=Lv,
         
     | 
| 
      
 1039 
     | 
    
         
            +
                    IS_CAUSAL=is_causal,
         
     | 
| 
      
 1040 
     | 
    
         
            +
                    USE_CUSTOM_MASK=USE_CUSTOM_MASK,
         
     | 
| 
      
 1041 
     | 
    
         
            +
                    HAS_SINK=HAS_SINK,
         
     | 
| 
      
 1042 
     | 
    
         
            +
                    num_warps=num_warps,
         
     | 
| 
      
 1043 
     | 
    
         
            +
                    num_stages=num_stages,
         
     | 
| 
      
 1044 
     | 
    
         
            +
                    **extra_kargs,
         
     | 
| 
      
 1045 
     | 
    
         
            +
                )
         
     | 
| 
         @@ -637,7 +637,7 @@ class TRTLLMHAAttnMultiStepDraftBackend(FlashInferMultiStepDraftBackend): 
     | 
|
| 
       637 
637 
     | 
    
         
             
                    self, model_runner: ModelRunner, topk: int, speculative_num_steps: int
         
     | 
| 
       638 
638 
     | 
    
         
             
                ):
         
     | 
| 
       639 
639 
     | 
    
         
             
                    super().__init__(model_runner, topk, speculative_num_steps)
         
     | 
| 
       640 
     | 
    
         
            -
                    for i in range(speculative_num_steps):
         
     | 
| 
      
 640 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps - 1):
         
     | 
| 
       641 
641 
     | 
    
         
             
                        self.attn_backends[i] = TRTLLMHAAttnBackend(
         
     | 
| 
       642 
642 
     | 
    
         
             
                            model_runner,
         
     | 
| 
       643 
643 
     | 
    
         
             
                            skip_prefill=True,
         
     | 
| 
         @@ -651,7 +651,7 @@ class TRTLLMHAAttnMultiStepDraftBackend(FlashInferMultiStepDraftBackend): 
     | 
|
| 
       651 
651 
     | 
    
         
             
                        self.attn_backends[i].init_forward_metadata(forward_batch)
         
     | 
| 
       652 
652 
     | 
    
         | 
| 
       653 
653 
     | 
    
         
             
                def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
         
     | 
| 
       654 
     | 
    
         
            -
                    for i in range(self.speculative_num_steps):
         
     | 
| 
      
 654 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps - 1):
         
     | 
| 
       655 
655 
     | 
    
         
             
                        self.attn_backends[i].init_cuda_graph_state(max_bs, max_num_tokens)
         
     | 
| 
       656 
656 
     | 
    
         | 
| 
       657 
657 
     | 
    
         
             
                def init_forward_metadata_capture_cuda_graph(
         
     |