sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
    
        sglang/srt/managers/scheduler.py
    CHANGED
    
    | 
         @@ -24,16 +24,16 @@ from collections import deque 
     | 
|
| 
       24 
24 
     | 
    
         
             
            from concurrent import futures
         
     | 
| 
       25 
25 
     | 
    
         
             
            from dataclasses import dataclass
         
     | 
| 
       26 
26 
     | 
    
         
             
            from http import HTTPStatus
         
     | 
| 
       27 
     | 
    
         
            -
            from  
     | 
| 
       28 
     | 
    
         
            -
            from typing import Dict, List, Optional, Tuple, Union
         
     | 
| 
      
 27 
     | 
    
         
            +
            from typing import Deque, Dict, List, Optional, Tuple, Union
         
     | 
| 
       29 
28 
     | 
    
         | 
| 
       30 
29 
     | 
    
         
             
            import psutil
         
     | 
| 
       31 
30 
     | 
    
         
             
            import setproctitle
         
     | 
| 
       32 
31 
     | 
    
         
             
            import torch
         
     | 
| 
       33 
32 
     | 
    
         
             
            import zmq
         
     | 
| 
      
 33 
     | 
    
         
            +
            from torch.cuda import Stream as CudaStream
         
     | 
| 
      
 34 
     | 
    
         
            +
            from torch.cuda import StreamContext as CudaStreamContext
         
     | 
| 
       34 
35 
     | 
    
         
             
            from torch.distributed import barrier
         
     | 
| 
       35 
36 
     | 
    
         | 
| 
       36 
     | 
    
         
            -
            from sglang.global_config import global_config
         
     | 
| 
       37 
37 
     | 
    
         
             
            from sglang.srt.configs.model_config import ModelConfig
         
     | 
| 
       38 
38 
     | 
    
         
             
            from sglang.srt.constrained.base_grammar_backend import (
         
     | 
| 
       39 
39 
     | 
    
         
             
                INVALID_GRAMMAR_OBJ,
         
     | 
| 
         @@ -59,12 +59,14 @@ from sglang.srt.disaggregation.utils import ( 
     | 
|
| 
       59 
59 
     | 
    
         
             
                prepare_abort,
         
     | 
| 
       60 
60 
     | 
    
         
             
            )
         
     | 
| 
       61 
61 
     | 
    
         
             
            from sglang.srt.distributed import get_pp_group, get_world_group
         
     | 
| 
      
 62 
     | 
    
         
            +
            from sglang.srt.environ import envs
         
     | 
| 
       62 
63 
     | 
    
         
             
            from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
         
     | 
| 
       63 
64 
     | 
    
         
             
            from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
         
     | 
| 
       64 
     | 
    
         
            -
            from sglang.srt.layers.logits_processor import LogitsProcessorOutput
         
     | 
| 
       65 
65 
     | 
    
         
             
            from sglang.srt.layers.moe import initialize_moe_config
         
     | 
| 
       66 
66 
     | 
    
         
             
            from sglang.srt.managers.io_struct import (
         
     | 
| 
       67 
67 
     | 
    
         
             
                AbortReq,
         
     | 
| 
      
 68 
     | 
    
         
            +
                BaseBatchReq,
         
     | 
| 
      
 69 
     | 
    
         
            +
                BaseReq,
         
     | 
| 
       68 
70 
     | 
    
         
             
                BatchTokenizedEmbeddingReqInput,
         
     | 
| 
       69 
71 
     | 
    
         
             
                BatchTokenizedGenerateReqInput,
         
     | 
| 
       70 
72 
     | 
    
         
             
                ClearHiCacheReqInput,
         
     | 
| 
         @@ -88,8 +90,6 @@ from sglang.srt.managers.io_struct import ( 
     | 
|
| 
       88 
90 
     | 
    
         
             
                InitWeightsUpdateGroupReqInput,
         
     | 
| 
       89 
91 
     | 
    
         
             
                LoadLoRAAdapterReqInput,
         
     | 
| 
       90 
92 
     | 
    
         
             
                LoadLoRAAdapterReqOutput,
         
     | 
| 
       91 
     | 
    
         
            -
                MultiTokenizerRegisterReq,
         
     | 
| 
       92 
     | 
    
         
            -
                MultiTokenizerWrapper,
         
     | 
| 
       93 
93 
     | 
    
         
             
                OpenSessionReqInput,
         
     | 
| 
       94 
94 
     | 
    
         
             
                OpenSessionReqOutput,
         
     | 
| 
       95 
95 
     | 
    
         
             
                ProfileReq,
         
     | 
| 
         @@ -109,16 +109,18 @@ from sglang.srt.managers.io_struct import ( 
     | 
|
| 
       109 
109 
     | 
    
         
             
                UnloadLoRAAdapterReqOutput,
         
     | 
| 
       110 
110 
     | 
    
         
             
                UpdateWeightFromDiskReqInput,
         
     | 
| 
       111 
111 
     | 
    
         
             
                UpdateWeightsFromDistributedReqInput,
         
     | 
| 
      
 112 
     | 
    
         
            +
                UpdateWeightsFromIPCReqInput,
         
     | 
| 
       112 
113 
     | 
    
         
             
                UpdateWeightsFromTensorReqInput,
         
     | 
| 
       113 
114 
     | 
    
         
             
            )
         
     | 
| 
       114 
115 
     | 
    
         
             
            from sglang.srt.managers.mm_utils import init_embedding_cache
         
     | 
| 
      
 116 
     | 
    
         
            +
            from sglang.srt.managers.overlap_utils import FutureMap
         
     | 
| 
       115 
117 
     | 
    
         
             
            from sglang.srt.managers.schedule_batch import (
         
     | 
| 
       116 
118 
     | 
    
         
             
                FINISH_ABORT,
         
     | 
| 
      
 119 
     | 
    
         
            +
                ModelWorkerBatch,
         
     | 
| 
       117 
120 
     | 
    
         
             
                MultimodalInputs,
         
     | 
| 
       118 
121 
     | 
    
         
             
                Req,
         
     | 
| 
       119 
122 
     | 
    
         
             
                RequestStage,
         
     | 
| 
       120 
123 
     | 
    
         
             
                ScheduleBatch,
         
     | 
| 
       121 
     | 
    
         
            -
                global_server_args_dict,
         
     | 
| 
       122 
124 
     | 
    
         
             
            )
         
     | 
| 
       123 
125 
     | 
    
         
             
            from sglang.srt.managers.schedule_policy import (
         
     | 
| 
       124 
126 
     | 
    
         
             
                AddReqResult,
         
     | 
| 
         @@ -133,28 +135,25 @@ from sglang.srt.managers.scheduler_metrics_mixin import ( 
     | 
|
| 
       133 
135 
     | 
    
         
             
            from sglang.srt.managers.scheduler_output_processor_mixin import (
         
     | 
| 
       134 
136 
     | 
    
         
             
                SchedulerOutputProcessorMixin,
         
     | 
| 
       135 
137 
     | 
    
         
             
            )
         
     | 
| 
      
 138 
     | 
    
         
            +
            from sglang.srt.managers.scheduler_pp_mixin import SchedulerPPMixin
         
     | 
| 
       136 
139 
     | 
    
         
             
            from sglang.srt.managers.scheduler_profiler_mixin import SchedulerProfilerMixin
         
     | 
| 
       137 
140 
     | 
    
         
             
            from sglang.srt.managers.scheduler_recv_skipper import SchedulerRecvSkipper
         
     | 
| 
      
 141 
     | 
    
         
            +
            from sglang.srt.managers.scheduler_runtime_checker_mixin import (
         
     | 
| 
      
 142 
     | 
    
         
            +
                SchedulerRuntimeCheckerMixin,
         
     | 
| 
      
 143 
     | 
    
         
            +
            )
         
     | 
| 
       138 
144 
     | 
    
         
             
            from sglang.srt.managers.scheduler_update_weights_mixin import (
         
     | 
| 
       139 
145 
     | 
    
         
             
                SchedulerUpdateWeightsMixin,
         
     | 
| 
       140 
146 
     | 
    
         
             
            )
         
     | 
| 
       141 
147 
     | 
    
         
             
            from sglang.srt.managers.session_controller import Session
         
     | 
| 
       142 
     | 
    
         
            -
            from sglang.srt.managers. 
     | 
| 
       143 
     | 
    
         
            -
            from sglang.srt.managers.tp_worker_overlap_thread import TpModelWorkerClient
         
     | 
| 
       144 
     | 
    
         
            -
            from sglang.srt.managers.utils import validate_input_length
         
     | 
| 
      
 148 
     | 
    
         
            +
            from sglang.srt.managers.utils import GenerationBatchResult, validate_input_length
         
     | 
| 
       145 
149 
     | 
    
         
             
            from sglang.srt.mem_cache.chunk_cache import ChunkCache, SWAChunkCache
         
     | 
| 
       146 
150 
     | 
    
         
             
            from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
         
     | 
| 
      
 151 
     | 
    
         
            +
            from sglang.srt.mem_cache.mamba_radix_cache import MambaRadixCache
         
     | 
| 
       147 
152 
     | 
    
         
             
            from sglang.srt.mem_cache.radix_cache import RadixCache
         
     | 
| 
       148 
153 
     | 
    
         
             
            from sglang.srt.mem_cache.swa_radix_cache import SWARadixCache
         
     | 
| 
       149 
     | 
    
         
            -
            from sglang.srt.model_executor.forward_batch_info import (
         
     | 
| 
       150 
     | 
    
         
            -
                ForwardBatchOutput,
         
     | 
| 
       151 
     | 
    
         
            -
                ForwardMode,
         
     | 
| 
       152 
     | 
    
         
            -
                PPProxyTensors,
         
     | 
| 
       153 
     | 
    
         
            -
            )
         
     | 
| 
       154 
154 
     | 
    
         
             
            from sglang.srt.parser.reasoning_parser import ReasoningParser
         
     | 
| 
       155 
     | 
    
         
            -
            from sglang.srt.server_args import PortArgs, ServerArgs
         
     | 
| 
      
 155 
     | 
    
         
            +
            from sglang.srt.server_args import PortArgs, ServerArgs, get_global_server_args
         
     | 
| 
       156 
156 
     | 
    
         
             
            from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
         
     | 
| 
       157 
     | 
    
         
            -
            from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
         
     | 
| 
       158 
157 
     | 
    
         
             
            from sglang.srt.tracing.trace import (
         
     | 
| 
       159 
158 
     | 
    
         
             
                process_tracing_init,
         
     | 
| 
       160 
159 
     | 
    
         
             
                trace_set_proc_propagate_context,
         
     | 
| 
         @@ -190,64 +189,17 @@ from sglang.srt.utils.hf_transformers_utils import ( 
     | 
|
| 
       190 
189 
     | 
    
         
             
                get_tokenizer,
         
     | 
| 
       191 
190 
     | 
    
         
             
                get_tokenizer_from_processor,
         
     | 
| 
       192 
191 
     | 
    
         
             
            )
         
     | 
| 
      
 192 
     | 
    
         
            +
            from sglang.srt.utils.torch_memory_saver_adapter import TorchMemorySaverAdapter
         
     | 
| 
       193 
193 
     | 
    
         
             
            from sglang.utils import TypeBasedDispatcher, get_exception_traceback
         
     | 
| 
       194 
194 
     | 
    
         | 
| 
       195 
195 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       196 
196 
     | 
    
         | 
| 
       197 
197 
     | 
    
         
             
            # Test retract decode for debugging purposes
         
     | 
| 
       198 
     | 
    
         
            -
            TEST_RETRACT =  
     | 
| 
      
 198 
     | 
    
         
            +
            TEST_RETRACT = envs.SGLANG_TEST_RETRACT.get()
         
     | 
| 
      
 199 
     | 
    
         
            +
            TEST_RETRACT_INTERVAL = envs.SGLANG_TEST_RETRACT_INTERVAL.get()
         
     | 
| 
       199 
200 
     | 
    
         
             
            GRAMMAR_TIMEOUT = float(os.environ.get("SGLANG_GRAMMAR_TIMEOUT", 300))
         
     | 
| 
       200 
201 
     | 
    
         | 
| 
       201 
202 
     | 
    
         | 
| 
       202 
     | 
    
         
            -
            @dataclass
         
     | 
| 
       203 
     | 
    
         
            -
            class GenerationBatchResult:
         
     | 
| 
       204 
     | 
    
         
            -
                logits_output: Optional[LogitsProcessorOutput]
         
     | 
| 
       205 
     | 
    
         
            -
                pp_hidden_states_proxy_tensors: Optional[PPProxyTensors]
         
     | 
| 
       206 
     | 
    
         
            -
                next_token_ids: Optional[List[int]]
         
     | 
| 
       207 
     | 
    
         
            -
                can_run_cuda_graph: bool
         
     | 
| 
       208 
     | 
    
         
            -
             
     | 
| 
       209 
     | 
    
         
            -
                # For output processing
         
     | 
| 
       210 
     | 
    
         
            -
                extend_input_len_per_req: List[int]
         
     | 
| 
       211 
     | 
    
         
            -
                extend_logprob_start_len_per_req: List[int]
         
     | 
| 
       212 
     | 
    
         
            -
             
     | 
| 
       213 
     | 
    
         
            -
                @classmethod
         
     | 
| 
       214 
     | 
    
         
            -
                def from_forward_batch_output(
         
     | 
| 
       215 
     | 
    
         
            -
                    cls,
         
     | 
| 
       216 
     | 
    
         
            -
                    forward_batch_output: ForwardBatchOutput,
         
     | 
| 
       217 
     | 
    
         
            -
                    extend_input_len_per_req: List[int],
         
     | 
| 
       218 
     | 
    
         
            -
                    extend_logprob_start_len_per_req: List[int],
         
     | 
| 
       219 
     | 
    
         
            -
                ):
         
     | 
| 
       220 
     | 
    
         
            -
                    # TODO(lsyin): remove this workaround logic and try to unify output classes
         
     | 
| 
       221 
     | 
    
         
            -
             
     | 
| 
       222 
     | 
    
         
            -
                    return cls(
         
     | 
| 
       223 
     | 
    
         
            -
                        logits_output=forward_batch_output.logits_output,
         
     | 
| 
       224 
     | 
    
         
            -
                        pp_hidden_states_proxy_tensors=forward_batch_output.pp_proxy_tensors,
         
     | 
| 
       225 
     | 
    
         
            -
                        next_token_ids=forward_batch_output.next_token_ids,
         
     | 
| 
       226 
     | 
    
         
            -
                        extend_input_len_per_req=extend_input_len_per_req,
         
     | 
| 
       227 
     | 
    
         
            -
                        extend_logprob_start_len_per_req=extend_logprob_start_len_per_req,
         
     | 
| 
       228 
     | 
    
         
            -
                        can_run_cuda_graph=forward_batch_output.can_run_cuda_graph,
         
     | 
| 
       229 
     | 
    
         
            -
                    )
         
     | 
| 
       230 
     | 
    
         
            -
             
     | 
| 
       231 
     | 
    
         
            -
                @classmethod
         
     | 
| 
       232 
     | 
    
         
            -
                def from_pp_proxy(
         
     | 
| 
       233 
     | 
    
         
            -
                    cls, logits_output, next_pp_outputs: PPProxyTensors, can_run_cuda_graph
         
     | 
| 
       234 
     | 
    
         
            -
                ):
         
     | 
| 
       235 
     | 
    
         
            -
                    # TODO(lsyin): also simplify this logic
         
     | 
| 
       236 
     | 
    
         
            -
                    # Current PP implementation in scheduler is not compatible with ForwardBatchOutput
         
     | 
| 
       237 
     | 
    
         
            -
                    # Maybe introduce a ProxyBatchOutput for PP and the original ForwardBatchOutput for TP
         
     | 
| 
       238 
     | 
    
         
            -
                    proxy_dict = next_pp_outputs.tensors
         
     | 
| 
       239 
     | 
    
         
            -
                    return cls(
         
     | 
| 
       240 
     | 
    
         
            -
                        logits_output=logits_output,
         
     | 
| 
       241 
     | 
    
         
            -
                        pp_hidden_states_proxy_tensors=None,
         
     | 
| 
       242 
     | 
    
         
            -
                        next_token_ids=next_pp_outputs["next_token_ids"],
         
     | 
| 
       243 
     | 
    
         
            -
                        extend_input_len_per_req=proxy_dict.get("extend_input_len_per_req", None),
         
     | 
| 
       244 
     | 
    
         
            -
                        extend_logprob_start_len_per_req=proxy_dict.get(
         
     | 
| 
       245 
     | 
    
         
            -
                            "extend_logprob_start_len_per_req", None
         
     | 
| 
       246 
     | 
    
         
            -
                        ),
         
     | 
| 
       247 
     | 
    
         
            -
                        can_run_cuda_graph=can_run_cuda_graph,
         
     | 
| 
       248 
     | 
    
         
            -
                    )
         
     | 
| 
       249 
     | 
    
         
            -
             
     | 
| 
       250 
     | 
    
         
            -
             
     | 
| 
       251 
203 
     | 
    
         
             
            @dataclass
         
     | 
| 
       252 
204 
     | 
    
         
             
            class EmbeddingBatchResult:
         
     | 
| 
       253 
205 
     | 
    
         
             
                embeddings: torch.Tensor
         
     | 
| 
         @@ -260,6 +212,8 @@ class Scheduler( 
     | 
|
| 
       260 
212 
     | 
    
         
             
                SchedulerMetricsMixin,
         
     | 
| 
       261 
213 
     | 
    
         
             
                SchedulerDisaggregationDecodeMixin,
         
     | 
| 
       262 
214 
     | 
    
         
             
                SchedulerDisaggregationPrefillMixin,
         
     | 
| 
      
 215 
     | 
    
         
            +
                SchedulerRuntimeCheckerMixin,
         
     | 
| 
      
 216 
     | 
    
         
            +
                SchedulerPPMixin,
         
     | 
| 
       263 
217 
     | 
    
         
             
            ):
         
     | 
| 
       264 
218 
     | 
    
         
             
                """A scheduler that manages a tensor parallel GPU worker."""
         
     | 
| 
       265 
219 
     | 
    
         | 
| 
         @@ -285,6 +239,9 @@ class Scheduler( 
     | 
|
| 
       285 
239 
     | 
    
         
             
                    self.dp_size = server_args.dp_size
         
     | 
| 
       286 
240 
     | 
    
         
             
                    self.schedule_policy = server_args.schedule_policy
         
     | 
| 
       287 
241 
     | 
    
         
             
                    self.enable_priority_scheduling = server_args.enable_priority_scheduling
         
     | 
| 
      
 242 
     | 
    
         
            +
                    self.abort_on_priority_when_disabled = (
         
     | 
| 
      
 243 
     | 
    
         
            +
                        server_args.abort_on_priority_when_disabled
         
     | 
| 
      
 244 
     | 
    
         
            +
                    )
         
     | 
| 
       288 
245 
     | 
    
         
             
                    self.schedule_low_priority_values_first = (
         
     | 
| 
       289 
246 
     | 
    
         
             
                        server_args.schedule_low_priority_values_first
         
     | 
| 
       290 
247 
     | 
    
         
             
                    )
         
     | 
| 
         @@ -325,47 +282,7 @@ class Scheduler( 
     | 
|
| 
       325 
282 
     | 
    
         
             
                    self.model_config = ModelConfig.from_server_args(server_args)
         
     | 
| 
       326 
283 
     | 
    
         | 
| 
       327 
284 
     | 
    
         
             
                    # Init inter-process communication
         
     | 
| 
       328 
     | 
    
         
            -
                     
     | 
| 
       329 
     | 
    
         
            -
                    self.idle_sleeper = None
         
     | 
| 
       330 
     | 
    
         
            -
                    if self.pp_rank == 0 and self.attn_tp_rank == 0:
         
     | 
| 
       331 
     | 
    
         
            -
                        self.recv_from_tokenizer = get_zmq_socket(
         
     | 
| 
       332 
     | 
    
         
            -
                            context, zmq.PULL, port_args.scheduler_input_ipc_name, False
         
     | 
| 
       333 
     | 
    
         
            -
                        )
         
     | 
| 
       334 
     | 
    
         
            -
                        self.recv_from_rpc = get_zmq_socket(
         
     | 
| 
       335 
     | 
    
         
            -
                            context, zmq.DEALER, port_args.rpc_ipc_name, False
         
     | 
| 
       336 
     | 
    
         
            -
                        )
         
     | 
| 
       337 
     | 
    
         
            -
             
     | 
| 
       338 
     | 
    
         
            -
                        self.send_to_tokenizer = get_zmq_socket(
         
     | 
| 
       339 
     | 
    
         
            -
                            context, zmq.PUSH, port_args.tokenizer_ipc_name, False
         
     | 
| 
       340 
     | 
    
         
            -
                        )
         
     | 
| 
       341 
     | 
    
         
            -
                        if server_args.skip_tokenizer_init:
         
     | 
| 
       342 
     | 
    
         
            -
                            # Directly send to the TokenizerManager
         
     | 
| 
       343 
     | 
    
         
            -
                            self.send_to_detokenizer = get_zmq_socket(
         
     | 
| 
       344 
     | 
    
         
            -
                                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
         
     | 
| 
       345 
     | 
    
         
            -
                            )
         
     | 
| 
       346 
     | 
    
         
            -
                        else:
         
     | 
| 
       347 
     | 
    
         
            -
                            # Send to the DetokenizerManager
         
     | 
| 
       348 
     | 
    
         
            -
                            self.send_to_detokenizer = get_zmq_socket(
         
     | 
| 
       349 
     | 
    
         
            -
                                context, zmq.PUSH, port_args.detokenizer_ipc_name, False
         
     | 
| 
       350 
     | 
    
         
            -
                            )
         
     | 
| 
       351 
     | 
    
         
            -
             
     | 
| 
       352 
     | 
    
         
            -
                        if self.server_args.sleep_on_idle:
         
     | 
| 
       353 
     | 
    
         
            -
                            self.idle_sleeper = IdleSleeper(
         
     | 
| 
       354 
     | 
    
         
            -
                                [
         
     | 
| 
       355 
     | 
    
         
            -
                                    self.recv_from_tokenizer,
         
     | 
| 
       356 
     | 
    
         
            -
                                    self.recv_from_rpc,
         
     | 
| 
       357 
     | 
    
         
            -
                                ]
         
     | 
| 
       358 
     | 
    
         
            -
                            )
         
     | 
| 
       359 
     | 
    
         
            -
                    else:
         
     | 
| 
       360 
     | 
    
         
            -
                        self.recv_from_tokenizer = None
         
     | 
| 
       361 
     | 
    
         
            -
                        self.recv_from_rpc = None
         
     | 
| 
       362 
     | 
    
         
            -
                        self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
         
     | 
| 
       363 
     | 
    
         
            -
                        self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
         
     | 
| 
       364 
     | 
    
         
            -
             
     | 
| 
       365 
     | 
    
         
            -
                    if self.current_scheduler_metrics_enabled():
         
     | 
| 
       366 
     | 
    
         
            -
                        self.send_metrics_from_scheduler = get_zmq_socket(
         
     | 
| 
       367 
     | 
    
         
            -
                            context, zmq.PUSH, port_args.metrics_ipc_name, False
         
     | 
| 
       368 
     | 
    
         
            -
                        )
         
     | 
| 
      
 285 
     | 
    
         
            +
                    self.init_sockets(server_args, port_args)
         
     | 
| 
       369 
286 
     | 
    
         | 
| 
       370 
287 
     | 
    
         
             
                    # Init tokenizer
         
     | 
| 
       371 
288 
     | 
    
         
             
                    self.init_tokenizer()
         
     | 
| 
         @@ -388,12 +305,10 @@ class Scheduler( 
     | 
|
| 
       388 
305 
     | 
    
         
             
                        logger.info("Overlap scheduler is disabled for embedding models.")
         
     | 
| 
       389 
306 
     | 
    
         | 
| 
       390 
307 
     | 
    
         
             
                    # Launch a tensor parallel worker
         
     | 
| 
       391 
     | 
    
         
            -
                    if self.enable_overlap:
         
     | 
| 
       392 
     | 
    
         
            -
                        TpWorkerClass = TpModelWorkerClient
         
     | 
| 
       393 
     | 
    
         
            -
                    else:
         
     | 
| 
       394 
     | 
    
         
            -
                        TpWorkerClass = TpModelWorker
         
     | 
| 
       395 
308 
     | 
    
         | 
| 
       396 
     | 
    
         
            -
                     
     | 
| 
      
 309 
     | 
    
         
            +
                    from sglang.srt.managers.tp_worker import TpModelWorker
         
     | 
| 
      
 310 
     | 
    
         
            +
             
     | 
| 
      
 311 
     | 
    
         
            +
                    self.tp_worker = TpModelWorker(
         
     | 
| 
       397 
312 
     | 
    
         
             
                        server_args=server_args,
         
     | 
| 
       398 
313 
     | 
    
         
             
                        gpu_id=gpu_id,
         
     | 
| 
       399 
314 
     | 
    
         
             
                        tp_rank=tp_rank,
         
     | 
| 
         @@ -404,44 +319,10 @@ class Scheduler( 
     | 
|
| 
       404 
319 
     | 
    
         
             
                    )
         
     | 
| 
       405 
320 
     | 
    
         | 
| 
       406 
321 
     | 
    
         
             
                    # Launch a draft worker for speculative decoding
         
     | 
| 
       407 
     | 
    
         
            -
                    if self.spec_algorithm.is_eagle():
         
     | 
| 
       408 
     | 
    
         
            -
                        from sglang.srt.speculative.eagle_worker import EAGLEWorker
         
     | 
| 
       409 
     | 
    
         
            -
             
     | 
| 
       410 
     | 
    
         
            -
                        self.draft_worker = EAGLEWorker(
         
     | 
| 
       411 
     | 
    
         
            -
                            gpu_id=gpu_id,
         
     | 
| 
       412 
     | 
    
         
            -
                            tp_rank=tp_rank,
         
     | 
| 
       413 
     | 
    
         
            -
                            moe_ep_rank=moe_ep_rank,
         
     | 
| 
       414 
     | 
    
         
            -
                            server_args=server_args,
         
     | 
| 
       415 
     | 
    
         
            -
                            nccl_port=port_args.nccl_port,
         
     | 
| 
       416 
     | 
    
         
            -
                            target_worker=self.tp_worker,
         
     | 
| 
       417 
     | 
    
         
            -
                            dp_rank=dp_rank,
         
     | 
| 
       418 
     | 
    
         
            -
                        )
         
     | 
| 
       419 
     | 
    
         
            -
                    elif self.spec_algorithm.is_standalone():
         
     | 
| 
       420 
     | 
    
         
            -
                        from sglang.srt.speculative.standalone_worker import StandaloneWorker
         
     | 
| 
       421 
     | 
    
         
            -
             
     | 
| 
       422 
     | 
    
         
            -
                        self.draft_worker = StandaloneWorker(
         
     | 
| 
       423 
     | 
    
         
            -
                            gpu_id=gpu_id,
         
     | 
| 
       424 
     | 
    
         
            -
                            tp_rank=tp_rank,
         
     | 
| 
       425 
     | 
    
         
            -
                            moe_ep_rank=moe_ep_rank,
         
     | 
| 
       426 
     | 
    
         
            -
                            server_args=server_args,
         
     | 
| 
       427 
     | 
    
         
            -
                            nccl_port=port_args.nccl_port,
         
     | 
| 
       428 
     | 
    
         
            -
                            target_worker=self.tp_worker,
         
     | 
| 
       429 
     | 
    
         
            -
                            dp_rank=dp_rank,
         
     | 
| 
       430 
     | 
    
         
            -
                        )
         
     | 
| 
       431 
     | 
    
         
            -
                    elif self.spec_algorithm.is_ngram():
         
     | 
| 
       432 
     | 
    
         
            -
                        from sglang.srt.speculative.ngram_worker import NGRAMWorker
         
     | 
| 
       433 
322 
     | 
    
         | 
| 
       434 
     | 
    
         
            -
             
     | 
| 
       435 
     | 
    
         
            -
             
     | 
| 
       436 
     | 
    
         
            -
             
     | 
| 
       437 
     | 
    
         
            -
                            moe_ep_rank=moe_ep_rank,
         
     | 
| 
       438 
     | 
    
         
            -
                            server_args=server_args,
         
     | 
| 
       439 
     | 
    
         
            -
                            nccl_port=port_args.nccl_port,
         
     | 
| 
       440 
     | 
    
         
            -
                            target_worker=self.tp_worker,
         
     | 
| 
       441 
     | 
    
         
            -
                            dp_rank=dp_rank,
         
     | 
| 
       442 
     | 
    
         
            -
                        )
         
     | 
| 
       443 
     | 
    
         
            -
                    else:
         
     | 
| 
       444 
     | 
    
         
            -
                        self.draft_worker = None
         
     | 
| 
      
 323 
     | 
    
         
            +
                    self.launch_draft_worker(
         
     | 
| 
      
 324 
     | 
    
         
            +
                        gpu_id, tp_rank, moe_ep_rank, server_args, port_args, dp_rank
         
     | 
| 
      
 325 
     | 
    
         
            +
                    )
         
     | 
| 
       445 
326 
     | 
    
         | 
| 
       446 
327 
     | 
    
         
             
                    # Dispatch the model worker
         
     | 
| 
       447 
328 
     | 
    
         
             
                    if self.spec_algorithm.is_none():
         
     | 
| 
         @@ -459,13 +340,12 @@ class Scheduler( 
     | 
|
| 
       459 
340 
     | 
    
         
             
                        self.max_req_input_len,
         
     | 
| 
       460 
341 
     | 
    
         
             
                        self.random_seed,
         
     | 
| 
       461 
342 
     | 
    
         
             
                        self.device,
         
     | 
| 
       462 
     | 
    
         
            -
                        worker_global_server_args_dict,
         
     | 
| 
       463 
343 
     | 
    
         
             
                        _,
         
     | 
| 
       464 
344 
     | 
    
         
             
                        _,
         
     | 
| 
       465 
345 
     | 
    
         
             
                        _,
         
     | 
| 
       466 
346 
     | 
    
         
             
                    ) = self.tp_worker.get_worker_info()
         
     | 
| 
       467 
     | 
    
         
            -
                    if  
     | 
| 
       468 
     | 
    
         
            -
                         
     | 
| 
      
 347 
     | 
    
         
            +
                    if get_global_server_args().pp_max_micro_batch_size is None:
         
     | 
| 
      
 348 
     | 
    
         
            +
                        get_global_server_args().pp_max_micro_batch_size = max(
         
     | 
| 
       469 
349 
     | 
    
         
             
                            self.max_running_requests // server_args.pp_size, 1
         
     | 
| 
       470 
350 
     | 
    
         
             
                        )
         
     | 
| 
       471 
351 
     | 
    
         | 
| 
         @@ -477,11 +357,12 @@ class Scheduler( 
     | 
|
| 
       477 
357 
     | 
    
         
             
                    self.world_group = get_world_group()
         
     | 
| 
       478 
358 
     | 
    
         | 
| 
       479 
359 
     | 
    
         
             
                    self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
         
     | 
| 
       480 
     | 
    
         
            -
                    global_server_args_dict.update(worker_global_server_args_dict)
         
     | 
| 
       481 
360 
     | 
    
         
             
                    set_random_seed(self.random_seed)
         
     | 
| 
       482 
361 
     | 
    
         | 
| 
       483 
362 
     | 
    
         
             
                    # Hybrid memory pool
         
     | 
| 
       484 
363 
     | 
    
         
             
                    self.is_hybrid = self.tp_worker.is_hybrid
         
     | 
| 
      
 364 
     | 
    
         
            +
                    self.is_hybrid_gdn = self.tp_worker.model_runner.hybrid_gdn_config is not None
         
     | 
| 
      
 365 
     | 
    
         
            +
             
     | 
| 
       485 
366 
     | 
    
         
             
                    if self.is_hybrid:
         
     | 
| 
       486 
367 
     | 
    
         
             
                        self.sliding_window_size = self.tp_worker.sliding_window_size
         
     | 
| 
       487 
368 
     | 
    
         
             
                        self.full_tokens_per_layer, self.swa_tokens_per_layer = (
         
     | 
| 
         @@ -525,9 +406,11 @@ class Scheduler( 
     | 
|
| 
       525 
406 
     | 
    
         
             
                    self.kv_transfer_speed_gb_s: float = 0.0
         
     | 
| 
       526 
407 
     | 
    
         
             
                    self.kv_transfer_latency_ms: float = 0.0
         
     | 
| 
       527 
408 
     | 
    
         
             
                    self.sessions: Dict[str, Session] = {}
         
     | 
| 
       528 
     | 
    
         
            -
                    self. 
     | 
| 
      
 409 
     | 
    
         
            +
                    self.default_stream: CudaStream = torch.get_device_module(
         
     | 
| 
      
 410 
     | 
    
         
            +
                        self.device
         
     | 
| 
      
 411 
     | 
    
         
            +
                    ).current_stream()
         
     | 
| 
       529 
412 
     | 
    
         
             
                    if self.device == "cpu":
         
     | 
| 
       530 
     | 
    
         
            -
                        self. 
     | 
| 
      
 413 
     | 
    
         
            +
                        self.default_stream.synchronize = lambda: None  # No-op for CPU
         
     | 
| 
       531 
414 
     | 
    
         
             
                    self.forward_sleep_time = None
         
     | 
| 
       532 
415 
     | 
    
         | 
| 
       533 
416 
     | 
    
         
             
                    # Init chunked prefill
         
     | 
| 
         @@ -566,18 +449,17 @@ class Scheduler( 
     | 
|
| 
       566 
449 
     | 
    
         
             
                        server_args.schedule_conservativeness >= 0
         
     | 
| 
       567 
450 
     | 
    
         
             
                    ), "Invalid schedule_conservativeness"
         
     | 
| 
       568 
451 
     | 
    
         
             
                    self.init_new_token_ratio = min(
         
     | 
| 
       569 
     | 
    
         
            -
                         
     | 
| 
      
 452 
     | 
    
         
            +
                        envs.SGLANG_INIT_NEW_TOKEN_RATIO.get()
         
     | 
| 
       570 
453 
     | 
    
         
             
                        * server_args.schedule_conservativeness,
         
     | 
| 
       571 
454 
     | 
    
         
             
                        1.0,
         
     | 
| 
       572 
455 
     | 
    
         
             
                    )
         
     | 
| 
       573 
456 
     | 
    
         
             
                    self.min_new_token_ratio = min(
         
     | 
| 
       574 
     | 
    
         
            -
                        self.init_new_token_ratio
         
     | 
| 
       575 
     | 
    
         
            -
                        * global_config.default_min_new_token_ratio_factor,
         
     | 
| 
      
 457 
     | 
    
         
            +
                        self.init_new_token_ratio * envs.SGLANG_MIN_NEW_TOKEN_RATIO_FACTOR.get(),
         
     | 
| 
       576 
458 
     | 
    
         
             
                        1.0,
         
     | 
| 
       577 
459 
     | 
    
         
             
                    )
         
     | 
| 
       578 
460 
     | 
    
         
             
                    self.new_token_ratio_decay = (
         
     | 
| 
       579 
461 
     | 
    
         
             
                        self.init_new_token_ratio - self.min_new_token_ratio
         
     | 
| 
       580 
     | 
    
         
            -
                    ) /  
     | 
| 
      
 462 
     | 
    
         
            +
                    ) / envs.SGLANG_NEW_TOKEN_RATIO_DECAY_STEPS.get()
         
     | 
| 
       581 
463 
     | 
    
         
             
                    self.new_token_ratio = self.init_new_token_ratio
         
     | 
| 
       582 
464 
     | 
    
         | 
| 
       583 
465 
     | 
    
         
             
                    # Init watchdog thread
         
     | 
| 
         @@ -612,12 +494,15 @@ class Scheduler( 
     | 
|
| 
       612 
494 
     | 
    
         
             
                    )
         
     | 
| 
       613 
495 
     | 
    
         
             
                    self.init_disaggregation()
         
     | 
| 
       614 
496 
     | 
    
         | 
| 
       615 
     | 
    
         
            -
                    if  
     | 
| 
      
 497 
     | 
    
         
            +
                    if envs.SGLANG_LOG_GC.get():
         
     | 
| 
       616 
498 
     | 
    
         
             
                        configure_gc_logger()
         
     | 
| 
       617 
499 
     | 
    
         | 
| 
       618 
500 
     | 
    
         
             
                    # Init prefill kv split size when deterministic inference is enabled with various attention backends
         
     | 
| 
       619 
501 
     | 
    
         
             
                    self.init_deterministic_inference_config()
         
     | 
| 
       620 
502 
     | 
    
         | 
| 
      
 503 
     | 
    
         
            +
                    # Init overlap
         
     | 
| 
      
 504 
     | 
    
         
            +
                    self.init_overlap()
         
     | 
| 
      
 505 
     | 
    
         
            +
             
     | 
| 
       621 
506 
     | 
    
         
             
                    # Init request dispatcher
         
     | 
| 
       622 
507 
     | 
    
         
             
                    self._request_dispatcher = TypeBasedDispatcher(
         
     | 
| 
       623 
508 
     | 
    
         
             
                        [
         
     | 
| 
         @@ -646,6 +531,7 @@ class Scheduler( 
     | 
|
| 
       646 
531 
     | 
    
         
             
                                self.update_weights_from_distributed,
         
     | 
| 
       647 
532 
     | 
    
         
             
                            ),
         
     | 
| 
       648 
533 
     | 
    
         
             
                            (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
         
     | 
| 
      
 534 
     | 
    
         
            +
                            (UpdateWeightsFromIPCReqInput, self.update_weights_from_ipc),
         
     | 
| 
       649 
535 
     | 
    
         
             
                            (GetWeightsByNameReqInput, self.get_weights_by_name),
         
     | 
| 
       650 
536 
     | 
    
         
             
                            (ReleaseMemoryOccupationReqInput, self.release_memory_occupation),
         
     | 
| 
       651 
537 
     | 
    
         
             
                            (ResumeMemoryOccupationReqInput, self.resume_memory_occupation),
         
     | 
| 
         @@ -658,11 +544,130 @@ class Scheduler( 
     | 
|
| 
       658 
544 
     | 
    
         
             
                            (ExpertDistributionReq, self.expert_distribution_handle),
         
     | 
| 
       659 
545 
     | 
    
         
             
                            (LoadLoRAAdapterReqInput, self.load_lora_adapter),
         
     | 
| 
       660 
546 
     | 
    
         
             
                            (UnloadLoRAAdapterReqInput, self.unload_lora_adapter),
         
     | 
| 
       661 
     | 
    
         
            -
                            (MultiTokenizerRegisterReq, self.register_multi_tokenizer),
         
     | 
| 
       662 
547 
     | 
    
         
             
                            (GetLoadReqInput, self.get_load),
         
     | 
| 
       663 
548 
     | 
    
         
             
                        ]
         
     | 
| 
       664 
549 
     | 
    
         
             
                    )
         
     | 
| 
       665 
550 
     | 
    
         | 
| 
      
 551 
     | 
    
         
            +
                def launch_draft_worker(
         
     | 
| 
      
 552 
     | 
    
         
            +
                    self, gpu_id, tp_rank, moe_ep_rank, server_args, port_args, dp_rank
         
     | 
| 
      
 553 
     | 
    
         
            +
                ):
         
     | 
| 
      
 554 
     | 
    
         
            +
                    if server_args.speculative_draft_load_format is not None:
         
     | 
| 
      
 555 
     | 
    
         
            +
                        server_args.load_format = server_args.speculative_draft_load_format
         
     | 
| 
      
 556 
     | 
    
         
            +
                        logger.info(
         
     | 
| 
      
 557 
     | 
    
         
            +
                            f"Using draft model load_format: '{server_args.speculative_draft_load_format}'"
         
     | 
| 
      
 558 
     | 
    
         
            +
                        )
         
     | 
| 
      
 559 
     | 
    
         
            +
             
     | 
| 
      
 560 
     | 
    
         
            +
                    if self.spec_algorithm.is_eagle():
         
     | 
| 
      
 561 
     | 
    
         
            +
                        from sglang.srt.speculative.eagle_worker import EAGLEWorker
         
     | 
| 
      
 562 
     | 
    
         
            +
                        from sglang.srt.speculative.eagle_worker_v2 import EAGLEWorkerV2
         
     | 
| 
      
 563 
     | 
    
         
            +
             
     | 
| 
      
 564 
     | 
    
         
            +
                        WorkerClass = EAGLEWorkerV2 if self.enable_overlap else EAGLEWorker
         
     | 
| 
      
 565 
     | 
    
         
            +
             
     | 
| 
      
 566 
     | 
    
         
            +
                        self.draft_worker = WorkerClass(
         
     | 
| 
      
 567 
     | 
    
         
            +
                            gpu_id=gpu_id,
         
     | 
| 
      
 568 
     | 
    
         
            +
                            tp_rank=tp_rank,
         
     | 
| 
      
 569 
     | 
    
         
            +
                            moe_ep_rank=moe_ep_rank,
         
     | 
| 
      
 570 
     | 
    
         
            +
                            server_args=server_args,
         
     | 
| 
      
 571 
     | 
    
         
            +
                            nccl_port=port_args.nccl_port,
         
     | 
| 
      
 572 
     | 
    
         
            +
                            target_worker=self.tp_worker,
         
     | 
| 
      
 573 
     | 
    
         
            +
                            dp_rank=dp_rank,
         
     | 
| 
      
 574 
     | 
    
         
            +
                        )
         
     | 
| 
      
 575 
     | 
    
         
            +
                    elif self.spec_algorithm.is_standalone():
         
     | 
| 
      
 576 
     | 
    
         
            +
                        from sglang.srt.speculative.standalone_worker import StandaloneWorker
         
     | 
| 
      
 577 
     | 
    
         
            +
             
     | 
| 
      
 578 
     | 
    
         
            +
                        self.draft_worker = StandaloneWorker(
         
     | 
| 
      
 579 
     | 
    
         
            +
                            gpu_id=gpu_id,
         
     | 
| 
      
 580 
     | 
    
         
            +
                            tp_rank=tp_rank,
         
     | 
| 
      
 581 
     | 
    
         
            +
                            moe_ep_rank=moe_ep_rank,
         
     | 
| 
      
 582 
     | 
    
         
            +
                            server_args=server_args,
         
     | 
| 
      
 583 
     | 
    
         
            +
                            nccl_port=port_args.nccl_port,
         
     | 
| 
      
 584 
     | 
    
         
            +
                            target_worker=self.tp_worker,
         
     | 
| 
      
 585 
     | 
    
         
            +
                            dp_rank=dp_rank,
         
     | 
| 
      
 586 
     | 
    
         
            +
                        )
         
     | 
| 
      
 587 
     | 
    
         
            +
                    elif self.spec_algorithm.is_ngram():
         
     | 
| 
      
 588 
     | 
    
         
            +
                        from sglang.srt.speculative.ngram_worker import NGRAMWorker
         
     | 
| 
      
 589 
     | 
    
         
            +
             
     | 
| 
      
 590 
     | 
    
         
            +
                        self.draft_worker = NGRAMWorker(
         
     | 
| 
      
 591 
     | 
    
         
            +
                            gpu_id=gpu_id,
         
     | 
| 
      
 592 
     | 
    
         
            +
                            tp_rank=tp_rank,
         
     | 
| 
      
 593 
     | 
    
         
            +
                            moe_ep_rank=moe_ep_rank,
         
     | 
| 
      
 594 
     | 
    
         
            +
                            server_args=server_args,
         
     | 
| 
      
 595 
     | 
    
         
            +
                            nccl_port=port_args.nccl_port,
         
     | 
| 
      
 596 
     | 
    
         
            +
                            target_worker=self.tp_worker,
         
     | 
| 
      
 597 
     | 
    
         
            +
                            dp_rank=dp_rank,
         
     | 
| 
      
 598 
     | 
    
         
            +
                        )
         
     | 
| 
      
 599 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 600 
     | 
    
         
            +
                        self.draft_worker = None
         
     | 
| 
      
 601 
     | 
    
         
            +
             
     | 
| 
      
 602 
     | 
    
         
            +
                def init_sockets(self, server_args: ServerArgs, port_args: PortArgs):
         
     | 
| 
      
 603 
     | 
    
         
            +
                    context = zmq.Context(2)
         
     | 
| 
      
 604 
     | 
    
         
            +
                    self.idle_sleeper = None
         
     | 
| 
      
 605 
     | 
    
         
            +
             
     | 
| 
      
 606 
     | 
    
         
            +
                    class SenderWrapper:
         
     | 
| 
      
 607 
     | 
    
         
            +
                        def __init__(self, socket: zmq.Socket):
         
     | 
| 
      
 608 
     | 
    
         
            +
                            self.socket = socket
         
     | 
| 
      
 609 
     | 
    
         
            +
             
     | 
| 
      
 610 
     | 
    
         
            +
                        def send_output(
         
     | 
| 
      
 611 
     | 
    
         
            +
                            self,
         
     | 
| 
      
 612 
     | 
    
         
            +
                            output: Union[BaseReq, BaseBatchReq],
         
     | 
| 
      
 613 
     | 
    
         
            +
                            recv_obj: Optional[Union[BaseReq, BaseBatchReq]] = None,
         
     | 
| 
      
 614 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 615 
     | 
    
         
            +
                            if self.socket is None:
         
     | 
| 
      
 616 
     | 
    
         
            +
                                return
         
     | 
| 
      
 617 
     | 
    
         
            +
             
     | 
| 
      
 618 
     | 
    
         
            +
                            if (
         
     | 
| 
      
 619 
     | 
    
         
            +
                                isinstance(recv_obj, BaseReq)
         
     | 
| 
      
 620 
     | 
    
         
            +
                                and recv_obj.http_worker_ipc is not None
         
     | 
| 
      
 621 
     | 
    
         
            +
                                and output.http_worker_ipc is None
         
     | 
| 
      
 622 
     | 
    
         
            +
                            ):
         
     | 
| 
      
 623 
     | 
    
         
            +
                                # handle communicator reqs for multi-http worker case
         
     | 
| 
      
 624 
     | 
    
         
            +
                                output.http_worker_ipc = recv_obj.http_worker_ipc
         
     | 
| 
      
 625 
     | 
    
         
            +
             
     | 
| 
      
 626 
     | 
    
         
            +
                            self.socket.send_pyobj(output)
         
     | 
| 
      
 627 
     | 
    
         
            +
             
     | 
| 
      
 628 
     | 
    
         
            +
                    if self.pp_rank == 0 and self.attn_tp_rank == 0:
         
     | 
| 
      
 629 
     | 
    
         
            +
                        self.recv_from_tokenizer = get_zmq_socket(
         
     | 
| 
      
 630 
     | 
    
         
            +
                            context, zmq.PULL, port_args.scheduler_input_ipc_name, False
         
     | 
| 
      
 631 
     | 
    
         
            +
                        )
         
     | 
| 
      
 632 
     | 
    
         
            +
                        self.recv_from_rpc = get_zmq_socket(
         
     | 
| 
      
 633 
     | 
    
         
            +
                            context, zmq.DEALER, port_args.rpc_ipc_name, False
         
     | 
| 
      
 634 
     | 
    
         
            +
                        )
         
     | 
| 
      
 635 
     | 
    
         
            +
             
     | 
| 
      
 636 
     | 
    
         
            +
                        send_to_tokenizer = get_zmq_socket(
         
     | 
| 
      
 637 
     | 
    
         
            +
                            context, zmq.PUSH, port_args.tokenizer_ipc_name, False
         
     | 
| 
      
 638 
     | 
    
         
            +
                        )
         
     | 
| 
      
 639 
     | 
    
         
            +
                        if server_args.skip_tokenizer_init:
         
     | 
| 
      
 640 
     | 
    
         
            +
                            # Directly send to the TokenizerManager
         
     | 
| 
      
 641 
     | 
    
         
            +
                            send_to_detokenizer = get_zmq_socket(
         
     | 
| 
      
 642 
     | 
    
         
            +
                                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
         
     | 
| 
      
 643 
     | 
    
         
            +
                            )
         
     | 
| 
      
 644 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 645 
     | 
    
         
            +
                            # Send to the DetokenizerManager
         
     | 
| 
      
 646 
     | 
    
         
            +
                            send_to_detokenizer = get_zmq_socket(
         
     | 
| 
      
 647 
     | 
    
         
            +
                                context, zmq.PUSH, port_args.detokenizer_ipc_name, False
         
     | 
| 
      
 648 
     | 
    
         
            +
                            )
         
     | 
| 
      
 649 
     | 
    
         
            +
             
     | 
| 
      
 650 
     | 
    
         
            +
                        self.send_to_tokenizer = SenderWrapper(send_to_tokenizer)
         
     | 
| 
      
 651 
     | 
    
         
            +
                        self.send_to_detokenizer = SenderWrapper(send_to_detokenizer)
         
     | 
| 
      
 652 
     | 
    
         
            +
             
     | 
| 
      
 653 
     | 
    
         
            +
                        if self.server_args.sleep_on_idle:
         
     | 
| 
      
 654 
     | 
    
         
            +
                            self.idle_sleeper = IdleSleeper(
         
     | 
| 
      
 655 
     | 
    
         
            +
                                [
         
     | 
| 
      
 656 
     | 
    
         
            +
                                    self.recv_from_tokenizer,
         
     | 
| 
      
 657 
     | 
    
         
            +
                                    self.recv_from_rpc,
         
     | 
| 
      
 658 
     | 
    
         
            +
                                ]
         
     | 
| 
      
 659 
     | 
    
         
            +
                            )
         
     | 
| 
      
 660 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 661 
     | 
    
         
            +
                        self.recv_from_tokenizer = None
         
     | 
| 
      
 662 
     | 
    
         
            +
                        self.recv_from_rpc = None
         
     | 
| 
      
 663 
     | 
    
         
            +
                        self.send_to_tokenizer = SenderWrapper(None)
         
     | 
| 
      
 664 
     | 
    
         
            +
                        self.send_to_detokenizer = SenderWrapper(None)
         
     | 
| 
      
 665 
     | 
    
         
            +
             
     | 
| 
      
 666 
     | 
    
         
            +
                    if self.current_scheduler_metrics_enabled():
         
     | 
| 
      
 667 
     | 
    
         
            +
                        self.send_metrics_from_scheduler = get_zmq_socket(
         
     | 
| 
      
 668 
     | 
    
         
            +
                            context, zmq.PUSH, port_args.metrics_ipc_name, False
         
     | 
| 
      
 669 
     | 
    
         
            +
                        )
         
     | 
| 
      
 670 
     | 
    
         
            +
             
     | 
| 
       666 
671 
     | 
    
         
             
                def init_deterministic_inference_config(self):
         
     | 
| 
       667 
672 
     | 
    
         
             
                    """Initialize deterministic inference configuration for different attention backends."""
         
     | 
| 
       668 
673 
     | 
    
         
             
                    if not self.server_args.enable_deterministic_inference:
         
     | 
| 
         @@ -768,15 +773,20 @@ class Scheduler( 
     | 
|
| 
       768 
773 
     | 
    
         
             
                                self.tree_cache.cache_controller.layer_done_counter
         
     | 
| 
       769 
774 
     | 
    
         
             
                            )
         
     | 
| 
       770 
775 
     | 
    
         
             
                        elif self.is_hybrid:
         
     | 
| 
       771 
     | 
    
         
            -
                            assert (
         
     | 
| 
       772 
     | 
    
         
            -
                                self.server_args.disaggregation_mode == "null"
         
     | 
| 
       773 
     | 
    
         
            -
                            ), "Hybrid mode does not support disaggregation yet"
         
     | 
| 
       774 
776 
     | 
    
         
             
                            self.tree_cache = SWARadixCache(
         
     | 
| 
       775 
777 
     | 
    
         
             
                                req_to_token_pool=self.req_to_token_pool,
         
     | 
| 
       776 
778 
     | 
    
         
             
                                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
         
     | 
| 
       777 
779 
     | 
    
         
             
                                sliding_window_size=self.sliding_window_size,
         
     | 
| 
       778 
780 
     | 
    
         
             
                                page_size=self.page_size,
         
     | 
| 
       779 
781 
     | 
    
         
             
                                disable=server_args.disable_radix_cache,
         
     | 
| 
      
 782 
     | 
    
         
            +
                                is_eagle=self.spec_algorithm.is_eagle(),
         
     | 
| 
      
 783 
     | 
    
         
            +
                            )
         
     | 
| 
      
 784 
     | 
    
         
            +
                        elif self.is_hybrid_gdn:
         
     | 
| 
      
 785 
     | 
    
         
            +
                            self.tree_cache = MambaRadixCache(
         
     | 
| 
      
 786 
     | 
    
         
            +
                                req_to_token_pool=self.req_to_token_pool,
         
     | 
| 
      
 787 
     | 
    
         
            +
                                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
         
     | 
| 
      
 788 
     | 
    
         
            +
                                page_size=self.page_size,
         
     | 
| 
      
 789 
     | 
    
         
            +
                                disable=server_args.disable_radix_cache,
         
     | 
| 
       780 
790 
     | 
    
         
             
                            )
         
     | 
| 
       781 
791 
     | 
    
         
             
                        elif server_args.enable_lmcache:
         
     | 
| 
       782 
792 
     | 
    
         
             
                            from sglang.srt.mem_cache.storage.lmcache.lmc_radix_cache import (
         
     | 
| 
         @@ -931,6 +941,34 @@ class Scheduler( 
     | 
|
| 
       931 
941 
     | 
    
         
             
                        # The prefill requests that are in the middle of kv sending
         
     | 
| 
       932 
942 
     | 
    
         
             
                        self.disagg_prefill_inflight_queue: List[Req] = []
         
     | 
| 
       933 
943 
     | 
    
         | 
| 
      
 944 
     | 
    
         
            +
                def init_overlap(self):
         
     | 
| 
      
 945 
     | 
    
         
            +
                    if not self.enable_overlap:
         
     | 
| 
      
 946 
     | 
    
         
            +
                        return
         
     | 
| 
      
 947 
     | 
    
         
            +
             
     | 
| 
      
 948 
     | 
    
         
            +
                    self.forward_stream: CudaStream = torch.get_device_module(self.device).Stream()
         
     | 
| 
      
 949 
     | 
    
         
            +
                    self.forward_stream_ctx: CudaStreamContext = torch.get_device_module(
         
     | 
| 
      
 950 
     | 
    
         
            +
                        self.device
         
     | 
| 
      
 951 
     | 
    
         
            +
                    ).stream(self.forward_stream)
         
     | 
| 
      
 952 
     | 
    
         
            +
                    self.copy_stream: CudaStream = torch.get_device_module(self.device).Stream()
         
     | 
| 
      
 953 
     | 
    
         
            +
                    self.copy_stream_ctx: CudaStreamContext = torch.get_device_module(
         
     | 
| 
      
 954 
     | 
    
         
            +
                        self.device
         
     | 
| 
      
 955 
     | 
    
         
            +
                    ).stream(self.copy_stream)
         
     | 
| 
      
 956 
     | 
    
         
            +
             
     | 
| 
      
 957 
     | 
    
         
            +
                    self.future_map = FutureMap(
         
     | 
| 
      
 958 
     | 
    
         
            +
                        self.max_running_requests, self.device, self.spec_algorithm
         
     | 
| 
      
 959 
     | 
    
         
            +
                    )
         
     | 
| 
      
 960 
     | 
    
         
            +
                    self.batch_record_buf = [None] * 2
         
     | 
| 
      
 961 
     | 
    
         
            +
                    self.batch_record_ct = 0
         
     | 
| 
      
 962 
     | 
    
         
            +
             
     | 
| 
      
 963 
     | 
    
         
            +
                def record_batch_in_overlap(self, model_worker_batch: ModelWorkerBatch):
         
     | 
| 
      
 964 
     | 
    
         
            +
                    # FIXME(lsyin): hacky way to keep a reference to avoid GPU tensors being freed by torch GC
         
     | 
| 
      
 965 
     | 
    
         
            +
                    # NOTE: More Reliable: record all tensors into the forward stream
         
     | 
| 
      
 966 
     | 
    
         
            +
                    # NOTE: - for all future tensors, we shall always read from future map
         
     | 
| 
      
 967 
     | 
    
         
            +
                    #       - for all non-future tensors (produced only by schedule stream),
         
     | 
| 
      
 968 
     | 
    
         
            +
                    #       we shall keep its reference not being release during all the forwarding pass
         
     | 
| 
      
 969 
     | 
    
         
            +
                    self.batch_record_ct = (self.batch_record_ct + 1) % 2
         
     | 
| 
      
 970 
     | 
    
         
            +
                    self.batch_record_buf[self.batch_record_ct] = model_worker_batch
         
     | 
| 
      
 971 
     | 
    
         
            +
             
     | 
| 
       934 
972 
     | 
    
         
             
                def init_moe_config(self):
         
     | 
| 
       935 
973 
     | 
    
         
             
                    if hasattr(self.model_config.hf_config, "num_experts_per_tok"):
         
     | 
| 
       936 
974 
     | 
    
         
             
                        initialize_moe_config(self.server_args)
         
     | 
| 
         @@ -957,7 +995,7 @@ class Scheduler( 
     | 
|
| 
       957 
995 
     | 
    
         
             
                @DynamicGradMode()
         
     | 
| 
       958 
996 
     | 
    
         
             
                def event_loop_overlap(self):
         
     | 
| 
       959 
997 
     | 
    
         
             
                    """A scheduler loop that overlaps the CPU processing and GPU computation."""
         
     | 
| 
       960 
     | 
    
         
            -
                    self.result_queue = deque()
         
     | 
| 
      
 998 
     | 
    
         
            +
                    self.result_queue: Deque[Tuple[ScheduleBatch, GenerationBatchResult]] = deque()
         
     | 
| 
       961 
999 
     | 
    
         | 
| 
       962 
1000 
     | 
    
         
             
                    while True:
         
     | 
| 
       963 
1001 
     | 
    
         
             
                        recv_reqs = self.recv_requests()
         
     | 
| 
         @@ -966,158 +1004,24 @@ class Scheduler( 
     | 
|
| 
       966 
1004 
     | 
    
         
             
                        batch = self.get_next_batch_to_run()
         
     | 
| 
       967 
1005 
     | 
    
         
             
                        self.cur_batch = batch
         
     | 
| 
       968 
1006 
     | 
    
         | 
| 
      
 1007 
     | 
    
         
            +
                        batch_result = None
         
     | 
| 
       969 
1008 
     | 
    
         
             
                        if batch:
         
     | 
| 
       970 
     | 
    
         
            -
                             
     | 
| 
       971 
     | 
    
         
            -
                             
     | 
| 
       972 
     | 
    
         
            -
                            self.result_queue.append((batch.copy(), result))
         
     | 
| 
       973 
     | 
    
         
            -
             
     | 
| 
       974 
     | 
    
         
            -
                            if self.last_batch is None:
         
     | 
| 
       975 
     | 
    
         
            -
                                # Create a dummy first batch to start the pipeline for overlap schedule.
         
     | 
| 
       976 
     | 
    
         
            -
                                # It is now used for triggering the sampling_info_done event.
         
     | 
| 
       977 
     | 
    
         
            -
                                tmp_batch = ScheduleBatch(
         
     | 
| 
       978 
     | 
    
         
            -
                                    reqs=None,
         
     | 
| 
       979 
     | 
    
         
            -
                                    forward_mode=ForwardMode.DUMMY_FIRST,
         
     | 
| 
       980 
     | 
    
         
            -
                                    next_batch_sampling_info=self.tp_worker.cur_sampling_info,
         
     | 
| 
       981 
     | 
    
         
            -
                                )
         
     | 
| 
       982 
     | 
    
         
            -
                                self.process_batch_result(tmp_batch, None, batch.launch_done)
         
     | 
| 
      
 1009 
     | 
    
         
            +
                            batch_result = self.run_batch(batch)
         
     | 
| 
      
 1010 
     | 
    
         
            +
                            self.result_queue.append((batch.copy(), batch_result))
         
     | 
| 
       983 
1011 
     | 
    
         | 
| 
       984 
1012 
     | 
    
         
             
                        if self.last_batch:
         
     | 
| 
       985 
1013 
     | 
    
         
             
                            # Process the results of the last batch
         
     | 
| 
       986 
1014 
     | 
    
         
             
                            tmp_batch, tmp_result = self.result_queue.popleft()
         
     | 
| 
       987 
     | 
    
         
            -
                            tmp_batch 
     | 
| 
       988 
     | 
    
         
            -
                                self.tp_worker.cur_sampling_info if batch else None
         
     | 
| 
       989 
     | 
    
         
            -
                            )
         
     | 
| 
       990 
     | 
    
         
            -
                            # NOTE: we should use current launched batch's launch_done event Instead of the last batch's
         
     | 
| 
       991 
     | 
    
         
            -
                            self.process_batch_result(
         
     | 
| 
       992 
     | 
    
         
            -
                                tmp_batch, tmp_result, batch.launch_done if batch else None
         
     | 
| 
       993 
     | 
    
         
            -
                            )
         
     | 
| 
      
 1015 
     | 
    
         
            +
                            self.process_batch_result(tmp_batch, tmp_result)
         
     | 
| 
       994 
1016 
     | 
    
         
             
                        elif batch is None:
         
     | 
| 
       995 
1017 
     | 
    
         
             
                            # When the server is idle, do self-check and re-init some states
         
     | 
| 
       996 
1018 
     | 
    
         
             
                            self.self_check_during_idle()
         
     | 
| 
       997 
1019 
     | 
    
         | 
| 
      
 1020 
     | 
    
         
            +
                        self.launch_batch_sample_if_needed(batch_result)
         
     | 
| 
       998 
1021 
     | 
    
         
             
                        self.last_batch = batch
         
     | 
| 
       999 
1022 
     | 
    
         | 
| 
       1000 
     | 
    
         
            -
             
     | 
| 
       1001 
     | 
    
         
            -
             
     | 
| 
       1002 
     | 
    
         
            -
                    """A non-overlap scheduler loop for pipeline parallelism."""
         
     | 
| 
       1003 
     | 
    
         
            -
                    mbs = [None] * self.pp_size
         
     | 
| 
       1004 
     | 
    
         
            -
                    last_mbs = [None] * self.pp_size
         
     | 
| 
       1005 
     | 
    
         
            -
                    self.running_mbs = [
         
     | 
| 
       1006 
     | 
    
         
            -
                        ScheduleBatch(reqs=[], batch_is_full=False) for _ in range(self.pp_size)
         
     | 
| 
       1007 
     | 
    
         
            -
                    ]
         
     | 
| 
       1008 
     | 
    
         
            -
                    pp_outputs: Optional[PPProxyTensors] = None
         
     | 
| 
       1009 
     | 
    
         
            -
                    while True:
         
     | 
| 
       1010 
     | 
    
         
            -
                        server_is_idle = True
         
     | 
| 
       1011 
     | 
    
         
            -
                        for mb_id in range(self.pp_size):
         
     | 
| 
       1012 
     | 
    
         
            -
                            self.running_batch = self.running_mbs[mb_id]
         
     | 
| 
       1013 
     | 
    
         
            -
                            self.last_batch = last_mbs[mb_id]
         
     | 
| 
       1014 
     | 
    
         
            -
             
     | 
| 
       1015 
     | 
    
         
            -
                            recv_reqs = self.recv_requests()
         
     | 
| 
       1016 
     | 
    
         
            -
                            self.process_input_requests(recv_reqs)
         
     | 
| 
       1017 
     | 
    
         
            -
                            mbs[mb_id] = self.get_next_batch_to_run()
         
     | 
| 
       1018 
     | 
    
         
            -
                            self.running_mbs[mb_id] = self.running_batch
         
     | 
| 
       1019 
     | 
    
         
            -
             
     | 
| 
       1020 
     | 
    
         
            -
                            self.cur_batch = mbs[mb_id]
         
     | 
| 
       1021 
     | 
    
         
            -
                            if self.cur_batch:
         
     | 
| 
       1022 
     | 
    
         
            -
                                server_is_idle = False
         
     | 
| 
       1023 
     | 
    
         
            -
                                result = self.run_batch(self.cur_batch)
         
     | 
| 
       1024 
     | 
    
         
            -
             
     | 
| 
       1025 
     | 
    
         
            -
                            # (last rank) send the outputs to the next step
         
     | 
| 
       1026 
     | 
    
         
            -
                            if self.pp_group.is_last_rank:
         
     | 
| 
       1027 
     | 
    
         
            -
                                if self.cur_batch:
         
     | 
| 
       1028 
     | 
    
         
            -
                                    next_token_ids = result.next_token_ids
         
     | 
| 
       1029 
     | 
    
         
            -
                                    if self.cur_batch.return_logprob:
         
     | 
| 
       1030 
     | 
    
         
            -
                                        pp_outputs = PPProxyTensors(
         
     | 
| 
       1031 
     | 
    
         
            -
                                            {
         
     | 
| 
       1032 
     | 
    
         
            -
                                                "next_token_ids": next_token_ids,
         
     | 
| 
       1033 
     | 
    
         
            -
                                                "extend_input_len_per_req": result.extend_input_len_per_req,
         
     | 
| 
       1034 
     | 
    
         
            -
                                                "extend_logprob_start_len_per_req": result.extend_logprob_start_len_per_req,
         
     | 
| 
       1035 
     | 
    
         
            -
                                            }
         
     | 
| 
       1036 
     | 
    
         
            -
                                            | (
         
     | 
| 
       1037 
     | 
    
         
            -
                                                {
         
     | 
| 
       1038 
     | 
    
         
            -
                                                    f"logits_output.{k}": v
         
     | 
| 
       1039 
     | 
    
         
            -
                                                    for k, v in result.logits_output.__dict__.items()
         
     | 
| 
       1040 
     | 
    
         
            -
                                                }
         
     | 
| 
       1041 
     | 
    
         
            -
                                                if result.logits_output is not None
         
     | 
| 
       1042 
     | 
    
         
            -
                                                else {}
         
     | 
| 
       1043 
     | 
    
         
            -
                                            )
         
     | 
| 
       1044 
     | 
    
         
            -
                                        )
         
     | 
| 
       1045 
     | 
    
         
            -
                                    else:
         
     | 
| 
       1046 
     | 
    
         
            -
                                        pp_outputs = PPProxyTensors(
         
     | 
| 
       1047 
     | 
    
         
            -
                                            {
         
     | 
| 
       1048 
     | 
    
         
            -
                                                "next_token_ids": next_token_ids,
         
     | 
| 
       1049 
     | 
    
         
            -
                                            }
         
     | 
| 
       1050 
     | 
    
         
            -
                                        )
         
     | 
| 
       1051 
     | 
    
         
            -
                                    # send the output from the last round to let the next stage worker run post processing
         
     | 
| 
       1052 
     | 
    
         
            -
                                    self.pp_group.send_tensor_dict(
         
     | 
| 
       1053 
     | 
    
         
            -
                                        pp_outputs.tensors,
         
     | 
| 
       1054 
     | 
    
         
            -
                                        all_gather_group=self.attn_tp_group,
         
     | 
| 
       1055 
     | 
    
         
            -
                                    )
         
     | 
| 
       1056 
     | 
    
         
            -
             
     | 
| 
       1057 
     | 
    
         
            -
                            # receive outputs and post-process (filter finished reqs) the coming microbatch
         
     | 
| 
       1058 
     | 
    
         
            -
                            next_mb_id = (mb_id + 1) % self.pp_size
         
     | 
| 
       1059 
     | 
    
         
            -
                            next_pp_outputs = None
         
     | 
| 
       1060 
     | 
    
         
            -
                            if mbs[next_mb_id] is not None:
         
     | 
| 
       1061 
     | 
    
         
            -
                                next_pp_outputs: Optional[PPProxyTensors] = PPProxyTensors(
         
     | 
| 
       1062 
     | 
    
         
            -
                                    self.pp_group.recv_tensor_dict(
         
     | 
| 
       1063 
     | 
    
         
            -
                                        all_gather_group=self.attn_tp_group
         
     | 
| 
       1064 
     | 
    
         
            -
                                    )
         
     | 
| 
       1065 
     | 
    
         
            -
                                )
         
     | 
| 
       1066 
     | 
    
         
            -
                                mbs[next_mb_id].output_ids = next_pp_outputs["next_token_ids"]
         
     | 
| 
       1067 
     | 
    
         
            -
                                logits_output_args = {
         
     | 
| 
       1068 
     | 
    
         
            -
                                    k[len("logits_output.") :]: v
         
     | 
| 
       1069 
     | 
    
         
            -
                                    for k, v in next_pp_outputs.tensors.items()
         
     | 
| 
       1070 
     | 
    
         
            -
                                    if k.startswith("logits_output.")
         
     | 
| 
       1071 
     | 
    
         
            -
                                }
         
     | 
| 
       1072 
     | 
    
         
            -
                                if len(logits_output_args) > 0:
         
     | 
| 
       1073 
     | 
    
         
            -
                                    logits_output = LogitsProcessorOutput(**logits_output_args)
         
     | 
| 
       1074 
     | 
    
         
            -
                                else:
         
     | 
| 
       1075 
     | 
    
         
            -
                                    logits_output = None
         
     | 
| 
       1076 
     | 
    
         
            -
             
     | 
| 
       1077 
     | 
    
         
            -
                                output_result = GenerationBatchResult.from_pp_proxy(
         
     | 
| 
       1078 
     | 
    
         
            -
                                    logits_output=logits_output,
         
     | 
| 
       1079 
     | 
    
         
            -
                                    next_pp_outputs=next_pp_outputs,
         
     | 
| 
       1080 
     | 
    
         
            -
                                    can_run_cuda_graph=result.can_run_cuda_graph,
         
     | 
| 
       1081 
     | 
    
         
            -
                                )
         
     | 
| 
       1082 
     | 
    
         
            -
                                self.process_batch_result(mbs[next_mb_id], output_result)
         
     | 
| 
       1083 
     | 
    
         
            -
                                last_mbs[next_mb_id] = mbs[next_mb_id]
         
     | 
| 
       1084 
     | 
    
         
            -
             
     | 
| 
       1085 
     | 
    
         
            -
                            # (not last rank)
         
     | 
| 
       1086 
     | 
    
         
            -
                            if not self.pp_group.is_last_rank:
         
     | 
| 
       1087 
     | 
    
         
            -
                                # carry the outputs to the next stage
         
     | 
| 
       1088 
     | 
    
         
            -
                                # send the outputs from the last round to let the next stage worker run post processing
         
     | 
| 
       1089 
     | 
    
         
            -
                                if pp_outputs:
         
     | 
| 
       1090 
     | 
    
         
            -
                                    self.pp_group.send_tensor_dict(
         
     | 
| 
       1091 
     | 
    
         
            -
                                        pp_outputs.tensors,
         
     | 
| 
       1092 
     | 
    
         
            -
                                        all_gather_group=self.attn_tp_group,
         
     | 
| 
       1093 
     | 
    
         
            -
                                    )
         
     | 
| 
       1094 
     | 
    
         
            -
             
     | 
| 
       1095 
     | 
    
         
            -
                                # send out reqs to the next stage
         
     | 
| 
       1096 
     | 
    
         
            -
                                dp_offset = self.attn_dp_rank * self.attn_tp_size
         
     | 
| 
       1097 
     | 
    
         
            -
                                if self.attn_tp_rank == 0:
         
     | 
| 
       1098 
     | 
    
         
            -
                                    point_to_point_pyobj(
         
     | 
| 
       1099 
     | 
    
         
            -
                                        recv_reqs,
         
     | 
| 
       1100 
     | 
    
         
            -
                                        self.pp_rank * self.tp_size + dp_offset,
         
     | 
| 
       1101 
     | 
    
         
            -
                                        self.world_group.device_group,
         
     | 
| 
       1102 
     | 
    
         
            -
                                        self.pp_rank * self.tp_size + dp_offset,
         
     | 
| 
       1103 
     | 
    
         
            -
                                        (self.pp_rank + 1) * self.tp_size + dp_offset,
         
     | 
| 
       1104 
     | 
    
         
            -
                                    )
         
     | 
| 
       1105 
     | 
    
         
            -
             
     | 
| 
       1106 
     | 
    
         
            -
                                # send out proxy tensors to the next stage
         
     | 
| 
       1107 
     | 
    
         
            -
                                if self.cur_batch:
         
     | 
| 
       1108 
     | 
    
         
            -
                                    # FIXME(lsyin): remove this assert
         
     | 
| 
       1109 
     | 
    
         
            -
                                    assert result.pp_hidden_states_proxy_tensors.tensors is not None
         
     | 
| 
       1110 
     | 
    
         
            -
                                    self.pp_group.send_tensor_dict(
         
     | 
| 
       1111 
     | 
    
         
            -
                                        result.pp_hidden_states_proxy_tensors.tensors,
         
     | 
| 
       1112 
     | 
    
         
            -
                                        all_gather_group=self.attn_tp_group,
         
     | 
| 
       1113 
     | 
    
         
            -
                                    )
         
     | 
| 
       1114 
     | 
    
         
            -
             
     | 
| 
       1115 
     | 
    
         
            -
                            pp_outputs = next_pp_outputs
         
     | 
| 
       1116 
     | 
    
         
            -
             
     | 
| 
       1117 
     | 
    
         
            -
                        # When the server is idle, self-check and re-init some states
         
     | 
| 
       1118 
     | 
    
         
            -
                        if server_is_idle:
         
     | 
| 
       1119 
     | 
    
         
            -
                            # When the server is idle, do self-check and re-init some states
         
     | 
| 
       1120 
     | 
    
         
            -
                            self.self_check_during_idle()
         
     | 
| 
      
 1023 
     | 
    
         
            +
                        if envs.SGLANG_ENABLE_RUNTIME_MEM_LEAK_CHECK.get():
         
     | 
| 
      
 1024 
     | 
    
         
            +
                            self._check_runtime_mem_leak()
         
     | 
| 
       1121 
1025 
     | 
    
         | 
| 
       1122 
1026 
     | 
    
         
             
                def recv_requests(self) -> List[Req]:
         
     | 
| 
       1123 
1027 
     | 
    
         
             
                    """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
         
     | 
| 
         @@ -1240,23 +1144,13 @@ class Scheduler( 
     | 
|
| 
       1240 
1144 
     | 
    
         
             
                            self.return_health_check_ct += 1
         
     | 
| 
       1241 
1145 
     | 
    
         
             
                            continue
         
     | 
| 
       1242 
1146 
     | 
    
         | 
| 
       1243 
     | 
    
         
            -
                        # If it is a MultiTokenizerWrapper, unwrap it and handle the inner request.
         
     | 
| 
       1244 
     | 
    
         
            -
                        if isinstance(recv_req, MultiTokenizerWrapper):
         
     | 
| 
       1245 
     | 
    
         
            -
                            worker_id = recv_req.worker_id
         
     | 
| 
       1246 
     | 
    
         
            -
                            recv_req = recv_req.obj
         
     | 
| 
       1247 
     | 
    
         
            -
                            output = self._request_dispatcher(recv_req)
         
     | 
| 
       1248 
     | 
    
         
            -
                            if output is not None:
         
     | 
| 
       1249 
     | 
    
         
            -
                                output = MultiTokenizerWrapper(worker_id, output)
         
     | 
| 
       1250 
     | 
    
         
            -
                                self.send_to_tokenizer.send_pyobj(output)
         
     | 
| 
       1251 
     | 
    
         
            -
                            continue
         
     | 
| 
       1252 
     | 
    
         
            -
             
     | 
| 
       1253 
1147 
     | 
    
         
             
                        output = self._request_dispatcher(recv_req)
         
     | 
| 
       1254 
1148 
     | 
    
         
             
                        if output is not None:
         
     | 
| 
       1255 
1149 
     | 
    
         
             
                            if isinstance(output, RpcReqOutput):
         
     | 
| 
       1256 
1150 
     | 
    
         
             
                                if self.recv_from_rpc is not None:
         
     | 
| 
       1257 
1151 
     | 
    
         
             
                                    self.recv_from_rpc.send_pyobj(output)
         
     | 
| 
       1258 
1152 
     | 
    
         
             
                            else:
         
     | 
| 
       1259 
     | 
    
         
            -
                                self.send_to_tokenizer. 
     | 
| 
      
 1153 
     | 
    
         
            +
                                self.send_to_tokenizer.send_output(output, recv_req)
         
     | 
| 
       1260 
1154 
     | 
    
         | 
| 
       1261 
1155 
     | 
    
         
             
                def init_req_max_new_tokens(self, req):
         
     | 
| 
       1262 
1156 
     | 
    
         
             
                    req.sampling_params.max_new_tokens = min(
         
     | 
| 
         @@ -1312,6 +1206,7 @@ class Scheduler( 
     | 
|
| 
       1312 
1206 
     | 
    
         
             
                            metrics_collector=(
         
     | 
| 
       1313 
1207 
     | 
    
         
             
                                self.metrics_collector if self.enable_metrics else None
         
     | 
| 
       1314 
1208 
     | 
    
         
             
                            ),
         
     | 
| 
      
 1209 
     | 
    
         
            +
                            http_worker_ipc=recv_req.http_worker_ipc,
         
     | 
| 
       1315 
1210 
     | 
    
         
             
                        )
         
     | 
| 
       1316 
1211 
     | 
    
         
             
                        req.tokenizer = self.tokenizer
         
     | 
| 
       1317 
1212 
     | 
    
         | 
| 
         @@ -1410,26 +1305,29 @@ class Scheduler( 
     | 
|
| 
       1410 
1305 
     | 
    
         
             
                        or req.sampling_params.ebnf is not None
         
     | 
| 
       1411 
1306 
     | 
    
         
             
                        or req.sampling_params.structural_tag is not None
         
     | 
| 
       1412 
1307 
     | 
    
         
             
                    ):
         
     | 
| 
       1413 
     | 
    
         
            -
                         
     | 
| 
       1414 
     | 
    
         
            -
             
     | 
| 
       1415 
     | 
    
         
            -
                             
     | 
| 
       1416 
     | 
    
         
            -
                        elif req.sampling_params.regex is not None:
         
     | 
| 
       1417 
     | 
    
         
            -
                            key = ("regex", req.sampling_params.regex)
         
     | 
| 
       1418 
     | 
    
         
            -
                        elif req.sampling_params.ebnf is not None:
         
     | 
| 
       1419 
     | 
    
         
            -
                            key = ("ebnf", req.sampling_params.ebnf)
         
     | 
| 
       1420 
     | 
    
         
            -
                        elif req.sampling_params.structural_tag:
         
     | 
| 
       1421 
     | 
    
         
            -
                            key = ("structural_tag", req.sampling_params.structural_tag)
         
     | 
| 
       1422 
     | 
    
         
            -
             
     | 
| 
       1423 
     | 
    
         
            -
                        value, cache_hit = self.grammar_backend.get_cached_or_future_value(key)
         
     | 
| 
       1424 
     | 
    
         
            -
                        req.grammar = value
         
     | 
| 
       1425 
     | 
    
         
            -
             
     | 
| 
       1426 
     | 
    
         
            -
                        if not cache_hit:
         
     | 
| 
       1427 
     | 
    
         
            -
                            req.grammar_key = key
         
     | 
| 
       1428 
     | 
    
         
            -
                            add_to_grammar_queue = True
         
     | 
| 
      
 1308 
     | 
    
         
            +
                        if self.grammar_backend is None:
         
     | 
| 
      
 1309 
     | 
    
         
            +
                            error_msg = "Grammar-based generation (json_schema, regex, ebnf, structural_tag) is not supported when the server is launched with --grammar-backend none"
         
     | 
| 
      
 1310 
     | 
    
         
            +
                            req.set_finish_with_abort(error_msg)
         
     | 
| 
       1429 
1311 
     | 
    
         
             
                        else:
         
     | 
| 
       1430 
     | 
    
         
            -
                            if  
     | 
| 
       1431 
     | 
    
         
            -
                                 
     | 
| 
       1432 
     | 
    
         
            -
             
     | 
| 
      
 1312 
     | 
    
         
            +
                            if req.sampling_params.json_schema is not None:
         
     | 
| 
      
 1313 
     | 
    
         
            +
                                key = ("json", req.sampling_params.json_schema)
         
     | 
| 
      
 1314 
     | 
    
         
            +
                            elif req.sampling_params.regex is not None:
         
     | 
| 
      
 1315 
     | 
    
         
            +
                                key = ("regex", req.sampling_params.regex)
         
     | 
| 
      
 1316 
     | 
    
         
            +
                            elif req.sampling_params.ebnf is not None:
         
     | 
| 
      
 1317 
     | 
    
         
            +
                                key = ("ebnf", req.sampling_params.ebnf)
         
     | 
| 
      
 1318 
     | 
    
         
            +
                            elif req.sampling_params.structural_tag:
         
     | 
| 
      
 1319 
     | 
    
         
            +
                                key = ("structural_tag", req.sampling_params.structural_tag)
         
     | 
| 
      
 1320 
     | 
    
         
            +
             
     | 
| 
      
 1321 
     | 
    
         
            +
                            value, cache_hit = self.grammar_backend.get_cached_or_future_value(key)
         
     | 
| 
      
 1322 
     | 
    
         
            +
                            req.grammar = value
         
     | 
| 
      
 1323 
     | 
    
         
            +
             
     | 
| 
      
 1324 
     | 
    
         
            +
                            if not cache_hit:
         
     | 
| 
      
 1325 
     | 
    
         
            +
                                req.grammar_key = key
         
     | 
| 
      
 1326 
     | 
    
         
            +
                                add_to_grammar_queue = True
         
     | 
| 
      
 1327 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 1328 
     | 
    
         
            +
                                if value is INVALID_GRAMMAR_OBJ:  # We hit a cached invalid grammar.
         
     | 
| 
      
 1329 
     | 
    
         
            +
                                    error_msg = f"Invalid grammar request with cache hit: {key=}"
         
     | 
| 
      
 1330 
     | 
    
         
            +
                                    req.set_finish_with_abort(error_msg)
         
     | 
| 
       1433 
1331 
     | 
    
         | 
| 
       1434 
1332 
     | 
    
         
             
                    if add_to_grammar_queue:
         
     | 
| 
       1435 
1333 
     | 
    
         
             
                        self.grammar_queue.append(req)
         
     | 
| 
         @@ -1456,8 +1354,18 @@ class Scheduler( 
     | 
|
| 
       1456 
1354 
     | 
    
         
             
                            last_hash = req.last_host_node.get_last_hash_value()
         
     | 
| 
       1457 
1355 
     | 
    
         
             
                            matched_len = len(req.prefix_indices) + req.host_hit_length
         
     | 
| 
       1458 
1356 
     | 
    
         
             
                            new_input_tokens = req.fill_ids[matched_len:]
         
     | 
| 
      
 1357 
     | 
    
         
            +
             
     | 
| 
      
 1358 
     | 
    
         
            +
                            prefix_keys = (
         
     | 
| 
      
 1359 
     | 
    
         
            +
                                req.last_node.get_prefix_hash_values(req.last_node.parent)
         
     | 
| 
      
 1360 
     | 
    
         
            +
                                if self.tree_cache.hicache_storage_pass_prefix_keys
         
     | 
| 
      
 1361 
     | 
    
         
            +
                                else None
         
     | 
| 
      
 1362 
     | 
    
         
            +
                            )
         
     | 
| 
       1459 
1363 
     | 
    
         
             
                            self.tree_cache.prefetch_from_storage(
         
     | 
| 
       1460 
     | 
    
         
            -
                                req.rid, 
     | 
| 
      
 1364 
     | 
    
         
            +
                                req.rid,
         
     | 
| 
      
 1365 
     | 
    
         
            +
                                req.last_host_node,
         
     | 
| 
      
 1366 
     | 
    
         
            +
                                new_input_tokens,
         
     | 
| 
      
 1367 
     | 
    
         
            +
                                last_hash,
         
     | 
| 
      
 1368 
     | 
    
         
            +
                                prefix_keys,
         
     | 
| 
       1461 
1369 
     | 
    
         
             
                            )
         
     | 
| 
       1462 
1370 
     | 
    
         | 
| 
       1463 
1371 
     | 
    
         
             
                def _add_request_to_queue(self, req: Req, is_retracted: bool = False):
         
     | 
| 
         @@ -1489,7 +1397,11 @@ class Scheduler( 
     | 
|
| 
       1489 
1397 
     | 
    
         
             
                            req.priority = sys.maxsize
         
     | 
| 
       1490 
1398 
     | 
    
         
             
                        else:
         
     | 
| 
       1491 
1399 
     | 
    
         
             
                            req.priority = -sys.maxsize - 1
         
     | 
| 
       1492 
     | 
    
         
            -
                    elif  
     | 
| 
      
 1400 
     | 
    
         
            +
                    elif (
         
     | 
| 
      
 1401 
     | 
    
         
            +
                        not self.enable_priority_scheduling
         
     | 
| 
      
 1402 
     | 
    
         
            +
                        and req.priority is not None
         
     | 
| 
      
 1403 
     | 
    
         
            +
                        and self.abort_on_priority_when_disabled
         
     | 
| 
      
 1404 
     | 
    
         
            +
                    ):
         
     | 
| 
       1493 
1405 
     | 
    
         
             
                        abort_req = AbortReq(
         
     | 
| 
       1494 
1406 
     | 
    
         
             
                            finished_reason={
         
     | 
| 
       1495 
1407 
     | 
    
         
             
                                "type": "abort",
         
     | 
| 
         @@ -1498,7 +1410,7 @@ class Scheduler( 
     | 
|
| 
       1498 
1410 
     | 
    
         
             
                            },
         
     | 
| 
       1499 
1411 
     | 
    
         
             
                            rid=req.rid,
         
     | 
| 
       1500 
1412 
     | 
    
         
             
                        )
         
     | 
| 
       1501 
     | 
    
         
            -
                        self.send_to_tokenizer. 
     | 
| 
      
 1413 
     | 
    
         
            +
                        self.send_to_tokenizer.send_output(abort_req, req)
         
     | 
| 
       1502 
1414 
     | 
    
         | 
| 
       1503 
1415 
     | 
    
         
             
                def _abort_on_queued_limit(self, recv_req: Req) -> bool:
         
     | 
| 
       1504 
1416 
     | 
    
         
             
                    """Abort an incoming or existing request if the waiting queue is full. Returns True if the incoming request is aborted."""
         
     | 
| 
         @@ -1530,7 +1442,7 @@ class Scheduler( 
     | 
|
| 
       1530 
1442 
     | 
    
         
             
                            req_to_abort = candidate_req
         
     | 
| 
       1531 
1443 
     | 
    
         
             
                            message = "The request is aborted by a higher priority request."
         
     | 
| 
       1532 
1444 
     | 
    
         | 
| 
       1533 
     | 
    
         
            -
                    self.send_to_tokenizer. 
     | 
| 
      
 1445 
     | 
    
         
            +
                    self.send_to_tokenizer.send_output(
         
     | 
| 
       1534 
1446 
     | 
    
         
             
                        AbortReq(
         
     | 
| 
       1535 
1447 
     | 
    
         
             
                            finished_reason={
         
     | 
| 
       1536 
1448 
     | 
    
         
             
                                "type": "abort",
         
     | 
| 
         @@ -1538,7 +1450,8 @@ class Scheduler( 
     | 
|
| 
       1538 
1450 
     | 
    
         
             
                                "message": message,
         
     | 
| 
       1539 
1451 
     | 
    
         
             
                            },
         
     | 
| 
       1540 
1452 
     | 
    
         
             
                            rid=req_to_abort.rid,
         
     | 
| 
       1541 
     | 
    
         
            -
                        )
         
     | 
| 
      
 1453 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 1454 
     | 
    
         
            +
                        req_to_abort,
         
     | 
| 
       1542 
1455 
     | 
    
         
             
                    )
         
     | 
| 
       1543 
1456 
     | 
    
         
             
                    return req_to_abort.rid == recv_req.rid
         
     | 
| 
       1544 
1457 
     | 
    
         | 
| 
         @@ -1553,6 +1466,7 @@ class Scheduler( 
     | 
|
| 
       1553 
1466 
     | 
    
         
             
                        recv_req.sampling_params,
         
     | 
| 
       1554 
1467 
     | 
    
         
             
                        token_type_ids=recv_req.token_type_ids,
         
     | 
| 
       1555 
1468 
     | 
    
         
             
                        priority=recv_req.priority,
         
     | 
| 
      
 1469 
     | 
    
         
            +
                        http_worker_ipc=recv_req.http_worker_ipc,
         
     | 
| 
       1556 
1470 
     | 
    
         
             
                    )
         
     | 
| 
       1557 
1471 
     | 
    
         
             
                    req.tokenizer = self.tokenizer
         
     | 
| 
       1558 
1472 
     | 
    
         | 
| 
         @@ -1602,109 +1516,6 @@ class Scheduler( 
     | 
|
| 
       1602 
1516 
     | 
    
         
             
                    for tokenized_req in recv_req:
         
     | 
| 
       1603 
1517 
     | 
    
         
             
                        self.handle_embedding_request(tokenized_req)
         
     | 
| 
       1604 
1518 
     | 
    
         | 
| 
       1605 
     | 
    
         
            -
                def self_check_during_idle(self):
         
     | 
| 
       1606 
     | 
    
         
            -
                    self.check_memory()
         
     | 
| 
       1607 
     | 
    
         
            -
                    self.check_tree_cache()
         
     | 
| 
       1608 
     | 
    
         
            -
                    self.new_token_ratio = self.init_new_token_ratio
         
     | 
| 
       1609 
     | 
    
         
            -
                    self.maybe_sleep_on_idle()
         
     | 
| 
       1610 
     | 
    
         
            -
             
     | 
| 
       1611 
     | 
    
         
            -
                def check_memory(self):
         
     | 
| 
       1612 
     | 
    
         
            -
                    if self.is_hybrid:
         
     | 
| 
       1613 
     | 
    
         
            -
                        (
         
     | 
| 
       1614 
     | 
    
         
            -
                            full_num_used,
         
     | 
| 
       1615 
     | 
    
         
            -
                            swa_num_used,
         
     | 
| 
       1616 
     | 
    
         
            -
                            _,
         
     | 
| 
       1617 
     | 
    
         
            -
                            _,
         
     | 
| 
       1618 
     | 
    
         
            -
                            full_available_size,
         
     | 
| 
       1619 
     | 
    
         
            -
                            full_evictable_size,
         
     | 
| 
       1620 
     | 
    
         
            -
                            swa_available_size,
         
     | 
| 
       1621 
     | 
    
         
            -
                            swa_evictable_size,
         
     | 
| 
       1622 
     | 
    
         
            -
                        ) = self._get_swa_token_info()
         
     | 
| 
       1623 
     | 
    
         
            -
                        memory_leak = full_num_used != 0 or swa_num_used != 0
         
     | 
| 
       1624 
     | 
    
         
            -
                        token_msg = (
         
     | 
| 
       1625 
     | 
    
         
            -
                            f"{self.full_tokens_per_layer=}, {full_available_size=}, {full_evictable_size=}, {self.tree_cache.full_protected_size()=}\n"
         
     | 
| 
       1626 
     | 
    
         
            -
                            f"{self.swa_tokens_per_layer=}, {swa_available_size=}, {swa_evictable_size=}, {self.tree_cache.swa_protected_size()=}\n"
         
     | 
| 
       1627 
     | 
    
         
            -
                        )
         
     | 
| 
       1628 
     | 
    
         
            -
                    else:
         
     | 
| 
       1629 
     | 
    
         
            -
                        _, _, available_size, evictable_size = self._get_token_info()
         
     | 
| 
       1630 
     | 
    
         
            -
                        protected_size = self.tree_cache.protected_size()
         
     | 
| 
       1631 
     | 
    
         
            -
                        memory_leak = (available_size + evictable_size) != (
         
     | 
| 
       1632 
     | 
    
         
            -
                            # self.max_total_num_tokens
         
     | 
| 
       1633 
     | 
    
         
            -
                            # if not self.enable_hierarchical_cache
         
     | 
| 
       1634 
     | 
    
         
            -
                            # else self.max_total_num_tokens - protected_size
         
     | 
| 
       1635 
     | 
    
         
            -
                            self.max_total_num_tokens
         
     | 
| 
       1636 
     | 
    
         
            -
                            - protected_size
         
     | 
| 
       1637 
     | 
    
         
            -
                        )
         
     | 
| 
       1638 
     | 
    
         
            -
                        token_msg = f"{self.max_total_num_tokens=}, {available_size=}, {evictable_size=}, {protected_size=}\n"
         
     | 
| 
       1639 
     | 
    
         
            -
             
     | 
| 
       1640 
     | 
    
         
            -
                    if memory_leak:
         
     | 
| 
       1641 
     | 
    
         
            -
                        msg = "token_to_kv_pool_allocator memory leak detected! " f"{token_msg}"
         
     | 
| 
       1642 
     | 
    
         
            -
                        raise ValueError(msg)
         
     | 
| 
       1643 
     | 
    
         
            -
             
     | 
| 
       1644 
     | 
    
         
            -
                    if self.disaggregation_mode == DisaggregationMode.DECODE:
         
     | 
| 
       1645 
     | 
    
         
            -
                        req_total_size = (
         
     | 
| 
       1646 
     | 
    
         
            -
                            self.req_to_token_pool.size + self.req_to_token_pool.pre_alloc_size
         
     | 
| 
       1647 
     | 
    
         
            -
                        )
         
     | 
| 
       1648 
     | 
    
         
            -
                    else:
         
     | 
| 
       1649 
     | 
    
         
            -
                        req_total_size = self.req_to_token_pool.size
         
     | 
| 
       1650 
     | 
    
         
            -
             
     | 
| 
       1651 
     | 
    
         
            -
                    if len(self.req_to_token_pool.free_slots) != req_total_size:
         
     | 
| 
       1652 
     | 
    
         
            -
                        msg = (
         
     | 
| 
       1653 
     | 
    
         
            -
                            "req_to_token_pool memory leak detected!"
         
     | 
| 
       1654 
     | 
    
         
            -
                            f"available_size={len(self.req_to_token_pool.free_slots)}, "
         
     | 
| 
       1655 
     | 
    
         
            -
                            f"total_size={self.req_to_token_pool.size}\n"
         
     | 
| 
       1656 
     | 
    
         
            -
                        )
         
     | 
| 
       1657 
     | 
    
         
            -
                        raise ValueError(msg)
         
     | 
| 
       1658 
     | 
    
         
            -
             
     | 
| 
       1659 
     | 
    
         
            -
                    if (
         
     | 
| 
       1660 
     | 
    
         
            -
                        self.enable_metrics
         
     | 
| 
       1661 
     | 
    
         
            -
                        and self.current_scheduler_metrics_enabled()
         
     | 
| 
       1662 
     | 
    
         
            -
                        and time.perf_counter() > self.metrics_collector.last_log_time + 30
         
     | 
| 
       1663 
     | 
    
         
            -
                    ):
         
     | 
| 
       1664 
     | 
    
         
            -
                        # During idle time, also collect metrics every 30 seconds.
         
     | 
| 
       1665 
     | 
    
         
            -
                        if self.is_hybrid:
         
     | 
| 
       1666 
     | 
    
         
            -
                            (
         
     | 
| 
       1667 
     | 
    
         
            -
                                full_num_used,
         
     | 
| 
       1668 
     | 
    
         
            -
                                swa_num_used,
         
     | 
| 
       1669 
     | 
    
         
            -
                                full_token_usage,
         
     | 
| 
       1670 
     | 
    
         
            -
                                swa_token_usage,
         
     | 
| 
       1671 
     | 
    
         
            -
                                _,
         
     | 
| 
       1672 
     | 
    
         
            -
                                _,
         
     | 
| 
       1673 
     | 
    
         
            -
                                _,
         
     | 
| 
       1674 
     | 
    
         
            -
                                _,
         
     | 
| 
       1675 
     | 
    
         
            -
                            ) = self._get_swa_token_info()
         
     | 
| 
       1676 
     | 
    
         
            -
                            num_used = max(full_num_used, swa_num_used)
         
     | 
| 
       1677 
     | 
    
         
            -
                            token_usage = max(full_token_usage, swa_token_usage)
         
     | 
| 
       1678 
     | 
    
         
            -
                        else:
         
     | 
| 
       1679 
     | 
    
         
            -
                            num_used, token_usage, _, _ = self._get_token_info()
         
     | 
| 
       1680 
     | 
    
         
            -
                        num_running_reqs = len(self.running_batch.reqs)
         
     | 
| 
       1681 
     | 
    
         
            -
                        self.stats.num_running_reqs = num_running_reqs
         
     | 
| 
       1682 
     | 
    
         
            -
                        self.stats.num_used_tokens = num_used
         
     | 
| 
       1683 
     | 
    
         
            -
                        self.stats.token_usage = round(token_usage, 2)
         
     | 
| 
       1684 
     | 
    
         
            -
                        self.stats.gen_throughput = 0
         
     | 
| 
       1685 
     | 
    
         
            -
                        self.stats.num_queue_reqs = len(self.waiting_queue)
         
     | 
| 
       1686 
     | 
    
         
            -
                        self.stats.num_grammar_queue_reqs = len(self.grammar_queue)
         
     | 
| 
       1687 
     | 
    
         
            -
                        if self.disaggregation_mode == DisaggregationMode.PREFILL:
         
     | 
| 
       1688 
     | 
    
         
            -
                            self.stats.num_prefill_prealloc_queue_reqs = len(
         
     | 
| 
       1689 
     | 
    
         
            -
                                self.disagg_prefill_bootstrap_queue.queue
         
     | 
| 
       1690 
     | 
    
         
            -
                            )
         
     | 
| 
       1691 
     | 
    
         
            -
                            self.stats.num_prefill_inflight_queue_reqs = len(
         
     | 
| 
       1692 
     | 
    
         
            -
                                self.disagg_prefill_inflight_queue
         
     | 
| 
       1693 
     | 
    
         
            -
                            )
         
     | 
| 
       1694 
     | 
    
         
            -
                        if self.disaggregation_mode == DisaggregationMode.DECODE:
         
     | 
| 
       1695 
     | 
    
         
            -
                            self.stats.num_decode_prealloc_queue_reqs = len(
         
     | 
| 
       1696 
     | 
    
         
            -
                                self.disagg_decode_prealloc_queue.queue
         
     | 
| 
       1697 
     | 
    
         
            -
                            )
         
     | 
| 
       1698 
     | 
    
         
            -
                            self.stats.num_decode_transfer_queue_reqs = len(
         
     | 
| 
       1699 
     | 
    
         
            -
                                self.disagg_decode_transfer_queue.queue
         
     | 
| 
       1700 
     | 
    
         
            -
                            )
         
     | 
| 
       1701 
     | 
    
         
            -
                        self.metrics_collector.log_stats(self.stats)
         
     | 
| 
       1702 
     | 
    
         
            -
                    self._publish_kv_events()
         
     | 
| 
       1703 
     | 
    
         
            -
             
     | 
| 
       1704 
     | 
    
         
            -
                def check_tree_cache(self):
         
     | 
| 
       1705 
     | 
    
         
            -
                    if self.is_hybrid and isinstance(self.tree_cache, SWARadixCache):
         
     | 
| 
       1706 
     | 
    
         
            -
                        self.tree_cache.sanity_check()
         
     | 
| 
       1707 
     | 
    
         
            -
             
     | 
| 
       1708 
1519 
     | 
    
         
             
                def _get_token_info(self):
         
     | 
| 
       1709 
1520 
     | 
    
         
             
                    available_size = self.token_to_kv_pool_allocator.available_size()
         
     | 
| 
       1710 
1521 
     | 
    
         
             
                    evictable_size = self.tree_cache.evictable_size()
         
     | 
| 
         @@ -1712,6 +1523,35 @@ class Scheduler( 
     | 
|
| 
       1712 
1523 
     | 
    
         
             
                    token_usage = num_used / self.max_total_num_tokens
         
     | 
| 
       1713 
1524 
     | 
    
         
             
                    return num_used, token_usage, available_size, evictable_size
         
     | 
| 
       1714 
1525 
     | 
    
         | 
| 
      
 1526 
     | 
    
         
            +
                def _get_mamba_token_info(self):
         
     | 
| 
      
 1527 
     | 
    
         
            +
                    is_radix_tree = isinstance(self.tree_cache, MambaRadixCache)
         
     | 
| 
      
 1528 
     | 
    
         
            +
                    full_available_size = self.token_to_kv_pool_allocator.available_size()
         
     | 
| 
      
 1529 
     | 
    
         
            +
                    full_evictable_size = (
         
     | 
| 
      
 1530 
     | 
    
         
            +
                        self.tree_cache.full_evictable_size() if is_radix_tree else 0
         
     | 
| 
      
 1531 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1532 
     | 
    
         
            +
                    mamba_available_size = self.req_to_token_pool.mamba_pool.available_size()
         
     | 
| 
      
 1533 
     | 
    
         
            +
                    mamba_evictable_size = (
         
     | 
| 
      
 1534 
     | 
    
         
            +
                        self.tree_cache.mamba_evictable_size() if is_radix_tree else 0
         
     | 
| 
      
 1535 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1536 
     | 
    
         
            +
                    full_num_used = self.token_to_kv_pool_allocator.size - (
         
     | 
| 
      
 1537 
     | 
    
         
            +
                        full_available_size + full_evictable_size
         
     | 
| 
      
 1538 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1539 
     | 
    
         
            +
                    mamba_num_used = self.req_to_token_pool.mamba_pool.size - (
         
     | 
| 
      
 1540 
     | 
    
         
            +
                        mamba_available_size + mamba_evictable_size
         
     | 
| 
      
 1541 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1542 
     | 
    
         
            +
                    full_token_usage = full_num_used / self.token_to_kv_pool_allocator.size
         
     | 
| 
      
 1543 
     | 
    
         
            +
                    mamba_usage = mamba_num_used / self.req_to_token_pool.mamba_pool.size
         
     | 
| 
      
 1544 
     | 
    
         
            +
                    return (
         
     | 
| 
      
 1545 
     | 
    
         
            +
                        full_num_used,
         
     | 
| 
      
 1546 
     | 
    
         
            +
                        mamba_num_used,
         
     | 
| 
      
 1547 
     | 
    
         
            +
                        full_token_usage,
         
     | 
| 
      
 1548 
     | 
    
         
            +
                        mamba_usage,
         
     | 
| 
      
 1549 
     | 
    
         
            +
                        full_available_size,
         
     | 
| 
      
 1550 
     | 
    
         
            +
                        full_evictable_size,
         
     | 
| 
      
 1551 
     | 
    
         
            +
                        mamba_available_size,
         
     | 
| 
      
 1552 
     | 
    
         
            +
                        mamba_evictable_size,
         
     | 
| 
      
 1553 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1554 
     | 
    
         
            +
             
     | 
| 
       1715 
1555 
     | 
    
         
             
                def _get_swa_token_info(self):
         
     | 
| 
       1716 
1556 
     | 
    
         
             
                    full_available_size = self.token_to_kv_pool_allocator.full_available_size()
         
     | 
| 
       1717 
1557 
     | 
    
         
             
                    full_evictable_size = self.tree_cache.full_evictable_size()
         
     | 
| 
         @@ -1745,7 +1585,7 @@ class Scheduler( 
     | 
|
| 
       1745 
1585 
     | 
    
         
             
                        chunked_req_to_exclude.add(self.chunked_req)
         
     | 
| 
       1746 
1586 
     | 
    
         
             
                        self.tree_cache.cache_unfinished_req(self.chunked_req, chunked=True)
         
     | 
| 
       1747 
1587 
     | 
    
         
             
                        # chunked request keeps its rid but will get a new req_pool_idx
         
     | 
| 
       1748 
     | 
    
         
            -
                        if self.tp_worker. 
     | 
| 
      
 1588 
     | 
    
         
            +
                        if self.tp_worker.model_runner.mambaish_config is not None:
         
     | 
| 
       1749 
1589 
     | 
    
         
             
                            self.req_to_token_pool.free(
         
     | 
| 
       1750 
1590 
     | 
    
         
             
                                self.chunked_req.req_pool_idx, free_mamba_cache=False
         
     | 
| 
       1751 
1591 
     | 
    
         
             
                            )
         
     | 
| 
         @@ -1802,7 +1642,7 @@ class Scheduler( 
     | 
|
| 
       1802 
1642 
     | 
    
         
             
                    return ret
         
     | 
| 
       1803 
1643 
     | 
    
         | 
| 
       1804 
1644 
     | 
    
         
             
                def get_num_allocatable_reqs(self, running_bs):
         
     | 
| 
       1805 
     | 
    
         
            -
                    res =  
     | 
| 
      
 1645 
     | 
    
         
            +
                    res = get_global_server_args().pp_max_micro_batch_size - running_bs
         
     | 
| 
       1806 
1646 
     | 
    
         
             
                    if self.pp_size > 1:
         
     | 
| 
       1807 
1647 
     | 
    
         
             
                        res = min(res, self.req_to_token_pool.available_size())
         
     | 
| 
       1808 
1648 
     | 
    
         
             
                    return res
         
     | 
| 
         @@ -1999,7 +1839,7 @@ class Scheduler( 
     | 
|
| 
       1999 
1839 
     | 
    
         | 
| 
       2000 
1840 
     | 
    
         
             
                    # Check if decode out of memory
         
     | 
| 
       2001 
1841 
     | 
    
         
             
                    if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
         
     | 
| 
       2002 
     | 
    
         
            -
                        TEST_RETRACT and  
     | 
| 
      
 1842 
     | 
    
         
            +
                        TEST_RETRACT and self.forward_ct % TEST_RETRACT_INTERVAL == 0
         
     | 
| 
       2003 
1843 
     | 
    
         
             
                    ):
         
     | 
| 
       2004 
1844 
     | 
    
         
             
                        old_ratio = self.new_token_ratio
         
     | 
| 
       2005 
1845 
     | 
    
         
             
                        retracted_reqs, new_token_ratio, reqs_to_abort = batch.retract_decode(
         
     | 
| 
         @@ -2008,8 +1848,8 @@ class Scheduler( 
     | 
|
| 
       2008 
1848 
     | 
    
         
             
                        self.num_retracted_reqs = len(retracted_reqs)
         
     | 
| 
       2009 
1849 
     | 
    
         
             
                        self.new_token_ratio = new_token_ratio
         
     | 
| 
       2010 
1850 
     | 
    
         
             
                        for req in reqs_to_abort:
         
     | 
| 
       2011 
     | 
    
         
            -
                            self.send_to_tokenizer. 
     | 
| 
       2012 
     | 
    
         
            -
                                AbortReq(abort_reason=req.to_abort_message, rid=req.rid)
         
     | 
| 
      
 1851 
     | 
    
         
            +
                            self.send_to_tokenizer.send_output(
         
     | 
| 
      
 1852 
     | 
    
         
            +
                                AbortReq(abort_reason=req.to_abort_message, rid=req.rid), req
         
     | 
| 
       2013 
1853 
     | 
    
         
             
                            )
         
     | 
| 
       2014 
1854 
     | 
    
         | 
| 
       2015 
1855 
     | 
    
         
             
                        logger.info(
         
     | 
| 
         @@ -2034,6 +1874,12 @@ class Scheduler( 
     | 
|
| 
       2034 
1874 
     | 
    
         
             
                    batch.prepare_for_decode()
         
     | 
| 
       2035 
1875 
     | 
    
         
             
                    return batch
         
     | 
| 
       2036 
1876 
     | 
    
         | 
| 
      
 1877 
     | 
    
         
            +
                # placeholder for override
         
     | 
| 
      
 1878 
     | 
    
         
            +
                def update_cache_from_scheduler(
         
     | 
| 
      
 1879 
     | 
    
         
            +
                    self, schedule_batch: ScheduleBatch, batch_result: GenerationBatchResult
         
     | 
| 
      
 1880 
     | 
    
         
            +
                ):
         
     | 
| 
      
 1881 
     | 
    
         
            +
                    pass
         
     | 
| 
      
 1882 
     | 
    
         
            +
             
     | 
| 
       2037 
1883 
     | 
    
         
             
                def run_batch(
         
     | 
| 
       2038 
1884 
     | 
    
         
             
                    self, batch: ScheduleBatch
         
     | 
| 
       2039 
1885 
     | 
    
         
             
                ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
         
     | 
| 
         @@ -2051,22 +1897,72 @@ class Scheduler( 
     | 
|
| 
       2051 
1897 
     | 
    
         | 
| 
       2052 
1898 
     | 
    
         
             
                        batch_or_worker_batch = batch
         
     | 
| 
       2053 
1899 
     | 
    
         | 
| 
       2054 
     | 
    
         
            -
                        if self.spec_algorithm.is_none():
         
     | 
| 
      
 1900 
     | 
    
         
            +
                        if self.enable_overlap or self.spec_algorithm.is_none():
         
     | 
| 
       2055 
1901 
     | 
    
         
             
                            # FIXME(lsyin): remove this if and finally unify the abstraction
         
     | 
| 
       2056 
1902 
     | 
    
         
             
                            batch_or_worker_batch = batch.get_model_worker_batch()
         
     | 
| 
       2057 
1903 
     | 
    
         | 
| 
       2058 
     | 
    
         
            -
                         
     | 
| 
       2059 
     | 
    
         
            -
                             
     | 
| 
       2060 
     | 
    
         
            -
             
     | 
| 
      
 1904 
     | 
    
         
            +
                        if self.enable_overlap:
         
     | 
| 
      
 1905 
     | 
    
         
            +
                            # FIXME: remove this assert
         
     | 
| 
      
 1906 
     | 
    
         
            +
                            assert isinstance(batch_or_worker_batch, ModelWorkerBatch)
         
     | 
| 
      
 1907 
     | 
    
         
            +
                            model_worker_batch = batch_or_worker_batch
         
     | 
| 
      
 1908 
     | 
    
         
            +
                            self.record_batch_in_overlap(model_worker_batch)
         
     | 
| 
      
 1909 
     | 
    
         
            +
             
     | 
| 
      
 1910 
     | 
    
         
            +
                            # Sampling info will be modified during forward
         
     | 
| 
      
 1911 
     | 
    
         
            +
                            model_worker_batch.sampling_info = (
         
     | 
| 
      
 1912 
     | 
    
         
            +
                                model_worker_batch.sampling_info.copy_for_forward()
         
     | 
| 
      
 1913 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1914 
     | 
    
         
            +
             
     | 
| 
      
 1915 
     | 
    
         
            +
                            bs = len(model_worker_batch.seq_lens)
         
     | 
| 
      
 1916 
     | 
    
         
            +
                            future_indices = self.future_map.alloc_future_indices(bs)
         
     | 
| 
      
 1917 
     | 
    
         
            +
             
     | 
| 
      
 1918 
     | 
    
         
            +
                            with self.forward_stream_ctx:
         
     | 
| 
      
 1919 
     | 
    
         
            +
                                self.forward_stream.wait_stream(self.default_stream)
         
     | 
| 
      
 1920 
     | 
    
         
            +
                                self.future_map.resolve_future(model_worker_batch)
         
     | 
| 
      
 1921 
     | 
    
         
            +
                                batch_result = self.model_worker.forward_batch_generation(
         
     | 
| 
      
 1922 
     | 
    
         
            +
                                    model_worker_batch
         
     | 
| 
      
 1923 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1924 
     | 
    
         
            +
                                # FIXME(lsyin): maybe move this to forward_batch_generation
         
     | 
| 
      
 1925 
     | 
    
         
            +
                                batch_result.copy_done = torch.get_device_module(
         
     | 
| 
      
 1926 
     | 
    
         
            +
                                    self.device
         
     | 
| 
      
 1927 
     | 
    
         
            +
                                ).Event()
         
     | 
| 
      
 1928 
     | 
    
         
            +
                                if batch_result.delay_sample_func is None:
         
     | 
| 
      
 1929 
     | 
    
         
            +
                                    self.future_map.store_to_map(future_indices, batch_result)
         
     | 
| 
      
 1930 
     | 
    
         
            +
                                    batch_result.copy_to_cpu()
         
     | 
| 
      
 1931 
     | 
    
         
            +
                                else:
         
     | 
| 
      
 1932 
     | 
    
         
            +
                                    batch_result.future_indices = future_indices
         
     | 
| 
      
 1933 
     | 
    
         
            +
             
     | 
| 
      
 1934 
     | 
    
         
            +
                            # FIXME(lsyin): move this assignment elsewhere
         
     | 
| 
      
 1935 
     | 
    
         
            +
                            future_indices_or_next_token_ids = -future_indices.indices
         
     | 
| 
      
 1936 
     | 
    
         
            +
             
     | 
| 
      
 1937 
     | 
    
         
            +
                            if batch.is_v2_eagle:
         
     | 
| 
      
 1938 
     | 
    
         
            +
                                # FIXME(lsyin): tmp code for eagle v2
         
     | 
| 
      
 1939 
     | 
    
         
            +
                                # We only keep future indices for next draft input
         
     | 
| 
       2061 
1940 
     | 
    
         | 
| 
       2062 
     | 
    
         
            -
             
     | 
| 
       2063 
     | 
    
         
            -
             
     | 
| 
       2064 
     | 
    
         
            -
             
     | 
| 
       2065 
     | 
    
         
            -
                                batch. 
     | 
| 
      
 1941 
     | 
    
         
            +
                                batch.spec_info = batch_result.next_draft_input
         
     | 
| 
      
 1942 
     | 
    
         
            +
                                batch.spec_info.future_indices = future_indices
         
     | 
| 
      
 1943 
     | 
    
         
            +
             
     | 
| 
      
 1944 
     | 
    
         
            +
                                # batch.spec_info = EagleDraftInput(
         
     | 
| 
      
 1945 
     | 
    
         
            +
                                #     future_indices=future_indices,
         
     | 
| 
      
 1946 
     | 
    
         
            +
                                #     verify_done=batch_result.next_draft_input.verify_done,
         
     | 
| 
      
 1947 
     | 
    
         
            +
                                #     # FIXME(lsyin): remove the allocate_lens in EagleDraftInput
         
     | 
| 
      
 1948 
     | 
    
         
            +
                                #     allocate_lens=batch_result.next_draft_input.allocate_lens,
         
     | 
| 
      
 1949 
     | 
    
         
            +
                                # )
         
     | 
| 
      
 1950 
     | 
    
         
            +
             
     | 
| 
      
 1951 
     | 
    
         
            +
                                # The future value, usually for next batch preparation
         
     | 
| 
      
 1952 
     | 
    
         
            +
                                # Current implementation strictly synchronizes the seq_lens
         
     | 
| 
      
 1953 
     | 
    
         
            +
                                batch.seq_lens = batch_result.next_draft_input.new_seq_lens
         
     | 
| 
      
 1954 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 1955 
     | 
    
         
            +
                            batch_result = self.model_worker.forward_batch_generation(
         
     | 
| 
      
 1956 
     | 
    
         
            +
                                batch_or_worker_batch
         
     | 
| 
       2066 
1957 
     | 
    
         
             
                            )
         
     | 
| 
      
 1958 
     | 
    
         
            +
                            future_indices_or_next_token_ids = batch_result.next_token_ids
         
     | 
| 
      
 1959 
     | 
    
         
            +
                            self.update_cache_from_scheduler(batch, batch_result)
         
     | 
| 
       2067 
1960 
     | 
    
         | 
| 
       2068 
     | 
    
         
            -
                        #  
     | 
| 
       2069 
     | 
    
         
            -
                         
     | 
| 
      
 1961 
     | 
    
         
            +
                        # NOTE: future_indices_or_next_token_ids is used in ScheduleBatch,
         
     | 
| 
      
 1962 
     | 
    
         
            +
                        #       which can probably be replaced by future_indices later [TODO(lsyin)].
         
     | 
| 
      
 1963 
     | 
    
         
            +
                        #       we shall still keep the original outputs, e.g. next_token_ids
         
     | 
| 
      
 1964 
     | 
    
         
            +
                        #       in the GenerationBatchOutput for processing after copy_done.
         
     | 
| 
      
 1965 
     | 
    
         
            +
                        batch.output_ids = future_indices_or_next_token_ids
         
     | 
| 
       2070 
1966 
     | 
    
         | 
| 
       2071 
1967 
     | 
    
         
             
                        # These 2 values are needed for processing the output, but the values can be
         
     | 
| 
       2072 
1968 
     | 
    
         
             
                        # modified by overlap schedule. So we have to copy them here so that
         
     | 
| 
         @@ -2083,39 +1979,51 @@ class Scheduler( 
     | 
|
| 
       2083 
1979 
     | 
    
         
             
                        else:
         
     | 
| 
       2084 
1980 
     | 
    
         
             
                            extend_logprob_start_len_per_req = None
         
     | 
| 
       2085 
1981 
     | 
    
         | 
| 
       2086 
     | 
    
         
            -
                         
     | 
| 
       2087 
     | 
    
         
            -
             
     | 
| 
       2088 
     | 
    
         
            -
                             
     | 
| 
       2089 
     | 
    
         
            -
                            extend_logprob_start_len_per_req=extend_logprob_start_len_per_req,
         
     | 
| 
      
 1982 
     | 
    
         
            +
                        batch_result.extend_input_len_per_req = extend_input_len_per_req
         
     | 
| 
      
 1983 
     | 
    
         
            +
                        batch_result.extend_logprob_start_len_per_req = (
         
     | 
| 
      
 1984 
     | 
    
         
            +
                            extend_logprob_start_len_per_req
         
     | 
| 
       2090 
1985 
     | 
    
         
             
                        )
         
     | 
| 
      
 1986 
     | 
    
         
            +
                        return batch_result
         
     | 
| 
       2091 
1987 
     | 
    
         
             
                    else:  # embedding or reward model
         
     | 
| 
       2092 
1988 
     | 
    
         
             
                        model_worker_batch = batch.get_model_worker_batch()
         
     | 
| 
       2093 
1989 
     | 
    
         
             
                        embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
         
     | 
| 
       2094 
1990 
     | 
    
         
             
                        ret = EmbeddingBatchResult(embeddings=embeddings)
         
     | 
| 
       2095 
1991 
     | 
    
         
             
                    return ret
         
     | 
| 
       2096 
1992 
     | 
    
         | 
| 
      
 1993 
     | 
    
         
            +
                def launch_batch_sample_if_needed(
         
     | 
| 
      
 1994 
     | 
    
         
            +
                    self, batch_result: GenerationBatchResult
         
     | 
| 
      
 1995 
     | 
    
         
            +
                ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
         
     | 
| 
      
 1996 
     | 
    
         
            +
                    # TODO(lsyin): make the delayed sample a default behavior after
         
     | 
| 
      
 1997 
     | 
    
         
            +
                    # unifying the forward_batch_generation interface (related to spec V2).
         
     | 
| 
      
 1998 
     | 
    
         
            +
                    if batch_result is None or batch_result.delay_sample_func is None:
         
     | 
| 
      
 1999 
     | 
    
         
            +
                        return
         
     | 
| 
      
 2000 
     | 
    
         
            +
             
     | 
| 
      
 2001 
     | 
    
         
            +
                    with self.forward_stream_ctx:
         
     | 
| 
      
 2002 
     | 
    
         
            +
                        self.forward_stream.wait_stream(self.default_stream)
         
     | 
| 
      
 2003 
     | 
    
         
            +
                        _batch_result = batch_result.delay_sample_func()
         
     | 
| 
      
 2004 
     | 
    
         
            +
                        assert _batch_result is batch_result
         
     | 
| 
      
 2005 
     | 
    
         
            +
                        self.future_map.store_to_map(batch_result.future_indices, batch_result)
         
     | 
| 
      
 2006 
     | 
    
         
            +
                        batch_result.copy_to_cpu()
         
     | 
| 
      
 2007 
     | 
    
         
            +
             
     | 
| 
       2097 
2008 
     | 
    
         
             
                def process_batch_result(
         
     | 
| 
       2098 
2009 
     | 
    
         
             
                    self,
         
     | 
| 
       2099 
2010 
     | 
    
         
             
                    batch: ScheduleBatch,
         
     | 
| 
       2100 
2011 
     | 
    
         
             
                    result: Union[GenerationBatchResult, EmbeddingBatchResult],
         
     | 
| 
       2101 
     | 
    
         
            -
                    launch_done: Optional[threading.Event] = None,
         
     | 
| 
       2102 
2012 
     | 
    
         
             
                ):
         
     | 
| 
       2103 
2013 
     | 
    
         
             
                    if batch.forward_mode.is_decode():
         
     | 
| 
       2104 
     | 
    
         
            -
                        self.process_batch_result_decode(batch, result 
     | 
| 
      
 2014 
     | 
    
         
            +
                        self.process_batch_result_decode(batch, result)
         
     | 
| 
       2105 
2015 
     | 
    
         
             
                        if self.enable_trace:
         
     | 
| 
       2106 
2016 
     | 
    
         
             
                            trace_slice_batch("decode loop", batch.reqs)
         
     | 
| 
       2107 
2017 
     | 
    
         | 
| 
       2108 
2018 
     | 
    
         
             
                    elif batch.forward_mode.is_extend():
         
     | 
| 
       2109 
     | 
    
         
            -
                        self.process_batch_result_prefill(batch, result 
     | 
| 
      
 2019 
     | 
    
         
            +
                        self.process_batch_result_prefill(batch, result)
         
     | 
| 
       2110 
2020 
     | 
    
         
             
                        if self.enable_trace:
         
     | 
| 
       2111 
2021 
     | 
    
         
             
                            trace_slice_batch("prefill", batch.reqs)
         
     | 
| 
       2112 
2022 
     | 
    
         | 
| 
       2113 
2023 
     | 
    
         
             
                    elif batch.forward_mode.is_idle():
         
     | 
| 
       2114 
2024 
     | 
    
         
             
                        if self.enable_overlap:
         
     | 
| 
       2115 
     | 
    
         
            -
                             
     | 
| 
       2116 
     | 
    
         
            -
             
     | 
| 
       2117 
     | 
    
         
            -
                    elif batch.forward_mode.is_dummy_first():
         
     | 
| 
       2118 
     | 
    
         
            -
                        self.set_next_batch_sampling_info_done(batch)
         
     | 
| 
      
 2025 
     | 
    
         
            +
                            if result.copy_done is not None:
         
     | 
| 
      
 2026 
     | 
    
         
            +
                                result.copy_done.synchronize()
         
     | 
| 
       2119 
2027 
     | 
    
         | 
| 
       2120 
2028 
     | 
    
         
             
                    self.maybe_send_health_check_signal()
         
     | 
| 
       2121 
2029 
     | 
    
         | 
| 
         @@ -2125,7 +2033,7 @@ class Scheduler( 
     | 
|
| 
       2125 
2033 
     | 
    
         
             
                        # This is used to prevent the health check signal being blocked by long context prefill.
         
     | 
| 
       2126 
2034 
     | 
    
         
             
                        # However, one minor issue is that this code path does not check the status of detokenizer manager.
         
     | 
| 
       2127 
2035 
     | 
    
         
             
                        self.return_health_check_ct -= 1
         
     | 
| 
       2128 
     | 
    
         
            -
                        self.send_to_tokenizer. 
     | 
| 
      
 2036 
     | 
    
         
            +
                        self.send_to_tokenizer.send_output(HealthCheckOutput())
         
     | 
| 
       2129 
2037 
     | 
    
         | 
| 
       2130 
2038 
     | 
    
         
             
                def prepare_mlp_sync_batch(self, local_batch: ScheduleBatch):
         
     | 
| 
       2131 
2039 
     | 
    
         
             
                    return self.prepare_mlp_sync_batch_raw(
         
     | 
| 
         @@ -2139,6 +2047,7 @@ class Scheduler( 
     | 
|
| 
       2139 
2047 
     | 
    
         
             
                        speculative_num_draft_tokens=self.server_args.speculative_num_draft_tokens,
         
     | 
| 
       2140 
2048 
     | 
    
         
             
                        require_mlp_tp_gather=require_mlp_tp_gather(self.server_args),
         
     | 
| 
       2141 
2049 
     | 
    
         
             
                        disable_overlap_schedule=self.server_args.disable_overlap_schedule,
         
     | 
| 
      
 2050 
     | 
    
         
            +
                        offload_tags=self.offload_tags,
         
     | 
| 
       2142 
2051 
     | 
    
         
             
                    )
         
     | 
| 
       2143 
2052 
     | 
    
         | 
| 
       2144 
2053 
     | 
    
         
             
                @staticmethod
         
     | 
| 
         @@ -2153,6 +2062,7 @@ class Scheduler( 
     | 
|
| 
       2153 
2062 
     | 
    
         
             
                    speculative_num_draft_tokens,
         
     | 
| 
       2154 
2063 
     | 
    
         
             
                    require_mlp_tp_gather: bool,
         
     | 
| 
       2155 
2064 
     | 
    
         
             
                    disable_overlap_schedule: bool,
         
     | 
| 
      
 2065 
     | 
    
         
            +
                    offload_tags: set[str],
         
     | 
| 
       2156 
2066 
     | 
    
         
             
                ):
         
     | 
| 
       2157 
2067 
     | 
    
         
             
                    # Check if other DP workers have running batches
         
     | 
| 
       2158 
2068 
     | 
    
         
             
                    if local_batch is None:
         
     | 
| 
         @@ -2163,15 +2073,18 @@ class Scheduler( 
     | 
|
| 
       2163 
2073 
     | 
    
         
             
                        num_tokens_for_logprob = num_tokens
         
     | 
| 
       2164 
2074 
     | 
    
         
             
                    else:
         
     | 
| 
       2165 
2075 
     | 
    
         
             
                        num_tokens = local_batch.extend_num_tokens
         
     | 
| 
       2166 
     | 
    
         
            -
                         
     | 
| 
       2167 
     | 
    
         
            -
                             
     | 
| 
      
 2076 
     | 
    
         
            +
                        if local_batch.return_logprob:
         
     | 
| 
      
 2077 
     | 
    
         
            +
                            num_tokens_for_logprob = sum(
         
     | 
| 
       2168 
2078 
     | 
    
         
             
                                # We should have at least 1 token for sample in every case.
         
     | 
| 
       2169 
2079 
     | 
    
         
             
                                max(extend_len - logprob_start_len, 1)
         
     | 
| 
       2170 
2080 
     | 
    
         
             
                                for logprob_start_len, extend_len in zip(
         
     | 
| 
       2171 
     | 
    
         
            -
                                    local_batch.extend_logprob_start_lens, 
     | 
| 
      
 2081 
     | 
    
         
            +
                                    local_batch.extend_logprob_start_lens,
         
     | 
| 
      
 2082 
     | 
    
         
            +
                                    local_batch.extend_lens,
         
     | 
| 
       2172 
2083 
     | 
    
         
             
                                )
         
     | 
| 
       2173 
     | 
    
         
            -
                             
     | 
| 
       2174 
     | 
    
         
            -
                         
     | 
| 
      
 2084 
     | 
    
         
            +
                            )
         
     | 
| 
      
 2085 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 2086 
     | 
    
         
            +
                            # When return_logprob = False, only need last token per request
         
     | 
| 
      
 2087 
     | 
    
         
            +
                            num_tokens_for_logprob = local_batch.batch_size()
         
     | 
| 
       2175 
2088 
     | 
    
         | 
| 
       2176 
2089 
     | 
    
         
             
                    if local_batch is None or local_batch.forward_mode.is_decode_or_idle():
         
     | 
| 
       2177 
2090 
     | 
    
         
             
                        can_cuda_graph = 1
         
     | 
| 
         @@ -2183,7 +2096,7 @@ class Scheduler( 
     | 
|
| 
       2183 
2096 
     | 
    
         
             
                    )
         
     | 
| 
       2184 
2097 
     | 
    
         | 
| 
       2185 
2098 
     | 
    
         
             
                    tbo_preparer = TboDPAttentionPreparer()
         
     | 
| 
       2186 
     | 
    
         
            -
                    if disable_overlap_schedule:
         
     | 
| 
      
 2099 
     | 
    
         
            +
                    if len(offload_tags) == 0 and disable_overlap_schedule:
         
     | 
| 
       2187 
2100 
     | 
    
         
             
                        group = tp_group.device_group
         
     | 
| 
       2188 
2101 
     | 
    
         
             
                        device = tp_group.device
         
     | 
| 
       2189 
2102 
     | 
    
         
             
                    else:
         
     | 
| 
         @@ -2325,13 +2238,6 @@ class Scheduler( 
     | 
|
| 
       2325 
2238 
     | 
    
         
             
                        self._add_request_to_queue(req)
         
     | 
| 
       2326 
2239 
     | 
    
         
             
                    self.grammar_queue = self.grammar_queue[num_ready_reqs:]
         
     | 
| 
       2327 
2240 
     | 
    
         | 
| 
       2328 
     | 
    
         
            -
                def set_next_batch_sampling_info_done(self, batch: ScheduleBatch):
         
     | 
| 
       2329 
     | 
    
         
            -
                    if batch.next_batch_sampling_info:
         
     | 
| 
       2330 
     | 
    
         
            -
                        if batch.next_batch_sampling_info.grammars is not None:
         
     | 
| 
       2331 
     | 
    
         
            -
                            batch.next_batch_sampling_info.update_regex_vocab_mask()
         
     | 
| 
       2332 
     | 
    
         
            -
                            self.current_stream.synchronize()
         
     | 
| 
       2333 
     | 
    
         
            -
                        batch.next_batch_sampling_info.sampling_info_done.set()
         
     | 
| 
       2334 
     | 
    
         
            -
             
     | 
| 
       2335 
2241 
     | 
    
         
             
                def watchdog_thread(self):
         
     | 
| 
       2336 
2242 
     | 
    
         
             
                    """A watch dog thread that will try to kill the server itself if one forward batch takes too long."""
         
     | 
| 
       2337 
2243 
     | 
    
         
             
                    self.watchdog_last_forward_ct = 0
         
     | 
| 
         @@ -2419,10 +2325,10 @@ class Scheduler( 
     | 
|
| 
       2419 
2325 
     | 
    
         | 
| 
       2420 
2326 
     | 
    
         
             
                        self.num_generated_tokens = 0
         
     | 
| 
       2421 
2327 
     | 
    
         
             
                        self.forward_ct_decode = 0
         
     | 
| 
       2422 
     | 
    
         
            -
                        self. 
     | 
| 
       2423 
     | 
    
         
            -
                        self. 
     | 
| 
       2424 
     | 
    
         
            -
                        self. 
     | 
| 
       2425 
     | 
    
         
            -
                        self. 
     | 
| 
      
 2328 
     | 
    
         
            +
                        self.spec_num_accepted_tokens = 0
         
     | 
| 
      
 2329 
     | 
    
         
            +
                        self.spec_num_forward_ct = 0
         
     | 
| 
      
 2330 
     | 
    
         
            +
                        self.spec_total_num_accepted_tokens = 0
         
     | 
| 
      
 2331 
     | 
    
         
            +
                        self.spec_total_num_forward_ct = 0
         
     | 
| 
       2426 
2332 
     | 
    
         
             
                        torch.cuda.empty_cache()
         
     | 
| 
       2427 
2333 
     | 
    
         
             
                        logger.info("Cache flushed successfully!")
         
     | 
| 
       2428 
2334 
     | 
    
         
             
                        if_success = True
         
     | 
| 
         @@ -2481,12 +2387,10 @@ class Scheduler( 
     | 
|
| 
       2481 
2387 
     | 
    
         
             
                    )
         
     | 
| 
       2482 
2388 
     | 
    
         | 
| 
       2483 
2389 
     | 
    
         
             
                def get_internal_state(self, recv_req: GetInternalStateReq):
         
     | 
| 
       2484 
     | 
    
         
            -
                    ret =  
     | 
| 
      
 2390 
     | 
    
         
            +
                    ret = vars(get_global_server_args())
         
     | 
| 
       2485 
2391 
     | 
    
         
             
                    ret["last_gen_throughput"] = self.last_gen_throughput
         
     | 
| 
       2486 
2392 
     | 
    
         
             
                    ret["memory_usage"] = {
         
     | 
| 
       2487 
     | 
    
         
            -
                        "weight": round(
         
     | 
| 
       2488 
     | 
    
         
            -
                            self.tp_worker.worker.model_runner.weight_load_mem_usage, 2
         
     | 
| 
       2489 
     | 
    
         
            -
                        ),
         
     | 
| 
      
 2393 
     | 
    
         
            +
                        "weight": round(self.tp_worker.model_runner.weight_load_mem_usage, 2),
         
     | 
| 
       2490 
2394 
     | 
    
         
             
                        "kvcache": round(
         
     | 
| 
       2491 
2395 
     | 
    
         
             
                            self.token_to_kv_pool_allocator.get_kvcache().mem_usage, 2
         
     | 
| 
       2492 
2396 
     | 
    
         
             
                        ),
         
     | 
| 
         @@ -2494,23 +2398,26 @@ class Scheduler( 
     | 
|
| 
       2494 
2398 
     | 
    
         
             
                    }
         
     | 
| 
       2495 
2399 
     | 
    
         | 
| 
       2496 
2400 
     | 
    
         
             
                    ret["memory_usage"]["graph"] = round(
         
     | 
| 
       2497 
     | 
    
         
            -
                        self.tp_worker. 
     | 
| 
      
 2401 
     | 
    
         
            +
                        self.tp_worker.model_runner.graph_mem_usage, 2
         
     | 
| 
       2498 
2402 
     | 
    
         
             
                    )
         
     | 
| 
       2499 
2403 
     | 
    
         | 
| 
       2500 
     | 
    
         
            -
                    if not self.spec_algorithm.is_none() and self. 
     | 
| 
      
 2404 
     | 
    
         
            +
                    if not self.spec_algorithm.is_none() and self.spec_total_num_forward_ct > 0:
         
     | 
| 
       2501 
2405 
     | 
    
         
             
                        ret["avg_spec_accept_length"] = (
         
     | 
| 
       2502 
     | 
    
         
            -
                            self. 
     | 
| 
      
 2406 
     | 
    
         
            +
                            self.spec_total_num_accepted_tokens / self.spec_total_num_forward_ct
         
     | 
| 
       2503 
2407 
     | 
    
         
             
                        )
         
     | 
| 
       2504 
2408 
     | 
    
         
             
                    if RECORD_STEP_TIME:
         
     | 
| 
       2505 
2409 
     | 
    
         
             
                        ret["step_time_dict"] = self.step_time_dict
         
     | 
| 
       2506 
2410 
     | 
    
         | 
| 
      
 2411 
     | 
    
         
            +
                    # This field is not serializable.
         
     | 
| 
      
 2412 
     | 
    
         
            +
                    ret.pop("model_config", None)
         
     | 
| 
      
 2413 
     | 
    
         
            +
             
     | 
| 
       2507 
2414 
     | 
    
         
             
                    return GetInternalStateReqOutput(internal_state=ret)
         
     | 
| 
       2508 
2415 
     | 
    
         | 
| 
       2509 
2416 
     | 
    
         
             
                def set_internal_state(self, recv_req: SetInternalStateReq):
         
     | 
| 
       2510 
2417 
     | 
    
         
             
                    server_args_dict = recv_req.server_args
         
     | 
| 
       2511 
2418 
     | 
    
         
             
                    args_allow_update = set(
         
     | 
| 
       2512 
2419 
     | 
    
         
             
                        [
         
     | 
| 
       2513 
     | 
    
         
            -
                            " 
     | 
| 
      
 2420 
     | 
    
         
            +
                            "pp_max_micro_batch_size",
         
     | 
| 
       2514 
2421 
     | 
    
         
             
                            "speculative_accept_threshold_single",
         
     | 
| 
       2515 
2422 
     | 
    
         
             
                            "speculative_accept_threshold_acc",
         
     | 
| 
       2516 
2423 
     | 
    
         
             
                        ]
         
     | 
| 
         @@ -2521,7 +2428,7 @@ class Scheduler( 
     | 
|
| 
       2521 
2428 
     | 
    
         
             
                            logging.warning(f"Updating {k} is not supported.")
         
     | 
| 
       2522 
2429 
     | 
    
         
             
                            if_success = False
         
     | 
| 
       2523 
2430 
     | 
    
         
             
                            break
         
     | 
| 
       2524 
     | 
    
         
            -
                        elif k == " 
     | 
| 
      
 2431 
     | 
    
         
            +
                        elif k == "pp_max_micro_batch_size" and (
         
     | 
| 
       2525 
2432 
     | 
    
         
             
                            v > self.max_running_requests // self.pp_size or v < 1
         
     | 
| 
       2526 
2433 
     | 
    
         
             
                        ):
         
     | 
| 
       2527 
2434 
     | 
    
         
             
                            logging.warning(
         
     | 
| 
         @@ -2530,18 +2437,18 @@ class Scheduler( 
     | 
|
| 
       2530 
2437 
     | 
    
         
             
                            if_success = False
         
     | 
| 
       2531 
2438 
     | 
    
         
             
                            break
         
     | 
| 
       2532 
2439 
     | 
    
         
             
                    if if_success:
         
     | 
| 
       2533 
     | 
    
         
            -
                        if not self.spec_algorithm.is_none() and self. 
     | 
| 
      
 2440 
     | 
    
         
            +
                        if not self.spec_algorithm.is_none() and self.spec_total_num_forward_ct > 0:
         
     | 
| 
       2534 
2441 
     | 
    
         
             
                            avg_spec_accept_length = (
         
     | 
| 
       2535 
     | 
    
         
            -
                                self. 
     | 
| 
      
 2442 
     | 
    
         
            +
                                self.spec_total_num_accepted_tokens / self.spec_total_num_forward_ct
         
     | 
| 
       2536 
2443 
     | 
    
         
             
                            )
         
     | 
| 
       2537 
2444 
     | 
    
         
             
                            logger.info(f"{avg_spec_accept_length=}")
         
     | 
| 
       2538 
     | 
    
         
            -
                        self. 
     | 
| 
      
 2445 
     | 
    
         
            +
                        self.spec_total_num_accepted_tokens = self.spec_total_num_forward_ct = 0
         
     | 
| 
       2539 
2446 
     | 
    
         
             
                        for k, v in server_args_dict.items():
         
     | 
| 
       2540 
     | 
    
         
            -
                             
     | 
| 
       2541 
     | 
    
         
            -
                        logger.info(f"Global server args updated! { 
     | 
| 
      
 2447 
     | 
    
         
            +
                            setattr(get_global_server_args(), k, v)
         
     | 
| 
      
 2448 
     | 
    
         
            +
                        logger.info(f"Global server args updated! {get_global_server_args()=}")
         
     | 
| 
       2542 
2449 
     | 
    
         
             
                    return SetInternalStateReqOutput(
         
     | 
| 
       2543 
2450 
     | 
    
         
             
                        updated=True,
         
     | 
| 
       2544 
     | 
    
         
            -
                        server_args= 
     | 
| 
      
 2451 
     | 
    
         
            +
                        server_args=vars(get_global_server_args()),
         
     | 
| 
       2545 
2452 
     | 
    
         
             
                    )
         
     | 
| 
       2546 
2453 
     | 
    
         | 
| 
       2547 
2454 
     | 
    
         
             
                def handle_rpc_request(self, recv_req: RpcReqInput):
         
     | 
| 
         @@ -2579,7 +2486,7 @@ class Scheduler( 
     | 
|
| 
       2579 
2486 
     | 
    
         
             
                        if self.enable_hicache_storage:
         
     | 
| 
       2580 
2487 
     | 
    
         
             
                            # to release prefetch events associated with the request
         
     | 
| 
       2581 
2488 
     | 
    
         
             
                            self.tree_cache.release_aborted_request(req.rid)
         
     | 
| 
       2582 
     | 
    
         
            -
                        self.send_to_tokenizer. 
     | 
| 
      
 2489 
     | 
    
         
            +
                        self.send_to_tokenizer.send_output(AbortReq(rid=req.rid), req)
         
     | 
| 
       2583 
2490 
     | 
    
         
             
                        # For disaggregation decode mode, the request in the waiting queue has KV cache allocated.
         
     | 
| 
       2584 
2491 
     | 
    
         
             
                        if self.disaggregation_mode == DisaggregationMode.DECODE:
         
     | 
| 
       2585 
2492 
     | 
    
         
             
                            self.tree_cache.cache_finished_req(req)
         
     | 
| 
         @@ -2663,10 +2570,6 @@ class Scheduler( 
     | 
|
| 
       2663 
2570 
     | 
    
         
             
                    result = self.tp_worker.unload_lora_adapter(recv_req)
         
     | 
| 
       2664 
2571 
     | 
    
         
             
                    return result
         
     | 
| 
       2665 
2572 
     | 
    
         | 
| 
       2666 
     | 
    
         
            -
                def register_multi_tokenizer(self, recv_req: MultiTokenizerRegisterReq):
         
     | 
| 
       2667 
     | 
    
         
            -
                    self.send_to_detokenizer.send_pyobj(recv_req)
         
     | 
| 
       2668 
     | 
    
         
            -
                    return recv_req
         
     | 
| 
       2669 
     | 
    
         
            -
             
     | 
| 
       2670 
2573 
     | 
    
         
             
                def init_weights_send_group_for_remote_instance(
         
     | 
| 
       2671 
2574 
     | 
    
         
             
                    self, recv_req: InitWeightsSendGroupForRemoteInstanceReqInput
         
     | 
| 
       2672 
2575 
     | 
    
         
             
                ):
         
     | 
| 
         @@ -2745,7 +2648,7 @@ class Scheduler( 
     | 
|
| 
       2745 
2648 
     | 
    
         
             
                def handle_freeze_gc(self, recv_req: FreezeGCReq):
         
     | 
| 
       2746 
2649 
     | 
    
         
             
                    """Handle freeze_gc request: freeze scheduler's GC and forward to detokenizer."""
         
     | 
| 
       2747 
2650 
     | 
    
         
             
                    freeze_gc("Scheduler")
         
     | 
| 
       2748 
     | 
    
         
            -
                    self.send_to_detokenizer. 
     | 
| 
      
 2651 
     | 
    
         
            +
                    self.send_to_detokenizer.send_output(recv_req, recv_req)
         
     | 
| 
       2749 
2652 
     | 
    
         
             
                    return None
         
     | 
| 
       2750 
2653 
     | 
    
         | 
| 
       2751 
2654 
     | 
    
         | 
| 
         @@ -2767,12 +2670,13 @@ class IdleSleeper: 
     | 
|
| 
       2767 
2670 
     | 
    
         
             
                    for s in sockets:
         
     | 
| 
       2768 
2671 
     | 
    
         
             
                        self.poller.register(s, zmq.POLLIN)
         
     | 
| 
       2769 
2672 
     | 
    
         | 
| 
      
 2673 
     | 
    
         
            +
                    self.empty_cache_interval = envs.SGLANG_EMPTY_CACHE_INTERVAL.get()
         
     | 
| 
      
 2674 
     | 
    
         
            +
             
     | 
| 
       2770 
2675 
     | 
    
         
             
                def maybe_sleep(self):
         
     | 
| 
       2771 
2676 
     | 
    
         
             
                    self.poller.poll(1000)
         
     | 
| 
       2772 
2677 
     | 
    
         
             
                    if (
         
     | 
| 
       2773 
     | 
    
         
            -
                         
     | 
| 
       2774 
     | 
    
         
            -
                        and time.time() - self.last_empty_time
         
     | 
| 
       2775 
     | 
    
         
            -
                        > global_config.torch_empty_cache_interval
         
     | 
| 
      
 2678 
     | 
    
         
            +
                        self.empty_cache_interval > 0
         
     | 
| 
      
 2679 
     | 
    
         
            +
                        and time.time() - self.last_empty_time > self.empty_cache_interval
         
     | 
| 
       2776 
2680 
     | 
    
         
             
                    ):
         
     | 
| 
       2777 
2681 
     | 
    
         
             
                        self.last_empty_time = time.time()
         
     | 
| 
       2778 
2682 
     | 
    
         
             
                        torch.cuda.empty_cache()
         
     | 
| 
         @@ -2831,7 +2735,9 @@ def run_scheduler_process( 
     | 
|
| 
       2831 
2735 
     | 
    
         | 
| 
       2832 
2736 
     | 
    
         
             
                # Set cpu affinity to this gpu process
         
     | 
| 
       2833 
2737 
     | 
    
         
             
                if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
         
     | 
| 
       2834 
     | 
    
         
            -
                    set_gpu_proc_affinity( 
     | 
| 
      
 2738 
     | 
    
         
            +
                    set_gpu_proc_affinity(
         
     | 
| 
      
 2739 
     | 
    
         
            +
                        server_args.pp_size, server_args.tp_size, server_args.nnodes, gpu_id
         
     | 
| 
      
 2740 
     | 
    
         
            +
                    )
         
     | 
| 
       2835 
2741 
     | 
    
         
             
                if (numa_node := server_args.numa_node) is not None:
         
     | 
| 
       2836 
2742 
     | 
    
         
             
                    numa_bind_to_node(numa_node[gpu_id])
         
     | 
| 
       2837 
2743 
     | 
    
         |