sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -1,59 +1,35 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            from __future__ import annotations
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
3 
     | 
    
         
             
            import logging
         
     | 
| 
       4 
     | 
    
         
            -
            from  
     | 
| 
       5 
     | 
    
         
            -
            from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
         
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import TYPE_CHECKING, Any, Dict, Optional, Union
         
     | 
| 
       6 
5 
     | 
    
         | 
| 
       7 
6 
     | 
    
         
             
            import torch
         
     | 
| 
       8 
     | 
    
         
            -
            import triton
         
     | 
| 
       9 
     | 
    
         
            -
            import triton.language as tl
         
     | 
| 
       10 
7 
     | 
    
         | 
| 
       11 
     | 
    
         
            -
            from sglang.srt 
     | 
| 
      
 8 
     | 
    
         
            +
            from sglang.srt import single_batch_overlap
         
     | 
| 
      
 9 
     | 
    
         
            +
            from sglang.srt.layers import deep_gemm_wrapper
         
     | 
| 
       12 
10 
     | 
    
         
             
            from sglang.srt.layers.moe import (
         
     | 
| 
       13 
11 
     | 
    
         
             
                get_deepep_mode,
         
     | 
| 
       14 
12 
     | 
    
         
             
                get_moe_a2a_backend,
         
     | 
| 
       15 
13 
     | 
    
         
             
                get_moe_runner_backend,
         
     | 
| 
       16 
14 
     | 
    
         
             
                should_use_flashinfer_trtllm_moe,
         
     | 
| 
       17 
15 
     | 
    
         
             
            )
         
     | 
| 
       18 
     | 
    
         
            -
            from sglang.srt.layers.moe.ep_moe.kernels import (
         
     | 
| 
       19 
     | 
    
         
            -
                ep_gather,
         
     | 
| 
       20 
     | 
    
         
            -
                ep_scatter,
         
     | 
| 
       21 
     | 
    
         
            -
                moe_ep_deepgemm_preprocess,
         
     | 
| 
       22 
     | 
    
         
            -
                post_reorder_triton_kernel,
         
     | 
| 
       23 
     | 
    
         
            -
                silu_and_mul_masked_post_quant_fwd,
         
     | 
| 
       24 
     | 
    
         
            -
                tma_align_input_scale,
         
     | 
| 
       25 
     | 
    
         
            -
            )
         
     | 
| 
       26 
16 
     | 
    
         
             
            from sglang.srt.layers.moe.fused_moe_triton.layer import FlashInferFusedMoE, FusedMoE
         
     | 
| 
      
 17 
     | 
    
         
            +
            from sglang.srt.layers.moe.token_dispatcher.deepep import (
         
     | 
| 
      
 18 
     | 
    
         
            +
                DeepEPLLCombineInput,
         
     | 
| 
      
 19 
     | 
    
         
            +
                DeepEPNormalCombineInput,
         
     | 
| 
      
 20 
     | 
    
         
            +
            )
         
     | 
| 
       27 
21 
     | 
    
         
             
            from sglang.srt.layers.moe.topk import TopKOutput
         
     | 
| 
       28 
     | 
    
         
            -
            from sglang.srt.layers.quantization import deep_gemm_wrapper
         
     | 
| 
       29 
22 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
       30 
23 
     | 
    
         
             
            from sglang.srt.layers.quantization.fp8 import Fp8Config
         
     | 
| 
       31 
     | 
    
         
            -
            from sglang.srt.layers.quantization.fp8_kernel import  
     | 
| 
       32 
     | 
    
         
            -
             
     | 
| 
       33 
     | 
    
         
            -
                sglang_per_token_group_quant_fp8,
         
     | 
| 
       34 
     | 
    
         
            -
            )
         
     | 
| 
       35 
     | 
    
         
            -
            from sglang.srt.layers.quantization.modelopt_quant import (
         
     | 
| 
       36 
     | 
    
         
            -
                CUTEDSL_MOE_NVFP4_DISPATCH,
         
     | 
| 
       37 
     | 
    
         
            -
                ModelOptNvFp4FusedMoEMethod,
         
     | 
| 
       38 
     | 
    
         
            -
            )
         
     | 
| 
       39 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       40 
     | 
    
         
            -
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
       41 
     | 
    
         
            -
            from sglang.srt.offloader import get_offloader
         
     | 
| 
      
 24 
     | 
    
         
            +
            from sglang.srt.layers.quantization.fp8_kernel import is_fp8_fnuz
         
     | 
| 
      
 25 
     | 
    
         
            +
            from sglang.srt.layers.quantization.w4afp8 import W4AFp8Config, W4AFp8MoEMethod
         
     | 
| 
       42 
26 
     | 
    
         
             
            from sglang.srt.single_batch_overlap import DownGemmOverlapArgs
         
     | 
| 
       43 
     | 
    
         
            -
            from sglang.srt.utils import  
     | 
| 
       44 
     | 
    
         
            -
                ceil_div,
         
     | 
| 
       45 
     | 
    
         
            -
                dispose_tensor,
         
     | 
| 
       46 
     | 
    
         
            -
                get_bool_env_var,
         
     | 
| 
       47 
     | 
    
         
            -
                get_int_env_var,
         
     | 
| 
       48 
     | 
    
         
            -
                is_cuda,
         
     | 
| 
       49 
     | 
    
         
            -
                is_hip,
         
     | 
| 
       50 
     | 
    
         
            -
                is_npu,
         
     | 
| 
       51 
     | 
    
         
            -
            )
         
     | 
| 
      
 27 
     | 
    
         
            +
            from sglang.srt.utils import get_bool_env_var, is_hip, is_npu
         
     | 
| 
       52 
28 
     | 
    
         | 
| 
       53 
29 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       54 
30 
     | 
    
         
             
                from sglang.srt.layers.moe.token_dispatcher import (
         
     | 
| 
       55 
     | 
    
         
            -
                     
     | 
| 
       56 
     | 
    
         
            -
                     
     | 
| 
      
 31 
     | 
    
         
            +
                    DeepEPLLDispatchOutput,
         
     | 
| 
      
 32 
     | 
    
         
            +
                    DeepEPNormalDispatchOutput,
         
     | 
| 
       57 
33 
     | 
    
         
             
                    DispatchOutput,
         
     | 
| 
       58 
34 
     | 
    
         
             
                )
         
     | 
| 
       59 
35 
     | 
    
         | 
| 
         @@ -63,7 +39,7 @@ _is_fp8_fnuz = is_fp8_fnuz() 
     | 
|
| 
       63 
39 
     | 
    
         
             
            _use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
         
     | 
| 
       64 
40 
     | 
    
         | 
| 
       65 
41 
     | 
    
         
             
            if not (_is_npu or _is_hip):
         
     | 
| 
       66 
     | 
    
         
            -
                 
     | 
| 
      
 42 
     | 
    
         
            +
                pass
         
     | 
| 
       67 
43 
     | 
    
         | 
| 
       68 
44 
     | 
    
         
             
            if _use_aiter:
         
     | 
| 
       69 
45 
     | 
    
         
             
                from aiter import ActivationType, QuantType
         
     | 
| 
         @@ -72,29 +48,14 @@ if _use_aiter: 
     | 
|
| 
       72 
48 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       73 
49 
     | 
    
         | 
| 
       74 
50 
     | 
    
         | 
| 
       75 
     | 
    
         
            -
             
     | 
| 
       76 
     | 
    
         
            -
            # `fill_gateup_input_triton_kernel` to directly generate e8m0 scale.
         
     | 
| 
       77 
     | 
    
         
            -
            @torch.compile
         
     | 
| 
       78 
     | 
    
         
            -
            def _cast_to_e8m0_with_rounding_up(x: torch.Tensor) -> torch.Tensor:
         
     | 
| 
       79 
     | 
    
         
            -
                temp = x.to(torch.float32).view(torch.int32)
         
     | 
| 
       80 
     | 
    
         
            -
                exp = torch.bitwise_right_shift(temp, 23)
         
     | 
| 
       81 
     | 
    
         
            -
                mant = torch.bitwise_and(temp, 0x7FFFFF)
         
     | 
| 
       82 
     | 
    
         
            -
                is_ru = torch.logical_and(
         
     | 
| 
       83 
     | 
    
         
            -
                    torch.logical_and((mant > 0), (exp != 0xFE)),
         
     | 
| 
       84 
     | 
    
         
            -
                    ~torch.logical_and((exp == 0), (mant <= 0x400000)),
         
     | 
| 
       85 
     | 
    
         
            -
                )
         
     | 
| 
       86 
     | 
    
         
            -
                exp = torch.where(is_ru, exp + 1, exp)
         
     | 
| 
       87 
     | 
    
         
            -
                new_x = exp.to(torch.uint8).view(torch.int)
         
     | 
| 
       88 
     | 
    
         
            -
                return new_x.transpose(1, 2).contiguous().transpose(1, 2)
         
     | 
| 
       89 
     | 
    
         
            -
             
     | 
| 
       90 
     | 
    
         
            -
             
     | 
| 
       91 
     | 
    
         
            -
            class EPMoE(FusedMoE):
         
     | 
| 
      
 51 
     | 
    
         
            +
            class DeepEPMoE(FusedMoE):
         
     | 
| 
       92 
52 
     | 
    
         
             
                """
         
     | 
| 
       93 
     | 
    
         
            -
                MoE Expert Parallel Impl
         
     | 
| 
       94 
     | 
    
         
            -
             
     | 
| 
       95 
     | 
    
         
            -
             
     | 
| 
      
 53 
     | 
    
         
            +
                MoE Expert Parallel Impl based on DeepEP (https://github.com/deepseek-ai/DeepEP/tree/main)
         
     | 
| 
      
 54 
     | 
    
         
            +
                Mooncake EP shares the same class, as they expose the same interface.
         
     | 
| 
       96 
55 
     | 
    
         
             
                """
         
     | 
| 
       97 
56 
     | 
    
         | 
| 
      
 57 
     | 
    
         
            +
                _has_printed = False
         
     | 
| 
      
 58 
     | 
    
         
            +
             
     | 
| 
       98 
59 
     | 
    
         
             
                def __init__(
         
     | 
| 
       99 
60 
     | 
    
         
             
                    self,
         
     | 
| 
       100 
61 
     | 
    
         
             
                    num_experts: int,
         
     | 
| 
         @@ -108,291 +69,50 @@ class EPMoE(FusedMoE): 
     | 
|
| 
       108 
69 
     | 
    
         
             
                    prefix: str = "",
         
     | 
| 
       109 
70 
     | 
    
         
             
                    activation: str = "silu",
         
     | 
| 
       110 
71 
     | 
    
         
             
                    routed_scaling_factor: Optional[float] = None,
         
     | 
| 
       111 
     | 
    
         
            -
                    gemm1_alpha: Optional[float] = None,
         
     | 
| 
       112 
     | 
    
         
            -
                    gemm1_clamp_limit: Optional[float] = None,
         
     | 
| 
       113 
     | 
    
         
            -
                    with_bias: bool = False,
         
     | 
| 
       114 
72 
     | 
    
         
             
                ):
         
     | 
| 
       115 
73 
     | 
    
         
             
                    super().__init__(
         
     | 
| 
       116 
74 
     | 
    
         
             
                        num_experts=num_experts,
         
     | 
| 
      
 75 
     | 
    
         
            +
                        top_k=top_k,
         
     | 
| 
       117 
76 
     | 
    
         
             
                        hidden_size=hidden_size,
         
     | 
| 
       118 
77 
     | 
    
         
             
                        intermediate_size=intermediate_size,
         
     | 
| 
       119 
     | 
    
         
            -
                        num_fused_shared_experts=num_fused_shared_experts,
         
     | 
| 
       120 
78 
     | 
    
         
             
                        layer_id=layer_id,
         
     | 
| 
       121 
     | 
    
         
            -
                         
     | 
| 
      
 79 
     | 
    
         
            +
                        num_fused_shared_experts=num_fused_shared_experts,
         
     | 
| 
       122 
80 
     | 
    
         
             
                        params_dtype=params_dtype,
         
     | 
| 
       123 
81 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
       124 
82 
     | 
    
         
             
                        prefix=prefix,
         
     | 
| 
       125 
83 
     | 
    
         
             
                        activation=activation,
         
     | 
| 
       126 
     | 
    
         
            -
                        # apply_router_weight_on_input=apply_router_weight_on_input,
         
     | 
| 
       127 
84 
     | 
    
         
             
                        routed_scaling_factor=routed_scaling_factor,
         
     | 
| 
       128 
     | 
    
         
            -
                        gemm1_alpha=gemm1_alpha,
         
     | 
| 
       129 
     | 
    
         
            -
                        gemm1_clamp_limit=gemm1_clamp_limit,
         
     | 
| 
       130 
     | 
    
         
            -
                        with_bias=with_bias,
         
     | 
| 
       131 
85 
     | 
    
         
             
                    )
         
     | 
| 
       132 
86 
     | 
    
         | 
| 
       133 
     | 
    
         
            -
                     
     | 
| 
      
 87 
     | 
    
         
            +
                    if _use_aiter or _is_npu:
         
     | 
| 
      
 88 
     | 
    
         
            +
                        self.deprecate_flag = False
         
     | 
| 
      
 89 
     | 
    
         
            +
                    elif deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM and isinstance(
         
     | 
| 
      
 90 
     | 
    
         
            +
                        quant_config, Fp8Config
         
     | 
| 
      
 91 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 92 
     | 
    
         
            +
                        self.deprecate_flag = True
         
     | 
| 
      
 93 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 94 
     | 
    
         
            +
                        self.deprecate_flag = False
         
     | 
| 
      
 95 
     | 
    
         
            +
             
     | 
| 
      
 96 
     | 
    
         
            +
                    if self.deprecate_flag:
         
     | 
| 
      
 97 
     | 
    
         
            +
                        return
         
     | 
| 
       134 
98 
     | 
    
         | 
| 
       135 
99 
     | 
    
         
             
                    if isinstance(quant_config, Fp8Config):
         
     | 
| 
       136 
100 
     | 
    
         
             
                        self.use_block_quant = getattr(self.quant_method, "block_quant", False)
         
     | 
| 
       137 
     | 
    
         
            -
                        self.block_shape = (
         
     | 
| 
       138 
     | 
    
         
            -
                            self.quant_method.quant_config.weight_block_size
         
     | 
| 
       139 
     | 
    
         
            -
                            if self.use_block_quant
         
     | 
| 
       140 
     | 
    
         
            -
                            else None
         
     | 
| 
       141 
     | 
    
         
            -
                        )
         
     | 
| 
       142 
101 
     | 
    
         
             
                        self.use_fp8_w8a8 = True
         
     | 
| 
       143 
102 
     | 
    
         
             
                        self.fp8_dtype = torch.float8_e4m3fn
         
     | 
| 
       144 
     | 
    
         
            -
                        self. 
     | 
| 
       145 
     | 
    
         
            -
                     
     | 
| 
      
 103 
     | 
    
         
            +
                        self.use_w4afp8 = False
         
     | 
| 
      
 104 
     | 
    
         
            +
                    elif isinstance(quant_config, W4AFp8Config):
         
     | 
| 
      
 105 
     | 
    
         
            +
                        self.use_w4afp8 = True
         
     | 
| 
       146 
106 
     | 
    
         
             
                        self.use_fp8_w8a8 = False
         
     | 
| 
       147 
107 
     | 
    
         
             
                        self.use_block_quant = False
         
     | 
| 
       148 
     | 
    
         
            -
                        self.block_shape = None
         
     | 
| 
       149 
     | 
    
         
            -
                        self.activation_scheme = None
         
     | 
| 
       150 
     | 
    
         
            -
             
     | 
| 
       151 
     | 
    
         
            -
                def forward(self, hidden_states: torch.Tensor, topk_output: TopKOutput):
         
     | 
| 
       152 
     | 
    
         
            -
                    if deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM and self.use_fp8_w8a8:
         
     | 
| 
       153 
     | 
    
         
            -
                        return self.forward_deepgemm(hidden_states, topk_output)
         
     | 
| 
       154 
108 
     | 
    
         
             
                    else:
         
     | 
| 
       155 
     | 
    
         
            -
                         
     | 
| 
       156 
     | 
    
         
            -
             
     | 
| 
       157 
     | 
    
         
            -
             
     | 
| 
       158 
     | 
    
         
            -
             
     | 
| 
       159 
     | 
    
         
            -
                    hidden_states: torch.Tensor,
         
     | 
| 
       160 
     | 
    
         
            -
                    topk_output: TopKOutput,
         
     | 
| 
       161 
     | 
    
         
            -
                ):
         
     | 
| 
       162 
     | 
    
         
            -
             
     | 
| 
       163 
     | 
    
         
            -
                    self.w13_weight_fp8 = (
         
     | 
| 
       164 
     | 
    
         
            -
                        self.w13_weight,
         
     | 
| 
       165 
     | 
    
         
            -
                        (
         
     | 
| 
       166 
     | 
    
         
            -
                            self.w13_weight_scale_inv
         
     | 
| 
       167 
     | 
    
         
            -
                            if self.use_block_quant
         
     | 
| 
       168 
     | 
    
         
            -
                            else self.w13_weight_scale
         
     | 
| 
       169 
     | 
    
         
            -
                        ),
         
     | 
| 
       170 
     | 
    
         
            -
                    )
         
     | 
| 
       171 
     | 
    
         
            -
                    self.w2_weight_fp8 = (
         
     | 
| 
       172 
     | 
    
         
            -
                        self.w2_weight,
         
     | 
| 
       173 
     | 
    
         
            -
                        self.w2_weight_scale_inv if self.use_block_quant else self.w2_weight_scale,
         
     | 
| 
       174 
     | 
    
         
            -
                    )
         
     | 
| 
       175 
     | 
    
         
            -
             
     | 
| 
       176 
     | 
    
         
            -
                    assert self.quant_method is not None
         
     | 
| 
       177 
     | 
    
         
            -
                    assert self.moe_runner_config.activation == "silu"
         
     | 
| 
       178 
     | 
    
         
            -
             
     | 
| 
       179 
     | 
    
         
            -
                    hidden_states_shape = hidden_states.shape
         
     | 
| 
       180 
     | 
    
         
            -
                    hidden_states_dtype = hidden_states.dtype
         
     | 
| 
       181 
     | 
    
         
            -
                    hidden_states_device = hidden_states.device
         
     | 
| 
       182 
     | 
    
         
            -
             
     | 
| 
       183 
     | 
    
         
            -
                    topk_weights, topk_ids, _ = topk_output
         
     | 
| 
       184 
     | 
    
         
            -
             
     | 
| 
       185 
     | 
    
         
            -
                    if not self.use_block_quant:
         
     | 
| 
       186 
     | 
    
         
            -
                        # Convert per-tensor quant to per-block quant by repeating scales for forward_deepgemm
         
     | 
| 
       187 
     | 
    
         
            -
                        scale_block_size = 128
         
     | 
| 
       188 
     | 
    
         
            -
                        w13_weight_scale_n = 2 * (
         
     | 
| 
       189 
     | 
    
         
            -
                            (self.intermediate_size + scale_block_size - 1) // scale_block_size
         
     | 
| 
       190 
     | 
    
         
            -
                        )
         
     | 
| 
       191 
     | 
    
         
            -
                        w13_weight_scale_k = (
         
     | 
| 
       192 
     | 
    
         
            -
                            hidden_states_shape[-1] + scale_block_size - 1
         
     | 
| 
       193 
     | 
    
         
            -
                        ) // scale_block_size
         
     | 
| 
       194 
     | 
    
         
            -
                        w13_weight_scale = (
         
     | 
| 
       195 
     | 
    
         
            -
                            self.w13_weight_scale.unsqueeze(1)
         
     | 
| 
       196 
     | 
    
         
            -
                            .repeat_interleave(w13_weight_scale_n, dim=1)
         
     | 
| 
       197 
     | 
    
         
            -
                            .unsqueeze(2)
         
     | 
| 
       198 
     | 
    
         
            -
                            .repeat_interleave(w13_weight_scale_k, dim=2)
         
     | 
| 
       199 
     | 
    
         
            -
                        )
         
     | 
| 
       200 
     | 
    
         
            -
                        self.w13_weight_fp8 = (
         
     | 
| 
       201 
     | 
    
         
            -
                            self.w13_weight,
         
     | 
| 
       202 
     | 
    
         
            -
                            w13_weight_scale,
         
     | 
| 
       203 
     | 
    
         
            -
                        )
         
     | 
| 
       204 
     | 
    
         
            -
                        w2_weight_scale_n = (
         
     | 
| 
       205 
     | 
    
         
            -
                            hidden_states_shape[-1] + scale_block_size - 1
         
     | 
| 
       206 
     | 
    
         
            -
                        ) // scale_block_size
         
     | 
| 
       207 
     | 
    
         
            -
                        w2_weight_scale_k = (
         
     | 
| 
       208 
     | 
    
         
            -
                            self.intermediate_size + scale_block_size - 1
         
     | 
| 
       209 
     | 
    
         
            -
                        ) // scale_block_size
         
     | 
| 
       210 
     | 
    
         
            -
                        w2_weight_scale = (
         
     | 
| 
       211 
     | 
    
         
            -
                            self.w2_weight_scale.unsqueeze(1)
         
     | 
| 
       212 
     | 
    
         
            -
                            .repeat_interleave(w2_weight_scale_n, dim=1)
         
     | 
| 
       213 
     | 
    
         
            -
                            .unsqueeze(2)
         
     | 
| 
       214 
     | 
    
         
            -
                            .repeat_interleave(w2_weight_scale_k, dim=2)
         
     | 
| 
       215 
     | 
    
         
            -
                        )
         
     | 
| 
       216 
     | 
    
         
            -
                        self.w2_weight_fp8 = (
         
     | 
| 
       217 
     | 
    
         
            -
                            self.w2_weight,
         
     | 
| 
       218 
     | 
    
         
            -
                            w2_weight_scale,
         
     | 
| 
       219 
     | 
    
         
            -
                        )
         
     | 
| 
       220 
     | 
    
         
            -
             
     | 
| 
       221 
     | 
    
         
            -
                    # PreReorder
         
     | 
| 
       222 
     | 
    
         
            -
                    m_max, masked_m, expected_m, src2dst, gateup_input, gateup_input_scale = (
         
     | 
| 
       223 
     | 
    
         
            -
                        moe_ep_deepgemm_preprocess(
         
     | 
| 
       224 
     | 
    
         
            -
                            topk_ids,
         
     | 
| 
       225 
     | 
    
         
            -
                            self.num_experts,
         
     | 
| 
       226 
     | 
    
         
            -
                            hidden_states,
         
     | 
| 
       227 
     | 
    
         
            -
                            self.top_k,
         
     | 
| 
       228 
     | 
    
         
            -
                            self.start_expert_id,
         
     | 
| 
       229 
     | 
    
         
            -
                            self.end_expert_id,
         
     | 
| 
       230 
     | 
    
         
            -
                            self.block_shape,
         
     | 
| 
       231 
     | 
    
         
            -
                        )
         
     | 
| 
       232 
     | 
    
         
            -
                    )
         
     | 
| 
       233 
     | 
    
         
            -
             
     | 
| 
       234 
     | 
    
         
            -
                    dispose_tensor(hidden_states)
         
     | 
| 
       235 
     | 
    
         
            -
             
     | 
| 
       236 
     | 
    
         
            -
                    if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0:
         
     | 
| 
       237 
     | 
    
         
            -
                        b, s_mn, s_k = gateup_input_scale.shape
         
     | 
| 
       238 
     | 
    
         
            -
                        assert (
         
     | 
| 
       239 
     | 
    
         
            -
                            s_mn % 4 == 0 and s_k % 4 == 0
         
     | 
| 
       240 
     | 
    
         
            -
                        ), f"scales must be aligned to 4, but got ({b}, {s_mn}, {s_k})"
         
     | 
| 
       241 
     | 
    
         
            -
             
     | 
| 
       242 
     | 
    
         
            -
                    # GroupGemm-0
         
     | 
| 
       243 
     | 
    
         
            -
                    gateup_input_fp8 = (
         
     | 
| 
       244 
     | 
    
         
            -
                        gateup_input,
         
     | 
| 
       245 
     | 
    
         
            -
                        (
         
     | 
| 
       246 
     | 
    
         
            -
                            _cast_to_e8m0_with_rounding_up(gateup_input_scale)
         
     | 
| 
       247 
     | 
    
         
            -
                            if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
         
     | 
| 
       248 
     | 
    
         
            -
                            else deep_gemm_wrapper.get_mn_major_tma_aligned_tensor(
         
     | 
| 
       249 
     | 
    
         
            -
                                gateup_input_scale
         
     | 
| 
       250 
     | 
    
         
            -
                            )
         
     | 
| 
       251 
     | 
    
         
            -
                        ),
         
     | 
| 
       252 
     | 
    
         
            -
                    )
         
     | 
| 
       253 
     | 
    
         
            -
                    num_groups, m, k = gateup_input_fp8[0].size()
         
     | 
| 
       254 
     | 
    
         
            -
                    n = self.w13_weight.size(1)
         
     | 
| 
       255 
     | 
    
         
            -
                    gateup_output = torch.empty(
         
     | 
| 
       256 
     | 
    
         
            -
                        (num_groups, m, n), device=hidden_states_device, dtype=torch.bfloat16
         
     | 
| 
       257 
     | 
    
         
            -
                    )
         
     | 
| 
       258 
     | 
    
         
            -
                    deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
         
     | 
| 
       259 
     | 
    
         
            -
                        gateup_input_fp8,
         
     | 
| 
       260 
     | 
    
         
            -
                        self.w13_weight_fp8,
         
     | 
| 
       261 
     | 
    
         
            -
                        gateup_output,
         
     | 
| 
       262 
     | 
    
         
            -
                        masked_m,
         
     | 
| 
       263 
     | 
    
         
            -
                        expected_m,
         
     | 
| 
       264 
     | 
    
         
            -
                    )
         
     | 
| 
       265 
     | 
    
         
            -
                    del gateup_input
         
     | 
| 
       266 
     | 
    
         
            -
                    del gateup_input_fp8
         
     | 
| 
       267 
     | 
    
         
            -
             
     | 
| 
       268 
     | 
    
         
            -
                    # Act
         
     | 
| 
       269 
     | 
    
         
            -
                    down_input = torch.empty(
         
     | 
| 
       270 
     | 
    
         
            -
                        (
         
     | 
| 
       271 
     | 
    
         
            -
                            gateup_output.shape[0],
         
     | 
| 
       272 
     | 
    
         
            -
                            gateup_output.shape[1],
         
     | 
| 
       273 
     | 
    
         
            -
                            gateup_output.shape[2] // 2,
         
     | 
| 
       274 
     | 
    
         
            -
                        ),
         
     | 
| 
       275 
     | 
    
         
            -
                        device=hidden_states_device,
         
     | 
| 
       276 
     | 
    
         
            -
                        dtype=self.fp8_dtype,
         
     | 
| 
       277 
     | 
    
         
            -
                    )
         
     | 
| 
       278 
     | 
    
         
            -
                    scale_block_size = 128
         
     | 
| 
       279 
     | 
    
         
            -
                    down_input_scale = torch.empty(
         
     | 
| 
       280 
     | 
    
         
            -
                        (
         
     | 
| 
       281 
     | 
    
         
            -
                            gateup_output.shape[0],
         
     | 
| 
       282 
     | 
    
         
            -
                            gateup_output.shape[1],
         
     | 
| 
       283 
     | 
    
         
            -
                            gateup_output.shape[2] // 2 // scale_block_size,
         
     | 
| 
       284 
     | 
    
         
            -
                        ),
         
     | 
| 
       285 
     | 
    
         
            -
                        device=hidden_states_device,
         
     | 
| 
       286 
     | 
    
         
            -
                        dtype=torch.float32,
         
     | 
| 
       287 
     | 
    
         
            -
                    )
         
     | 
| 
       288 
     | 
    
         
            -
                    silu_and_mul_masked_post_quant_fwd(
         
     | 
| 
       289 
     | 
    
         
            -
                        gateup_output,
         
     | 
| 
       290 
     | 
    
         
            -
                        down_input,
         
     | 
| 
       291 
     | 
    
         
            -
                        down_input_scale,
         
     | 
| 
       292 
     | 
    
         
            -
                        scale_block_size,
         
     | 
| 
       293 
     | 
    
         
            -
                        masked_m,
         
     | 
| 
       294 
     | 
    
         
            -
                        scale_ue8m0=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
       295 
     | 
    
         
            -
                    )
         
     | 
| 
       296 
     | 
    
         
            -
                    del gateup_output
         
     | 
| 
       297 
     | 
    
         
            -
             
     | 
| 
       298 
     | 
    
         
            -
                    # GroupGemm-1
         
     | 
| 
       299 
     | 
    
         
            -
                    n = self.w2_weight.size(1)
         
     | 
| 
       300 
     | 
    
         
            -
                    down_input_fp8 = (
         
     | 
| 
       301 
     | 
    
         
            -
                        down_input,
         
     | 
| 
       302 
     | 
    
         
            -
                        (
         
     | 
| 
       303 
     | 
    
         
            -
                            down_input_scale
         
     | 
| 
       304 
     | 
    
         
            -
                            if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
         
     | 
| 
       305 
     | 
    
         
            -
                            else deep_gemm_wrapper.get_mn_major_tma_aligned_tensor(down_input_scale)
         
     | 
| 
       306 
     | 
    
         
            -
                        ),
         
     | 
| 
       307 
     | 
    
         
            -
                    )
         
     | 
| 
       308 
     | 
    
         
            -
                    down_output = torch.empty(
         
     | 
| 
       309 
     | 
    
         
            -
                        (num_groups, m, n), device=hidden_states_device, dtype=torch.bfloat16
         
     | 
| 
       310 
     | 
    
         
            -
                    )
         
     | 
| 
       311 
     | 
    
         
            -
                    deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
         
     | 
| 
       312 
     | 
    
         
            -
                        down_input_fp8,
         
     | 
| 
       313 
     | 
    
         
            -
                        self.w2_weight_fp8,
         
     | 
| 
       314 
     | 
    
         
            -
                        down_output,
         
     | 
| 
       315 
     | 
    
         
            -
                        masked_m,
         
     | 
| 
       316 
     | 
    
         
            -
                        expected_m,
         
     | 
| 
       317 
     | 
    
         
            -
                    )
         
     | 
| 
       318 
     | 
    
         
            -
                    del down_input
         
     | 
| 
       319 
     | 
    
         
            -
                    del down_input_fp8
         
     | 
| 
       320 
     | 
    
         
            -
             
     | 
| 
       321 
     | 
    
         
            -
                    # PostReorder
         
     | 
| 
       322 
     | 
    
         
            -
                    output = torch.empty(
         
     | 
| 
       323 
     | 
    
         
            -
                        hidden_states_shape, dtype=hidden_states_dtype, device=hidden_states_device
         
     | 
| 
       324 
     | 
    
         
            -
                    )
         
     | 
| 
       325 
     | 
    
         
            -
                    post_reorder_triton_kernel[(hidden_states_shape[0],)](
         
     | 
| 
       326 
     | 
    
         
            -
                        down_output,
         
     | 
| 
       327 
     | 
    
         
            -
                        output,
         
     | 
| 
       328 
     | 
    
         
            -
                        src2dst,
         
     | 
| 
       329 
     | 
    
         
            -
                        topk_ids,
         
     | 
| 
       330 
     | 
    
         
            -
                        topk_weights,
         
     | 
| 
       331 
     | 
    
         
            -
                        self.start_expert_id,
         
     | 
| 
       332 
     | 
    
         
            -
                        self.end_expert_id,
         
     | 
| 
       333 
     | 
    
         
            -
                        self.top_k,
         
     | 
| 
       334 
     | 
    
         
            -
                        hidden_states_shape[1],
         
     | 
| 
       335 
     | 
    
         
            -
                        m_max * self.start_expert_id,
         
     | 
| 
       336 
     | 
    
         
            -
                        BLOCK_SIZE=512,
         
     | 
| 
       337 
     | 
    
         
            -
                    )
         
     | 
| 
       338 
     | 
    
         
            -
                    if self.moe_runner_config.routed_scaling_factor is not None:
         
     | 
| 
       339 
     | 
    
         
            -
                        output *= self.moe_runner_config.routed_scaling_factor
         
     | 
| 
       340 
     | 
    
         
            -
                    return output
         
     | 
| 
       341 
     | 
    
         
            -
             
     | 
| 
       342 
     | 
    
         
            -
             
     | 
| 
       343 
     | 
    
         
            -
            class DeepEPMoE(EPMoE):
         
     | 
| 
       344 
     | 
    
         
            -
                """
         
     | 
| 
       345 
     | 
    
         
            -
                MoE Expert Parallel Impl based on DeepEP (https://github.com/deepseek-ai/DeepEP/tree/main)
         
     | 
| 
       346 
     | 
    
         
            -
                """
         
     | 
| 
       347 
     | 
    
         
            -
             
     | 
| 
       348 
     | 
    
         
            -
                _has_printed = False
         
     | 
| 
      
 109 
     | 
    
         
            +
                        self.use_w4afp8 = False
         
     | 
| 
      
 110 
     | 
    
         
            +
                        self.use_fp8_w8a8 = False
         
     | 
| 
      
 111 
     | 
    
         
            +
                        self.use_block_quant = False
         
     | 
| 
      
 112 
     | 
    
         
            +
                        self.use_w4afp8 = False
         
     | 
| 
       349 
113 
     | 
    
         | 
| 
       350 
     | 
    
         
            -
                def __init__(
         
     | 
| 
       351 
     | 
    
         
            -
                    self,
         
     | 
| 
       352 
     | 
    
         
            -
                    num_experts: int,
         
     | 
| 
       353 
     | 
    
         
            -
                    top_k: int,
         
     | 
| 
       354 
     | 
    
         
            -
                    hidden_size: int,
         
     | 
| 
       355 
     | 
    
         
            -
                    intermediate_size: int,
         
     | 
| 
       356 
     | 
    
         
            -
                    layer_id: int,
         
     | 
| 
       357 
     | 
    
         
            -
                    num_fused_shared_experts: int = 0,
         
     | 
| 
       358 
     | 
    
         
            -
                    params_dtype: Optional[torch.dtype] = None,
         
     | 
| 
       359 
     | 
    
         
            -
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
       360 
     | 
    
         
            -
                    prefix: str = "",
         
     | 
| 
       361 
     | 
    
         
            -
                    activation: str = "silu",
         
     | 
| 
       362 
     | 
    
         
            -
                    routed_scaling_factor: Optional[float] = None,
         
     | 
| 
       363 
     | 
    
         
            -
                ):
         
     | 
| 
       364 
     | 
    
         
            -
                    super().__init__(
         
     | 
| 
       365 
     | 
    
         
            -
                        num_experts=num_experts,
         
     | 
| 
       366 
     | 
    
         
            -
                        top_k=top_k,
         
     | 
| 
       367 
     | 
    
         
            -
                        hidden_size=hidden_size,
         
     | 
| 
       368 
     | 
    
         
            -
                        intermediate_size=intermediate_size,
         
     | 
| 
       369 
     | 
    
         
            -
                        layer_id=layer_id,
         
     | 
| 
       370 
     | 
    
         
            -
                        num_fused_shared_experts=num_fused_shared_experts,
         
     | 
| 
       371 
     | 
    
         
            -
                        params_dtype=params_dtype,
         
     | 
| 
       372 
     | 
    
         
            -
                        quant_config=quant_config,
         
     | 
| 
       373 
     | 
    
         
            -
                        prefix=prefix,
         
     | 
| 
       374 
     | 
    
         
            -
                        activation=activation,
         
     | 
| 
       375 
     | 
    
         
            -
                        routed_scaling_factor=routed_scaling_factor,
         
     | 
| 
       376 
     | 
    
         
            -
                    )
         
     | 
| 
       377 
114 
     | 
    
         
             
                    self.deepep_mode = get_deepep_mode()
         
     | 
| 
       378 
115 
     | 
    
         | 
| 
       379 
     | 
    
         
            -
                    # TODO: move to the beginning of the file
         
     | 
| 
       380 
     | 
    
         
            -
                    from sglang.srt.distributed.parallel_state import get_tp_group
         
     | 
| 
       381 
     | 
    
         
            -
                    from sglang.srt.two_batch_overlap import MaybeTboDeepEPDispatcher
         
     | 
| 
       382 
     | 
    
         
            -
             
     | 
| 
       383 
     | 
    
         
            -
                    self.deepep_dispatcher = MaybeTboDeepEPDispatcher(
         
     | 
| 
       384 
     | 
    
         
            -
                        group=get_tp_group().device_group,
         
     | 
| 
       385 
     | 
    
         
            -
                        router_topk=self.top_k,
         
     | 
| 
       386 
     | 
    
         
            -
                        permute_fusion=True,
         
     | 
| 
       387 
     | 
    
         
            -
                        num_experts=self.num_experts,
         
     | 
| 
       388 
     | 
    
         
            -
                        num_local_experts=self.num_local_experts,
         
     | 
| 
       389 
     | 
    
         
            -
                        hidden_size=hidden_size,
         
     | 
| 
       390 
     | 
    
         
            -
                        params_dtype=params_dtype,
         
     | 
| 
       391 
     | 
    
         
            -
                        deepep_mode=self.deepep_mode,
         
     | 
| 
       392 
     | 
    
         
            -
                        async_finish=True,  # TODO
         
     | 
| 
       393 
     | 
    
         
            -
                        return_recv_hook=True,
         
     | 
| 
       394 
     | 
    
         
            -
                    )
         
     | 
| 
       395 
     | 
    
         
            -
             
     | 
| 
       396 
116 
     | 
    
         
             
                    if self.deepep_mode.enable_low_latency() and not _is_npu:
         
     | 
| 
       397 
117 
     | 
    
         
             
                        # NPU supports low_latency deepep without deepgemm
         
     | 
| 
       398 
118 
     | 
    
         
             
                        assert (
         
     | 
| 
         @@ -416,7 +136,7 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       416 
136 
     | 
    
         
             
                            self.w13_weight,
         
     | 
| 
       417 
137 
     | 
    
         
             
                            (
         
     | 
| 
       418 
138 
     | 
    
         
             
                                self.w13_weight_scale_inv
         
     | 
| 
       419 
     | 
    
         
            -
                                if self.use_block_quant
         
     | 
| 
      
 139 
     | 
    
         
            +
                                if self.use_block_quant or self.use_w4afp8
         
     | 
| 
       420 
140 
     | 
    
         
             
                                else self.w13_weight_scale
         
     | 
| 
       421 
141 
     | 
    
         
             
                            ),
         
     | 
| 
       422 
142 
     | 
    
         
             
                        )
         
     | 
| 
         @@ -424,7 +144,7 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       424 
144 
     | 
    
         
             
                            self.w2_weight,
         
     | 
| 
       425 
145 
     | 
    
         
             
                            (
         
     | 
| 
       426 
146 
     | 
    
         
             
                                self.w2_weight_scale_inv
         
     | 
| 
       427 
     | 
    
         
            -
                                if self.use_block_quant
         
     | 
| 
      
 147 
     | 
    
         
            +
                                if self.use_block_quant or self.use_w4afp8
         
     | 
| 
       428 
148 
     | 
    
         
             
                                else self.w2_weight_scale
         
     | 
| 
       429 
149 
     | 
    
         
             
                            ),
         
     | 
| 
       430 
150 
     | 
    
         
             
                        )
         
     | 
| 
         @@ -432,95 +152,113 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       432 
152 
     | 
    
         
             
                def forward(
         
     | 
| 
       433 
153 
     | 
    
         
             
                    self,
         
     | 
| 
       434 
154 
     | 
    
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 
       435 
     | 
    
         
            -
                     
     | 
| 
       436 
     | 
    
         
            -
                     
     | 
| 
       437 
     | 
    
         
            -
                     
     | 
| 
      
 155 
     | 
    
         
            +
                    topk_output: TopKOutput,
         
     | 
| 
      
 156 
     | 
    
         
            +
                    forward_shared_experts=None,
         
     | 
| 
      
 157 
     | 
    
         
            +
                    alt_stream=None,
         
     | 
| 
      
 158 
     | 
    
         
            +
                    disable_sbo=False,
         
     | 
| 
       438 
159 
     | 
    
         
             
                ):
         
     | 
| 
       439 
     | 
    
         
            -
             
     | 
| 
       440 
     | 
    
         
            -
             
     | 
| 
       441 
     | 
    
         
            -
             
     | 
| 
       442 
     | 
    
         
            -
             
     | 
| 
       443 
     | 
    
         
            -
             
     | 
| 
       444 
     | 
    
         
            -
             
     | 
| 
       445 
     | 
    
         
            -
             
     | 
| 
       446 
     | 
    
         
            -
                         
     | 
| 
       447 
     | 
    
         
            -
             
     | 
| 
      
 160 
     | 
    
         
            +
             
     | 
| 
      
 161 
     | 
    
         
            +
                    if self.deprecate_flag:
         
     | 
| 
      
 162 
     | 
    
         
            +
                        assert forward_shared_experts is None
         
     | 
| 
      
 163 
     | 
    
         
            +
                        assert alt_stream is None
         
     | 
| 
      
 164 
     | 
    
         
            +
                        return super().forward(
         
     | 
| 
      
 165 
     | 
    
         
            +
                            hidden_states,
         
     | 
| 
      
 166 
     | 
    
         
            +
                            topk_output,
         
     | 
| 
      
 167 
     | 
    
         
            +
                        )
         
     | 
| 
      
 168 
     | 
    
         
            +
             
     | 
| 
      
 169 
     | 
    
         
            +
                    # We have to call SBO inside MoE to be compatible with hooks used in offloading
         
     | 
| 
      
 170 
     | 
    
         
            +
                    return single_batch_overlap.execute_sbo(
         
     | 
| 
      
 171 
     | 
    
         
            +
                        hidden_states=hidden_states,
         
     | 
| 
      
 172 
     | 
    
         
            +
                        topk_output=topk_output,
         
     | 
| 
      
 173 
     | 
    
         
            +
                        # SBO args
         
     | 
| 
      
 174 
     | 
    
         
            +
                        experts=self,
         
     | 
| 
      
 175 
     | 
    
         
            +
                        forward_shared_experts=forward_shared_experts,
         
     | 
| 
      
 176 
     | 
    
         
            +
                        alt_stream=alt_stream,
         
     | 
| 
      
 177 
     | 
    
         
            +
                        disable_sbo=disable_sbo,
         
     | 
| 
       448 
178 
     | 
    
         
             
                    )
         
     | 
| 
       449 
     | 
    
         
            -
                    return hidden_states
         
     | 
| 
       450 
179 
     | 
    
         | 
| 
       451 
180 
     | 
    
         
             
                def dispatch(
         
     | 
| 
       452 
181 
     | 
    
         
             
                    self,
         
     | 
| 
       453 
182 
     | 
    
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 
       454 
     | 
    
         
            -
                     
     | 
| 
       455 
     | 
    
         
            -
                    topk_weights: torch.Tensor,
         
     | 
| 
       456 
     | 
    
         
            -
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 183 
     | 
    
         
            +
                    topk_output: TopKOutput,
         
     | 
| 
       457 
184 
     | 
    
         
             
                ):
         
     | 
| 
       458 
     | 
    
         
            -
                    return self. 
     | 
| 
      
 185 
     | 
    
         
            +
                    return self.dispatcher.dispatch(
         
     | 
| 
       459 
186 
     | 
    
         
             
                        hidden_states=hidden_states,
         
     | 
| 
       460 
     | 
    
         
            -
                         
     | 
| 
       461 
     | 
    
         
            -
                        topk_weights=topk_weights,
         
     | 
| 
       462 
     | 
    
         
            -
                        forward_batch=forward_batch,
         
     | 
| 
       463 
     | 
    
         
            -
                        input_global_scale=(
         
     | 
| 
       464 
     | 
    
         
            -
                            self.w13_input_scale_quant
         
     | 
| 
       465 
     | 
    
         
            -
                            if isinstance(self.quant_method, ModelOptNvFp4FusedMoEMethod)
         
     | 
| 
       466 
     | 
    
         
            -
                            and self.quant_method.enable_flashinfer_cutedsl_moe
         
     | 
| 
       467 
     | 
    
         
            -
                            and CUTEDSL_MOE_NVFP4_DISPATCH
         
     | 
| 
       468 
     | 
    
         
            -
                            else None
         
     | 
| 
       469 
     | 
    
         
            -
                        ),
         
     | 
| 
      
 187 
     | 
    
         
            +
                        topk_output=topk_output,
         
     | 
| 
       470 
188 
     | 
    
         
             
                    )
         
     | 
| 
       471 
189 
     | 
    
         | 
| 
       472 
     | 
    
         
            -
                def  
     | 
| 
      
 190 
     | 
    
         
            +
                def run_moe_core(
         
     | 
| 
       473 
191 
     | 
    
         
             
                    self,
         
     | 
| 
       474 
192 
     | 
    
         
             
                    dispatch_output: DispatchOutput,
         
     | 
| 
       475 
193 
     | 
    
         
             
                    down_gemm_overlap_args: Optional[DownGemmOverlapArgs] = None,
         
     | 
| 
       476 
194 
     | 
    
         
             
                ):
         
     | 
| 
      
 195 
     | 
    
         
            +
             
     | 
| 
      
 196 
     | 
    
         
            +
                    if self.deprecate_flag:
         
     | 
| 
      
 197 
     | 
    
         
            +
                        assert down_gemm_overlap_args is None
         
     | 
| 
      
 198 
     | 
    
         
            +
                        return super().run_moe_core(
         
     | 
| 
      
 199 
     | 
    
         
            +
                            dispatch_output,
         
     | 
| 
      
 200 
     | 
    
         
            +
                        )
         
     | 
| 
      
 201 
     | 
    
         
            +
             
     | 
| 
       477 
202 
     | 
    
         
             
                    from sglang.srt.layers.moe.token_dispatcher import DispatchOutputChecker
         
     | 
| 
       478 
203 
     | 
    
         | 
| 
       479 
204 
     | 
    
         
             
                    if _use_aiter:
         
     | 
| 
       480 
205 
     | 
    
         
             
                        assert DispatchOutputChecker.format_is_deepep(dispatch_output)
         
     | 
| 
       481 
206 
     | 
    
         
             
                        # in forward_aiter, we skip token permutation and unpermutation, which have been fused inside aiter kernel
         
     | 
| 
       482 
     | 
    
         
            -
                         
     | 
| 
       483 
     | 
    
         
            -
                     
     | 
| 
      
 207 
     | 
    
         
            +
                        output = self.forward_aiter(dispatch_output)
         
     | 
| 
      
 208 
     | 
    
         
            +
                    elif _is_npu:
         
     | 
| 
       484 
209 
     | 
    
         
             
                        assert DispatchOutputChecker.format_is_deepep(dispatch_output)
         
     | 
| 
       485 
     | 
    
         
            -
                         
     | 
| 
       486 
     | 
    
         
            -
                     
     | 
| 
       487 
     | 
    
         
            -
                         
     | 
| 
       488 
     | 
    
         
            -
             
     | 
| 
      
 210 
     | 
    
         
            +
                        output = self.forward_npu(dispatch_output)
         
     | 
| 
      
 211 
     | 
    
         
            +
                    elif DispatchOutputChecker.format_is_deepep_normal(dispatch_output):
         
     | 
| 
      
 212 
     | 
    
         
            +
                        if self.use_w4afp8:
         
     | 
| 
      
 213 
     | 
    
         
            +
                            output = self.forward_cutlass_w4afp8(dispatch_output)
         
     | 
| 
      
 214 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 215 
     | 
    
         
            +
                            assert False, "forward_deepgemm_contiguous is deprecated"
         
     | 
| 
       489 
216 
     | 
    
         
             
                    elif DispatchOutputChecker.format_is_deepep_ll(dispatch_output):
         
     | 
| 
       490 
     | 
    
         
            -
                        if  
     | 
| 
       491 
     | 
    
         
            -
                             
     | 
| 
      
 217 
     | 
    
         
            +
                        if (
         
     | 
| 
      
 218 
     | 
    
         
            +
                            get_moe_runner_backend().is_flashinfer_cutedsl()
         
     | 
| 
      
 219 
     | 
    
         
            +
                            and self.quant_config.get_name() == "modelopt_fp4"
         
     | 
| 
      
 220 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 221 
     | 
    
         
            +
                            output = self.forward_flashinfer_cutedsl(
         
     | 
| 
       492 
222 
     | 
    
         
             
                                dispatch_output, down_gemm_overlap_args=down_gemm_overlap_args
         
     | 
| 
       493 
223 
     | 
    
         
             
                            )
         
     | 
| 
       494 
     | 
    
         
            -
                         
     | 
| 
       495 
     | 
    
         
            -
             
     | 
| 
       496 
     | 
    
         
            -
             
     | 
| 
       497 
     | 
    
         
            -
             
     | 
| 
       498 
     | 
    
         
            -
             
     | 
| 
       499 
     | 
    
         
            -
             
     | 
| 
      
 224 
     | 
    
         
            +
                        elif self.use_w4afp8:
         
     | 
| 
      
 225 
     | 
    
         
            +
                            output = self.forward_cutlass_w4afp8_masked(dispatch_output)
         
     | 
| 
      
 226 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 227 
     | 
    
         
            +
                            assert False, "forward_deepgemm_masked is deprecated"
         
     | 
| 
      
 228 
     | 
    
         
            +
             
     | 
| 
      
 229 
     | 
    
         
            +
                    combine_input_wrapper = (
         
     | 
| 
      
 230 
     | 
    
         
            +
                        DeepEPNormalCombineInput
         
     | 
| 
      
 231 
     | 
    
         
            +
                        if DispatchOutputChecker.format_is_deepep_normal(dispatch_output)
         
     | 
| 
      
 232 
     | 
    
         
            +
                        else DeepEPLLCombineInput
         
     | 
| 
      
 233 
     | 
    
         
            +
                    )
         
     | 
| 
      
 234 
     | 
    
         
            +
                    return combine_input_wrapper(
         
     | 
| 
      
 235 
     | 
    
         
            +
                        hidden_states=output,
         
     | 
| 
      
 236 
     | 
    
         
            +
                        topk_ids=dispatch_output.topk_ids,
         
     | 
| 
      
 237 
     | 
    
         
            +
                        topk_weights=dispatch_output.topk_weights,
         
     | 
| 
      
 238 
     | 
    
         
            +
                        overlap_args=down_gemm_overlap_args,
         
     | 
| 
      
 239 
     | 
    
         
            +
                    )
         
     | 
| 
       500 
240 
     | 
    
         | 
| 
       501 
241 
     | 
    
         
             
                def combine(
         
     | 
| 
       502 
242 
     | 
    
         
             
                    self,
         
     | 
| 
       503 
243 
     | 
    
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 
       504 
     | 
    
         
            -
                     
     | 
| 
      
 244 
     | 
    
         
            +
                    topk_ids: torch.Tensor,
         
     | 
| 
       505 
245 
     | 
    
         
             
                    topk_weights: torch.Tensor,
         
     | 
| 
       506 
     | 
    
         
            -
                    forward_batch: ForwardBatch,
         
     | 
| 
       507 
246 
     | 
    
         
             
                    overlap_args: Optional[Dict[str, Any]] = None,
         
     | 
| 
       508 
247 
     | 
    
         
             
                ):
         
     | 
| 
       509 
     | 
    
         
            -
                    return self. 
     | 
| 
      
 248 
     | 
    
         
            +
                    return self.dispatcher.combine(
         
     | 
| 
       510 
249 
     | 
    
         
             
                        hidden_states=hidden_states,
         
     | 
| 
       511 
     | 
    
         
            -
                         
     | 
| 
      
 250 
     | 
    
         
            +
                        topk_ids=topk_ids,
         
     | 
| 
       512 
251 
     | 
    
         
             
                        topk_weights=topk_weights,
         
     | 
| 
       513 
     | 
    
         
            -
                        forward_batch=forward_batch,
         
     | 
| 
       514 
252 
     | 
    
         
             
                        overlap_args=overlap_args,
         
     | 
| 
       515 
253 
     | 
    
         
             
                    )
         
     | 
| 
       516 
254 
     | 
    
         | 
| 
       517 
255 
     | 
    
         
             
                def forward_aiter(
         
     | 
| 
       518 
256 
     | 
    
         
             
                    self,
         
     | 
| 
       519 
     | 
    
         
            -
                    dispatch_output: Union[ 
     | 
| 
      
 257 
     | 
    
         
            +
                    dispatch_output: Union[DeepEPNormalDispatchOutput, DeepEPLLDispatchOutput],
         
     | 
| 
       520 
258 
     | 
    
         
             
                ):
         
     | 
| 
       521 
     | 
    
         
            -
                    hidden_states,  
     | 
| 
      
 259 
     | 
    
         
            +
                    hidden_states, topk_ids, topk_weights = (
         
     | 
| 
       522 
260 
     | 
    
         
             
                        dispatch_output.hidden_states,
         
     | 
| 
       523 
     | 
    
         
            -
                        dispatch_output. 
     | 
| 
      
 261 
     | 
    
         
            +
                        dispatch_output.topk_ids,
         
     | 
| 
       524 
262 
     | 
    
         
             
                        dispatch_output.topk_weights,
         
     | 
| 
       525 
263 
     | 
    
         
             
                    )
         
     | 
| 
       526 
264 
     | 
    
         
             
                    if hidden_states.shape[0] == 0:
         
     | 
| 
         @@ -528,15 +266,15 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       528 
266 
     | 
    
         
             
                    # in original deepep, idx == -1 meaning invalid and will not be processed.
         
     | 
| 
       529 
267 
     | 
    
         
             
                    # aiter does not accept -1, we use a expert mask to make these idx invalid
         
     | 
| 
       530 
268 
     | 
    
         
             
                    # (idx == num_local_experts) meaning not used in aiter fused_moe
         
     | 
| 
       531 
     | 
    
         
            -
                     
     | 
| 
       532 
     | 
    
         
            -
                     
     | 
| 
      
 269 
     | 
    
         
            +
                    topk_ids_copy = topk_ids.to(torch.int32)
         
     | 
| 
      
 270 
     | 
    
         
            +
                    topk_ids_copy[topk_ids_copy == -1] = self.num_local_experts
         
     | 
| 
       533 
271 
     | 
    
         | 
| 
       534 
272 
     | 
    
         
             
                    return fused_moe(
         
     | 
| 
       535 
273 
     | 
    
         
             
                        hidden_states,
         
     | 
| 
       536 
274 
     | 
    
         
             
                        self.w13_weight,
         
     | 
| 
       537 
275 
     | 
    
         
             
                        self.w2_weight,
         
     | 
| 
       538 
276 
     | 
    
         
             
                        topk_weights,
         
     | 
| 
       539 
     | 
    
         
            -
                         
     | 
| 
      
 277 
     | 
    
         
            +
                        topk_ids_copy,
         
     | 
| 
       540 
278 
     | 
    
         
             
                        w1_scale=self.w13_weight_scale_inv,
         
     | 
| 
       541 
279 
     | 
    
         
             
                        w2_scale=self.w2_weight_scale_inv,
         
     | 
| 
       542 
280 
     | 
    
         
             
                        quant_type=QuantType.per_128x128,
         
     | 
| 
         @@ -548,251 +286,52 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       548 
286 
     | 
    
         
             
                        expert_mask=self.expert_mask,
         
     | 
| 
       549 
287 
     | 
    
         
             
                    )
         
     | 
| 
       550 
288 
     | 
    
         | 
| 
       551 
     | 
    
         
            -
                def forward_deepgemm_contiguous(
         
     | 
| 
       552 
     | 
    
         
            -
                    self,
         
     | 
| 
       553 
     | 
    
         
            -
                    dispatch_output: DeepEPNormalOutput,
         
     | 
| 
       554 
     | 
    
         
            -
                ):
         
     | 
| 
       555 
     | 
    
         
            -
                    hidden_states_fp8, topk_idx, topk_weights, num_recv_tokens_per_expert = (
         
     | 
| 
       556 
     | 
    
         
            -
                        dispatch_output
         
     | 
| 
       557 
     | 
    
         
            -
                    )
         
     | 
| 
       558 
     | 
    
         
            -
                    hidden_states_fp8, hidden_states_scale = hidden_states_fp8
         
     | 
| 
       559 
     | 
    
         
            -
                    assert self.quant_method is not None
         
     | 
| 
       560 
     | 
    
         
            -
                    assert self.moe_runner_config.activation == "silu"
         
     | 
| 
       561 
     | 
    
         
            -
                    if num_recv_tokens_per_expert is None:
         
     | 
| 
       562 
     | 
    
         
            -
                        return hidden_states_fp8.bfloat16()
         
     | 
| 
       563 
     | 
    
         
            -
                    all_tokens = sum(num_recv_tokens_per_expert)
         
     | 
| 
       564 
     | 
    
         
            -
                    if all_tokens <= 0:
         
     | 
| 
       565 
     | 
    
         
            -
                        return hidden_states_fp8.bfloat16()
         
     | 
| 
       566 
     | 
    
         
            -
                    M, K = hidden_states_fp8.size()
         
     | 
| 
       567 
     | 
    
         
            -
                    N = self.w13_weight.size(1)
         
     | 
| 
       568 
     | 
    
         
            -
                    scale_block_size = 128
         
     | 
| 
       569 
     | 
    
         
            -
             
     | 
| 
       570 
     | 
    
         
            -
                    # TODO also unify other branches (e.g. `EPMoE.forward_deepgemm` sets the field on forward pass)
         
     | 
| 
       571 
     | 
    
         
            -
                    w13_weight_fp8 = (
         
     | 
| 
       572 
     | 
    
         
            -
                        self.w13_weight,
         
     | 
| 
       573 
     | 
    
         
            -
                        (
         
     | 
| 
       574 
     | 
    
         
            -
                            self.w13_weight_scale_inv
         
     | 
| 
       575 
     | 
    
         
            -
                            if self.use_block_quant
         
     | 
| 
       576 
     | 
    
         
            -
                            else self.w13_weight_scale
         
     | 
| 
       577 
     | 
    
         
            -
                        ),
         
     | 
| 
       578 
     | 
    
         
            -
                    )
         
     | 
| 
       579 
     | 
    
         
            -
                    w2_weight_fp8 = (
         
     | 
| 
       580 
     | 
    
         
            -
                        self.w2_weight,
         
     | 
| 
       581 
     | 
    
         
            -
                        (
         
     | 
| 
       582 
     | 
    
         
            -
                            self.w2_weight_scale_inv
         
     | 
| 
       583 
     | 
    
         
            -
                            if self.use_block_quant
         
     | 
| 
       584 
     | 
    
         
            -
                            else self.w2_weight_scale
         
     | 
| 
       585 
     | 
    
         
            -
                        ),
         
     | 
| 
       586 
     | 
    
         
            -
                    )
         
     | 
| 
       587 
     | 
    
         
            -
             
     | 
| 
       588 
     | 
    
         
            -
                    hidden_states_fp8_shape = hidden_states_fp8.shape
         
     | 
| 
       589 
     | 
    
         
            -
                    hidden_states_fp8_device = hidden_states_fp8.device
         
     | 
| 
       590 
     | 
    
         
            -
                    hidden_states_fp8_dtype = hidden_states_fp8.dtype
         
     | 
| 
       591 
     | 
    
         
            -
             
     | 
| 
       592 
     | 
    
         
            -
                    input_tensor = [
         
     | 
| 
       593 
     | 
    
         
            -
                        torch.empty(
         
     | 
| 
       594 
     | 
    
         
            -
                            (all_tokens, K),
         
     | 
| 
       595 
     | 
    
         
            -
                            device=hidden_states_fp8.device,
         
     | 
| 
       596 
     | 
    
         
            -
                            dtype=hidden_states_fp8.dtype,
         
     | 
| 
       597 
     | 
    
         
            -
                        ),
         
     | 
| 
       598 
     | 
    
         
            -
                        (
         
     | 
| 
       599 
     | 
    
         
            -
                            # TODO check whether need `zeros`
         
     | 
| 
       600 
     | 
    
         
            -
                            torch.zeros(
         
     | 
| 
       601 
     | 
    
         
            -
                                (ceil_div(K // 128, 4), all_tokens),
         
     | 
| 
       602 
     | 
    
         
            -
                                device=hidden_states_fp8.device,
         
     | 
| 
       603 
     | 
    
         
            -
                                dtype=torch.int,
         
     | 
| 
       604 
     | 
    
         
            -
                            ).transpose(0, 1)
         
     | 
| 
       605 
     | 
    
         
            -
                            if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
         
     | 
| 
       606 
     | 
    
         
            -
                            else torch.empty(
         
     | 
| 
       607 
     | 
    
         
            -
                                (all_tokens, K // 128),
         
     | 
| 
       608 
     | 
    
         
            -
                                device=hidden_states_fp8.device,
         
     | 
| 
       609 
     | 
    
         
            -
                                dtype=torch.float32,
         
     | 
| 
       610 
     | 
    
         
            -
                            )
         
     | 
| 
       611 
     | 
    
         
            -
                        ),
         
     | 
| 
       612 
     | 
    
         
            -
                    ]
         
     | 
| 
       613 
     | 
    
         
            -
                    m_indices = torch.empty(
         
     | 
| 
       614 
     | 
    
         
            -
                        all_tokens, device=hidden_states_fp8.device, dtype=torch.int32
         
     | 
| 
       615 
     | 
    
         
            -
                    )
         
     | 
| 
       616 
     | 
    
         
            -
                    output_index = torch.empty_like(topk_idx)
         
     | 
| 
       617 
     | 
    
         
            -
             
     | 
| 
       618 
     | 
    
         
            -
                    if get_offloader().forbid_copy_engine_usage:
         
     | 
| 
       619 
     | 
    
         
            -
                        num_recv_tokens_per_expert_gpu = copy_list_to_gpu_no_ce(
         
     | 
| 
       620 
     | 
    
         
            -
                            num_recv_tokens_per_expert
         
     | 
| 
       621 
     | 
    
         
            -
                        )
         
     | 
| 
       622 
     | 
    
         
            -
                    else:
         
     | 
| 
       623 
     | 
    
         
            -
                        num_recv_tokens_per_expert_gpu = torch.tensor(
         
     | 
| 
       624 
     | 
    
         
            -
                            num_recv_tokens_per_expert,
         
     | 
| 
       625 
     | 
    
         
            -
                            dtype=torch.int32,
         
     | 
| 
       626 
     | 
    
         
            -
                            pin_memory=True,
         
     | 
| 
       627 
     | 
    
         
            -
                            device="cpu",
         
     | 
| 
       628 
     | 
    
         
            -
                        ).cuda(non_blocking=True)
         
     | 
| 
       629 
     | 
    
         
            -
                    expert_start_loc = torch.empty_like(num_recv_tokens_per_expert_gpu)
         
     | 
| 
       630 
     | 
    
         
            -
             
     | 
| 
       631 
     | 
    
         
            -
                    ep_scatter(
         
     | 
| 
       632 
     | 
    
         
            -
                        hidden_states_fp8,
         
     | 
| 
       633 
     | 
    
         
            -
                        hidden_states_scale,
         
     | 
| 
       634 
     | 
    
         
            -
                        topk_idx,
         
     | 
| 
       635 
     | 
    
         
            -
                        num_recv_tokens_per_expert_gpu,
         
     | 
| 
       636 
     | 
    
         
            -
                        expert_start_loc,
         
     | 
| 
       637 
     | 
    
         
            -
                        input_tensor[0],
         
     | 
| 
       638 
     | 
    
         
            -
                        input_tensor[1],
         
     | 
| 
       639 
     | 
    
         
            -
                        m_indices,
         
     | 
| 
       640 
     | 
    
         
            -
                        output_index,
         
     | 
| 
       641 
     | 
    
         
            -
                        scale_ue8m0=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
       642 
     | 
    
         
            -
                    )
         
     | 
| 
       643 
     | 
    
         
            -
                    dispose_tensor(hidden_states_fp8)
         
     | 
| 
       644 
     | 
    
         
            -
             
     | 
| 
       645 
     | 
    
         
            -
                    gateup_output = torch.empty(
         
     | 
| 
       646 
     | 
    
         
            -
                        (all_tokens, N),
         
     | 
| 
       647 
     | 
    
         
            -
                        device=hidden_states_fp8_device,
         
     | 
| 
       648 
     | 
    
         
            -
                        dtype=torch.bfloat16,
         
     | 
| 
       649 
     | 
    
         
            -
                    )
         
     | 
| 
       650 
     | 
    
         
            -
                    if not deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0:
         
     | 
| 
       651 
     | 
    
         
            -
                        input_tensor[1] = tma_align_input_scale(input_tensor[1])
         
     | 
| 
       652 
     | 
    
         
            -
                    deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_contig(
         
     | 
| 
       653 
     | 
    
         
            -
                        input_tensor, w13_weight_fp8, gateup_output, m_indices
         
     | 
| 
       654 
     | 
    
         
            -
                    )
         
     | 
| 
       655 
     | 
    
         
            -
                    del input_tensor
         
     | 
| 
       656 
     | 
    
         
            -
                    down_input = torch.empty(
         
     | 
| 
       657 
     | 
    
         
            -
                        (
         
     | 
| 
       658 
     | 
    
         
            -
                            all_tokens,
         
     | 
| 
       659 
     | 
    
         
            -
                            N // 2,
         
     | 
| 
       660 
     | 
    
         
            -
                        ),
         
     | 
| 
       661 
     | 
    
         
            -
                        device=gateup_output.device,
         
     | 
| 
       662 
     | 
    
         
            -
                        dtype=torch.bfloat16,
         
     | 
| 
       663 
     | 
    
         
            -
                    )
         
     | 
| 
       664 
     | 
    
         
            -
                    silu_and_mul(gateup_output.view(-1, N), down_input)
         
     | 
| 
       665 
     | 
    
         
            -
                    del gateup_output
         
     | 
| 
       666 
     | 
    
         
            -
                    down_output = torch.empty(
         
     | 
| 
       667 
     | 
    
         
            -
                        (all_tokens, K),
         
     | 
| 
       668 
     | 
    
         
            -
                        device=hidden_states_fp8_device,
         
     | 
| 
       669 
     | 
    
         
            -
                        dtype=torch.bfloat16,
         
     | 
| 
       670 
     | 
    
         
            -
                    )
         
     | 
| 
       671 
     | 
    
         
            -
                    down_input_fp8, down_input_scale = sglang_per_token_group_quant_fp8(
         
     | 
| 
       672 
     | 
    
         
            -
                        down_input,
         
     | 
| 
       673 
     | 
    
         
            -
                        scale_block_size,
         
     | 
| 
       674 
     | 
    
         
            -
                        column_major_scales=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
       675 
     | 
    
         
            -
                        scale_tma_aligned=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
       676 
     | 
    
         
            -
                        scale_ue8m0=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
       677 
     | 
    
         
            -
                    )
         
     | 
| 
       678 
     | 
    
         
            -
                    del down_input
         
     | 
| 
       679 
     | 
    
         
            -
                    if not deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0:
         
     | 
| 
       680 
     | 
    
         
            -
                        down_input_scale = tma_align_input_scale(down_input_scale)
         
     | 
| 
       681 
     | 
    
         
            -
                    deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_contig(
         
     | 
| 
       682 
     | 
    
         
            -
                        (down_input_fp8, down_input_scale),
         
     | 
| 
       683 
     | 
    
         
            -
                        w2_weight_fp8,
         
     | 
| 
       684 
     | 
    
         
            -
                        down_output,
         
     | 
| 
       685 
     | 
    
         
            -
                        m_indices,
         
     | 
| 
       686 
     | 
    
         
            -
                    )
         
     | 
| 
       687 
     | 
    
         
            -
                    del down_input_fp8, down_input_scale
         
     | 
| 
       688 
     | 
    
         
            -
             
     | 
| 
       689 
     | 
    
         
            -
                    gather_out = torch.empty(
         
     | 
| 
       690 
     | 
    
         
            -
                        hidden_states_fp8_shape,
         
     | 
| 
       691 
     | 
    
         
            -
                        device=hidden_states_fp8_device,
         
     | 
| 
       692 
     | 
    
         
            -
                        dtype=torch.bfloat16,
         
     | 
| 
       693 
     | 
    
         
            -
                    )
         
     | 
| 
       694 
     | 
    
         
            -
                    ep_gather(down_output, topk_idx, topk_weights, output_index, gather_out)
         
     | 
| 
       695 
     | 
    
         
            -
             
     | 
| 
       696 
     | 
    
         
            -
                    return gather_out
         
     | 
| 
       697 
     | 
    
         
            -
             
     | 
| 
       698 
289 
     | 
    
         
             
                def forward_flashinfer_cutedsl(
         
     | 
| 
       699 
290 
     | 
    
         
             
                    self,
         
     | 
| 
       700 
     | 
    
         
            -
                    dispatch_output:  
     | 
| 
      
 291 
     | 
    
         
            +
                    dispatch_output: DeepEPLLDispatchOutput,
         
     | 
| 
       701 
292 
     | 
    
         
             
                    down_gemm_overlap_args: Optional[DownGemmOverlapArgs],
         
     | 
| 
       702 
293 
     | 
    
         
             
                ):
         
     | 
| 
       703 
     | 
    
         
            -
                    hidden_states, _, _, masked_m, _ = dispatch_output
         
     | 
| 
      
 294 
     | 
    
         
            +
                    hidden_states, hidden_states_scale, _, _, masked_m, _ = dispatch_output
         
     | 
| 
       704 
295 
     | 
    
         
             
                    assert self.quant_method is not None
         
     | 
| 
       705 
296 
     | 
    
         
             
                    assert self.moe_runner_config.activation == "silu"
         
     | 
| 
       706 
297 
     | 
    
         | 
| 
       707 
298 
     | 
    
         
             
                    output = self.quant_method.apply_without_routing_weights(
         
     | 
| 
       708 
299 
     | 
    
         
             
                        layer=self,
         
     | 
| 
       709 
     | 
    
         
            -
                        x=hidden_states,
         
     | 
| 
      
 300 
     | 
    
         
            +
                        x=(hidden_states, hidden_states_scale),
         
     | 
| 
       710 
301 
     | 
    
         
             
                        masked_m=masked_m,
         
     | 
| 
       711 
302 
     | 
    
         
             
                        moe_runner_config=self.moe_runner_config,
         
     | 
| 
       712 
303 
     | 
    
         
             
                        down_gemm_overlap_args=down_gemm_overlap_args,
         
     | 
| 
       713 
304 
     | 
    
         
             
                    )
         
     | 
| 
       714 
305 
     | 
    
         
             
                    return output
         
     | 
| 
       715 
306 
     | 
    
         | 
| 
       716 
     | 
    
         
            -
                def  
     | 
| 
      
 307 
     | 
    
         
            +
                def forward_cutlass_w4afp8(
         
     | 
| 
       717 
308 
     | 
    
         
             
                    self,
         
     | 
| 
       718 
     | 
    
         
            -
                    dispatch_output:  
     | 
| 
      
 309 
     | 
    
         
            +
                    dispatch_output: DeepEPNormalDispatchOutput,
         
     | 
| 
       719 
310 
     | 
    
         
             
                ):
         
     | 
| 
       720 
     | 
    
         
            -
                    hidden_states_fp8, _, _, masked_m, expected_m = dispatch_output
         
     | 
| 
       721 
     | 
    
         
            -
                    assert self.quant_method is not None
         
     | 
| 
       722 
311 
     | 
    
         
             
                    assert self.moe_runner_config.activation == "silu"
         
     | 
| 
       723 
     | 
    
         
            -
             
     | 
| 
       724 
     | 
    
         
            -
                     
     | 
| 
       725 
     | 
    
         
            -
             
     | 
| 
       726 
     | 
    
         
            -
             
     | 
| 
       727 
     | 
    
         
            -
                    expected_m = min(expected_m, m)
         
     | 
| 
       728 
     | 
    
         
            -
                    gateup_output = torch.empty(
         
     | 
| 
       729 
     | 
    
         
            -
                        (num_groups, m, n), device=hidden_states_fp8[0].device, dtype=torch.bfloat16
         
     | 
| 
       730 
     | 
    
         
            -
                    )
         
     | 
| 
       731 
     | 
    
         
            -
                    deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
         
     | 
| 
       732 
     | 
    
         
            -
                        hidden_states_fp8,
         
     | 
| 
       733 
     | 
    
         
            -
                        self.w13_weight_fp8,
         
     | 
| 
       734 
     | 
    
         
            -
                        gateup_output,
         
     | 
| 
       735 
     | 
    
         
            -
                        masked_m,
         
     | 
| 
       736 
     | 
    
         
            -
                        expected_m,
         
     | 
| 
       737 
     | 
    
         
            -
                    )
         
     | 
| 
       738 
     | 
    
         
            -
                    dispose_tensor(hidden_states_fp8[0])
         
     | 
| 
       739 
     | 
    
         
            -
             
     | 
| 
       740 
     | 
    
         
            -
                    # Act
         
     | 
| 
       741 
     | 
    
         
            -
                    down_input = torch.empty(
         
     | 
| 
       742 
     | 
    
         
            -
                        (
         
     | 
| 
       743 
     | 
    
         
            -
                            gateup_output.shape[0],
         
     | 
| 
       744 
     | 
    
         
            -
                            gateup_output.shape[1],
         
     | 
| 
       745 
     | 
    
         
            -
                            gateup_output.shape[2] // 2,
         
     | 
| 
       746 
     | 
    
         
            -
                        ),
         
     | 
| 
       747 
     | 
    
         
            -
                        device=gateup_output.device,
         
     | 
| 
       748 
     | 
    
         
            -
                        dtype=self.fp8_dtype,
         
     | 
| 
       749 
     | 
    
         
            -
                    )
         
     | 
| 
       750 
     | 
    
         
            -
                    scale_block_size = 128
         
     | 
| 
       751 
     | 
    
         
            -
                    down_input_scale = torch.empty(
         
     | 
| 
       752 
     | 
    
         
            -
                        (
         
     | 
| 
       753 
     | 
    
         
            -
                            gateup_output.shape[0],
         
     | 
| 
       754 
     | 
    
         
            -
                            gateup_output.shape[1],
         
     | 
| 
       755 
     | 
    
         
            -
                            gateup_output.shape[2] // 2 // scale_block_size,
         
     | 
| 
       756 
     | 
    
         
            -
                        ),
         
     | 
| 
       757 
     | 
    
         
            -
                        device=gateup_output.device,
         
     | 
| 
       758 
     | 
    
         
            -
                        dtype=torch.float32,
         
     | 
| 
       759 
     | 
    
         
            -
                    )
         
     | 
| 
       760 
     | 
    
         
            -
                    silu_and_mul_masked_post_quant_fwd(
         
     | 
| 
       761 
     | 
    
         
            -
                        gateup_output,
         
     | 
| 
       762 
     | 
    
         
            -
                        down_input,
         
     | 
| 
       763 
     | 
    
         
            -
                        down_input_scale,
         
     | 
| 
       764 
     | 
    
         
            -
                        scale_block_size,
         
     | 
| 
       765 
     | 
    
         
            -
                        masked_m,
         
     | 
| 
       766 
     | 
    
         
            -
                        scale_ue8m0=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
      
 312 
     | 
    
         
            +
                    assert isinstance(self.quant_method, W4AFp8MoEMethod)
         
     | 
| 
      
 313 
     | 
    
         
            +
                    return self.quant_method.apply_deepep_normal(
         
     | 
| 
      
 314 
     | 
    
         
            +
                        layer=self,
         
     | 
| 
      
 315 
     | 
    
         
            +
                        dispatch_output=dispatch_output,
         
     | 
| 
       767 
316 
     | 
    
         
             
                    )
         
     | 
| 
       768 
     | 
    
         
            -
                    del gateup_output
         
     | 
| 
       769 
317 
     | 
    
         | 
| 
       770 
     | 
    
         
            -
             
     | 
| 
       771 
     | 
    
         
            -
                     
     | 
| 
       772 
     | 
    
         
            -
                     
     | 
| 
       773 
     | 
    
         
            -
             
     | 
| 
       774 
     | 
    
         
            -
             
     | 
| 
       775 
     | 
    
         
            -
             
     | 
| 
       776 
     | 
    
         
            -
             
     | 
| 
       777 
     | 
    
         
            -
             
     | 
| 
       778 
     | 
    
         
            -
             
     | 
| 
       779 
     | 
    
         
            -
                     
     | 
| 
       780 
     | 
    
         
            -
             
     | 
| 
       781 
     | 
    
         
            -
                         
     | 
| 
       782 
     | 
    
         
            -
                    )
         
     | 
| 
       783 
     | 
    
         
            -
                    deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
         
     | 
| 
       784 
     | 
    
         
            -
                        down_input_fp8,
         
     | 
| 
       785 
     | 
    
         
            -
                        self.w2_weight_fp8,
         
     | 
| 
       786 
     | 
    
         
            -
                        down_output,
         
     | 
| 
       787 
     | 
    
         
            -
                        masked_m,
         
     | 
| 
       788 
     | 
    
         
            -
                        expected_m,
         
     | 
| 
      
 318 
     | 
    
         
            +
                def forward_cutlass_w4afp8_masked(
         
     | 
| 
      
 319 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 320 
     | 
    
         
            +
                    dispatch_output: DeepEPLLDispatchOutput,
         
     | 
| 
      
 321 
     | 
    
         
            +
                ):
         
     | 
| 
      
 322 
     | 
    
         
            +
                    assert self.moe_runner_config.activation == "silu"
         
     | 
| 
      
 323 
     | 
    
         
            +
                    assert isinstance(self.quant_method, W4AFp8MoEMethod)
         
     | 
| 
      
 324 
     | 
    
         
            +
                    assert get_bool_env_var(
         
     | 
| 
      
 325 
     | 
    
         
            +
                        "SGLANG_DEEPEP_BF16_DISPATCH"
         
     | 
| 
      
 326 
     | 
    
         
            +
                    ), "W4AFP8 does not support FP8 dispatch; please set SGLANG_DEEPEP_BF16_DISPATCH=1."
         
     | 
| 
      
 327 
     | 
    
         
            +
                    return self.quant_method.apply_deepep_ll(
         
     | 
| 
      
 328 
     | 
    
         
            +
                        layer=self,
         
     | 
| 
      
 329 
     | 
    
         
            +
                        dispatch_output=dispatch_output,
         
     | 
| 
       789 
330 
     | 
    
         
             
                    )
         
     | 
| 
       790 
331 
     | 
    
         | 
| 
       791 
     | 
    
         
            -
                    return down_output
         
     | 
| 
       792 
     | 
    
         
            -
             
     | 
| 
       793 
332 
     | 
    
         
             
                def forward_npu(
         
     | 
| 
       794 
333 
     | 
    
         
             
                    self,
         
     | 
| 
       795 
     | 
    
         
            -
                    dispatch_output: Union[ 
     | 
| 
      
 334 
     | 
    
         
            +
                    dispatch_output: Union[DeepEPNormalDispatchOutput, DeepEPLLDispatchOutput],
         
     | 
| 
       796 
335 
     | 
    
         
             
                ):
         
     | 
| 
       797 
336 
     | 
    
         
             
                    assert self.quant_method is not None
         
     | 
| 
       798 
337 
     | 
    
         
             
                    assert self.moe_runner_config.activation == "silu"
         
     | 
| 
         @@ -805,14 +344,12 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       805 
344 
     | 
    
         
             
                    output_dtype = torch.bfloat16
         
     | 
| 
       806 
345 
     | 
    
         
             
                    group_list_type = 1
         
     | 
| 
       807 
346 
     | 
    
         | 
| 
       808 
     | 
    
         
            -
                    def _forward_normal(dispatch_output:  
     | 
| 
      
 347 
     | 
    
         
            +
                    def _forward_normal(dispatch_output: DeepEPNormalDispatchOutput):
         
     | 
| 
       809 
348 
     | 
    
         
             
                        if TYPE_CHECKING:
         
     | 
| 
       810 
     | 
    
         
            -
                            assert isinstance(dispatch_output,  
     | 
| 
       811 
     | 
    
         
            -
                        hidden_states, _, _, num_recv_tokens_per_expert =  
     | 
| 
       812 
     | 
    
         
            -
             
     | 
| 
       813 
     | 
    
         
            -
                         
     | 
| 
       814 
     | 
    
         
            -
                            per_token_scale = hidden_states[1]
         
     | 
| 
       815 
     | 
    
         
            -
                            hidden_states = hidden_states[0]
         
     | 
| 
      
 349 
     | 
    
         
            +
                            assert isinstance(dispatch_output, DeepEPNormalDispatchOutput)
         
     | 
| 
      
 350 
     | 
    
         
            +
                        hidden_states, hidden_states_scale, _, _, num_recv_tokens_per_expert = (
         
     | 
| 
      
 351 
     | 
    
         
            +
                            dispatch_output
         
     | 
| 
      
 352 
     | 
    
         
            +
                        )
         
     | 
| 
       816 
353 
     | 
    
         | 
| 
       817 
354 
     | 
    
         
             
                        group_list = torch.tensor(num_recv_tokens_per_expert, dtype=torch.int64).to(
         
     | 
| 
       818 
355 
     | 
    
         
             
                            hidden_states.device
         
     | 
| 
         @@ -822,7 +359,7 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       822 
359 
     | 
    
         
             
                            hidden_states = torch_npu.npu_grouped_matmul(
         
     | 
| 
       823 
360 
     | 
    
         
             
                                x=[hidden_states],
         
     | 
| 
       824 
361 
     | 
    
         
             
                                weight=[self.w13_weight.permute(0, 2, 1)],
         
     | 
| 
       825 
     | 
    
         
            -
                                # per_token_scale=[ 
     | 
| 
      
 362 
     | 
    
         
            +
                                # per_token_scale=[hidden_states_scale],
         
     | 
| 
       826 
363 
     | 
    
         
             
                                split_item=2,
         
     | 
| 
       827 
364 
     | 
    
         
             
                                group_list_type=group_list_type,
         
     | 
| 
       828 
365 
     | 
    
         
             
                                group_type=0,
         
     | 
| 
         @@ -842,7 +379,7 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       842 
379 
     | 
    
         
             
                            )[0]
         
     | 
| 
       843 
380 
     | 
    
         
             
                        else:
         
     | 
| 
       844 
381 
     | 
    
         
             
                            if not get_bool_env_var("DEEP_NORMAL_MODE_USE_INT8_QUANT"):
         
     | 
| 
       845 
     | 
    
         
            -
                                hidden_states,  
     | 
| 
      
 382 
     | 
    
         
            +
                                hidden_states, hidden_states_scale = torch_npu.npu_dynamic_quant(
         
     | 
| 
       846 
383 
     | 
    
         
             
                                    hidden_states
         
     | 
| 
       847 
384 
     | 
    
         
             
                                )
         
     | 
| 
       848 
385 
     | 
    
         
             
                            # gmm1: gate_up_proj
         
     | 
| 
         @@ -850,7 +387,7 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       850 
387 
     | 
    
         
             
                                x=[hidden_states],
         
     | 
| 
       851 
388 
     | 
    
         
             
                                weight=[self.w13_weight],
         
     | 
| 
       852 
389 
     | 
    
         
             
                                scale=[self.w13_weight_scale.to(output_dtype)],
         
     | 
| 
       853 
     | 
    
         
            -
                                per_token_scale=[ 
     | 
| 
      
 390 
     | 
    
         
            +
                                per_token_scale=[hidden_states_scale],
         
     | 
| 
       854 
391 
     | 
    
         
             
                                split_item=2,
         
     | 
| 
       855 
392 
     | 
    
         
             
                                group_list_type=group_list_type,
         
     | 
| 
       856 
393 
     | 
    
         
             
                                group_type=0,
         
     | 
| 
         @@ -879,14 +416,17 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       879 
416 
     | 
    
         | 
| 
       880 
417 
     | 
    
         
             
                        return hidden_states
         
     | 
| 
       881 
418 
     | 
    
         | 
| 
       882 
     | 
    
         
            -
                    def _forward_ll(dispatch_output:  
     | 
| 
      
 419 
     | 
    
         
            +
                    def _forward_ll(dispatch_output: DeepEPLLDispatchOutput):
         
     | 
| 
       883 
420 
     | 
    
         
             
                        if TYPE_CHECKING:
         
     | 
| 
       884 
     | 
    
         
            -
                            assert isinstance(dispatch_output,  
     | 
| 
       885 
     | 
    
         
            -
                         
     | 
| 
       886 
     | 
    
         
            -
             
     | 
| 
       887 
     | 
    
         
            -
             
     | 
| 
       888 
     | 
    
         
            -
                             
     | 
| 
       889 
     | 
    
         
            -
                             
     | 
| 
      
 421 
     | 
    
         
            +
                            assert isinstance(dispatch_output, DeepEPLLDispatchOutput)
         
     | 
| 
      
 422 
     | 
    
         
            +
                        (
         
     | 
| 
      
 423 
     | 
    
         
            +
                            hidden_states,
         
     | 
| 
      
 424 
     | 
    
         
            +
                            hidden_states_scale,
         
     | 
| 
      
 425 
     | 
    
         
            +
                            topk_ids,
         
     | 
| 
      
 426 
     | 
    
         
            +
                            topk_weights,
         
     | 
| 
      
 427 
     | 
    
         
            +
                            group_list,
         
     | 
| 
      
 428 
     | 
    
         
            +
                            _,
         
     | 
| 
      
 429 
     | 
    
         
            +
                        ) = dispatch_output
         
     | 
| 
       890 
430 
     | 
    
         | 
| 
       891 
431 
     | 
    
         
             
                        group_list = group_list.to(torch.int64)
         
     | 
| 
       892 
432 
     | 
    
         | 
| 
         @@ -895,7 +435,7 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       895 
435 
     | 
    
         
             
                            hidden_states = torch_npu.npu_grouped_matmul(
         
     | 
| 
       896 
436 
     | 
    
         
             
                                x=[hidden_states],
         
     | 
| 
       897 
437 
     | 
    
         
             
                                weight=[self.w13_weight.permute(0, 2, 1)],
         
     | 
| 
       898 
     | 
    
         
            -
                                # per_token_scale=[ 
     | 
| 
      
 438 
     | 
    
         
            +
                                # per_token_scale=[hidden_states_scale],
         
     | 
| 
       899 
439 
     | 
    
         
             
                                split_item=2,
         
     | 
| 
       900 
440 
     | 
    
         
             
                                group_list_type=group_list_type,
         
     | 
| 
       901 
441 
     | 
    
         
             
                                group_type=0,
         
     | 
| 
         @@ -929,7 +469,7 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       929 
469 
     | 
    
         
             
                            hidden_states, swiglu_out_scale = torch_npu.npu_dequant_swiglu_quant(
         
     | 
| 
       930 
470 
     | 
    
         
             
                                x=hidden_states,
         
     | 
| 
       931 
471 
     | 
    
         
             
                                weight_scale=self.w13_weight_scale.to(torch.float32),
         
     | 
| 
       932 
     | 
    
         
            -
                                activation_scale= 
     | 
| 
      
 472 
     | 
    
         
            +
                                activation_scale=hidden_states_scale,
         
     | 
| 
       933 
473 
     | 
    
         
             
                                bias=None,
         
     | 
| 
       934 
474 
     | 
    
         
             
                                quant_scale=None,
         
     | 
| 
       935 
475 
     | 
    
         
             
                                quant_offset=None,
         
     | 
| 
         @@ -962,7 +502,7 @@ class DeepEPMoE(EPMoE): 
     | 
|
| 
       962 
502 
     | 
    
         | 
| 
       963 
503 
     | 
    
         | 
| 
       964 
504 
     | 
    
         
             
            def get_moe_impl_class(quant_config: Optional[QuantizationConfig]):
         
     | 
| 
       965 
     | 
    
         
            -
                if get_moe_a2a_backend().is_deepep():
         
     | 
| 
      
 505 
     | 
    
         
            +
                if get_moe_a2a_backend().is_deepep() or get_moe_a2a_backend().is_mooncake():
         
     | 
| 
       966 
506 
     | 
    
         
             
                    return DeepEPMoE
         
     | 
| 
       967 
507 
     | 
    
         | 
| 
       968 
508 
     | 
    
         
             
                # NEW: Direct FP4 detection (bypasses EP requirements)
         
     | 
| 
         @@ -988,15 +528,4 @@ def get_moe_impl_class(quant_config: Optional[QuantizationConfig]): 
     | 
|
| 
       988 
528 
     | 
    
         
             
                    return FlashInferFusedMoE
         
     | 
| 
       989 
529 
     | 
    
         
             
                if get_moe_runner_backend().is_flashinfer_cutlass():
         
     | 
| 
       990 
530 
     | 
    
         
             
                    return FusedMoE
         
     | 
| 
       991 
     | 
    
         
            -
                if get_moe_expert_parallel_world_size() > 1:
         
     | 
| 
       992 
     | 
    
         
            -
                    return EPMoE
         
     | 
| 
       993 
531 
     | 
    
         
             
                return FusedMoE
         
     | 
| 
       994 
     | 
    
         
            -
             
     | 
| 
       995 
     | 
    
         
            -
             
     | 
| 
       996 
     | 
    
         
            -
            def copy_list_to_gpu_no_ce(arr: List[int]):
         
     | 
| 
       997 
     | 
    
         
            -
                from sgl_kernel.elementwise import copy_to_gpu_no_ce
         
     | 
| 
       998 
     | 
    
         
            -
             
     | 
| 
       999 
     | 
    
         
            -
                tensor_cpu = torch.tensor(arr, dtype=torch.int32, device="cpu")
         
     | 
| 
       1000 
     | 
    
         
            -
                tensor_gpu = torch.empty_like(tensor_cpu, device="cuda")
         
     | 
| 
       1001 
     | 
    
         
            -
                copy_to_gpu_no_ce(tensor_cpu, tensor_gpu)
         
     | 
| 
       1002 
     | 
    
         
            -
                return tensor_gpu
         
     |