sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,355 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            import itertools
         
     | 
| 
      
 2 
     | 
    
         
            +
            import math
         
     | 
| 
      
 3 
     | 
    
         
            +
            from collections.abc import Iterable
         
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import Any
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            import einops
         
     | 
| 
      
 7 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 8 
     | 
    
         
            +
            import torch.nn as nn
         
     | 
| 
      
 9 
     | 
    
         
            +
            import torch.nn.functional as F
         
     | 
| 
      
 10 
     | 
    
         
            +
            from torch import Tensor
         
     | 
| 
      
 11 
     | 
    
         
            +
            from transformers.configuration_utils import PretrainedConfig
         
     | 
| 
      
 12 
     | 
    
         
            +
            from transformers.modeling_outputs import BaseModelOutputWithPooling
         
     | 
| 
      
 13 
     | 
    
         
            +
            from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
         
     | 
| 
      
 14 
     | 
    
         
            +
            from transformers.models.siglip import SiglipVisionConfig, SiglipVisionModel
         
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
            import sglang.srt.managers.mm_utils as mm_utils
         
     | 
| 
      
 17 
     | 
    
         
            +
            import sglang.srt.model_loader.weight_utils as weight_utils
         
     | 
| 
      
 18 
     | 
    
         
            +
            import sglang.srt.utils as utils
         
     | 
| 
      
 19 
     | 
    
         
            +
            from sglang.srt.layers.logits_processor import LogitsProcessorOutput
         
     | 
| 
      
 20 
     | 
    
         
            +
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
      
 21 
     | 
    
         
            +
            from sglang.srt.managers.mm_utils import MultiModalityDataPaddingPatternMultimodalTokens
         
     | 
| 
      
 22 
     | 
    
         
            +
            from sglang.srt.managers.schedule_batch import (
         
     | 
| 
      
 23 
     | 
    
         
            +
                Modality,
         
     | 
| 
      
 24 
     | 
    
         
            +
                MultimodalDataItem,
         
     | 
| 
      
 25 
     | 
    
         
            +
                MultimodalInputs,
         
     | 
| 
      
 26 
     | 
    
         
            +
            )
         
     | 
| 
      
 27 
     | 
    
         
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
      
 28 
     | 
    
         
            +
            from sglang.srt.models.qwen2 import Qwen2ForCausalLM
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
            MM_HIDDEN_SIZE = 3456
         
     | 
| 
      
 31 
     | 
    
         
            +
             
     | 
| 
      
 32 
     | 
    
         
            +
             
     | 
| 
      
 33 
     | 
    
         
            +
            class NVILAConfig(PretrainedConfig):
         
     | 
| 
      
 34 
     | 
    
         
            +
                model_type = "nvila"
         
     | 
| 
      
 35 
     | 
    
         
            +
                sub_configs = {
         
     | 
| 
      
 36 
     | 
    
         
            +
                    "text_config": Qwen2Config,
         
     | 
| 
      
 37 
     | 
    
         
            +
                    "vision_config": SiglipVisionConfig,
         
     | 
| 
      
 38 
     | 
    
         
            +
                }
         
     | 
| 
      
 39 
     | 
    
         
            +
                _auto_class = "AutoConfig"
         
     | 
| 
      
 40 
     | 
    
         
            +
             
     | 
| 
      
 41 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 42 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 43 
     | 
    
         
            +
                    *,
         
     | 
| 
      
 44 
     | 
    
         
            +
                    text_config: dict[str, Any] | None = None,
         
     | 
| 
      
 45 
     | 
    
         
            +
                    vision_config: dict[str, Any] | None = None,
         
     | 
| 
      
 46 
     | 
    
         
            +
                    image_token_id: int | None = None,
         
     | 
| 
      
 47 
     | 
    
         
            +
                    video_token_id: int | None = None,
         
     | 
| 
      
 48 
     | 
    
         
            +
                    **kwargs,
         
     | 
| 
      
 49 
     | 
    
         
            +
                ):
         
     | 
| 
      
 50 
     | 
    
         
            +
                    self.text_config = (
         
     | 
| 
      
 51 
     | 
    
         
            +
                        Qwen2Config(**text_config) if text_config is not None else Qwen2Config()
         
     | 
| 
      
 52 
     | 
    
         
            +
                    )
         
     | 
| 
      
 53 
     | 
    
         
            +
                    self.vision_config = (
         
     | 
| 
      
 54 
     | 
    
         
            +
                        SiglipVisionConfig(**vision_config)
         
     | 
| 
      
 55 
     | 
    
         
            +
                        if vision_config is not None
         
     | 
| 
      
 56 
     | 
    
         
            +
                        else SiglipVisionConfig()
         
     | 
| 
      
 57 
     | 
    
         
            +
                    )
         
     | 
| 
      
 58 
     | 
    
         
            +
             
     | 
| 
      
 59 
     | 
    
         
            +
                    self.image_token_id = image_token_id if image_token_id is not None else -1
         
     | 
| 
      
 60 
     | 
    
         
            +
                    self.video_token_id = video_token_id if video_token_id is not None else -1
         
     | 
| 
      
 61 
     | 
    
         
            +
             
     | 
| 
      
 62 
     | 
    
         
            +
                    super().__init__(**kwargs)
         
     | 
| 
      
 63 
     | 
    
         
            +
             
     | 
| 
      
 64 
     | 
    
         
            +
             
     | 
| 
      
 65 
     | 
    
         
            +
            class NVILAMultiModalProjectorDownsampleBlock(nn.Module):
         
     | 
| 
      
 66 
     | 
    
         
            +
                def forward(self, x: Tensor) -> Tensor:
         
     | 
| 
      
 67 
     | 
    
         
            +
                    batch_size, sequence_length, hidden_size = x.shape
         
     | 
| 
      
 68 
     | 
    
         
            +
             
     | 
| 
      
 69 
     | 
    
         
            +
                    feat_size = math.isqrt(sequence_length)
         
     | 
| 
      
 70 
     | 
    
         
            +
             
     | 
| 
      
 71 
     | 
    
         
            +
                    features = x.reshape(batch_size, feat_size, feat_size, hidden_size)
         
     | 
| 
      
 72 
     | 
    
         
            +
             
     | 
| 
      
 73 
     | 
    
         
            +
                    pad_after = feat_size % 2
         
     | 
| 
      
 74 
     | 
    
         
            +
                    if pad_after > 0:
         
     | 
| 
      
 75 
     | 
    
         
            +
                        features = F.pad(features, (0, 0, 0, pad_after, 0, pad_after))
         
     | 
| 
      
 76 
     | 
    
         
            +
                        feat_size = feat_size + pad_after
         
     | 
| 
      
 77 
     | 
    
         
            +
             
     | 
| 
      
 78 
     | 
    
         
            +
                    features = features.reshape(
         
     | 
| 
      
 79 
     | 
    
         
            +
                        batch_size, feat_size // 2, 2, feat_size // 2, 2, hidden_size
         
     | 
| 
      
 80 
     | 
    
         
            +
                    )
         
     | 
| 
      
 81 
     | 
    
         
            +
                    features = features.permute(0, 1, 3, 2, 4, 5).contiguous()
         
     | 
| 
      
 82 
     | 
    
         
            +
                    features = features.reshape(batch_size, -1, 4 * hidden_size)
         
     | 
| 
      
 83 
     | 
    
         
            +
             
     | 
| 
      
 84 
     | 
    
         
            +
                    return features
         
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
      
 86 
     | 
    
         
            +
             
     | 
| 
      
 87 
     | 
    
         
            +
            class NVILAMultiModalProjector(nn.Module):
         
     | 
| 
      
 88 
     | 
    
         
            +
                def __init__(self, config: NVILAConfig):
         
     | 
| 
      
 89 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 90 
     | 
    
         
            +
             
     | 
| 
      
 91 
     | 
    
         
            +
                    self.layers = nn.Sequential(
         
     | 
| 
      
 92 
     | 
    
         
            +
                        NVILAMultiModalProjectorDownsampleBlock(),
         
     | 
| 
      
 93 
     | 
    
         
            +
                        nn.LayerNorm(MM_HIDDEN_SIZE * 4),
         
     | 
| 
      
 94 
     | 
    
         
            +
                        nn.Linear(MM_HIDDEN_SIZE * 4, config.text_config.hidden_size),
         
     | 
| 
      
 95 
     | 
    
         
            +
                        nn.GELU(),
         
     | 
| 
      
 96 
     | 
    
         
            +
                        nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size),
         
     | 
| 
      
 97 
     | 
    
         
            +
                    )
         
     | 
| 
      
 98 
     | 
    
         
            +
             
     | 
| 
      
 99 
     | 
    
         
            +
                def forward(self, x: Tensor) -> Tensor:
         
     | 
| 
      
 100 
     | 
    
         
            +
                    return self.layers(x)
         
     | 
| 
      
 101 
     | 
    
         
            +
             
     | 
| 
      
 102 
     | 
    
         
            +
             
     | 
| 
      
 103 
     | 
    
         
            +
            class NVILAForConditionalGeneration(nn.Module):
         
     | 
| 
      
 104 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 105 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 106 
     | 
    
         
            +
                    config: NVILAConfig,
         
     | 
| 
      
 107 
     | 
    
         
            +
                    quant_config: QuantizationConfig | None = None,
         
     | 
| 
      
 108 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 109 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 110 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 111 
     | 
    
         
            +
             
     | 
| 
      
 112 
     | 
    
         
            +
                    self.config = config
         
     | 
| 
      
 113 
     | 
    
         
            +
             
     | 
| 
      
 114 
     | 
    
         
            +
                    self.vision_tower = SiglipVisionModel(config.vision_config)
         
     | 
| 
      
 115 
     | 
    
         
            +
                    self.mm_projector = NVILAMultiModalProjector(config)
         
     | 
| 
      
 116 
     | 
    
         
            +
                    self.llm = Qwen2ForCausalLM(
         
     | 
| 
      
 117 
     | 
    
         
            +
                        config=config.text_config,
         
     | 
| 
      
 118 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 119 
     | 
    
         
            +
                        prefix=utils.add_prefix("llm", prefix),
         
     | 
| 
      
 120 
     | 
    
         
            +
                    )
         
     | 
| 
      
 121 
     | 
    
         
            +
             
     | 
| 
      
 122 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 123 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 124 
     | 
    
         
            +
                    input_ids: Tensor,
         
     | 
| 
      
 125 
     | 
    
         
            +
                    positions: Tensor,
         
     | 
| 
      
 126 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 127 
     | 
    
         
            +
                    get_embedding: bool = False,
         
     | 
| 
      
 128 
     | 
    
         
            +
                ) -> LogitsProcessorOutput:
         
     | 
| 
      
 129 
     | 
    
         
            +
                    output = mm_utils.general_mm_embed_routine(
         
     | 
| 
      
 130 
     | 
    
         
            +
                        input_ids=input_ids,
         
     | 
| 
      
 131 
     | 
    
         
            +
                        forward_batch=forward_batch,
         
     | 
| 
      
 132 
     | 
    
         
            +
                        language_model=self.llm,
         
     | 
| 
      
 133 
     | 
    
         
            +
                        data_embedding_funcs={
         
     | 
| 
      
 134 
     | 
    
         
            +
                            Modality.IMAGE: self.get_image_feature,
         
     | 
| 
      
 135 
     | 
    
         
            +
                            Modality.VIDEO: self.get_image_feature,
         
     | 
| 
      
 136 
     | 
    
         
            +
                        },
         
     | 
| 
      
 137 
     | 
    
         
            +
                        get_embedding=get_embedding,
         
     | 
| 
      
 138 
     | 
    
         
            +
                        positions=positions,
         
     | 
| 
      
 139 
     | 
    
         
            +
                    )
         
     | 
| 
      
 140 
     | 
    
         
            +
             
     | 
| 
      
 141 
     | 
    
         
            +
                    assert isinstance(output, LogitsProcessorOutput)
         
     | 
| 
      
 142 
     | 
    
         
            +
             
     | 
| 
      
 143 
     | 
    
         
            +
                    return output
         
     | 
| 
      
 144 
     | 
    
         
            +
             
     | 
| 
      
 145 
     | 
    
         
            +
                def get_image_feature(self, mm_input: list[MultimodalDataItem]) -> Tensor:
         
     | 
| 
      
 146 
     | 
    
         
            +
                    block_sizes = (
         
     | 
| 
      
 147 
     | 
    
         
            +
                        list(
         
     | 
| 
      
 148 
     | 
    
         
            +
                            itertools.chain.from_iterable(
         
     | 
| 
      
 149 
     | 
    
         
            +
                                x.block_sizes for x in mm_input if hasattr(x, "block_sizes")
         
     | 
| 
      
 150 
     | 
    
         
            +
                            )
         
     | 
| 
      
 151 
     | 
    
         
            +
                        )
         
     | 
| 
      
 152 
     | 
    
         
            +
                        or None
         
     | 
| 
      
 153 
     | 
    
         
            +
                    )
         
     | 
| 
      
 154 
     | 
    
         
            +
                    pixel_values = torch.cat([torch.tensor(x.feature) for x in mm_input], dim=0)
         
     | 
| 
      
 155 
     | 
    
         
            +
             
     | 
| 
      
 156 
     | 
    
         
            +
                    vision_tower_output: BaseModelOutputWithPooling = self.vision_tower(
         
     | 
| 
      
 157 
     | 
    
         
            +
                        pixel_values.to(
         
     | 
| 
      
 158 
     | 
    
         
            +
                            device=self.vision_tower.device, dtype=self.vision_tower.dtype
         
     | 
| 
      
 159 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 160 
     | 
    
         
            +
                        output_hidden_states=True,
         
     | 
| 
      
 161 
     | 
    
         
            +
                    )
         
     | 
| 
      
 162 
     | 
    
         
            +
                    assert vision_tower_output.hidden_states is not None
         
     | 
| 
      
 163 
     | 
    
         
            +
             
     | 
| 
      
 164 
     | 
    
         
            +
                    vision_features: Tensor = vision_tower_output.hidden_states[-2]
         
     | 
| 
      
 165 
     | 
    
         
            +
             
     | 
| 
      
 166 
     | 
    
         
            +
                    vision_features_list, block_sizes = merge_features_for_dynamic_s2(
         
     | 
| 
      
 167 
     | 
    
         
            +
                        vision_features,
         
     | 
| 
      
 168 
     | 
    
         
            +
                        block_sizes=(
         
     | 
| 
      
 169 
     | 
    
         
            +
                            block_sizes
         
     | 
| 
      
 170 
     | 
    
         
            +
                            if block_sizes is not None
         
     | 
| 
      
 171 
     | 
    
         
            +
                            else [None] * vision_features.shape[0]
         
     | 
| 
      
 172 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 173 
     | 
    
         
            +
                        resize_output_to_scale_idx=-1,
         
     | 
| 
      
 174 
     | 
    
         
            +
                        scales=[448, 896, 1344],
         
     | 
| 
      
 175 
     | 
    
         
            +
                    )
         
     | 
| 
      
 176 
     | 
    
         
            +
             
     | 
| 
      
 177 
     | 
    
         
            +
                    vision_features_list = [
         
     | 
| 
      
 178 
     | 
    
         
            +
                        split_chessboard(x, block_size[0], block_size[1])
         
     | 
| 
      
 179 
     | 
    
         
            +
                        for x, block_size in zip(vision_features_list, block_sizes)
         
     | 
| 
      
 180 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 181 
     | 
    
         
            +
             
     | 
| 
      
 182 
     | 
    
         
            +
                    vision_features = torch.cat(
         
     | 
| 
      
 183 
     | 
    
         
            +
                        [einops.rearrange(x, "b c h w -> b (h w) c") for x in vision_features_list]
         
     | 
| 
      
 184 
     | 
    
         
            +
                    )
         
     | 
| 
      
 185 
     | 
    
         
            +
             
     | 
| 
      
 186 
     | 
    
         
            +
                    vision_features = self.mm_projector(vision_features)
         
     | 
| 
      
 187 
     | 
    
         
            +
             
     | 
| 
      
 188 
     | 
    
         
            +
                    vision_features_list = list(
         
     | 
| 
      
 189 
     | 
    
         
            +
                        vision_features.split(
         
     | 
| 
      
 190 
     | 
    
         
            +
                            [block_size[0] * block_size[1] for block_size in block_sizes], dim=0
         
     | 
| 
      
 191 
     | 
    
         
            +
                        )
         
     | 
| 
      
 192 
     | 
    
         
            +
                    )
         
     | 
| 
      
 193 
     | 
    
         
            +
                    vision_features_list = [
         
     | 
| 
      
 194 
     | 
    
         
            +
                        merge_chessboard(x, block_size[0], block_size[1])
         
     | 
| 
      
 195 
     | 
    
         
            +
                        for x, block_size in zip(vision_features_list, block_sizes)
         
     | 
| 
      
 196 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 197 
     | 
    
         
            +
             
     | 
| 
      
 198 
     | 
    
         
            +
                    vision_features = torch.stack(
         
     | 
| 
      
 199 
     | 
    
         
            +
                        [einops.rearrange(x, "1 c h w -> (h w) c") for x in vision_features_list]
         
     | 
| 
      
 200 
     | 
    
         
            +
                    )
         
     | 
| 
      
 201 
     | 
    
         
            +
             
     | 
| 
      
 202 
     | 
    
         
            +
                    vision_features = einops.rearrange(vision_features, "n p d -> (n p) d")
         
     | 
| 
      
 203 
     | 
    
         
            +
             
     | 
| 
      
 204 
     | 
    
         
            +
                    return vision_features
         
     | 
| 
      
 205 
     | 
    
         
            +
             
     | 
| 
      
 206 
     | 
    
         
            +
                def load_weights(self, weights: Iterable[tuple[str, Tensor]]) -> None:
         
     | 
| 
      
 207 
     | 
    
         
            +
                    params_dict = dict(self.named_parameters())
         
     | 
| 
      
 208 
     | 
    
         
            +
             
     | 
| 
      
 209 
     | 
    
         
            +
                    for name, loaded_weight in weights:
         
     | 
| 
      
 210 
     | 
    
         
            +
                        if name.startswith("llm."):
         
     | 
| 
      
 211 
     | 
    
         
            +
                            self.llm.load_weights([(name[len("llm.") :], loaded_weight)])
         
     | 
| 
      
 212 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 213 
     | 
    
         
            +
                            param = params_dict[name]
         
     | 
| 
      
 214 
     | 
    
         
            +
                            weight_loader = getattr(
         
     | 
| 
      
 215 
     | 
    
         
            +
                                param, "weight_loader", weight_utils.default_weight_loader
         
     | 
| 
      
 216 
     | 
    
         
            +
                            )
         
     | 
| 
      
 217 
     | 
    
         
            +
                            weight_loader(param, loaded_weight)
         
     | 
| 
      
 218 
     | 
    
         
            +
             
     | 
| 
      
 219 
     | 
    
         
            +
                def pad_input_ids(
         
     | 
| 
      
 220 
     | 
    
         
            +
                    self, input_ids: list[int], mm_inputs: MultimodalInputs
         
     | 
| 
      
 221 
     | 
    
         
            +
                ) -> list[int]:
         
     | 
| 
      
 222 
     | 
    
         
            +
                    pattern = MultiModalityDataPaddingPatternMultimodalTokens()
         
     | 
| 
      
 223 
     | 
    
         
            +
                    return pattern.pad_input_tokens(input_ids, mm_inputs)
         
     | 
| 
      
 224 
     | 
    
         
            +
             
     | 
| 
      
 225 
     | 
    
         
            +
             
     | 
| 
      
 226 
     | 
    
         
            +
            def merge_chessboard(x, num_split_h, num_split_w):
         
     | 
| 
      
 227 
     | 
    
         
            +
                """
         
     | 
| 
      
 228 
     | 
    
         
            +
                x: b * n * c or b * h * w * c
         
     | 
| 
      
 229 
     | 
    
         
            +
                out: b * c * h * w
         
     | 
| 
      
 230 
     | 
    
         
            +
                Assuming x contains num_split**2 sub-squares concatenated along batch dimension, merge the sub-squares back to the original whole square.
         
     | 
| 
      
 231 
     | 
    
         
            +
                """
         
     | 
| 
      
 232 
     | 
    
         
            +
                B = x.shape[0]
         
     | 
| 
      
 233 
     | 
    
         
            +
                if x.dim() == 3:
         
     | 
| 
      
 234 
     | 
    
         
            +
                    N = x.shape[1]
         
     | 
| 
      
 235 
     | 
    
         
            +
                    x = einops.rearrange(
         
     | 
| 
      
 236 
     | 
    
         
            +
                        x, "b (h w) c -> b c h w", h=math.isqrt(N), w=math.isqrt(N)
         
     | 
| 
      
 237 
     | 
    
         
            +
                    )
         
     | 
| 
      
 238 
     | 
    
         
            +
             
     | 
| 
      
 239 
     | 
    
         
            +
                assert B % (num_split_h * num_split_w) == 0
         
     | 
| 
      
 240 
     | 
    
         
            +
                b = B // (num_split_h * num_split_w)
         
     | 
| 
      
 241 
     | 
    
         
            +
             
     | 
| 
      
 242 
     | 
    
         
            +
                x_merge = torch.cat(
         
     | 
| 
      
 243 
     | 
    
         
            +
                    [
         
     | 
| 
      
 244 
     | 
    
         
            +
                        torch.cat(
         
     | 
| 
      
 245 
     | 
    
         
            +
                            [
         
     | 
| 
      
 246 
     | 
    
         
            +
                                x[(i * num_split_w + j) * b : (i * num_split_w + j + 1) * b]
         
     | 
| 
      
 247 
     | 
    
         
            +
                                for j in range(num_split_w)
         
     | 
| 
      
 248 
     | 
    
         
            +
                            ],
         
     | 
| 
      
 249 
     | 
    
         
            +
                            dim=-1,
         
     | 
| 
      
 250 
     | 
    
         
            +
                        )
         
     | 
| 
      
 251 
     | 
    
         
            +
                        for i in range(num_split_h)
         
     | 
| 
      
 252 
     | 
    
         
            +
                    ],
         
     | 
| 
      
 253 
     | 
    
         
            +
                    dim=-2,
         
     | 
| 
      
 254 
     | 
    
         
            +
                )
         
     | 
| 
      
 255 
     | 
    
         
            +
             
     | 
| 
      
 256 
     | 
    
         
            +
                return x_merge
         
     | 
| 
      
 257 
     | 
    
         
            +
             
     | 
| 
      
 258 
     | 
    
         
            +
             
     | 
| 
      
 259 
     | 
    
         
            +
            def merge_features_for_dynamic_s2(
         
     | 
| 
      
 260 
     | 
    
         
            +
                image_features, block_sizes, *, scales, resize_output_to_scale_idx
         
     | 
| 
      
 261 
     | 
    
         
            +
            ):
         
     | 
| 
      
 262 
     | 
    
         
            +
                image_features_each_image = []
         
     | 
| 
      
 263 
     | 
    
         
            +
                new_block_sizes = []
         
     | 
| 
      
 264 
     | 
    
         
            +
                block_cnt = 0
         
     | 
| 
      
 265 
     | 
    
         
            +
                for block_size_each_image in block_sizes:
         
     | 
| 
      
 266 
     | 
    
         
            +
                    if block_size_each_image is None:
         
     | 
| 
      
 267 
     | 
    
         
            +
                        cur_features = image_features[block_cnt : block_cnt + 1]
         
     | 
| 
      
 268 
     | 
    
         
            +
                        cur_features = einops.rearrange(
         
     | 
| 
      
 269 
     | 
    
         
            +
                            cur_features,
         
     | 
| 
      
 270 
     | 
    
         
            +
                            "1 (h w) c -> 1 c h w",
         
     | 
| 
      
 271 
     | 
    
         
            +
                            h=math.isqrt(cur_features.shape[1]),
         
     | 
| 
      
 272 
     | 
    
         
            +
                        )
         
     | 
| 
      
 273 
     | 
    
         
            +
                        cur_features = cur_features.repeat(1, len(scales), 1, 1)
         
     | 
| 
      
 274 
     | 
    
         
            +
                        image_features_each_image.append(cur_features)
         
     | 
| 
      
 275 
     | 
    
         
            +
                        new_block_sizes.append((1, 1))
         
     | 
| 
      
 276 
     | 
    
         
            +
                        block_cnt += 1
         
     | 
| 
      
 277 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 278 
     | 
    
         
            +
                        cur_features_each_scale = []
         
     | 
| 
      
 279 
     | 
    
         
            +
                        for scale in scales[:-1]:
         
     | 
| 
      
 280 
     | 
    
         
            +
                            num_blocks_this_scale = (scale // scales[0]) ** 2
         
     | 
| 
      
 281 
     | 
    
         
            +
                            cur_features_each_scale.append(
         
     | 
| 
      
 282 
     | 
    
         
            +
                                merge_chessboard(
         
     | 
| 
      
 283 
     | 
    
         
            +
                                    image_features[block_cnt : block_cnt + num_blocks_this_scale],
         
     | 
| 
      
 284 
     | 
    
         
            +
                                    num_split_h=scale // scales[0],
         
     | 
| 
      
 285 
     | 
    
         
            +
                                    num_split_w=scale // scales[0],
         
     | 
| 
      
 286 
     | 
    
         
            +
                                )
         
     | 
| 
      
 287 
     | 
    
         
            +
                            )  # 1 * C * H * W
         
     | 
| 
      
 288 
     | 
    
         
            +
                            block_cnt += num_blocks_this_scale
         
     | 
| 
      
 289 
     | 
    
         
            +
                        num_blocks_last_scale = block_size_each_image[0] * block_size_each_image[1]
         
     | 
| 
      
 290 
     | 
    
         
            +
                        cur_features_each_scale.append(
         
     | 
| 
      
 291 
     | 
    
         
            +
                            merge_chessboard(
         
     | 
| 
      
 292 
     | 
    
         
            +
                                image_features[block_cnt : block_cnt + num_blocks_last_scale],
         
     | 
| 
      
 293 
     | 
    
         
            +
                                num_split_h=block_size_each_image[0],
         
     | 
| 
      
 294 
     | 
    
         
            +
                                num_split_w=block_size_each_image[1],
         
     | 
| 
      
 295 
     | 
    
         
            +
                            )
         
     | 
| 
      
 296 
     | 
    
         
            +
                        )  # 1 * C * H * W
         
     | 
| 
      
 297 
     | 
    
         
            +
                        block_cnt += num_blocks_last_scale
         
     | 
| 
      
 298 
     | 
    
         
            +
             
     | 
| 
      
 299 
     | 
    
         
            +
                        # resize and concat features from different scales
         
     | 
| 
      
 300 
     | 
    
         
            +
                        output_size = cur_features_each_scale[resize_output_to_scale_idx].shape[-2:]
         
     | 
| 
      
 301 
     | 
    
         
            +
                        cur_features = torch.cat(
         
     | 
| 
      
 302 
     | 
    
         
            +
                            [
         
     | 
| 
      
 303 
     | 
    
         
            +
                                F.interpolate(
         
     | 
| 
      
 304 
     | 
    
         
            +
                                    cur_features_each_scale[i].to(torch.float32),
         
     | 
| 
      
 305 
     | 
    
         
            +
                                    size=output_size,
         
     | 
| 
      
 306 
     | 
    
         
            +
                                    mode="area",
         
     | 
| 
      
 307 
     | 
    
         
            +
                                ).to(cur_features_each_scale[i].dtype)
         
     | 
| 
      
 308 
     | 
    
         
            +
                                for i in range(len(cur_features_each_scale))
         
     | 
| 
      
 309 
     | 
    
         
            +
                            ],
         
     | 
| 
      
 310 
     | 
    
         
            +
                            dim=1,
         
     | 
| 
      
 311 
     | 
    
         
            +
                        )
         
     | 
| 
      
 312 
     | 
    
         
            +
             
     | 
| 
      
 313 
     | 
    
         
            +
                        image_features_each_image.append(cur_features)
         
     | 
| 
      
 314 
     | 
    
         
            +
             
     | 
| 
      
 315 
     | 
    
         
            +
                        if (
         
     | 
| 
      
 316 
     | 
    
         
            +
                            resize_output_to_scale_idx == len(scales) - 1
         
     | 
| 
      
 317 
     | 
    
         
            +
                            or resize_output_to_scale_idx == -1
         
     | 
| 
      
 318 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 319 
     | 
    
         
            +
                            new_block_sizes.append(block_size_each_image)
         
     | 
| 
      
 320 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 321 
     | 
    
         
            +
                            new_block_sizes.append(
         
     | 
| 
      
 322 
     | 
    
         
            +
                                (
         
     | 
| 
      
 323 
     | 
    
         
            +
                                    scales[resize_output_to_scale_idx] // scales[0],
         
     | 
| 
      
 324 
     | 
    
         
            +
                                    scales[resize_output_to_scale_idx] // scales[0],
         
     | 
| 
      
 325 
     | 
    
         
            +
                                )
         
     | 
| 
      
 326 
     | 
    
         
            +
                            )
         
     | 
| 
      
 327 
     | 
    
         
            +
             
     | 
| 
      
 328 
     | 
    
         
            +
                assert block_cnt == len(
         
     | 
| 
      
 329 
     | 
    
         
            +
                    image_features
         
     | 
| 
      
 330 
     | 
    
         
            +
                ), f"The number of blocks ({block_cnt}) does not match length of image_features ({len(image_features)})!"
         
     | 
| 
      
 331 
     | 
    
         
            +
             
     | 
| 
      
 332 
     | 
    
         
            +
                return image_features_each_image, new_block_sizes
         
     | 
| 
      
 333 
     | 
    
         
            +
             
     | 
| 
      
 334 
     | 
    
         
            +
             
     | 
| 
      
 335 
     | 
    
         
            +
            def split_chessboard(x, num_split_h, num_split_w):
         
     | 
| 
      
 336 
     | 
    
         
            +
                """
         
     | 
| 
      
 337 
     | 
    
         
            +
                x: b * c * h * w
         
     | 
| 
      
 338 
     | 
    
         
            +
                out: b * c * h * w
         
     | 
| 
      
 339 
     | 
    
         
            +
                Deividing x into num_split**2 sub-squares, and concatenate all the sub-squares on the batch dimension
         
     | 
| 
      
 340 
     | 
    
         
            +
                """
         
     | 
| 
      
 341 
     | 
    
         
            +
                B, C, H, W = x.shape
         
     | 
| 
      
 342 
     | 
    
         
            +
                assert H % num_split_h == 0 and W % num_split_w == 0
         
     | 
| 
      
 343 
     | 
    
         
            +
                h, w = H // num_split_h, W // num_split_w
         
     | 
| 
      
 344 
     | 
    
         
            +
                x_split = torch.cat(
         
     | 
| 
      
 345 
     | 
    
         
            +
                    [
         
     | 
| 
      
 346 
     | 
    
         
            +
                        x[:, :, i * h : (i + 1) * h, j * w : (j + 1) * w]
         
     | 
| 
      
 347 
     | 
    
         
            +
                        for i in range(num_split_h)
         
     | 
| 
      
 348 
     | 
    
         
            +
                        for j in range(num_split_w)
         
     | 
| 
      
 349 
     | 
    
         
            +
                    ],
         
     | 
| 
      
 350 
     | 
    
         
            +
                    dim=0,
         
     | 
| 
      
 351 
     | 
    
         
            +
                )
         
     | 
| 
      
 352 
     | 
    
         
            +
                return x_split
         
     | 
| 
      
 353 
     | 
    
         
            +
             
     | 
| 
      
 354 
     | 
    
         
            +
             
     | 
| 
      
 355 
     | 
    
         
            +
            EntryClass = [NVILAForConditionalGeneration]
         
     | 
| 
         @@ -0,0 +1,184 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            import math
         
     | 
| 
      
 2 
     | 
    
         
            +
            from collections.abc import Iterable
         
     | 
| 
      
 3 
     | 
    
         
            +
            from typing import Any
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            import einops
         
     | 
| 
      
 6 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 7 
     | 
    
         
            +
            import torch.nn as nn
         
     | 
| 
      
 8 
     | 
    
         
            +
            import torch.nn.functional as F
         
     | 
| 
      
 9 
     | 
    
         
            +
            from torch import Tensor
         
     | 
| 
      
 10 
     | 
    
         
            +
            from transformers.configuration_utils import PretrainedConfig
         
     | 
| 
      
 11 
     | 
    
         
            +
            from transformers.modeling_outputs import BaseModelOutputWithPooling
         
     | 
| 
      
 12 
     | 
    
         
            +
            from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
         
     | 
| 
      
 13 
     | 
    
         
            +
            from transformers.models.siglip import SiglipVisionConfig, SiglipVisionModel
         
     | 
| 
      
 14 
     | 
    
         
            +
             
     | 
| 
      
 15 
     | 
    
         
            +
            import sglang.srt.managers.mm_utils as mm_utils
         
     | 
| 
      
 16 
     | 
    
         
            +
            import sglang.srt.model_loader.weight_utils as weight_utils
         
     | 
| 
      
 17 
     | 
    
         
            +
            import sglang.srt.utils as utils
         
     | 
| 
      
 18 
     | 
    
         
            +
            from sglang.srt.layers.logits_processor import LogitsProcessorOutput
         
     | 
| 
      
 19 
     | 
    
         
            +
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
      
 20 
     | 
    
         
            +
            from sglang.srt.managers.mm_utils import MultiModalityDataPaddingPatternMultimodalTokens
         
     | 
| 
      
 21 
     | 
    
         
            +
            from sglang.srt.managers.schedule_batch import (
         
     | 
| 
      
 22 
     | 
    
         
            +
                Modality,
         
     | 
| 
      
 23 
     | 
    
         
            +
                MultimodalDataItem,
         
     | 
| 
      
 24 
     | 
    
         
            +
                MultimodalInputs,
         
     | 
| 
      
 25 
     | 
    
         
            +
            )
         
     | 
| 
      
 26 
     | 
    
         
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
      
 27 
     | 
    
         
            +
            from sglang.srt.models.qwen2 import Qwen2ForCausalLM
         
     | 
| 
      
 28 
     | 
    
         
            +
             
     | 
| 
      
 29 
     | 
    
         
            +
            MM_HIDDEN_SIZE = 1152
         
     | 
| 
      
 30 
     | 
    
         
            +
             
     | 
| 
      
 31 
     | 
    
         
            +
             
     | 
| 
      
 32 
     | 
    
         
            +
            class NVILALiteConfig(PretrainedConfig):
         
     | 
| 
      
 33 
     | 
    
         
            +
                model_type = "nvila_lite"
         
     | 
| 
      
 34 
     | 
    
         
            +
                sub_configs = {
         
     | 
| 
      
 35 
     | 
    
         
            +
                    "text_config": Qwen2Config,
         
     | 
| 
      
 36 
     | 
    
         
            +
                    "vision_config": SiglipVisionConfig,
         
     | 
| 
      
 37 
     | 
    
         
            +
                }
         
     | 
| 
      
 38 
     | 
    
         
            +
                _auto_class = "AutoConfig"
         
     | 
| 
      
 39 
     | 
    
         
            +
             
     | 
| 
      
 40 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 41 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 42 
     | 
    
         
            +
                    *,
         
     | 
| 
      
 43 
     | 
    
         
            +
                    text_config: dict[str, Any] | None = None,
         
     | 
| 
      
 44 
     | 
    
         
            +
                    vision_config: dict[str, Any] | None = None,
         
     | 
| 
      
 45 
     | 
    
         
            +
                    image_token_id: int | None = None,
         
     | 
| 
      
 46 
     | 
    
         
            +
                    video_token_id: int | None = None,
         
     | 
| 
      
 47 
     | 
    
         
            +
                    **kwargs,
         
     | 
| 
      
 48 
     | 
    
         
            +
                ):
         
     | 
| 
      
 49 
     | 
    
         
            +
                    self.text_config = (
         
     | 
| 
      
 50 
     | 
    
         
            +
                        Qwen2Config(**text_config) if text_config is not None else Qwen2Config()
         
     | 
| 
      
 51 
     | 
    
         
            +
                    )
         
     | 
| 
      
 52 
     | 
    
         
            +
                    self.vision_config = (
         
     | 
| 
      
 53 
     | 
    
         
            +
                        SiglipVisionConfig(**vision_config)
         
     | 
| 
      
 54 
     | 
    
         
            +
                        if vision_config is not None
         
     | 
| 
      
 55 
     | 
    
         
            +
                        else SiglipVisionConfig()
         
     | 
| 
      
 56 
     | 
    
         
            +
                    )
         
     | 
| 
      
 57 
     | 
    
         
            +
             
     | 
| 
      
 58 
     | 
    
         
            +
                    self.image_token_id = image_token_id if image_token_id is not None else -1
         
     | 
| 
      
 59 
     | 
    
         
            +
                    self.video_token_id = video_token_id if video_token_id is not None else -1
         
     | 
| 
      
 60 
     | 
    
         
            +
             
     | 
| 
      
 61 
     | 
    
         
            +
                    super().__init__(**kwargs)
         
     | 
| 
      
 62 
     | 
    
         
            +
             
     | 
| 
      
 63 
     | 
    
         
            +
             
     | 
| 
      
 64 
     | 
    
         
            +
            class NVILALiteMultiModalProjectorDownsampleBlock(nn.Module):
         
     | 
| 
      
 65 
     | 
    
         
            +
                def forward(self, x: Tensor) -> Tensor:
         
     | 
| 
      
 66 
     | 
    
         
            +
                    batch_size, sequence_length, hidden_size = x.shape
         
     | 
| 
      
 67 
     | 
    
         
            +
             
     | 
| 
      
 68 
     | 
    
         
            +
                    feat_size = math.isqrt(sequence_length)
         
     | 
| 
      
 69 
     | 
    
         
            +
             
     | 
| 
      
 70 
     | 
    
         
            +
                    features = x.reshape(batch_size, feat_size, feat_size, hidden_size)
         
     | 
| 
      
 71 
     | 
    
         
            +
             
     | 
| 
      
 72 
     | 
    
         
            +
                    pad_after = (3 - feat_size % 3) % 3
         
     | 
| 
      
 73 
     | 
    
         
            +
                    if pad_after > 0:
         
     | 
| 
      
 74 
     | 
    
         
            +
                        features = F.pad(features, (0, 0, 0, pad_after, 0, pad_after))
         
     | 
| 
      
 75 
     | 
    
         
            +
                        feat_size = feat_size + pad_after
         
     | 
| 
      
 76 
     | 
    
         
            +
             
     | 
| 
      
 77 
     | 
    
         
            +
                    features = features.reshape(
         
     | 
| 
      
 78 
     | 
    
         
            +
                        batch_size, feat_size // 3, 3, feat_size // 3, 3, hidden_size
         
     | 
| 
      
 79 
     | 
    
         
            +
                    )
         
     | 
| 
      
 80 
     | 
    
         
            +
                    features = features.permute(0, 1, 3, 2, 4, 5).contiguous()
         
     | 
| 
      
 81 
     | 
    
         
            +
                    features = features.reshape(batch_size, -1, 9 * hidden_size)
         
     | 
| 
      
 82 
     | 
    
         
            +
             
     | 
| 
      
 83 
     | 
    
         
            +
                    return features
         
     | 
| 
      
 84 
     | 
    
         
            +
             
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
      
 86 
     | 
    
         
            +
            class NVILALiteMultiModalProjector(nn.Module):
         
     | 
| 
      
 87 
     | 
    
         
            +
                def __init__(self, config: NVILALiteConfig):
         
     | 
| 
      
 88 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 89 
     | 
    
         
            +
             
     | 
| 
      
 90 
     | 
    
         
            +
                    self.layers = nn.Sequential(
         
     | 
| 
      
 91 
     | 
    
         
            +
                        NVILALiteMultiModalProjectorDownsampleBlock(),
         
     | 
| 
      
 92 
     | 
    
         
            +
                        nn.LayerNorm(MM_HIDDEN_SIZE * 9),
         
     | 
| 
      
 93 
     | 
    
         
            +
                        nn.Linear(MM_HIDDEN_SIZE * 9, MM_HIDDEN_SIZE * 3),
         
     | 
| 
      
 94 
     | 
    
         
            +
                        nn.GELU(),
         
     | 
| 
      
 95 
     | 
    
         
            +
                        nn.LayerNorm(MM_HIDDEN_SIZE * 3),
         
     | 
| 
      
 96 
     | 
    
         
            +
                        nn.Linear(MM_HIDDEN_SIZE * 3, config.text_config.hidden_size),
         
     | 
| 
      
 97 
     | 
    
         
            +
                        nn.GELU(),
         
     | 
| 
      
 98 
     | 
    
         
            +
                        nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size),
         
     | 
| 
      
 99 
     | 
    
         
            +
                    )
         
     | 
| 
      
 100 
     | 
    
         
            +
             
     | 
| 
      
 101 
     | 
    
         
            +
                def forward(self, x: Tensor) -> Tensor:
         
     | 
| 
      
 102 
     | 
    
         
            +
                    return self.layers(x)
         
     | 
| 
      
 103 
     | 
    
         
            +
             
     | 
| 
      
 104 
     | 
    
         
            +
             
     | 
| 
      
 105 
     | 
    
         
            +
            class NVILALiteForConditionalGeneration(nn.Module):
         
     | 
| 
      
 106 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 107 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 108 
     | 
    
         
            +
                    config: NVILALiteConfig,
         
     | 
| 
      
 109 
     | 
    
         
            +
                    quant_config: QuantizationConfig | None = None,
         
     | 
| 
      
 110 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 111 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 112 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 113 
     | 
    
         
            +
             
     | 
| 
      
 114 
     | 
    
         
            +
                    self.config = config
         
     | 
| 
      
 115 
     | 
    
         
            +
             
     | 
| 
      
 116 
     | 
    
         
            +
                    self.vision_tower = SiglipVisionModel(config.vision_config)
         
     | 
| 
      
 117 
     | 
    
         
            +
                    self.mm_projector = NVILALiteMultiModalProjector(config)
         
     | 
| 
      
 118 
     | 
    
         
            +
                    self.llm = Qwen2ForCausalLM(
         
     | 
| 
      
 119 
     | 
    
         
            +
                        config=config.text_config,
         
     | 
| 
      
 120 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 121 
     | 
    
         
            +
                        prefix=utils.add_prefix("llm", prefix),
         
     | 
| 
      
 122 
     | 
    
         
            +
                    )
         
     | 
| 
      
 123 
     | 
    
         
            +
             
     | 
| 
      
 124 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 125 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 126 
     | 
    
         
            +
                    input_ids: Tensor,
         
     | 
| 
      
 127 
     | 
    
         
            +
                    positions: Tensor,
         
     | 
| 
      
 128 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 129 
     | 
    
         
            +
                    get_embedding: bool = False,
         
     | 
| 
      
 130 
     | 
    
         
            +
                ) -> LogitsProcessorOutput:
         
     | 
| 
      
 131 
     | 
    
         
            +
                    output = mm_utils.general_mm_embed_routine(
         
     | 
| 
      
 132 
     | 
    
         
            +
                        input_ids=input_ids,
         
     | 
| 
      
 133 
     | 
    
         
            +
                        forward_batch=forward_batch,
         
     | 
| 
      
 134 
     | 
    
         
            +
                        language_model=self.llm,
         
     | 
| 
      
 135 
     | 
    
         
            +
                        data_embedding_funcs={
         
     | 
| 
      
 136 
     | 
    
         
            +
                            Modality.IMAGE: self.get_image_feature,
         
     | 
| 
      
 137 
     | 
    
         
            +
                            Modality.VIDEO: self.get_image_feature,
         
     | 
| 
      
 138 
     | 
    
         
            +
                        },
         
     | 
| 
      
 139 
     | 
    
         
            +
                        get_embedding=get_embedding,
         
     | 
| 
      
 140 
     | 
    
         
            +
                        positions=positions,
         
     | 
| 
      
 141 
     | 
    
         
            +
                    )
         
     | 
| 
      
 142 
     | 
    
         
            +
             
     | 
| 
      
 143 
     | 
    
         
            +
                    assert isinstance(output, LogitsProcessorOutput)
         
     | 
| 
      
 144 
     | 
    
         
            +
             
     | 
| 
      
 145 
     | 
    
         
            +
                    return output
         
     | 
| 
      
 146 
     | 
    
         
            +
             
     | 
| 
      
 147 
     | 
    
         
            +
                def get_image_feature(self, mm_input: list[MultimodalDataItem]) -> Tensor:
         
     | 
| 
      
 148 
     | 
    
         
            +
                    pixel_values = torch.cat([torch.tensor(x.feature) for x in mm_input], dim=0)
         
     | 
| 
      
 149 
     | 
    
         
            +
             
     | 
| 
      
 150 
     | 
    
         
            +
                    vision_tower_output: BaseModelOutputWithPooling = self.vision_tower(
         
     | 
| 
      
 151 
     | 
    
         
            +
                        pixel_values,
         
     | 
| 
      
 152 
     | 
    
         
            +
                        output_hidden_states=True,
         
     | 
| 
      
 153 
     | 
    
         
            +
                    )
         
     | 
| 
      
 154 
     | 
    
         
            +
                    assert vision_tower_output.hidden_states is not None
         
     | 
| 
      
 155 
     | 
    
         
            +
             
     | 
| 
      
 156 
     | 
    
         
            +
                    vision_features = vision_tower_output.hidden_states[-2]
         
     | 
| 
      
 157 
     | 
    
         
            +
             
     | 
| 
      
 158 
     | 
    
         
            +
                    vision_features = self.mm_projector(vision_features)
         
     | 
| 
      
 159 
     | 
    
         
            +
             
     | 
| 
      
 160 
     | 
    
         
            +
                    vision_features = einops.rearrange(vision_features, "n p d -> (n p) d")
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
                    return vision_features
         
     | 
| 
      
 163 
     | 
    
         
            +
             
     | 
| 
      
 164 
     | 
    
         
            +
                def load_weights(self, weights: Iterable[tuple[str, Tensor]]) -> None:
         
     | 
| 
      
 165 
     | 
    
         
            +
                    params_dict = dict(self.named_parameters())
         
     | 
| 
      
 166 
     | 
    
         
            +
             
     | 
| 
      
 167 
     | 
    
         
            +
                    for name, loaded_weight in weights:
         
     | 
| 
      
 168 
     | 
    
         
            +
                        if name.startswith("llm."):
         
     | 
| 
      
 169 
     | 
    
         
            +
                            self.llm.load_weights([(name[len("llm.") :], loaded_weight)])
         
     | 
| 
      
 170 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 171 
     | 
    
         
            +
                            param = params_dict[name]
         
     | 
| 
      
 172 
     | 
    
         
            +
                            weight_loader = getattr(
         
     | 
| 
      
 173 
     | 
    
         
            +
                                param, "weight_loader", weight_utils.default_weight_loader
         
     | 
| 
      
 174 
     | 
    
         
            +
                            )
         
     | 
| 
      
 175 
     | 
    
         
            +
                            weight_loader(param, loaded_weight)
         
     | 
| 
      
 176 
     | 
    
         
            +
             
     | 
| 
      
 177 
     | 
    
         
            +
                def pad_input_ids(
         
     | 
| 
      
 178 
     | 
    
         
            +
                    self, input_ids: list[int], mm_inputs: MultimodalInputs
         
     | 
| 
      
 179 
     | 
    
         
            +
                ) -> list[int]:
         
     | 
| 
      
 180 
     | 
    
         
            +
                    pattern = MultiModalityDataPaddingPatternMultimodalTokens()
         
     | 
| 
      
 181 
     | 
    
         
            +
                    return pattern.pad_input_tokens(input_ids, mm_inputs)
         
     | 
| 
      
 182 
     | 
    
         
            +
             
     | 
| 
      
 183 
     | 
    
         
            +
             
     | 
| 
      
 184 
     | 
    
         
            +
            EntryClass = [NVILALiteForConditionalGeneration]
         
     | 
    
        sglang/srt/models/olmo2.py
    CHANGED
    
    | 
         @@ -48,6 +48,12 @@ from sglang.srt.model_loader.weight_utils import default_weight_loader 
     | 
|
| 
       48 
48 
     | 
    
         
             
            from sglang.srt.utils import add_prefix, make_layers
         
     | 
| 
       49 
49 
     | 
    
         | 
| 
       50 
50 
     | 
    
         | 
| 
      
 51 
     | 
    
         
            +
            # Aligned with HF's implementation, using sliding window inclusive with the last token
         
     | 
| 
      
 52 
     | 
    
         
            +
            # SGLang assumes exclusive
         
     | 
| 
      
 53 
     | 
    
         
            +
            def get_attention_sliding_window_size(config):
         
     | 
| 
      
 54 
     | 
    
         
            +
                return config.sliding_window - 1 if hasattr(config, "sliding_window") else None
         
     | 
| 
      
 55 
     | 
    
         
            +
             
     | 
| 
      
 56 
     | 
    
         
            +
             
     | 
| 
       51 
57 
     | 
    
         
             
            class Olmo2Attention(nn.Module):
         
     | 
| 
       52 
58 
     | 
    
         
             
                """
         
     | 
| 
       53 
59 
     | 
    
         
             
                This is the attention block where the output is computed as
         
     | 
| 
         @@ -85,6 +91,8 @@ class Olmo2Attention(nn.Module): 
     | 
|
| 
       85 
91 
     | 
    
         
             
                    self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
         
     | 
| 
       86 
92 
     | 
    
         | 
| 
       87 
93 
     | 
    
         
             
                    self.head_dim = self.hidden_size // self.total_num_heads
         
     | 
| 
      
 94 
     | 
    
         
            +
                    self.q_size = self.num_heads * self.head_dim
         
     | 
| 
      
 95 
     | 
    
         
            +
                    self.kv_size = self.num_kv_heads * self.head_dim
         
     | 
| 
       88 
96 
     | 
    
         
             
                    self.max_position_embeddings = config.max_position_embeddings
         
     | 
| 
       89 
97 
     | 
    
         
             
                    self.rope_theta = config.rope_theta
         
     | 
| 
       90 
98 
     | 
    
         | 
| 
         @@ -104,12 +112,26 @@ class Olmo2Attention(nn.Module): 
     | 
|
| 
       104 
112 
     | 
    
         
             
                        eps=self.config.rms_norm_eps,
         
     | 
| 
       105 
113 
     | 
    
         
             
                    )
         
     | 
| 
       106 
114 
     | 
    
         
             
                    self.q_norm = RMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
         
     | 
| 
       107 
     | 
    
         
            -
             
     | 
| 
      
 115 
     | 
    
         
            +
             
     | 
| 
      
 116 
     | 
    
         
            +
                    sliding_window = None
         
     | 
| 
      
 117 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 118 
     | 
    
         
            +
                        layer_types := getattr(self.config, "layer_types", None)
         
     | 
| 
      
 119 
     | 
    
         
            +
                    ) is not None and layer_types[layer_id] == "sliding_attention":
         
     | 
| 
      
 120 
     | 
    
         
            +
                        sliding_window = get_attention_sliding_window_size(self.config)
         
     | 
| 
      
 121 
     | 
    
         
            +
             
     | 
| 
      
 122 
     | 
    
         
            +
                    # Rotary embeddings. Rope scaling is only applied on full attention
         
     | 
| 
      
 123 
     | 
    
         
            +
                    # layers.
         
     | 
| 
      
 124 
     | 
    
         
            +
                    self.rope_scaling = (
         
     | 
| 
      
 125 
     | 
    
         
            +
                        self.config.rope_scaling
         
     | 
| 
      
 126 
     | 
    
         
            +
                        if sliding_window is None
         
     | 
| 
      
 127 
     | 
    
         
            +
                        else {"rope_type": "default"}
         
     | 
| 
      
 128 
     | 
    
         
            +
                    )
         
     | 
| 
       108 
129 
     | 
    
         
             
                    self.rotary_emb = get_rope(
         
     | 
| 
       109 
130 
     | 
    
         
             
                        self.head_dim,
         
     | 
| 
       110 
131 
     | 
    
         
             
                        rotary_dim=self.head_dim,
         
     | 
| 
       111 
132 
     | 
    
         
             
                        max_position=self.max_position_embeddings,
         
     | 
| 
       112 
133 
     | 
    
         
             
                        base=self.rope_theta,
         
     | 
| 
      
 134 
     | 
    
         
            +
                        rope_scaling=self.rope_scaling,
         
     | 
| 
       113 
135 
     | 
    
         
             
                    )
         
     | 
| 
       114 
136 
     | 
    
         
             
                    self.scaling = self.head_dim**-0.5
         
     | 
| 
       115 
137 
     | 
    
         
             
                    self.attn = RadixAttention(
         
     | 
| 
         @@ -118,6 +140,7 @@ class Olmo2Attention(nn.Module): 
     | 
|
| 
       118 
140 
     | 
    
         
             
                        self.scaling,
         
     | 
| 
       119 
141 
     | 
    
         
             
                        num_kv_heads=self.num_kv_heads,
         
     | 
| 
       120 
142 
     | 
    
         
             
                        layer_id=layer_id,
         
     | 
| 
      
 143 
     | 
    
         
            +
                        sliding_window_size=sliding_window,
         
     | 
| 
       121 
144 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
       122 
145 
     | 
    
         
             
                        prefix=add_prefix("attn", prefix),
         
     | 
| 
       123 
146 
     | 
    
         
             
                    )
         
     | 
| 
         @@ -152,7 +175,7 @@ class Olmo2Attention(nn.Module): 
     | 
|
| 
       152 
175 
     | 
    
         
             
                    forward_batch: ForwardBatch,
         
     | 
| 
       153 
176 
     | 
    
         
             
                ) -> torch.Tensor:
         
     | 
| 
       154 
177 
     | 
    
         
             
                    qkv, _ = self.qkv_proj(hidden_states)
         
     | 
| 
       155 
     | 
    
         
            -
                    q, k, v = qkv. 
     | 
| 
      
 178 
     | 
    
         
            +
                    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
         
     | 
| 
       156 
179 
     | 
    
         
             
                    q, k = self._apply_qk_norm(q, k)
         
     | 
| 
       157 
180 
     | 
    
         
             
                    q, k = self.rotary_emb(positions, q, k)
         
     | 
| 
       158 
181 
     | 
    
         
             
                    attn_output = self.attn(q, k, v, forward_batch)
         
     | 
| 
         @@ -224,6 +247,7 @@ class Olmo2DecoderLayer(nn.Module): 
     | 
|
| 
       224 
247 
     | 
    
         
             
                    prefix: str = "",
         
     | 
| 
       225 
248 
     | 
    
         
             
                ):
         
     | 
| 
       226 
249 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
      
 250 
     | 
    
         
            +
                    self.layer_id = layer_id
         
     | 
| 
       227 
251 
     | 
    
         
             
                    # Attention block.
         
     | 
| 
       228 
252 
     | 
    
         
             
                    self.self_attn = Olmo2Attention(
         
     | 
| 
       229 
253 
     | 
    
         
             
                        config, layer_id, quant_config, prefix=add_prefix("self_attn", prefix)
         
     | 
| 
         @@ -280,8 +304,8 @@ class Olmo2Model(nn.Module): 
     | 
|
| 
       280 
304 
     | 
    
         
             
                    self.layers = make_layers(
         
     | 
| 
       281 
305 
     | 
    
         
             
                        config.num_hidden_layers,
         
     | 
| 
       282 
306 
     | 
    
         
             
                        lambda idx, prefix: Olmo2DecoderLayer(
         
     | 
| 
       283 
     | 
    
         
            -
                            layer_id=idx,
         
     | 
| 
       284 
307 
     | 
    
         
             
                            config=config,
         
     | 
| 
      
 308 
     | 
    
         
            +
                            layer_id=idx,
         
     | 
| 
       285 
309 
     | 
    
         
             
                            quant_config=quant_config,
         
     | 
| 
       286 
310 
     | 
    
         
             
                            prefix=prefix,
         
     | 
| 
       287 
311 
     | 
    
         
             
                        ),
         
     | 
| 
         @@ -294,7 +318,7 @@ class Olmo2Model(nn.Module): 
     | 
|
| 
       294 
318 
     | 
    
         
             
                    input_ids: torch.Tensor,
         
     | 
| 
       295 
319 
     | 
    
         
             
                    positions: torch.Tensor,
         
     | 
| 
       296 
320 
     | 
    
         
             
                    forward_batch: ForwardBatch,
         
     | 
| 
       297 
     | 
    
         
            -
                    input_embeds: torch.Tensor = None,
         
     | 
| 
      
 321 
     | 
    
         
            +
                    input_embeds: Optional[torch.Tensor] = None,
         
     | 
| 
       298 
322 
     | 
    
         
             
                ) -> torch.Tensor:
         
     | 
| 
       299 
323 
     | 
    
         
             
                    """
         
     | 
| 
       300 
324 
     | 
    
         
             
                    :param input_ids: A tensor of shape `(batch_size, seq_len)`.
         
     | 
| 
         @@ -351,6 +375,9 @@ class Olmo2ForCausalLM(nn.Module): 
     | 
|
| 
       351 
375 
     | 
    
         
             
                        )
         
     | 
| 
       352 
376 
     | 
    
         
             
                    self.logits_processor = LogitsProcessor(config)
         
     | 
| 
       353 
377 
     | 
    
         | 
| 
      
 378 
     | 
    
         
            +
                def get_attention_sliding_window_size(self):
         
     | 
| 
      
 379 
     | 
    
         
            +
                    return get_attention_sliding_window_size(self.config)
         
     | 
| 
      
 380 
     | 
    
         
            +
             
     | 
| 
       354 
381 
     | 
    
         
             
                def forward(
         
     | 
| 
       355 
382 
     | 
    
         
             
                    self,
         
     | 
| 
       356 
383 
     | 
    
         
             
                    input_ids: torch.Tensor,
         
     | 
    
        sglang/srt/models/opt.py
    CHANGED
    
    | 
         @@ -13,11 +13,11 @@ 
     | 
|
| 
       13 
13 
     | 
    
         
             
            # ==============================================================================
         
     | 
| 
       14 
14 
     | 
    
         | 
| 
       15 
15 
     | 
    
         
             
            """Inference-only OPT model compatible with HuggingFace weights."""
         
     | 
| 
      
 16 
     | 
    
         
            +
            import logging
         
     | 
| 
       16 
17 
     | 
    
         
             
            from collections.abc import Iterable
         
     | 
| 
       17 
18 
     | 
    
         
             
            from typing import Optional, Union
         
     | 
| 
       18 
19 
     | 
    
         | 
| 
       19 
20 
     | 
    
         
             
            import torch
         
     | 
| 
       20 
     | 
    
         
            -
            import torch.nn.functional as F
         
     | 
| 
       21 
21 
     | 
    
         
             
            from torch import nn
         
     | 
| 
       22 
22 
     | 
    
         
             
            from transformers import OPTConfig
         
     | 
| 
       23 
23 
     | 
    
         | 
| 
         @@ -26,10 +26,8 @@ from sglang.srt.distributed import ( 
     | 
|
| 
       26 
26 
     | 
    
         
             
                get_tensor_model_parallel_rank,
         
     | 
| 
       27 
27 
     | 
    
         
             
                get_tensor_model_parallel_world_size,
         
     | 
| 
       28 
28 
     | 
    
         
             
            )
         
     | 
| 
       29 
     | 
    
         
            -
            from sglang.srt.layers.activation import get_act_fn
         
     | 
| 
       30 
29 
     | 
    
         
             
            from sglang.srt.layers.linear import (
         
     | 
| 
       31 
30 
     | 
    
         
             
                ColumnParallelLinear,
         
     | 
| 
       32 
     | 
    
         
            -
                MergedColumnParallelLinear,
         
     | 
| 
       33 
31 
     | 
    
         
             
                QKVParallelLinear,
         
     | 
| 
       34 
32 
     | 
    
         
             
                ReplicatedLinear,
         
     | 
| 
       35 
33 
     | 
    
         
             
                RowParallelLinear,
         
     | 
| 
         @@ -38,7 +36,7 @@ from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorO 
     | 
|
| 
       38 
36 
     | 
    
         
             
            from sglang.srt.layers.pooler import Pooler, PoolingType
         
     | 
| 
       39 
37 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
       40 
38 
     | 
    
         
             
            from sglang.srt.layers.radix_attention import RadixAttention
         
     | 
| 
       41 
     | 
    
         
            -
            from sglang.srt.layers.utils import  
     | 
| 
      
 39 
     | 
    
         
            +
            from sglang.srt.layers.utils import get_layer_id
         
     | 
| 
       42 
40 
     | 
    
         
             
            from sglang.srt.layers.vocab_parallel_embedding import (
         
     | 
| 
       43 
41 
     | 
    
         
             
                ParallelLMHead,
         
     | 
| 
       44 
42 
     | 
    
         
             
                VocabParallelEmbedding,
         
     | 
| 
         @@ -47,9 +45,11 @@ from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTe 
     | 
|
| 
       47 
45 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import (
         
     | 
| 
       48 
46 
     | 
    
         
             
                default_weight_loader,
         
     | 
| 
       49 
47 
     | 
    
         
             
                kv_cache_scales_loader,
         
     | 
| 
       50 
     | 
    
         
            -
                maybe_remap_kv_scale_name,
         
     | 
| 
       51 
48 
     | 
    
         
             
            )
         
     | 
| 
       52 
49 
     | 
    
         
             
            from sglang.srt.utils import add_prefix, make_layers
         
     | 
| 
      
 50 
     | 
    
         
            +
            from sglang.utils import get_exception_traceback
         
     | 
| 
      
 51 
     | 
    
         
            +
             
     | 
| 
      
 52 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
       53 
53 
     | 
    
         | 
| 
       54 
54 
     | 
    
         | 
| 
       55 
55 
     | 
    
         
             
            def get_activation(name="relu"):
         
     | 
    
        sglang/srt/models/phi.py
    CHANGED
    
    
    
        sglang/srt/models/phi4mm.py
    CHANGED
    
    | 
         @@ -24,7 +24,7 @@ from typing import List, Optional, Tuple 
     | 
|
| 
       24 
24 
     | 
    
         
             
            import numpy as np
         
     | 
| 
       25 
25 
     | 
    
         
             
            import torch
         
     | 
| 
       26 
26 
     | 
    
         
             
            from torch import nn
         
     | 
| 
       27 
     | 
    
         
            -
            from transformers import PretrainedConfig 
     | 
| 
      
 27 
     | 
    
         
            +
            from transformers import PretrainedConfig
         
     | 
| 
       28 
28 
     | 
    
         | 
| 
       29 
29 
     | 
    
         
             
            from sglang.srt.layers.quantization import QuantizationConfig
         
     | 
| 
       30 
30 
     | 
    
         
             
            from sglang.srt.managers.mm_utils import (
         
     |