sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
- sglang/bench_one_batch_server.py +41 -25
- sglang/bench_serving.py +378 -160
- sglang/check_env.py +1 -1
- sglang/compile_deep_gemm.py +6 -2
- sglang/global_config.py +1 -25
- sglang/lang/api.py +6 -0
- sglang/lang/interpreter.py +1 -0
- sglang/lang/ir.py +13 -0
- sglang/launch_server.py +10 -15
- sglang/profiler.py +18 -1
- sglang/srt/_custom_ops.py +1 -1
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
- sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
- sglang/srt/compilation/backend.py +437 -0
- sglang/srt/compilation/compilation_config.py +20 -0
- sglang/srt/compilation/compilation_counter.py +47 -0
- sglang/srt/compilation/compile.py +210 -0
- sglang/srt/compilation/compiler_interface.py +503 -0
- sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
- sglang/srt/compilation/fix_functionalization.py +134 -0
- sglang/srt/compilation/fx_utils.py +83 -0
- sglang/srt/compilation/inductor_pass.py +140 -0
- sglang/srt/compilation/pass_manager.py +66 -0
- sglang/srt/compilation/piecewise_context_manager.py +40 -0
- sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/deepseek_ocr.py +262 -0
- sglang/srt/configs/deepseekvl2.py +194 -96
- sglang/srt/configs/dots_vlm.py +2 -7
- sglang/srt/configs/falcon_h1.py +13 -64
- sglang/srt/configs/load_config.py +25 -2
- sglang/srt/configs/mamba_utils.py +117 -0
- sglang/srt/configs/model_config.py +136 -25
- sglang/srt/configs/modelopt_config.py +30 -0
- sglang/srt/configs/nemotron_h.py +286 -0
- sglang/srt/configs/olmo3.py +105 -0
- sglang/srt/configs/points_v15_chat.py +29 -0
- sglang/srt/configs/qwen3_next.py +11 -47
- sglang/srt/configs/qwen3_omni.py +613 -0
- sglang/srt/configs/qwen3_vl.py +0 -10
- sglang/srt/connector/remote_instance.py +1 -1
- sglang/srt/constrained/base_grammar_backend.py +5 -1
- sglang/srt/constrained/llguidance_backend.py +5 -0
- sglang/srt/constrained/outlines_backend.py +1 -1
- sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
- sglang/srt/constrained/utils.py +12 -0
- sglang/srt/constrained/xgrammar_backend.py +20 -11
- sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
- sglang/srt/disaggregation/base/conn.py +17 -4
- sglang/srt/disaggregation/common/conn.py +4 -2
- sglang/srt/disaggregation/decode.py +123 -31
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
- sglang/srt/disaggregation/fake/conn.py +11 -3
- sglang/srt/disaggregation/mooncake/conn.py +157 -19
- sglang/srt/disaggregation/nixl/conn.py +69 -24
- sglang/srt/disaggregation/prefill.py +96 -270
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
- sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
- sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
- sglang/srt/distributed/device_communicators/pynccl.py +24 -12
- sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
- sglang/srt/distributed/naive_distributed.py +5 -4
- sglang/srt/distributed/parallel_state.py +63 -19
- sglang/srt/elastic_ep/elastic_ep.py +74 -0
- sglang/srt/entrypoints/context.py +3 -2
- sglang/srt/entrypoints/engine.py +83 -80
- sglang/srt/entrypoints/grpc_server.py +430 -234
- sglang/srt/entrypoints/harmony_utils.py +2 -2
- sglang/srt/entrypoints/http_server.py +195 -102
- sglang/srt/entrypoints/http_server_engine.py +1 -7
- sglang/srt/entrypoints/openai/protocol.py +225 -37
- sglang/srt/entrypoints/openai/serving_base.py +49 -2
- sglang/srt/entrypoints/openai/serving_chat.py +29 -74
- sglang/srt/entrypoints/openai/serving_classify.py +204 -0
- sglang/srt/entrypoints/openai/serving_completions.py +15 -1
- sglang/srt/entrypoints/openai/serving_responses.py +5 -2
- sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
- sglang/srt/environ.py +58 -6
- sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
- sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
- sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
- sglang/srt/eplb/expert_distribution.py +33 -4
- sglang/srt/eplb/expert_location_dispatch.py +2 -2
- sglang/srt/eplb/expert_location_updater.py +2 -2
- sglang/srt/function_call/base_format_detector.py +17 -18
- sglang/srt/function_call/function_call_parser.py +20 -14
- sglang/srt/function_call/glm4_moe_detector.py +1 -5
- sglang/srt/function_call/gpt_oss_detector.py +1 -1
- sglang/srt/function_call/json_array_parser.py +0 -2
- sglang/srt/function_call/minimax_m2.py +367 -0
- sglang/srt/function_call/utils.py +2 -2
- sglang/srt/grpc/compile_proto.py +3 -3
- sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
- sglang/srt/grpc/health_servicer.py +189 -0
- sglang/srt/grpc/scheduler_launcher.py +181 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
- sglang/srt/layers/activation.py +10 -1
- sglang/srt/layers/attention/aiter_backend.py +3 -3
- sglang/srt/layers/attention/ascend_backend.py +17 -1
- sglang/srt/layers/attention/attention_registry.py +43 -23
- sglang/srt/layers/attention/base_attn_backend.py +20 -1
- sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
- sglang/srt/layers/attention/fla/chunk.py +0 -1
- sglang/srt/layers/attention/fla/chunk_o.py +1 -1
- sglang/srt/layers/attention/fla/index.py +0 -2
- sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
- sglang/srt/layers/attention/fla/utils.py +0 -3
- sglang/srt/layers/attention/fla/wy_fast.py +0 -2
- sglang/srt/layers/attention/flashattention_backend.py +24 -10
- sglang/srt/layers/attention/flashinfer_backend.py +258 -22
- sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
- sglang/srt/layers/attention/flashmla_backend.py +2 -2
- sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
- sglang/srt/layers/attention/intel_amx_backend.py +1 -1
- sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
- sglang/srt/layers/attention/mamba/mamba.py +189 -241
- sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
- sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
- sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
- sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
- sglang/srt/layers/attention/nsa/utils.py +0 -1
- sglang/srt/layers/attention/nsa_backend.py +404 -90
- sglang/srt/layers/attention/triton_backend.py +208 -34
- sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
- sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
- sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
- sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
- sglang/srt/layers/attention/utils.py +89 -7
- sglang/srt/layers/attention/vision.py +3 -3
- sglang/srt/layers/attention/xpu_backend.py +1028 -0
- sglang/srt/layers/communicator.py +12 -7
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
- sglang/srt/layers/dp_attention.py +17 -0
- sglang/srt/layers/layernorm.py +64 -19
- sglang/srt/layers/linear.py +9 -1
- sglang/srt/layers/logits_processor.py +152 -17
- sglang/srt/layers/modelopt_utils.py +11 -0
- sglang/srt/layers/moe/cutlass_moe.py +0 -2
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
- sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
- sglang/srt/layers/moe/ep_moe/layer.py +154 -625
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
- sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
- sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
- sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
- sglang/srt/layers/moe/moe_runner/runner.py +6 -0
- sglang/srt/layers/moe/moe_runner/triton.py +3 -1
- sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
- sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
- sglang/srt/layers/moe/router.py +51 -15
- sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
- sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
- sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
- sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
- sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
- sglang/srt/layers/moe/topk.py +7 -6
- sglang/srt/layers/moe/utils.py +20 -5
- sglang/srt/layers/quantization/__init__.py +5 -58
- sglang/srt/layers/quantization/awq.py +183 -9
- sglang/srt/layers/quantization/awq_triton.py +29 -0
- sglang/srt/layers/quantization/base_config.py +27 -1
- sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
- sglang/srt/layers/quantization/fp8.py +152 -81
- sglang/srt/layers/quantization/fp8_kernel.py +55 -10
- sglang/srt/layers/quantization/fp8_utils.py +42 -14
- sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
- sglang/srt/layers/quantization/gguf.py +566 -0
- sglang/srt/layers/quantization/gptq.py +0 -1
- sglang/srt/layers/quantization/int8_kernel.py +18 -2
- sglang/srt/layers/quantization/marlin_utils.py +12 -0
- sglang/srt/layers/quantization/modelopt_quant.py +125 -100
- sglang/srt/layers/quantization/mxfp4.py +35 -68
- sglang/srt/layers/quantization/petit.py +1 -1
- sglang/srt/layers/quantization/quark/quark.py +3 -1
- sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
- sglang/srt/layers/quantization/unquant.py +23 -48
- sglang/srt/layers/quantization/utils.py +0 -1
- sglang/srt/layers/quantization/w4afp8.py +87 -20
- sglang/srt/layers/quantization/w8a8_int8.py +30 -24
- sglang/srt/layers/radix_attention.py +62 -9
- sglang/srt/layers/rotary_embedding.py +686 -17
- sglang/srt/layers/sampler.py +47 -16
- sglang/srt/layers/sparse_pooler.py +98 -0
- sglang/srt/layers/utils.py +0 -1
- sglang/srt/layers/vocab_parallel_embedding.py +4 -1
- sglang/srt/lora/backend/triton_backend.py +0 -1
- sglang/srt/lora/eviction_policy.py +139 -0
- sglang/srt/lora/lora_manager.py +24 -9
- sglang/srt/lora/lora_registry.py +1 -1
- sglang/srt/lora/mem_pool.py +40 -16
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
- sglang/srt/managers/cache_controller.py +48 -17
- sglang/srt/managers/data_parallel_controller.py +146 -42
- sglang/srt/managers/detokenizer_manager.py +40 -13
- sglang/srt/managers/io_struct.py +69 -16
- sglang/srt/managers/mm_utils.py +20 -18
- sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
- sglang/srt/managers/overlap_utils.py +96 -19
- sglang/srt/managers/schedule_batch.py +241 -511
- sglang/srt/managers/schedule_policy.py +15 -2
- sglang/srt/managers/scheduler.py +420 -514
- sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
- sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
- sglang/srt/managers/scheduler_pp_mixin.py +341 -0
- sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
- sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
- sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
- sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
- sglang/srt/managers/tokenizer_manager.py +375 -95
- sglang/srt/managers/tp_worker.py +212 -161
- sglang/srt/managers/utils.py +78 -2
- sglang/srt/mem_cache/allocator.py +7 -2
- sglang/srt/mem_cache/allocator_ascend.py +2 -2
- sglang/srt/mem_cache/base_prefix_cache.py +2 -2
- sglang/srt/mem_cache/chunk_cache.py +13 -2
- sglang/srt/mem_cache/common.py +480 -0
- sglang/srt/mem_cache/evict_policy.py +16 -1
- sglang/srt/mem_cache/hicache_storage.py +11 -2
- sglang/srt/mem_cache/hiradix_cache.py +16 -3
- sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
- sglang/srt/mem_cache/memory_pool.py +517 -219
- sglang/srt/mem_cache/memory_pool_host.py +0 -1
- sglang/srt/mem_cache/multimodal_cache.py +0 -1
- sglang/srt/mem_cache/radix_cache.py +53 -19
- sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
- sglang/srt/mem_cache/storage/backend_factory.py +2 -2
- sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
- sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
- sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
- sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
- sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
- sglang/srt/mem_cache/swa_radix_cache.py +92 -26
- sglang/srt/metrics/collector.py +31 -0
- sglang/srt/metrics/func_timer.py +1 -1
- sglang/srt/model_executor/cuda_graph_runner.py +43 -5
- sglang/srt/model_executor/forward_batch_info.py +71 -25
- sglang/srt/model_executor/model_runner.py +362 -270
- sglang/srt/model_executor/npu_graph_runner.py +2 -3
- sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
- sglang/srt/model_loader/__init__.py +1 -1
- sglang/srt/model_loader/loader.py +424 -27
- sglang/srt/model_loader/utils.py +0 -1
- sglang/srt/model_loader/weight_utils.py +47 -28
- sglang/srt/models/apertus.py +2 -3
- sglang/srt/models/arcee.py +2 -2
- sglang/srt/models/bailing_moe.py +13 -52
- sglang/srt/models/bailing_moe_nextn.py +3 -4
- sglang/srt/models/bert.py +1 -1
- sglang/srt/models/deepseek_nextn.py +19 -3
- sglang/srt/models/deepseek_ocr.py +1516 -0
- sglang/srt/models/deepseek_v2.py +418 -140
- sglang/srt/models/dots_ocr.py +0 -2
- sglang/srt/models/dots_vlm.py +0 -1
- sglang/srt/models/dots_vlm_vit.py +1 -1
- sglang/srt/models/falcon_h1.py +13 -19
- sglang/srt/models/gemma3_mm.py +16 -0
- sglang/srt/models/gemma3n_mm.py +1 -2
- sglang/srt/models/glm4_moe.py +327 -382
- sglang/srt/models/glm4_moe_nextn.py +6 -16
- sglang/srt/models/glm4v.py +2 -1
- sglang/srt/models/glm4v_moe.py +32 -199
- sglang/srt/models/gpt_oss.py +5 -5
- sglang/srt/models/grok.py +10 -23
- sglang/srt/models/hunyuan.py +2 -7
- sglang/srt/models/interns1.py +0 -1
- sglang/srt/models/kimi_vl.py +1 -7
- sglang/srt/models/kimi_vl_moonvit.py +3 -1
- sglang/srt/models/llama.py +2 -2
- sglang/srt/models/llama_eagle3.py +1 -1
- sglang/srt/models/longcat_flash.py +5 -22
- sglang/srt/models/longcat_flash_nextn.py +3 -14
- sglang/srt/models/mimo.py +2 -13
- sglang/srt/models/mimo_mtp.py +1 -2
- sglang/srt/models/minicpmo.py +7 -5
- sglang/srt/models/minimax_m2.py +922 -0
- sglang/srt/models/mixtral.py +1 -4
- sglang/srt/models/mllama.py +1 -1
- sglang/srt/models/mllama4.py +13 -3
- sglang/srt/models/nemotron_h.py +511 -0
- sglang/srt/models/nvila.py +355 -0
- sglang/srt/models/nvila_lite.py +184 -0
- sglang/srt/models/olmo2.py +31 -4
- sglang/srt/models/opt.py +5 -5
- sglang/srt/models/phi.py +1 -1
- sglang/srt/models/phi4mm.py +1 -1
- sglang/srt/models/phimoe.py +0 -1
- sglang/srt/models/pixtral.py +0 -3
- sglang/srt/models/points_v15_chat.py +186 -0
- sglang/srt/models/qwen.py +0 -1
- sglang/srt/models/qwen2.py +22 -1
- sglang/srt/models/qwen2_5_vl.py +3 -3
- sglang/srt/models/qwen2_audio.py +2 -15
- sglang/srt/models/qwen2_moe.py +15 -12
- sglang/srt/models/qwen2_vl.py +5 -2
- sglang/srt/models/qwen3.py +34 -4
- sglang/srt/models/qwen3_moe.py +19 -37
- sglang/srt/models/qwen3_next.py +7 -12
- sglang/srt/models/qwen3_next_mtp.py +3 -4
- sglang/srt/models/qwen3_omni_moe.py +661 -0
- sglang/srt/models/qwen3_vl.py +37 -33
- sglang/srt/models/qwen3_vl_moe.py +57 -185
- sglang/srt/models/roberta.py +55 -3
- sglang/srt/models/sarashina2_vision.py +0 -1
- sglang/srt/models/step3_vl.py +3 -5
- sglang/srt/models/utils.py +11 -1
- sglang/srt/multimodal/processors/base_processor.py +7 -2
- sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
- sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
- sglang/srt/multimodal/processors/dots_vlm.py +0 -1
- sglang/srt/multimodal/processors/glm4v.py +2 -6
- sglang/srt/multimodal/processors/internvl.py +0 -2
- sglang/srt/multimodal/processors/janus_pro.py +0 -1
- sglang/srt/multimodal/processors/mllama4.py +0 -8
- sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
- sglang/srt/multimodal/processors/phi4mm.py +0 -1
- sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
- sglang/srt/multimodal/processors/qwen_vl.py +75 -16
- sglang/srt/multimodal/processors/step3_vl.py +1 -1
- sglang/srt/parser/conversation.py +41 -0
- sglang/srt/parser/reasoning_parser.py +28 -2
- sglang/srt/sampling/custom_logit_processor.py +77 -2
- sglang/srt/sampling/sampling_batch_info.py +17 -22
- sglang/srt/sampling/sampling_params.py +70 -2
- sglang/srt/server_args.py +846 -163
- sglang/srt/server_args_config_parser.py +1 -1
- sglang/srt/single_batch_overlap.py +36 -31
- sglang/srt/speculative/base_spec_worker.py +34 -0
- sglang/srt/speculative/draft_utils.py +226 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
- sglang/srt/speculative/eagle_info.py +57 -18
- sglang/srt/speculative/eagle_info_v2.py +458 -0
- sglang/srt/speculative/eagle_utils.py +138 -0
- sglang/srt/speculative/eagle_worker.py +83 -280
- sglang/srt/speculative/eagle_worker_v2.py +702 -0
- sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
- sglang/srt/speculative/ngram_worker.py +12 -11
- sglang/srt/speculative/spec_info.py +2 -0
- sglang/srt/speculative/spec_utils.py +38 -3
- sglang/srt/speculative/standalone_worker.py +4 -14
- sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
- sglang/srt/two_batch_overlap.py +28 -14
- sglang/srt/utils/__init__.py +1 -1
- sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
- sglang/srt/utils/common.py +272 -82
- sglang/srt/utils/hf_transformers_utils.py +44 -17
- sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
- sglang/srt/{offloader.py → utils/offloader.py} +4 -4
- sglang/srt/utils/profile_merger.py +199 -0
- sglang/test/attention/test_flashattn_backend.py +1 -1
- sglang/test/attention/test_flashattn_mla_backend.py +0 -1
- sglang/test/attention/test_prefix_chunk_info.py +0 -2
- sglang/test/attention/test_trtllm_mla_backend.py +221 -53
- sglang/test/few_shot_gsm8k_engine.py +2 -4
- sglang/test/kit_matched_stop.py +157 -0
- sglang/test/longbench_v2/__init__.py +1 -0
- sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
- sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
- sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
- sglang/test/run_eval.py +41 -0
- sglang/test/runners.py +2 -0
- sglang/test/send_one.py +42 -7
- sglang/test/simple_eval_common.py +3 -0
- sglang/test/simple_eval_gpqa.py +0 -1
- sglang/test/simple_eval_humaneval.py +0 -3
- sglang/test/simple_eval_longbench_v2.py +344 -0
- sglang/test/test_block_fp8.py +1 -2
- sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
- sglang/test/test_cutlass_moe.py +1 -2
- sglang/test/test_cutlass_w4a8_moe.py +10 -20
- sglang/test/test_deterministic.py +463 -107
- sglang/test/test_deterministic_utils.py +74 -0
- sglang/test/test_disaggregation_utils.py +81 -0
- sglang/test/test_marlin_moe.py +0 -1
- sglang/test/test_utils.py +85 -20
- sglang/version.py +1 -1
- {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
- {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
- sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
- sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
- sglang/srt/models/vila.py +0 -306
- sglang/srt/speculative/build_eagle_tree.py +0 -427
- sglang/test/test_block_fp8_ep.py +0 -358
- /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
- /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
- /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
- {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
- {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
sglang/test/test_block_fp8_ep.py
DELETED
|
@@ -1,358 +0,0 @@
|
|
|
1
|
-
import itertools
|
|
2
|
-
import random
|
|
3
|
-
import unittest
|
|
4
|
-
from typing import Any, Callable, Dict, List, Optional, Tuple
|
|
5
|
-
|
|
6
|
-
import torch
|
|
7
|
-
|
|
8
|
-
from sglang.srt.layers.moe.ep_moe.kernels import (
|
|
9
|
-
grouped_gemm_triton,
|
|
10
|
-
post_reorder_triton_kernel,
|
|
11
|
-
pre_reorder_triton_kernel,
|
|
12
|
-
run_moe_ep_preproess,
|
|
13
|
-
silu_and_mul_triton_kernel,
|
|
14
|
-
)
|
|
15
|
-
from sglang.srt.layers.moe.topk import TopKConfig, select_experts
|
|
16
|
-
from sglang.test.test_utils import CustomTestCase
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
# For test
|
|
20
|
-
def ep_moe(
|
|
21
|
-
hidden_states: torch.Tensor,
|
|
22
|
-
w1: torch.Tensor,
|
|
23
|
-
w2: torch.Tensor,
|
|
24
|
-
router_logits: torch.Tensor,
|
|
25
|
-
topk_config: TopKConfig,
|
|
26
|
-
# ep config
|
|
27
|
-
num_experts: int = 256,
|
|
28
|
-
fp8_dtype: torch.types = torch.float8_e4m3fn,
|
|
29
|
-
num_experts_per_partition: int = 128,
|
|
30
|
-
start_expert_id: int = 0,
|
|
31
|
-
end_expert_id: int = 127,
|
|
32
|
-
use_fp8_w8a8: bool = False,
|
|
33
|
-
w1_scale_inv: Optional[torch.Tensor] = None,
|
|
34
|
-
w2_scale_inv: Optional[torch.Tensor] = None,
|
|
35
|
-
block_shape: Optional[List[int]] = None,
|
|
36
|
-
):
|
|
37
|
-
use_blockwise_fp8 = block_shape is not None
|
|
38
|
-
top_k = topk_config.top_k
|
|
39
|
-
topk_output = select_experts(
|
|
40
|
-
hidden_states=hidden_states,
|
|
41
|
-
router_logits=router_logits,
|
|
42
|
-
topk_config=topk_config,
|
|
43
|
-
)
|
|
44
|
-
topk_weights, topk_ids, _ = topk_output
|
|
45
|
-
|
|
46
|
-
reorder_topk_ids, src2dst, seg_indptr = run_moe_ep_preproess(topk_ids, num_experts)
|
|
47
|
-
|
|
48
|
-
gateup_input = torch.empty(
|
|
49
|
-
(int(hidden_states.shape[0] * top_k), hidden_states.shape[1]),
|
|
50
|
-
device=hidden_states.device,
|
|
51
|
-
dtype=(
|
|
52
|
-
fp8_dtype
|
|
53
|
-
if (use_fp8_w8a8 and not use_blockwise_fp8)
|
|
54
|
-
else hidden_states.dtype
|
|
55
|
-
),
|
|
56
|
-
)
|
|
57
|
-
|
|
58
|
-
if use_fp8_w8a8 and not use_blockwise_fp8:
|
|
59
|
-
max_value = (
|
|
60
|
-
torch.max(hidden_states).repeat(num_experts_per_partition).to(torch.float32)
|
|
61
|
-
)
|
|
62
|
-
w1_input_scale = max_value / torch.finfo(fp8_dtype).max
|
|
63
|
-
else:
|
|
64
|
-
w1_input_scale = None
|
|
65
|
-
|
|
66
|
-
# PreReorder
|
|
67
|
-
pre_reorder_triton_kernel[(hidden_states.shape[0],)](
|
|
68
|
-
hidden_states,
|
|
69
|
-
gateup_input,
|
|
70
|
-
src2dst,
|
|
71
|
-
topk_ids,
|
|
72
|
-
w1_input_scale,
|
|
73
|
-
start_expert_id,
|
|
74
|
-
end_expert_id,
|
|
75
|
-
top_k,
|
|
76
|
-
hidden_states.shape[1],
|
|
77
|
-
BLOCK_SIZE=512,
|
|
78
|
-
use_per_token_if_dynamic=True,
|
|
79
|
-
)
|
|
80
|
-
|
|
81
|
-
seg_indptr_cur_rank = seg_indptr[start_expert_id : end_expert_id + 2]
|
|
82
|
-
weight_indices_cur_rank = torch.arange(
|
|
83
|
-
0,
|
|
84
|
-
num_experts_per_partition,
|
|
85
|
-
device=hidden_states.device,
|
|
86
|
-
dtype=torch.int64,
|
|
87
|
-
)
|
|
88
|
-
|
|
89
|
-
# GroupGemm-0
|
|
90
|
-
gateup_output = torch.empty(
|
|
91
|
-
gateup_input.shape[0],
|
|
92
|
-
w1.shape[1],
|
|
93
|
-
device=hidden_states.device,
|
|
94
|
-
dtype=hidden_states.dtype,
|
|
95
|
-
)
|
|
96
|
-
|
|
97
|
-
gateup_output = grouped_gemm_triton(
|
|
98
|
-
a=gateup_input,
|
|
99
|
-
b=w1,
|
|
100
|
-
c=gateup_output,
|
|
101
|
-
batch_size=num_experts_per_partition,
|
|
102
|
-
weight_column_major=True,
|
|
103
|
-
seg_indptr=seg_indptr_cur_rank,
|
|
104
|
-
weight_indices=weight_indices_cur_rank,
|
|
105
|
-
use_fp8_w8a8=use_fp8_w8a8,
|
|
106
|
-
scale_a=w1_input_scale,
|
|
107
|
-
scale_b=w1_scale_inv,
|
|
108
|
-
block_shape=block_shape,
|
|
109
|
-
)
|
|
110
|
-
|
|
111
|
-
# Act
|
|
112
|
-
down_input = torch.empty(
|
|
113
|
-
gateup_output.shape[0],
|
|
114
|
-
gateup_output.shape[1] // 2,
|
|
115
|
-
device=gateup_output.device,
|
|
116
|
-
dtype=(
|
|
117
|
-
fp8_dtype
|
|
118
|
-
if (use_fp8_w8a8 and not use_blockwise_fp8)
|
|
119
|
-
else hidden_states.dtype
|
|
120
|
-
),
|
|
121
|
-
)
|
|
122
|
-
if use_fp8_w8a8 and not use_blockwise_fp8:
|
|
123
|
-
w2_input_scale = torch.ones(
|
|
124
|
-
num_experts_per_partition,
|
|
125
|
-
dtype=torch.float32,
|
|
126
|
-
device=hidden_states.device,
|
|
127
|
-
)
|
|
128
|
-
else:
|
|
129
|
-
w2_input_scale = None
|
|
130
|
-
|
|
131
|
-
silu_and_mul_triton_kernel[(gateup_output.shape[0],)](
|
|
132
|
-
gateup_output,
|
|
133
|
-
down_input,
|
|
134
|
-
gateup_output.shape[1],
|
|
135
|
-
reorder_topk_ids,
|
|
136
|
-
w2_input_scale,
|
|
137
|
-
start_expert_id,
|
|
138
|
-
end_expert_id,
|
|
139
|
-
BLOCK_SIZE=512,
|
|
140
|
-
)
|
|
141
|
-
|
|
142
|
-
# GroupGemm-1
|
|
143
|
-
down_output = torch.empty(
|
|
144
|
-
down_input.shape[0],
|
|
145
|
-
w2.shape[1],
|
|
146
|
-
device=hidden_states.device,
|
|
147
|
-
dtype=hidden_states.dtype,
|
|
148
|
-
)
|
|
149
|
-
|
|
150
|
-
down_output = grouped_gemm_triton(
|
|
151
|
-
a=down_input,
|
|
152
|
-
b=w2,
|
|
153
|
-
c=down_output,
|
|
154
|
-
batch_size=num_experts_per_partition,
|
|
155
|
-
weight_column_major=True,
|
|
156
|
-
seg_indptr=seg_indptr_cur_rank,
|
|
157
|
-
weight_indices=weight_indices_cur_rank,
|
|
158
|
-
use_fp8_w8a8=use_fp8_w8a8,
|
|
159
|
-
scale_a=w2_input_scale,
|
|
160
|
-
scale_b=w2_scale_inv,
|
|
161
|
-
block_shape=block_shape,
|
|
162
|
-
)
|
|
163
|
-
|
|
164
|
-
# PostReorder
|
|
165
|
-
output = torch.empty_like(hidden_states)
|
|
166
|
-
post_reorder_triton_kernel[(hidden_states.size(0),)](
|
|
167
|
-
down_output,
|
|
168
|
-
output,
|
|
169
|
-
src2dst,
|
|
170
|
-
topk_ids,
|
|
171
|
-
topk_weights,
|
|
172
|
-
start_expert_id,
|
|
173
|
-
end_expert_id,
|
|
174
|
-
top_k,
|
|
175
|
-
hidden_states.size(1),
|
|
176
|
-
0,
|
|
177
|
-
BLOCK_SIZE=512,
|
|
178
|
-
)
|
|
179
|
-
return output
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
# test util
|
|
183
|
-
def block_dequant(
|
|
184
|
-
x_q_block: torch.Tensor,
|
|
185
|
-
x_s: torch.Tensor,
|
|
186
|
-
block_size: List[int],
|
|
187
|
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
188
|
-
"""This function converts block-wise quantization to tensor-wise quantization.
|
|
189
|
-
The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
|
|
190
|
-
and the block size.
|
|
191
|
-
The outputs are tensor-wise quantization tensor and tensor-wise quantization scale.
|
|
192
|
-
Note only float8 is supported for now.
|
|
193
|
-
"""
|
|
194
|
-
|
|
195
|
-
# process 3D tensor
|
|
196
|
-
if x_q_block.dim() == 3:
|
|
197
|
-
batch_size = x_q_block.size(0)
|
|
198
|
-
return torch.stack(
|
|
199
|
-
[block_dequant(x_q_block[b], x_s[b], block_size) for b in range(batch_size)]
|
|
200
|
-
)
|
|
201
|
-
|
|
202
|
-
block_n, block_k = block_size[0], block_size[1]
|
|
203
|
-
n, k = x_q_block.shape
|
|
204
|
-
n_tiles = (n + block_n - 1) // block_n
|
|
205
|
-
k_tiles = (k + block_k - 1) // block_k
|
|
206
|
-
assert n_tiles == x_s.shape[0]
|
|
207
|
-
assert k_tiles == x_s.shape[1]
|
|
208
|
-
|
|
209
|
-
x_dq_block = x_q_block.to(torch.float32)
|
|
210
|
-
|
|
211
|
-
x_dq_block_tiles = [
|
|
212
|
-
[
|
|
213
|
-
x_dq_block[
|
|
214
|
-
j * block_n : min((j + 1) * block_n, n),
|
|
215
|
-
i * block_k : min((i + 1) * block_k, k),
|
|
216
|
-
]
|
|
217
|
-
for i in range(k_tiles)
|
|
218
|
-
]
|
|
219
|
-
for j in range(n_tiles)
|
|
220
|
-
]
|
|
221
|
-
|
|
222
|
-
for i in range(k_tiles):
|
|
223
|
-
for j in range(n_tiles):
|
|
224
|
-
x_dq_block_tiles[j][i][:, :] = x_dq_block_tiles[j][i] * x_s[j][i]
|
|
225
|
-
|
|
226
|
-
return x_dq_block
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
class TestW8A8BlockFP8EPMoE(CustomTestCase):
|
|
230
|
-
DTYPES = [torch.half, torch.bfloat16]
|
|
231
|
-
M = [1, 222, 1024, 2048]
|
|
232
|
-
N = [128, 1024, 2048]
|
|
233
|
-
K = [256, 4096, 5120]
|
|
234
|
-
E = [8, 16]
|
|
235
|
-
ep_size = [2, 4]
|
|
236
|
-
TOP_KS = [2, 4]
|
|
237
|
-
BLOCK_SIZE = [[128, 128]]
|
|
238
|
-
SEEDS = [0]
|
|
239
|
-
|
|
240
|
-
@classmethod
|
|
241
|
-
def setUpClass(cls):
|
|
242
|
-
if not torch.cuda.is_available():
|
|
243
|
-
raise unittest.SkipTest("CUDA is not available")
|
|
244
|
-
torch.set_default_device("cuda")
|
|
245
|
-
|
|
246
|
-
def _w8a8_block_fp8_ep_moe(
|
|
247
|
-
self, M, N, K, E, ep_size, topk, block_size, dtype, seed
|
|
248
|
-
):
|
|
249
|
-
torch.manual_seed(seed)
|
|
250
|
-
random.seed(seed)
|
|
251
|
-
# NOTE(HandH1998): to avoid overflow when out_dtype = torch.half
|
|
252
|
-
factor_for_scale = 1e-2
|
|
253
|
-
fp8_info = torch.finfo(torch.float8_e4m3fn)
|
|
254
|
-
fp8_max, fp8_min = fp8_info.max, fp8_info.min
|
|
255
|
-
|
|
256
|
-
a = torch.randn((M, K), dtype=dtype) / 10
|
|
257
|
-
|
|
258
|
-
w1_fp32 = (torch.rand((E, 2 * N, K), dtype=dtype) - 0.5) * 2 * fp8_max
|
|
259
|
-
w1 = w1_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
|
260
|
-
|
|
261
|
-
w2_fp32 = (torch.rand((E, K, N), dtype=dtype) - 0.5) * 2 * fp8_max
|
|
262
|
-
w2 = w2_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
|
263
|
-
|
|
264
|
-
block_n, block_k = block_size[0], block_size[1]
|
|
265
|
-
n_tiles_w1 = (2 * N + block_n - 1) // block_n
|
|
266
|
-
n_tiles_w2 = (K + block_n - 1) // block_n
|
|
267
|
-
k_tiles_w1 = (K + block_k - 1) // block_k
|
|
268
|
-
k_tiles_w2 = (N + block_k - 1) // block_k
|
|
269
|
-
|
|
270
|
-
w1_s = (
|
|
271
|
-
torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32)
|
|
272
|
-
* factor_for_scale
|
|
273
|
-
)
|
|
274
|
-
w2_s = (
|
|
275
|
-
torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32)
|
|
276
|
-
* factor_for_scale
|
|
277
|
-
)
|
|
278
|
-
|
|
279
|
-
w1_ref = block_dequant(w1, w1_s, block_size).to(dtype)
|
|
280
|
-
w2_ref = block_dequant(w2, w2_s, block_size).to(dtype)
|
|
281
|
-
|
|
282
|
-
score = torch.randn((M, E), dtype=dtype)
|
|
283
|
-
num_experts_per_partition = E // ep_size
|
|
284
|
-
cur_rank = random.randint(0, ep_size - 1)
|
|
285
|
-
start_id = cur_rank * num_experts_per_partition
|
|
286
|
-
end_id = start_id + num_experts_per_partition - 1
|
|
287
|
-
|
|
288
|
-
topk_config = TopKConfig(
|
|
289
|
-
top_k=topk,
|
|
290
|
-
renormalize=False,
|
|
291
|
-
)
|
|
292
|
-
|
|
293
|
-
with torch.inference_mode():
|
|
294
|
-
out = ep_moe(
|
|
295
|
-
hidden_states=a,
|
|
296
|
-
w1=w1,
|
|
297
|
-
w2=w2,
|
|
298
|
-
router_logits=score,
|
|
299
|
-
topk_config=topk_config,
|
|
300
|
-
use_fp8_w8a8=True,
|
|
301
|
-
w1_scale_inv=w1_s,
|
|
302
|
-
w2_scale_inv=w2_s,
|
|
303
|
-
block_shape=block_size,
|
|
304
|
-
num_experts=E,
|
|
305
|
-
num_experts_per_partition=num_experts_per_partition,
|
|
306
|
-
start_expert_id=start_id,
|
|
307
|
-
end_expert_id=end_id,
|
|
308
|
-
)
|
|
309
|
-
ref_out = ep_moe(
|
|
310
|
-
hidden_states=a,
|
|
311
|
-
w1=w1_ref,
|
|
312
|
-
w2=w2_ref,
|
|
313
|
-
router_logits=score,
|
|
314
|
-
topk_config=topk_config,
|
|
315
|
-
use_fp8_w8a8=False,
|
|
316
|
-
w1_scale_inv=None,
|
|
317
|
-
w2_scale_inv=None,
|
|
318
|
-
block_shape=None,
|
|
319
|
-
num_experts=E,
|
|
320
|
-
num_experts_per_partition=num_experts_per_partition,
|
|
321
|
-
start_expert_id=start_id,
|
|
322
|
-
end_expert_id=end_id,
|
|
323
|
-
)
|
|
324
|
-
self.assertTrue(
|
|
325
|
-
torch.mean(torch.abs(out.to(torch.float32) - ref_out.to(torch.float32)))
|
|
326
|
-
/ (torch.mean(torch.abs(ref_out.to(torch.float32))) + 1e-6)
|
|
327
|
-
< 0.06
|
|
328
|
-
)
|
|
329
|
-
|
|
330
|
-
def test_w8a8_block_fp8_ep_moe(self):
|
|
331
|
-
for params in itertools.product(
|
|
332
|
-
self.M,
|
|
333
|
-
self.N,
|
|
334
|
-
self.K,
|
|
335
|
-
self.E,
|
|
336
|
-
self.ep_size,
|
|
337
|
-
self.TOP_KS,
|
|
338
|
-
self.BLOCK_SIZE,
|
|
339
|
-
self.DTYPES,
|
|
340
|
-
self.SEEDS,
|
|
341
|
-
):
|
|
342
|
-
with self.subTest(
|
|
343
|
-
M=params[0],
|
|
344
|
-
N=params[1],
|
|
345
|
-
K=params[2],
|
|
346
|
-
E=params[3],
|
|
347
|
-
ep_size=params[4],
|
|
348
|
-
topk=params[5],
|
|
349
|
-
block_size=params[6],
|
|
350
|
-
dtype=params[7],
|
|
351
|
-
seed=params[8],
|
|
352
|
-
):
|
|
353
|
-
self._w8a8_block_fp8_ep_moe(*params)
|
|
354
|
-
torch.cuda.empty_cache()
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
if __name__ == "__main__":
|
|
358
|
-
unittest.main(verbosity=2)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|