sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,344 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Adapted from https://github.com/openai/simple-evals/
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            """
         
     | 
| 
      
 4 
     | 
    
         
            +
            LongBench v2: Towards Deeper Understanding and Reasoning on Realistic Long-Context Multitasks
         
     | 
| 
      
 5 
     | 
    
         
            +
            Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu, Lei Hou, Yuxiao Dong, Jie Tang, Juanzi Li
         
     | 
| 
      
 6 
     | 
    
         
            +
            https://arxiv.org/abs/2412.15204
         
     | 
| 
      
 7 
     | 
    
         
            +
            """
         
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            import csv
         
     | 
| 
      
 10 
     | 
    
         
            +
            import json
         
     | 
| 
      
 11 
     | 
    
         
            +
            import os
         
     | 
| 
      
 12 
     | 
    
         
            +
            import re
         
     | 
| 
      
 13 
     | 
    
         
            +
            from typing import Any, Dict, List, Optional
         
     | 
| 
      
 14 
     | 
    
         
            +
             
     | 
| 
      
 15 
     | 
    
         
            +
            from transformers import AutoTokenizer
         
     | 
| 
      
 16 
     | 
    
         
            +
             
     | 
| 
      
 17 
     | 
    
         
            +
            from sglang.test import simple_eval_common as common
         
     | 
| 
      
 18 
     | 
    
         
            +
            from sglang.test.simple_eval_common import (
         
     | 
| 
      
 19 
     | 
    
         
            +
                ANSWER_PATTERN_MULTICHOICE,
         
     | 
| 
      
 20 
     | 
    
         
            +
                HTML_JINJA,
         
     | 
| 
      
 21 
     | 
    
         
            +
                Eval,
         
     | 
| 
      
 22 
     | 
    
         
            +
                EvalResult,
         
     | 
| 
      
 23 
     | 
    
         
            +
                SamplerBase,
         
     | 
| 
      
 24 
     | 
    
         
            +
                SingleEvalResult,
         
     | 
| 
      
 25 
     | 
    
         
            +
            )
         
     | 
| 
      
 26 
     | 
    
         
            +
             
     | 
| 
      
 27 
     | 
    
         
            +
            # LongBench-v2 task categories
         
     | 
| 
      
 28 
     | 
    
         
            +
            TASK_CATEGORIES = {
         
     | 
| 
      
 29 
     | 
    
         
            +
                "single_document_qa",
         
     | 
| 
      
 30 
     | 
    
         
            +
                "multi_document_qa",
         
     | 
| 
      
 31 
     | 
    
         
            +
                "long_in_context_learning",
         
     | 
| 
      
 32 
     | 
    
         
            +
                "long_dialogue_history",
         
     | 
| 
      
 33 
     | 
    
         
            +
                "code_repo_understanding",
         
     | 
| 
      
 34 
     | 
    
         
            +
                "long_structured_data",
         
     | 
| 
      
 35 
     | 
    
         
            +
            }
         
     | 
| 
      
 36 
     | 
    
         
            +
             
     | 
| 
      
 37 
     | 
    
         
            +
            DEFAULT_DATASET = "THUDM/LongBench-v2"
         
     | 
| 
      
 38 
     | 
    
         
            +
            DEFAULT_DATASET_SPLIT = "train"
         
     | 
| 
      
 39 
     | 
    
         
            +
             
     | 
| 
      
 40 
     | 
    
         
            +
             
     | 
| 
      
 41 
     | 
    
         
            +
            def format_longbench_v2_question(row: dict) -> str:
         
     | 
| 
      
 42 
     | 
    
         
            +
                """Format a LongBench-v2 question using the official template."""
         
     | 
| 
      
 43 
     | 
    
         
            +
                context = row.get("context", "")
         
     | 
| 
      
 44 
     | 
    
         
            +
                question = row.get("question", "")
         
     | 
| 
      
 45 
     | 
    
         
            +
             
     | 
| 
      
 46 
     | 
    
         
            +
                # Handle both standard format (A, B, C, D) and alternative format (choices list)
         
     | 
| 
      
 47 
     | 
    
         
            +
                if "choices" in row:
         
     | 
| 
      
 48 
     | 
    
         
            +
                    choices = row["choices"]
         
     | 
| 
      
 49 
     | 
    
         
            +
                    choice_A = choices[0] if len(choices) > 0 else ""
         
     | 
| 
      
 50 
     | 
    
         
            +
                    choice_B = choices[1] if len(choices) > 1 else ""
         
     | 
| 
      
 51 
     | 
    
         
            +
                    choice_C = choices[2] if len(choices) > 2 else ""
         
     | 
| 
      
 52 
     | 
    
         
            +
                    choice_D = choices[3] if len(choices) > 3 else ""
         
     | 
| 
      
 53 
     | 
    
         
            +
                else:
         
     | 
| 
      
 54 
     | 
    
         
            +
                    choice_A = row.get("A", row.get("choice_A", ""))
         
     | 
| 
      
 55 
     | 
    
         
            +
                    choice_B = row.get("B", row.get("choice_B", ""))
         
     | 
| 
      
 56 
     | 
    
         
            +
                    choice_C = row.get("C", row.get("choice_C", ""))
         
     | 
| 
      
 57 
     | 
    
         
            +
                    choice_D = row.get("D", row.get("choice_D", ""))
         
     | 
| 
      
 58 
     | 
    
         
            +
             
     | 
| 
      
 59 
     | 
    
         
            +
                # Official LongBench-v2 template
         
     | 
| 
      
 60 
     | 
    
         
            +
                prompt = f"""
         
     | 
| 
      
 61 
     | 
    
         
            +
            Please read the following text and answer the question below.
         
     | 
| 
      
 62 
     | 
    
         
            +
            <text>
         
     | 
| 
      
 63 
     | 
    
         
            +
            {context.strip()}
         
     | 
| 
      
 64 
     | 
    
         
            +
            </text>
         
     | 
| 
      
 65 
     | 
    
         
            +
             
     | 
| 
      
 66 
     | 
    
         
            +
            What is the correct answer to this question: {question.strip()}
         
     | 
| 
      
 67 
     | 
    
         
            +
            Choices:
         
     | 
| 
      
 68 
     | 
    
         
            +
            (A) {choice_A.strip()}
         
     | 
| 
      
 69 
     | 
    
         
            +
            (B) {choice_B.strip()}
         
     | 
| 
      
 70 
     | 
    
         
            +
            (C) {choice_C.strip()}
         
     | 
| 
      
 71 
     | 
    
         
            +
            (D) {choice_D.strip()}
         
     | 
| 
      
 72 
     | 
    
         
            +
             
     | 
| 
      
 73 
     | 
    
         
            +
            Format your response as follows: "The correct answer is (insert answer here)"."""
         
     | 
| 
      
 74 
     | 
    
         
            +
             
     | 
| 
      
 75 
     | 
    
         
            +
                return prompt
         
     | 
| 
      
 76 
     | 
    
         
            +
             
     | 
| 
      
 77 
     | 
    
         
            +
             
     | 
| 
      
 78 
     | 
    
         
            +
            def extract_longbench_v2_answer(response: str) -> Optional[str]:
         
     | 
| 
      
 79 
     | 
    
         
            +
                """Extract answer from model response using official LongBench-v2 method."""
         
     | 
| 
      
 80 
     | 
    
         
            +
                response = response.replace("*", "")
         
     | 
| 
      
 81 
     | 
    
         
            +
             
     | 
| 
      
 82 
     | 
    
         
            +
                # First try: "The correct answer is (A)"
         
     | 
| 
      
 83 
     | 
    
         
            +
                match = re.search(r"The correct answer is \(([A-D])\)", response, re.IGNORECASE)
         
     | 
| 
      
 84 
     | 
    
         
            +
                if match:
         
     | 
| 
      
 85 
     | 
    
         
            +
                    return match.group(1).upper()
         
     | 
| 
      
 86 
     | 
    
         
            +
             
     | 
| 
      
 87 
     | 
    
         
            +
                # Second try: "The correct answer is A"
         
     | 
| 
      
 88 
     | 
    
         
            +
                match = re.search(r"The correct answer is ([A-D])", response, re.IGNORECASE)
         
     | 
| 
      
 89 
     | 
    
         
            +
                if match:
         
     | 
| 
      
 90 
     | 
    
         
            +
                    return match.group(1).upper()
         
     | 
| 
      
 91 
     | 
    
         
            +
             
     | 
| 
      
 92 
     | 
    
         
            +
                # Fallback: Standard SGLang multichoice pattern
         
     | 
| 
      
 93 
     | 
    
         
            +
                match = re.search(ANSWER_PATTERN_MULTICHOICE, response)
         
     | 
| 
      
 94 
     | 
    
         
            +
                if match:
         
     | 
| 
      
 95 
     | 
    
         
            +
                    return match.group(1).upper()
         
     | 
| 
      
 96 
     | 
    
         
            +
             
     | 
| 
      
 97 
     | 
    
         
            +
                # Generic fallback when model says "answer is A"
         
     | 
| 
      
 98 
     | 
    
         
            +
                match = re.search(r"answer\s+is\s*\(?([A-D])\)?", response, re.IGNORECASE)
         
     | 
| 
      
 99 
     | 
    
         
            +
                if match:
         
     | 
| 
      
 100 
     | 
    
         
            +
                    return match.group(1).upper()
         
     | 
| 
      
 101 
     | 
    
         
            +
             
     | 
| 
      
 102 
     | 
    
         
            +
                return None
         
     | 
| 
      
 103 
     | 
    
         
            +
             
     | 
| 
      
 104 
     | 
    
         
            +
             
     | 
| 
      
 105 
     | 
    
         
            +
            class LongBenchV2Eval(Eval):
         
     | 
| 
      
 106 
     | 
    
         
            +
                """
         
     | 
| 
      
 107 
     | 
    
         
            +
                Evaluation utility for LongBench-v2 dataset.
         
     | 
| 
      
 108 
     | 
    
         
            +
             
     | 
| 
      
 109 
     | 
    
         
            +
                LongBench-v2 is designed to assess the ability of LLMs to handle long-context problems
         
     | 
| 
      
 110 
     | 
    
         
            +
                requiring deep understanding and reasoning across real-world multitasks.
         
     | 
| 
      
 111 
     | 
    
         
            +
                """
         
     | 
| 
      
 112 
     | 
    
         
            +
             
     | 
| 
      
 113 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 114 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 115 
     | 
    
         
            +
                    model: str = None,
         
     | 
| 
      
 116 
     | 
    
         
            +
                    data_source: str = DEFAULT_DATASET,
         
     | 
| 
      
 117 
     | 
    
         
            +
                    num_examples: Optional[int] = None,
         
     | 
| 
      
 118 
     | 
    
         
            +
                    num_threads: int = 1,
         
     | 
| 
      
 119 
     | 
    
         
            +
                    n_repeats: int = 1,
         
     | 
| 
      
 120 
     | 
    
         
            +
                    categories: Optional[List[str]] = None,
         
     | 
| 
      
 121 
     | 
    
         
            +
                    max_context_length: Optional[int] = None,
         
     | 
| 
      
 122 
     | 
    
         
            +
                    min_context_length: Optional[int] = None,
         
     | 
| 
      
 123 
     | 
    
         
            +
                ):
         
     | 
| 
      
 124 
     | 
    
         
            +
                    """
         
     | 
| 
      
 125 
     | 
    
         
            +
                    Initialize LongBench-v2 evaluation.
         
     | 
| 
      
 126 
     | 
    
         
            +
             
     | 
| 
      
 127 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 128 
     | 
    
         
            +
                        data_source: HuggingFace dataset name, local file path (CSV/JSON)
         
     | 
| 
      
 129 
     | 
    
         
            +
                        num_examples: Number of examples to evaluate (None for all)
         
     | 
| 
      
 130 
     | 
    
         
            +
                        num_threads: Number of threads for parallel processing
         
     | 
| 
      
 131 
     | 
    
         
            +
                        n_repeats: Number of times to repeat evaluation for error bars
         
     | 
| 
      
 132 
     | 
    
         
            +
                        categories: List of task categories to include (None for all)
         
     | 
| 
      
 133 
     | 
    
         
            +
                        max_context_length: Maximum context length in characters
         
     | 
| 
      
 134 
     | 
    
         
            +
                        min_context_length: Minimum context length in characters
         
     | 
| 
      
 135 
     | 
    
         
            +
                    """
         
     | 
| 
      
 136 
     | 
    
         
            +
                    self.tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True)
         
     | 
| 
      
 137 
     | 
    
         
            +
                    self.min_context_length = min_context_length
         
     | 
| 
      
 138 
     | 
    
         
            +
                    self.max_context_length = max_context_length
         
     | 
| 
      
 139 
     | 
    
         
            +
                    # Load dataset based on data source type
         
     | 
| 
      
 140 
     | 
    
         
            +
                    examples = self._load_dataset(data_source)
         
     | 
| 
      
 141 
     | 
    
         
            +
             
     | 
| 
      
 142 
     | 
    
         
            +
                    # Apply filtering
         
     | 
| 
      
 143 
     | 
    
         
            +
                    if categories:
         
     | 
| 
      
 144 
     | 
    
         
            +
                        examples = [ex for ex in examples if ex.get("category") in categories]
         
     | 
| 
      
 145 
     | 
    
         
            +
             
     | 
| 
      
 146 
     | 
    
         
            +
                    # Sample examples if specified
         
     | 
| 
      
 147 
     | 
    
         
            +
                    if num_examples:
         
     | 
| 
      
 148 
     | 
    
         
            +
                        assert n_repeats == 1, "n_repeats only supported when not sampling examples"
         
     | 
| 
      
 149 
     | 
    
         
            +
                        examples = examples[: min(num_examples, len(examples))]
         
     | 
| 
      
 150 
     | 
    
         
            +
             
     | 
| 
      
 151 
     | 
    
         
            +
                    # Repeat examples for multiple runs
         
     | 
| 
      
 152 
     | 
    
         
            +
                    examples = examples * n_repeats
         
     | 
| 
      
 153 
     | 
    
         
            +
             
     | 
| 
      
 154 
     | 
    
         
            +
                    if not examples:
         
     | 
| 
      
 155 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 156 
     | 
    
         
            +
                            "No examples available for LongBench-v2 evaluation after filtering"
         
     | 
| 
      
 157 
     | 
    
         
            +
                        )
         
     | 
| 
      
 158 
     | 
    
         
            +
             
     | 
| 
      
 159 
     | 
    
         
            +
                    self.examples = examples
         
     | 
| 
      
 160 
     | 
    
         
            +
                    self.n_repeats = n_repeats
         
     | 
| 
      
 161 
     | 
    
         
            +
                    self.num_threads = num_threads
         
     | 
| 
      
 162 
     | 
    
         
            +
             
     | 
| 
      
 163 
     | 
    
         
            +
                    print(f"Loaded {len(self.examples)} examples from LongBench-v2")
         
     | 
| 
      
 164 
     | 
    
         
            +
                    if categories:
         
     | 
| 
      
 165 
     | 
    
         
            +
                        print(f"Filtered to categories: {categories}")
         
     | 
| 
      
 166 
     | 
    
         
            +
                    if min_context_length or max_context_length:
         
     | 
| 
      
 167 
     | 
    
         
            +
                        print(
         
     | 
| 
      
 168 
     | 
    
         
            +
                            f"Context length filter: {min_context_length}-{max_context_length} characters"
         
     | 
| 
      
 169 
     | 
    
         
            +
                        )
         
     | 
| 
      
 170 
     | 
    
         
            +
             
     | 
| 
      
 171 
     | 
    
         
            +
                def _load_dataset(self, data_source: str) -> List[Dict[str, Any]]:
         
     | 
| 
      
 172 
     | 
    
         
            +
                    """Load dataset from HuggingFace hub or local files."""
         
     | 
| 
      
 173 
     | 
    
         
            +
             
     | 
| 
      
 174 
     | 
    
         
            +
                    if not data_source:
         
     | 
| 
      
 175 
     | 
    
         
            +
                        data_source = DEFAULT_DATASET
         
     | 
| 
      
 176 
     | 
    
         
            +
             
     | 
| 
      
 177 
     | 
    
         
            +
                    if os.path.exists(data_source):
         
     | 
| 
      
 178 
     | 
    
         
            +
                        raw_examples = self._load_local_file(data_source)
         
     | 
| 
      
 179 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 180 
     | 
    
         
            +
                        raw_examples = self._load_hf_dataset(data_source)
         
     | 
| 
      
 181 
     | 
    
         
            +
             
     | 
| 
      
 182 
     | 
    
         
            +
                    return [self._normalize_example(example) for example in raw_examples]
         
     | 
| 
      
 183 
     | 
    
         
            +
             
     | 
| 
      
 184 
     | 
    
         
            +
                def _load_local_file(self, path: str) -> List[Dict[str, Any]]:
         
     | 
| 
      
 185 
     | 
    
         
            +
                    """Load examples from a local CSV/JSON/JSONL file."""
         
     | 
| 
      
 186 
     | 
    
         
            +
             
     | 
| 
      
 187 
     | 
    
         
            +
                    suffix = os.path.splitext(path)[1].lower()
         
     | 
| 
      
 188 
     | 
    
         
            +
                    if suffix in {".json", ".jsonl"}:
         
     | 
| 
      
 189 
     | 
    
         
            +
                        with open(path, "r", encoding="utf-8") as fh:
         
     | 
| 
      
 190 
     | 
    
         
            +
                            if suffix == ".jsonl":
         
     | 
| 
      
 191 
     | 
    
         
            +
                                data = [json.loads(line) for line in fh if line.strip()]
         
     | 
| 
      
 192 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 193 
     | 
    
         
            +
                                data = json.load(fh)
         
     | 
| 
      
 194 
     | 
    
         
            +
                    elif suffix == ".csv":
         
     | 
| 
      
 195 
     | 
    
         
            +
                        with open(path, "r", encoding="utf-8") as fh:
         
     | 
| 
      
 196 
     | 
    
         
            +
                            reader = csv.DictReader(fh)
         
     | 
| 
      
 197 
     | 
    
         
            +
                            data = list(reader)
         
     | 
| 
      
 198 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 199 
     | 
    
         
            +
                        # Try JSON, then CSV as fallback
         
     | 
| 
      
 200 
     | 
    
         
            +
                        try:
         
     | 
| 
      
 201 
     | 
    
         
            +
                            with open(path, "r", encoding="utf-8") as fh:
         
     | 
| 
      
 202 
     | 
    
         
            +
                                data = json.load(fh)
         
     | 
| 
      
 203 
     | 
    
         
            +
                        except json.JSONDecodeError:
         
     | 
| 
      
 204 
     | 
    
         
            +
                            with open(path, "r", encoding="utf-8") as fh:
         
     | 
| 
      
 205 
     | 
    
         
            +
                                reader = csv.DictReader(fh)
         
     | 
| 
      
 206 
     | 
    
         
            +
                                data = list(reader)
         
     | 
| 
      
 207 
     | 
    
         
            +
             
     | 
| 
      
 208 
     | 
    
         
            +
                    if isinstance(data, dict):
         
     | 
| 
      
 209 
     | 
    
         
            +
                        data = data.get("data", [])
         
     | 
| 
      
 210 
     | 
    
         
            +
             
     | 
| 
      
 211 
     | 
    
         
            +
                    if not isinstance(data, list):
         
     | 
| 
      
 212 
     | 
    
         
            +
                        raise ValueError("Expected list of examples from local file")
         
     | 
| 
      
 213 
     | 
    
         
            +
             
     | 
| 
      
 214 
     | 
    
         
            +
                    return data
         
     | 
| 
      
 215 
     | 
    
         
            +
             
     | 
| 
      
 216 
     | 
    
         
            +
                def _load_hf_dataset(self, identifier: str) -> List[Dict[str, Any]]:
         
     | 
| 
      
 217 
     | 
    
         
            +
                    """Load the dataset from HuggingFace Hub."""
         
     | 
| 
      
 218 
     | 
    
         
            +
             
     | 
| 
      
 219 
     | 
    
         
            +
                    parts = identifier.split(":", maxsplit=1)
         
     | 
| 
      
 220 
     | 
    
         
            +
                    dataset_name = parts[0]
         
     | 
| 
      
 221 
     | 
    
         
            +
                    split = parts[1] if len(parts) == 2 else DEFAULT_DATASET_SPLIT
         
     | 
| 
      
 222 
     | 
    
         
            +
             
     | 
| 
      
 223 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 224 
     | 
    
         
            +
                        from datasets import load_dataset  # type: ignore
         
     | 
| 
      
 225 
     | 
    
         
            +
                    except ImportError as exc:
         
     | 
| 
      
 226 
     | 
    
         
            +
                        raise ImportError(
         
     | 
| 
      
 227 
     | 
    
         
            +
                            "Please install the 'datasets' package to load LongBench-v2 from HuggingFace: pip install datasets"
         
     | 
| 
      
 228 
     | 
    
         
            +
                        ) from exc
         
     | 
| 
      
 229 
     | 
    
         
            +
             
     | 
| 
      
 230 
     | 
    
         
            +
                    dataset = load_dataset(dataset_name, split=split)
         
     | 
| 
      
 231 
     | 
    
         
            +
                    return [dict(row) for row in dataset]
         
     | 
| 
      
 232 
     | 
    
         
            +
             
     | 
| 
      
 233 
     | 
    
         
            +
                def _normalize_example(self, example: Dict[str, Any]) -> Dict[str, Any]:
         
     | 
| 
      
 234 
     | 
    
         
            +
                    """Ensure each example exposes the expected keys."""
         
     | 
| 
      
 235 
     | 
    
         
            +
             
     | 
| 
      
 236 
     | 
    
         
            +
                    normalized = dict(example)
         
     | 
| 
      
 237 
     | 
    
         
            +
             
     | 
| 
      
 238 
     | 
    
         
            +
                    for letter in ["A", "B", "C", "D"]:
         
     | 
| 
      
 239 
     | 
    
         
            +
                        choice_key = f"choice_{letter}"
         
     | 
| 
      
 240 
     | 
    
         
            +
                        if letter not in normalized and choice_key in normalized:
         
     | 
| 
      
 241 
     | 
    
         
            +
                            normalized[letter] = normalized[choice_key]
         
     | 
| 
      
 242 
     | 
    
         
            +
             
     | 
| 
      
 243 
     | 
    
         
            +
                    if "category" not in normalized and "domain" in normalized:
         
     | 
| 
      
 244 
     | 
    
         
            +
                        normalized["category"] = normalized["domain"]
         
     | 
| 
      
 245 
     | 
    
         
            +
             
     | 
| 
      
 246 
     | 
    
         
            +
                    answer = normalized.get("answer")
         
     | 
| 
      
 247 
     | 
    
         
            +
                    if isinstance(answer, str):
         
     | 
| 
      
 248 
     | 
    
         
            +
                        normalized["answer"] = answer.strip().upper()
         
     | 
| 
      
 249 
     | 
    
         
            +
                    elif isinstance(answer, int) and 0 <= answer < 4:
         
     | 
| 
      
 250 
     | 
    
         
            +
                        normalized["answer"] = ["A", "B", "C", "D"][answer]
         
     | 
| 
      
 251 
     | 
    
         
            +
             
     | 
| 
      
 252 
     | 
    
         
            +
                    return normalized
         
     | 
| 
      
 253 
     | 
    
         
            +
             
     | 
| 
      
 254 
     | 
    
         
            +
                def _check_context_length(
         
     | 
| 
      
 255 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 256 
     | 
    
         
            +
                    formatted_question: str,
         
     | 
| 
      
 257 
     | 
    
         
            +
                    tokenizer: AutoTokenizer,
         
     | 
| 
      
 258 
     | 
    
         
            +
                    min_length: Optional[int],
         
     | 
| 
      
 259 
     | 
    
         
            +
                    max_length: Optional[int],
         
     | 
| 
      
 260 
     | 
    
         
            +
                ) -> bool:
         
     | 
| 
      
 261 
     | 
    
         
            +
                    """Filter examples by context length measured in characters."""
         
     | 
| 
      
 262 
     | 
    
         
            +
                    input_ids = tokenizer.encode(formatted_question)
         
     | 
| 
      
 263 
     | 
    
         
            +
                    context_length = len(input_ids)
         
     | 
| 
      
 264 
     | 
    
         
            +
             
     | 
| 
      
 265 
     | 
    
         
            +
                    if min_length is not None and context_length < min_length:
         
     | 
| 
      
 266 
     | 
    
         
            +
                        return False
         
     | 
| 
      
 267 
     | 
    
         
            +
                    if max_length is not None and context_length > max_length:
         
     | 
| 
      
 268 
     | 
    
         
            +
                        return False
         
     | 
| 
      
 269 
     | 
    
         
            +
             
     | 
| 
      
 270 
     | 
    
         
            +
                    return True
         
     | 
| 
      
 271 
     | 
    
         
            +
             
     | 
| 
      
 272 
     | 
    
         
            +
                def __call__(self, sampler: SamplerBase) -> EvalResult:
         
     | 
| 
      
 273 
     | 
    
         
            +
                    """Run the evaluation."""
         
     | 
| 
      
 274 
     | 
    
         
            +
             
     | 
| 
      
 275 
     | 
    
         
            +
                    def fn(row: dict):
         
     | 
| 
      
 276 
     | 
    
         
            +
                        # Format the question using official template
         
     | 
| 
      
 277 
     | 
    
         
            +
                        formatted_question = format_longbench_v2_question(row)
         
     | 
| 
      
 278 
     | 
    
         
            +
             
     | 
| 
      
 279 
     | 
    
         
            +
                        if self.min_context_length or self.max_context_length:
         
     | 
| 
      
 280 
     | 
    
         
            +
                            if not self._check_context_length(
         
     | 
| 
      
 281 
     | 
    
         
            +
                                formatted_question,
         
     | 
| 
      
 282 
     | 
    
         
            +
                                self.tokenizer,
         
     | 
| 
      
 283 
     | 
    
         
            +
                                self.min_context_length,
         
     | 
| 
      
 284 
     | 
    
         
            +
                                self.max_context_length,
         
     | 
| 
      
 285 
     | 
    
         
            +
                            ):
         
     | 
| 
      
 286 
     | 
    
         
            +
                                # Skip this example
         
     | 
| 
      
 287 
     | 
    
         
            +
                                return None
         
     | 
| 
      
 288 
     | 
    
         
            +
             
     | 
| 
      
 289 
     | 
    
         
            +
                        prompt_messages = [
         
     | 
| 
      
 290 
     | 
    
         
            +
                            sampler._pack_message(content=formatted_question, role="user")
         
     | 
| 
      
 291 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 292 
     | 
    
         
            +
             
     | 
| 
      
 293 
     | 
    
         
            +
                        # Get model response
         
     | 
| 
      
 294 
     | 
    
         
            +
                        response_text = sampler(prompt_messages)
         
     | 
| 
      
 295 
     | 
    
         
            +
                        if response_text is None:
         
     | 
| 
      
 296 
     | 
    
         
            +
                            response_text = ""
         
     | 
| 
      
 297 
     | 
    
         
            +
             
     | 
| 
      
 298 
     | 
    
         
            +
                        # Extract answer using official method
         
     | 
| 
      
 299 
     | 
    
         
            +
                        extracted_answer = extract_longbench_v2_answer(response_text)
         
     | 
| 
      
 300 
     | 
    
         
            +
             
     | 
| 
      
 301 
     | 
    
         
            +
                        # Get correct answer
         
     | 
| 
      
 302 
     | 
    
         
            +
                        correct_answer = row.get("answer", "")
         
     | 
| 
      
 303 
     | 
    
         
            +
                        if isinstance(correct_answer, str):
         
     | 
| 
      
 304 
     | 
    
         
            +
                            correct_answer = correct_answer.strip().upper()
         
     | 
| 
      
 305 
     | 
    
         
            +
                        elif isinstance(correct_answer, int) and 0 <= correct_answer < 4:
         
     | 
| 
      
 306 
     | 
    
         
            +
                            correct_answer = ["A", "B", "C", "D"][correct_answer]
         
     | 
| 
      
 307 
     | 
    
         
            +
             
     | 
| 
      
 308 
     | 
    
         
            +
                        # Calculate score
         
     | 
| 
      
 309 
     | 
    
         
            +
                        score = 1.0 if extracted_answer == correct_answer else 0.0
         
     | 
| 
      
 310 
     | 
    
         
            +
             
     | 
| 
      
 311 
     | 
    
         
            +
                        # Generate HTML report
         
     | 
| 
      
 312 
     | 
    
         
            +
                        html = common.jinja_env.from_string(HTML_JINJA).render(
         
     | 
| 
      
 313 
     | 
    
         
            +
                            prompt_messages=prompt_messages,
         
     | 
| 
      
 314 
     | 
    
         
            +
                            next_message=dict(content=response_text, role="assistant"),
         
     | 
| 
      
 315 
     | 
    
         
            +
                            score=score,
         
     | 
| 
      
 316 
     | 
    
         
            +
                            correct_answer=correct_answer,
         
     | 
| 
      
 317 
     | 
    
         
            +
                            extracted_answer=extracted_answer,
         
     | 
| 
      
 318 
     | 
    
         
            +
                        )
         
     | 
| 
      
 319 
     | 
    
         
            +
             
     | 
| 
      
 320 
     | 
    
         
            +
                        # Build conversation
         
     | 
| 
      
 321 
     | 
    
         
            +
                        convo = prompt_messages + [dict(content=response_text, role="assistant")]
         
     | 
| 
      
 322 
     | 
    
         
            +
             
     | 
| 
      
 323 
     | 
    
         
            +
                        # Prepare metrics
         
     | 
| 
      
 324 
     | 
    
         
            +
                        metrics = {"chars": len(response_text)}
         
     | 
| 
      
 325 
     | 
    
         
            +
             
     | 
| 
      
 326 
     | 
    
         
            +
                        # Add category-specific metrics
         
     | 
| 
      
 327 
     | 
    
         
            +
                        category = row.get("category", row.get("domain", "unknown"))
         
     | 
| 
      
 328 
     | 
    
         
            +
                        if category in TASK_CATEGORIES:
         
     | 
| 
      
 329 
     | 
    
         
            +
                            metrics[category] = score
         
     | 
| 
      
 330 
     | 
    
         
            +
             
     | 
| 
      
 331 
     | 
    
         
            +
                        difficulty = row.get("difficulty")
         
     | 
| 
      
 332 
     | 
    
         
            +
                        if isinstance(difficulty, str) and difficulty:
         
     | 
| 
      
 333 
     | 
    
         
            +
                            metrics[f"difficulty_{difficulty.lower()}"] = score
         
     | 
| 
      
 334 
     | 
    
         
            +
             
     | 
| 
      
 335 
     | 
    
         
            +
                        return SingleEvalResult(
         
     | 
| 
      
 336 
     | 
    
         
            +
                            html=html,
         
     | 
| 
      
 337 
     | 
    
         
            +
                            score=score,
         
     | 
| 
      
 338 
     | 
    
         
            +
                            convo=convo,
         
     | 
| 
      
 339 
     | 
    
         
            +
                            metrics=metrics,
         
     | 
| 
      
 340 
     | 
    
         
            +
                        )
         
     | 
| 
      
 341 
     | 
    
         
            +
             
     | 
| 
      
 342 
     | 
    
         
            +
                    # Run evaluation with progress tracking
         
     | 
| 
      
 343 
     | 
    
         
            +
                    results = common.map_with_progress(fn, self.examples, self.num_threads)
         
     | 
| 
      
 344 
     | 
    
         
            +
                    return common.aggregate_results(results)
         
     | 
    
        sglang/test/test_block_fp8.py
    CHANGED
    
    | 
         @@ -1,5 +1,4 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            import itertools
         
     | 
| 
       2 
     | 
    
         
            -
            import os
         
     | 
| 
       3 
2 
     | 
    
         
             
            import unittest
         
     | 
| 
       4 
3 
     | 
    
         | 
| 
       5 
4 
     | 
    
         
             
            import torch
         
     | 
| 
         @@ -577,7 +576,7 @@ class TestW8A8BlockFP8BatchedDeepGemm(CustomTestCase): 
     | 
|
| 
       577 
576 
     | 
    
         
             
                    if not torch.cuda.is_available():
         
     | 
| 
       578 
577 
     | 
    
         
             
                        raise unittest.SkipTest("CUDA is not available")
         
     | 
| 
       579 
578 
     | 
    
         
             
                    try:
         
     | 
| 
       580 
     | 
    
         
            -
                        import deep_gemm
         
     | 
| 
      
 579 
     | 
    
         
            +
                        import deep_gemm  # noqa: F401
         
     | 
| 
       581 
580 
     | 
    
         
             
                    except ImportError:
         
     | 
| 
       582 
581 
     | 
    
         
             
                        raise unittest.SkipTest("DeepGEMM is not available")
         
     | 
| 
       583 
582 
     | 
    
         
             
                    torch.set_default_device("cuda")
         
     | 
    
        sglang/test/test_cutlass_moe.py
    CHANGED
    
    | 
         @@ -1,5 +1,4 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            import argparse
         
     | 
| 
       2 
     | 
    
         
            -
            import time
         
     | 
| 
       3 
2 
     | 
    
         | 
| 
       4 
3 
     | 
    
         
             
            import torch
         
     | 
| 
       5 
4 
     | 
    
         
             
            import triton  # Added import
         
     | 
| 
         @@ -34,7 +33,7 @@ def get_model_config(tp_size: int): 
     | 
|
| 
       34 
33 
     | 
    
         
             
                    "topk": topk,
         
     | 
| 
       35 
34 
     | 
    
         
             
                    "hidden_size": config.hidden_size,
         
     | 
| 
       36 
35 
     | 
    
         
             
                    "shard_intermediate_size": shard_intermediate_size,
         
     | 
| 
       37 
     | 
    
         
            -
                    "dtype": config. 
     | 
| 
      
 36 
     | 
    
         
            +
                    "dtype": config.dtype,
         
     | 
| 
       38 
37 
     | 
    
         
             
                    "block_shape": config.quantization_config["weight_block_size"],
         
     | 
| 
       39 
38 
     | 
    
         
             
                }
         
     | 
| 
       40 
39 
     | 
    
         | 
| 
         @@ -1,6 +1,6 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            # SPDX-License-Identifier: Apache-2.0
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
     | 
    
         
            -
            from typing import  
     | 
| 
      
 3 
     | 
    
         
            +
            from typing import Optional
         
     | 
| 
       4 
4 
     | 
    
         | 
| 
       5 
5 
     | 
    
         
             
            import pytest
         
     | 
| 
       6 
6 
     | 
    
         
             
            import torch
         
     | 
| 
         @@ -120,7 +120,7 @@ def test_cutlass_w4a8_moe(M, N, K, E, tp_size, use_ep_moe, topk, group_size, dty 
     | 
|
| 
       120 
120 
     | 
    
         
             
                )
         
     | 
| 
       121 
121 
     | 
    
         
             
                topk_weights, topk_ids, _ = topk_output
         
     | 
| 
       122 
122 
     | 
    
         
             
                expert_map = torch.arange(E, dtype=torch.int32, device=device)
         
     | 
| 
       123 
     | 
    
         
            -
                expert_map[local_e:] =  
     | 
| 
      
 123 
     | 
    
         
            +
                expert_map[local_e:] = -1
         
     | 
| 
       124 
124 
     | 
    
         | 
| 
       125 
125 
     | 
    
         
             
                output = cutlass_moe(
         
     | 
| 
       126 
126 
     | 
    
         
             
                    a,
         
     | 
| 
         @@ -138,9 +138,7 @@ def test_cutlass_w4a8_moe(M, N, K, E, tp_size, use_ep_moe, topk, group_size, dty 
     | 
|
| 
       138 
138 
     | 
    
         
             
                    c_strides2,
         
     | 
| 
       139 
139 
     | 
    
         
             
                    s_strides13,
         
     | 
| 
       140 
140 
     | 
    
         
             
                    s_strides2,
         
     | 
| 
       141 
     | 
    
         
            -
                     
     | 
| 
       142 
     | 
    
         
            -
                    local_e - 1,
         
     | 
| 
       143 
     | 
    
         
            -
                    E,
         
     | 
| 
      
 141 
     | 
    
         
            +
                    local_e,
         
     | 
| 
       144 
142 
     | 
    
         
             
                    a1_scale,
         
     | 
| 
       145 
143 
     | 
    
         
             
                    a2_scale,
         
     | 
| 
       146 
144 
     | 
    
         
             
                    expert_map,
         
     | 
| 
         @@ -178,7 +176,7 @@ def cutlass_moe( 
     | 
|
| 
       178 
176 
     | 
    
         
             
                w1_scale: torch.Tensor,
         
     | 
| 
       179 
177 
     | 
    
         
             
                w2_scale: torch.Tensor,
         
     | 
| 
       180 
178 
     | 
    
         
             
                topk_weights: torch.Tensor,
         
     | 
| 
       181 
     | 
    
         
            -
                 
     | 
| 
      
 179 
     | 
    
         
            +
                topk_ids: torch.Tensor,
         
     | 
| 
       182 
180 
     | 
    
         
             
                a_strides1: torch.Tensor,
         
     | 
| 
       183 
181 
     | 
    
         
             
                b_strides1: torch.Tensor,
         
     | 
| 
       184 
182 
     | 
    
         
             
                c_strides1: torch.Tensor,
         
     | 
| 
         @@ -187,40 +185,32 @@ def cutlass_moe( 
     | 
|
| 
       187 
185 
     | 
    
         
             
                c_strides2: torch.Tensor,
         
     | 
| 
       188 
186 
     | 
    
         
             
                s_strides13: torch.Tensor,
         
     | 
| 
       189 
187 
     | 
    
         
             
                s_strides2: torch.Tensor,
         
     | 
| 
       190 
     | 
    
         
            -
                 
     | 
| 
       191 
     | 
    
         
            -
                end_expert_id: int,
         
     | 
| 
       192 
     | 
    
         
            -
                E: int,
         
     | 
| 
      
 188 
     | 
    
         
            +
                num_local_experts: int,
         
     | 
| 
       193 
189 
     | 
    
         
             
                a1_scale: Optional[torch.Tensor] = None,
         
     | 
| 
       194 
190 
     | 
    
         
             
                a2_scale: Optional[torch.Tensor] = None,
         
     | 
| 
       195 
191 
     | 
    
         
             
                expert_map: Optional[torch.Tensor] = None,
         
     | 
| 
       196 
192 
     | 
    
         
             
                apply_router_weight_on_input: bool = False,
         
     | 
| 
       197 
193 
     | 
    
         
             
            ):
         
     | 
| 
       198 
     | 
    
         
            -
                 
     | 
| 
       199 
     | 
    
         
            -
                local_topk_ids = torch.where(expert_map[topk_ids_] != E, expert_map[topk_ids_], E)
         
     | 
| 
      
 194 
     | 
    
         
            +
                topk_ids = expert_map[topk_ids]
         
     | 
| 
       200 
195 
     | 
    
         
             
                device = a.device
         
     | 
| 
       201 
196 
     | 
    
         | 
| 
       202 
     | 
    
         
            -
                local_num_experts = end_expert_id - start_expert_id + 1
         
     | 
| 
       203 
197 
     | 
    
         
             
                expert_offsets = torch.empty(
         
     | 
| 
       204 
     | 
    
         
            -
                    ( 
     | 
| 
      
 198 
     | 
    
         
            +
                    (num_local_experts + 1), dtype=torch.int32, device=device
         
     | 
| 
       205 
199 
     | 
    
         
             
                )
         
     | 
| 
       206 
200 
     | 
    
         
             
                problem_sizes1 = torch.empty(
         
     | 
| 
       207 
     | 
    
         
            -
                    ( 
     | 
| 
      
 201 
     | 
    
         
            +
                    (num_local_experts, 3), dtype=torch.int32, device=device
         
     | 
| 
       208 
202 
     | 
    
         
             
                )
         
     | 
| 
       209 
203 
     | 
    
         
             
                problem_sizes2 = torch.empty(
         
     | 
| 
       210 
     | 
    
         
            -
                    ( 
     | 
| 
      
 204 
     | 
    
         
            +
                    (num_local_experts, 3), dtype=torch.int32, device=device
         
     | 
| 
       211 
205 
     | 
    
         
             
                )
         
     | 
| 
       212 
206 
     | 
    
         
             
                return cutlass_w4a8_moe(
         
     | 
| 
       213 
     | 
    
         
            -
                    start_expert_id,
         
     | 
| 
       214 
     | 
    
         
            -
                    end_expert_id,
         
     | 
| 
       215 
     | 
    
         
            -
                    E,
         
     | 
| 
       216 
207 
     | 
    
         
             
                    a,
         
     | 
| 
       217 
208 
     | 
    
         
             
                    w1_q,
         
     | 
| 
       218 
209 
     | 
    
         
             
                    w2_q,
         
     | 
| 
       219 
210 
     | 
    
         
             
                    w1_scale,
         
     | 
| 
       220 
211 
     | 
    
         
             
                    w2_scale,
         
     | 
| 
       221 
212 
     | 
    
         
             
                    topk_weights,
         
     | 
| 
       222 
     | 
    
         
            -
                     
     | 
| 
       223 
     | 
    
         
            -
                    local_topk_ids,
         
     | 
| 
      
 213 
     | 
    
         
            +
                    topk_ids,
         
     | 
| 
       224 
214 
     | 
    
         
             
                    a_strides1,
         
     | 
| 
       225 
215 
     | 
    
         
             
                    b_strides1,
         
     | 
| 
       226 
216 
     | 
    
         
             
                    c_strides1,
         
     |