sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,1516 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Copyright 2025 The SwissAI Initiative
         
     | 
| 
      
 2 
     | 
    
         
            +
            # Copyright 2023-2024 SGLang Team
         
     | 
| 
      
 3 
     | 
    
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 
      
 4 
     | 
    
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 
      
 5 
     | 
    
         
            +
            # You may obtain a copy of the License at
         
     | 
| 
      
 6 
     | 
    
         
            +
            #
         
     | 
| 
      
 7 
     | 
    
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 
      
 8 
     | 
    
         
            +
            #
         
     | 
| 
      
 9 
     | 
    
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 
      
 10 
     | 
    
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 
      
 11 
     | 
    
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 
      
 12 
     | 
    
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 
      
 13 
     | 
    
         
            +
            # limitations under the License.
         
     | 
| 
      
 14 
     | 
    
         
            +
            # ==============================================================================
         
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
            # Adapted from
         
     | 
| 
      
 17 
     | 
    
         
            +
            # https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/llama.py#L1
         
     | 
| 
      
 18 
     | 
    
         
            +
            """Inference-only Apertus model compatible with HuggingFace weights."""
         
     | 
| 
      
 19 
     | 
    
         
            +
            import copy
         
     | 
| 
      
 20 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 21 
     | 
    
         
            +
            import math
         
     | 
| 
      
 22 
     | 
    
         
            +
            from functools import partial
         
     | 
| 
      
 23 
     | 
    
         
            +
            from typing import Iterable, List, Optional, Set, Tuple, Type, TypeAlias, Union
         
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 26 
     | 
    
         
            +
            import torch.nn.functional as F
         
     | 
| 
      
 27 
     | 
    
         
            +
            from torch import Tensor, nn
         
     | 
| 
      
 28 
     | 
    
         
            +
            from transformers.models.vitdet.modeling_vitdet import get_rel_pos
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
            from sglang.srt.configs.deepseek_ocr import DeepseekVLV2Config
         
     | 
| 
      
 31 
     | 
    
         
            +
            from sglang.srt.layers.quantization import QuantizationConfig
         
     | 
| 
      
 32 
     | 
    
         
            +
            from sglang.srt.managers.mm_utils import (
         
     | 
| 
      
 33 
     | 
    
         
            +
                MultiModalityDataPaddingPatternMultimodalTokens,
         
     | 
| 
      
 34 
     | 
    
         
            +
                general_mm_embed_routine,
         
     | 
| 
      
 35 
     | 
    
         
            +
            )
         
     | 
| 
      
 36 
     | 
    
         
            +
            from sglang.srt.managers.schedule_batch import MultimodalDataItem, MultimodalInputs
         
     | 
| 
      
 37 
     | 
    
         
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
      
 38 
     | 
    
         
            +
            from sglang.srt.model_loader.weight_utils import default_weight_loader
         
     | 
| 
      
 39 
     | 
    
         
            +
            from sglang.srt.models.deepseek import DeepseekForCausalLM
         
     | 
| 
      
 40 
     | 
    
         
            +
            from sglang.srt.models.deepseek_v2 import DeepseekV2ForCausalLM, DeepseekV3ForCausalLM
         
     | 
| 
      
 41 
     | 
    
         
            +
            from sglang.srt.models.transformers import maybe_prefix
         
     | 
| 
      
 42 
     | 
    
         
            +
             
     | 
| 
      
 43 
     | 
    
         
            +
            NestedTensors: TypeAlias = Union[
         
     | 
| 
      
 44 
     | 
    
         
            +
                list["NestedTensors"],
         
     | 
| 
      
 45 
     | 
    
         
            +
                list["torch.Tensor"],
         
     | 
| 
      
 46 
     | 
    
         
            +
                "torch.Tensor",
         
     | 
| 
      
 47 
     | 
    
         
            +
                tuple["torch.Tensor", ...],
         
     | 
| 
      
 48 
     | 
    
         
            +
            ]
         
     | 
| 
      
 49 
     | 
    
         
            +
             
     | 
| 
      
 50 
     | 
    
         
            +
            MultiModalEmbeddings: TypeAlias = list[Tensor] | Tensor | tuple[Tensor, ...]
         
     | 
| 
      
 51 
     | 
    
         
            +
             
     | 
| 
      
 52 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
             
     | 
| 
      
 55 
     | 
    
         
            +
            def _flatten_embeddings(embeddings: NestedTensors) -> torch.Tensor:
         
     | 
| 
      
 56 
     | 
    
         
            +
                """
         
     | 
| 
      
 57 
     | 
    
         
            +
                Recursively flattens and concatenates NestedTensors on all but the last
         
     | 
| 
      
 58 
     | 
    
         
            +
                dimension.
         
     | 
| 
      
 59 
     | 
    
         
            +
                """
         
     | 
| 
      
 60 
     | 
    
         
            +
             
     | 
| 
      
 61 
     | 
    
         
            +
                if isinstance(embeddings, torch.Tensor):
         
     | 
| 
      
 62 
     | 
    
         
            +
                    # Flatten all but the last dimension.
         
     | 
| 
      
 63 
     | 
    
         
            +
                    return embeddings.flatten(0, -2)
         
     | 
| 
      
 64 
     | 
    
         
            +
             
     | 
| 
      
 65 
     | 
    
         
            +
                return torch.cat(tuple(_flatten_embeddings(t) for t in embeddings))
         
     | 
| 
      
 66 
     | 
    
         
            +
             
     | 
| 
      
 67 
     | 
    
         
            +
             
     | 
| 
      
 68 
     | 
    
         
            +
            def _embedding_count_expression(embeddings: NestedTensors) -> str:
         
     | 
| 
      
 69 
     | 
    
         
            +
                """
         
     | 
| 
      
 70 
     | 
    
         
            +
                Constructs a debugging representation of the number of embeddings in the
         
     | 
| 
      
 71 
     | 
    
         
            +
                NestedTensors.
         
     | 
| 
      
 72 
     | 
    
         
            +
                """
         
     | 
| 
      
 73 
     | 
    
         
            +
             
     | 
| 
      
 74 
     | 
    
         
            +
                if isinstance(embeddings, torch.Tensor):
         
     | 
| 
      
 75 
     | 
    
         
            +
                    return " x ".join([str(dim) for dim in embeddings.shape[:-1]])
         
     | 
| 
      
 76 
     | 
    
         
            +
             
     | 
| 
      
 77 
     | 
    
         
            +
                return " + ".join(_embedding_count_expression(inner) for inner in embeddings)
         
     | 
| 
      
 78 
     | 
    
         
            +
             
     | 
| 
      
 79 
     | 
    
         
            +
             
     | 
| 
      
 80 
     | 
    
         
            +
            def _merge_multimodal_embeddings(
         
     | 
| 
      
 81 
     | 
    
         
            +
                inputs_embeds: torch.Tensor,
         
     | 
| 
      
 82 
     | 
    
         
            +
                multimodal_embeddings: NestedTensors,
         
     | 
| 
      
 83 
     | 
    
         
            +
                is_multimodal: torch.Tensor,
         
     | 
| 
      
 84 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 85 
     | 
    
         
            +
                """
         
     | 
| 
      
 86 
     | 
    
         
            +
                Merge `multimodal_embeddings` into `inputs_embeds` by overwriting the
         
     | 
| 
      
 87 
     | 
    
         
            +
                positions in `inputs_embeds` corresponding to placeholder tokens in
         
     | 
| 
      
 88 
     | 
    
         
            +
                `input_ids`.
         
     | 
| 
      
 89 
     | 
    
         
            +
             
     | 
| 
      
 90 
     | 
    
         
            +
                Note:
         
     | 
| 
      
 91 
     | 
    
         
            +
                    This updates `inputs_embeds` in place.
         
     | 
| 
      
 92 
     | 
    
         
            +
                """
         
     | 
| 
      
 93 
     | 
    
         
            +
                if len(multimodal_embeddings) == 0:
         
     | 
| 
      
 94 
     | 
    
         
            +
                    return inputs_embeds
         
     | 
| 
      
 95 
     | 
    
         
            +
             
     | 
| 
      
 96 
     | 
    
         
            +
                mm_embeds_flat = _flatten_embeddings(multimodal_embeddings)
         
     | 
| 
      
 97 
     | 
    
         
            +
                input_dtype = inputs_embeds.dtype
         
     | 
| 
      
 98 
     | 
    
         
            +
             
     | 
| 
      
 99 
     | 
    
         
            +
                try:
         
     | 
| 
      
 100 
     | 
    
         
            +
                    # NOTE: This can avoid D2H sync (#22105), but fails to
         
     | 
| 
      
 101 
     | 
    
         
            +
                    # raise an error if is_multimodal.sum() < len(mm_embeds_flat)
         
     | 
| 
      
 102 
     | 
    
         
            +
                    inputs_embeds.masked_scatter_(
         
     | 
| 
      
 103 
     | 
    
         
            +
                        is_multimodal.unsqueeze(-1), mm_embeds_flat.to(dtype=input_dtype)
         
     | 
| 
      
 104 
     | 
    
         
            +
                    )
         
     | 
| 
      
 105 
     | 
    
         
            +
                except RuntimeError as e:
         
     | 
| 
      
 106 
     | 
    
         
            +
                    num_actual_tokens = len(mm_embeds_flat)
         
     | 
| 
      
 107 
     | 
    
         
            +
                    num_expected_tokens = is_multimodal.sum().item()
         
     | 
| 
      
 108 
     | 
    
         
            +
             
     | 
| 
      
 109 
     | 
    
         
            +
                    if num_actual_tokens != num_expected_tokens:
         
     | 
| 
      
 110 
     | 
    
         
            +
                        expr = _embedding_count_expression(multimodal_embeddings)
         
     | 
| 
      
 111 
     | 
    
         
            +
             
     | 
| 
      
 112 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 113 
     | 
    
         
            +
                            f"Attempted to assign {expr} = {num_actual_tokens} "
         
     | 
| 
      
 114 
     | 
    
         
            +
                            f"multimodal tokens to {num_expected_tokens} placeholders"
         
     | 
| 
      
 115 
     | 
    
         
            +
                        ) from e
         
     | 
| 
      
 116 
     | 
    
         
            +
             
     | 
| 
      
 117 
     | 
    
         
            +
                    raise ValueError("Error during masked scatter operation") from e
         
     | 
| 
      
 118 
     | 
    
         
            +
             
     | 
| 
      
 119 
     | 
    
         
            +
                return inputs_embeds
         
     | 
| 
      
 120 
     | 
    
         
            +
             
     | 
| 
      
 121 
     | 
    
         
            +
             
     | 
| 
      
 122 
     | 
    
         
            +
            def isin_list(
         
     | 
| 
      
 123 
     | 
    
         
            +
                elements: torch.Tensor,
         
     | 
| 
      
 124 
     | 
    
         
            +
                test_elements_list: list[int],
         
     | 
| 
      
 125 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 126 
     | 
    
         
            +
                test_elements = torch.tensor(test_elements_list, pin_memory=True).to(
         
     | 
| 
      
 127 
     | 
    
         
            +
                    device=elements.device, non_blocking=True
         
     | 
| 
      
 128 
     | 
    
         
            +
                )
         
     | 
| 
      
 129 
     | 
    
         
            +
             
     | 
| 
      
 130 
     | 
    
         
            +
                return torch.isin(elements, test_elements)
         
     | 
| 
      
 131 
     | 
    
         
            +
             
     | 
| 
      
 132 
     | 
    
         
            +
             
     | 
| 
      
 133 
     | 
    
         
            +
            def merge_multimodal_embeddings(
         
     | 
| 
      
 134 
     | 
    
         
            +
                input_ids: torch.Tensor,
         
     | 
| 
      
 135 
     | 
    
         
            +
                inputs_embeds: torch.Tensor,
         
     | 
| 
      
 136 
     | 
    
         
            +
                multimodal_embeddings: NestedTensors,
         
     | 
| 
      
 137 
     | 
    
         
            +
                placeholder_token_id: int | list[int],
         
     | 
| 
      
 138 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 139 
     | 
    
         
            +
                """
         
     | 
| 
      
 140 
     | 
    
         
            +
                Merge `multimodal_embeddings` into `inputs_embeds` by overwriting the
         
     | 
| 
      
 141 
     | 
    
         
            +
                positions in `inputs_embeds` corresponding to placeholder tokens in
         
     | 
| 
      
 142 
     | 
    
         
            +
                `input_ids`.
         
     | 
| 
      
 143 
     | 
    
         
            +
             
     | 
| 
      
 144 
     | 
    
         
            +
                `placeholder_token_id` can be a list of token ids (e.g, token ids
         
     | 
| 
      
 145 
     | 
    
         
            +
                of img_start, img_break, and img_end tokens) when needed: This means
         
     | 
| 
      
 146 
     | 
    
         
            +
                the order of these tokens in the `input_ids` MUST MATCH the order of
         
     | 
| 
      
 147 
     | 
    
         
            +
                their embeddings in `multimodal_embeddings` since we need to
         
     | 
| 
      
 148 
     | 
    
         
            +
                slice-merge instead of individually scattering.
         
     | 
| 
      
 149 
     | 
    
         
            +
             
     | 
| 
      
 150 
     | 
    
         
            +
                For example, if input_ids is "TTTTTSIIIBIIIBIIIETTT", where
         
     | 
| 
      
 151 
     | 
    
         
            +
                - T is text token
         
     | 
| 
      
 152 
     | 
    
         
            +
                - S is image start token
         
     | 
| 
      
 153 
     | 
    
         
            +
                - I is image embedding token
         
     | 
| 
      
 154 
     | 
    
         
            +
                - B is image break token
         
     | 
| 
      
 155 
     | 
    
         
            +
                - E is image end token.
         
     | 
| 
      
 156 
     | 
    
         
            +
             
     | 
| 
      
 157 
     | 
    
         
            +
                Then the image embeddings (that correspond to I's) from vision encoder
         
     | 
| 
      
 158 
     | 
    
         
            +
                must be padded with embeddings of S, B, and E in the same order of
         
     | 
| 
      
 159 
     | 
    
         
            +
                input_ids for a correct embedding merge.
         
     | 
| 
      
 160 
     | 
    
         
            +
             
     | 
| 
      
 161 
     | 
    
         
            +
                Note:
         
     | 
| 
      
 162 
     | 
    
         
            +
                    This updates `inputs_embeds` in place.
         
     | 
| 
      
 163 
     | 
    
         
            +
                """
         
     | 
| 
      
 164 
     | 
    
         
            +
                if isinstance(placeholder_token_id, list):
         
     | 
| 
      
 165 
     | 
    
         
            +
                    is_multimodal = isin_list(input_ids, placeholder_token_id)
         
     | 
| 
      
 166 
     | 
    
         
            +
                else:
         
     | 
| 
      
 167 
     | 
    
         
            +
                    is_multimodal = input_ids == placeholder_token_id
         
     | 
| 
      
 168 
     | 
    
         
            +
             
     | 
| 
      
 169 
     | 
    
         
            +
                return _merge_multimodal_embeddings(
         
     | 
| 
      
 170 
     | 
    
         
            +
                    inputs_embeds,
         
     | 
| 
      
 171 
     | 
    
         
            +
                    multimodal_embeddings=multimodal_embeddings,
         
     | 
| 
      
 172 
     | 
    
         
            +
                    is_multimodal=is_multimodal,
         
     | 
| 
      
 173 
     | 
    
         
            +
                )
         
     | 
| 
      
 174 
     | 
    
         
            +
             
     | 
| 
      
 175 
     | 
    
         
            +
             
     | 
| 
      
 176 
     | 
    
         
            +
            class MlpProjector(nn.Module):
         
     | 
| 
      
 177 
     | 
    
         
            +
             
     | 
| 
      
 178 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 179 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 180 
     | 
    
         
            +
                    projector_type,
         
     | 
| 
      
 181 
     | 
    
         
            +
                    input_dim,
         
     | 
| 
      
 182 
     | 
    
         
            +
                    n_embed,
         
     | 
| 
      
 183 
     | 
    
         
            +
                    depth=1,
         
     | 
| 
      
 184 
     | 
    
         
            +
                    mlp_ratio=1,
         
     | 
| 
      
 185 
     | 
    
         
            +
                    downsample_ratio=4,
         
     | 
| 
      
 186 
     | 
    
         
            +
                ):
         
     | 
| 
      
 187 
     | 
    
         
            +
                    self.projector_type = projector_type
         
     | 
| 
      
 188 
     | 
    
         
            +
                    self.input_dim = input_dim
         
     | 
| 
      
 189 
     | 
    
         
            +
                    self.n_embed = n_embed
         
     | 
| 
      
 190 
     | 
    
         
            +
                    self.depth = depth
         
     | 
| 
      
 191 
     | 
    
         
            +
                    self.token_pooling = False
         
     | 
| 
      
 192 
     | 
    
         
            +
                    self.conv_fusion_high_low_features = False
         
     | 
| 
      
 193 
     | 
    
         
            +
             
     | 
| 
      
 194 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 195 
     | 
    
         
            +
             
     | 
| 
      
 196 
     | 
    
         
            +
                    if projector_type == "identity":
         
     | 
| 
      
 197 
     | 
    
         
            +
                        modules = nn.Identity()
         
     | 
| 
      
 198 
     | 
    
         
            +
             
     | 
| 
      
 199 
     | 
    
         
            +
                    elif projector_type == "linear":
         
     | 
| 
      
 200 
     | 
    
         
            +
                        modules = nn.Linear(input_dim, n_embed)
         
     | 
| 
      
 201 
     | 
    
         
            +
             
     | 
| 
      
 202 
     | 
    
         
            +
                    elif projector_type == "mlp_gelu":
         
     | 
| 
      
 203 
     | 
    
         
            +
                        mlp_depth = depth
         
     | 
| 
      
 204 
     | 
    
         
            +
                        modules = [nn.Linear(input_dim, n_embed)]
         
     | 
| 
      
 205 
     | 
    
         
            +
                        for _ in range(1, mlp_depth):
         
     | 
| 
      
 206 
     | 
    
         
            +
                            modules.append(nn.GELU())
         
     | 
| 
      
 207 
     | 
    
         
            +
                            modules.append(nn.Linear(n_embed, n_embed))
         
     | 
| 
      
 208 
     | 
    
         
            +
                        modules = nn.Sequential(*modules)
         
     | 
| 
      
 209 
     | 
    
         
            +
             
     | 
| 
      
 210 
     | 
    
         
            +
                    elif projector_type == "normlayer_downsample_mlp_gelu":
         
     | 
| 
      
 211 
     | 
    
         
            +
                        mlp_depth = depth
         
     | 
| 
      
 212 
     | 
    
         
            +
                        mlp_ratio = mlp_ratio
         
     | 
| 
      
 213 
     | 
    
         
            +
                        modules = [
         
     | 
| 
      
 214 
     | 
    
         
            +
                            nn.LayerNorm(input_dim * downsample_ratio * downsample_ratio),
         
     | 
| 
      
 215 
     | 
    
         
            +
                            nn.Linear(
         
     | 
| 
      
 216 
     | 
    
         
            +
                                input_dim * downsample_ratio * downsample_ratio,
         
     | 
| 
      
 217 
     | 
    
         
            +
                                n_embed * mlp_ratio,
         
     | 
| 
      
 218 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 219 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 220 
     | 
    
         
            +
                        for _ in range(1, mlp_depth - 1):
         
     | 
| 
      
 221 
     | 
    
         
            +
                            modules.append(nn.GELU())
         
     | 
| 
      
 222 
     | 
    
         
            +
                            modules.append(nn.Linear(n_embed * mlp_ratio, n_embed * mlp_ratio))
         
     | 
| 
      
 223 
     | 
    
         
            +
                        modules.append(nn.GELU())
         
     | 
| 
      
 224 
     | 
    
         
            +
                        modules.append(nn.Linear(n_embed * mlp_ratio, n_embed))
         
     | 
| 
      
 225 
     | 
    
         
            +
                        modules = nn.Sequential(*modules)
         
     | 
| 
      
 226 
     | 
    
         
            +
             
     | 
| 
      
 227 
     | 
    
         
            +
                    elif projector_type == "downsample_mlp_gelu":
         
     | 
| 
      
 228 
     | 
    
         
            +
                        mlp_depth = depth
         
     | 
| 
      
 229 
     | 
    
         
            +
                        mlp_ratio = mlp_ratio
         
     | 
| 
      
 230 
     | 
    
         
            +
                        modules = [
         
     | 
| 
      
 231 
     | 
    
         
            +
                            nn.Linear(
         
     | 
| 
      
 232 
     | 
    
         
            +
                                input_dim * downsample_ratio * downsample_ratio,
         
     | 
| 
      
 233 
     | 
    
         
            +
                                n_embed * mlp_ratio,
         
     | 
| 
      
 234 
     | 
    
         
            +
                            )
         
     | 
| 
      
 235 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 236 
     | 
    
         
            +
                        for _ in range(1, mlp_depth - 1):
         
     | 
| 
      
 237 
     | 
    
         
            +
                            modules.append(nn.GELU())
         
     | 
| 
      
 238 
     | 
    
         
            +
                            modules.append(nn.Linear(n_embed * mlp_ratio, n_embed * mlp_ratio))
         
     | 
| 
      
 239 
     | 
    
         
            +
                        modules.append(nn.GELU())
         
     | 
| 
      
 240 
     | 
    
         
            +
                        modules.append(nn.Linear(n_embed * mlp_ratio, n_embed))
         
     | 
| 
      
 241 
     | 
    
         
            +
                        modules = nn.Sequential(*modules)
         
     | 
| 
      
 242 
     | 
    
         
            +
             
     | 
| 
      
 243 
     | 
    
         
            +
                    elif projector_type == "low_high_hybrid_split_mlp_gelu":
         
     | 
| 
      
 244 
     | 
    
         
            +
                        mlp_depth = depth
         
     | 
| 
      
 245 
     | 
    
         
            +
                        self.high_up_proj = nn.Linear(input_dim, n_embed // 2)
         
     | 
| 
      
 246 
     | 
    
         
            +
                        self.low_up_proj = nn.Linear(input_dim, n_embed // 2)
         
     | 
| 
      
 247 
     | 
    
         
            +
             
     | 
| 
      
 248 
     | 
    
         
            +
                        modules = []
         
     | 
| 
      
 249 
     | 
    
         
            +
                        for _ in range(1, mlp_depth):
         
     | 
| 
      
 250 
     | 
    
         
            +
                            modules.append(nn.GELU())
         
     | 
| 
      
 251 
     | 
    
         
            +
                            modules.append(nn.Linear(n_embed, n_embed))
         
     | 
| 
      
 252 
     | 
    
         
            +
                        modules = nn.Sequential(*modules)
         
     | 
| 
      
 253 
     | 
    
         
            +
             
     | 
| 
      
 254 
     | 
    
         
            +
                    elif projector_type == "hybrid_split_feature_mlp_gelu":
         
     | 
| 
      
 255 
     | 
    
         
            +
                        mlp_depth = depth
         
     | 
| 
      
 256 
     | 
    
         
            +
                        channel_div = 0.5
         
     | 
| 
      
 257 
     | 
    
         
            +
                        self.high_up_proj = nn.Linear(input_dim[0], int(n_embed * channel_div))
         
     | 
| 
      
 258 
     | 
    
         
            +
                        self.low_up_proj = nn.Linear(
         
     | 
| 
      
 259 
     | 
    
         
            +
                            input_dim[1], n_embed - int(n_embed * channel_div)
         
     | 
| 
      
 260 
     | 
    
         
            +
                        )
         
     | 
| 
      
 261 
     | 
    
         
            +
             
     | 
| 
      
 262 
     | 
    
         
            +
                        modules = []
         
     | 
| 
      
 263 
     | 
    
         
            +
                        for _ in range(1, mlp_depth):
         
     | 
| 
      
 264 
     | 
    
         
            +
                            modules.append(nn.GELU())
         
     | 
| 
      
 265 
     | 
    
         
            +
                            modules.append(nn.Linear(n_embed, n_embed))
         
     | 
| 
      
 266 
     | 
    
         
            +
                        modules = nn.Sequential(*modules)
         
     | 
| 
      
 267 
     | 
    
         
            +
             
     | 
| 
      
 268 
     | 
    
         
            +
                    elif projector_type == "low_high_split_mlp_gelu":
         
     | 
| 
      
 269 
     | 
    
         
            +
                        mlp_depth = depth
         
     | 
| 
      
 270 
     | 
    
         
            +
                        modules = []
         
     | 
| 
      
 271 
     | 
    
         
            +
                        for _ in range(1, mlp_depth):
         
     | 
| 
      
 272 
     | 
    
         
            +
                            modules.append(nn.GELU())
         
     | 
| 
      
 273 
     | 
    
         
            +
                            modules.append(nn.Linear(n_embed // 2, n_embed // 2))
         
     | 
| 
      
 274 
     | 
    
         
            +
                        modules = nn.Sequential(*modules)
         
     | 
| 
      
 275 
     | 
    
         
            +
                        self.high_layers = nn.Sequential(*modules)
         
     | 
| 
      
 276 
     | 
    
         
            +
                        self.low_layers = copy.deepcopy(modules)
         
     | 
| 
      
 277 
     | 
    
         
            +
             
     | 
| 
      
 278 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 279 
     | 
    
         
            +
                        raise ValueError(f"Unknown projector type: {projector_type}")
         
     | 
| 
      
 280 
     | 
    
         
            +
             
     | 
| 
      
 281 
     | 
    
         
            +
                    self.layers = modules
         
     | 
| 
      
 282 
     | 
    
         
            +
             
     | 
| 
      
 283 
     | 
    
         
            +
                def forward(self, x):
         
     | 
| 
      
 284 
     | 
    
         
            +
                    if self.token_pooling:
         
     | 
| 
      
 285 
     | 
    
         
            +
                        batch_size, wxh, channels = x.shape
         
     | 
| 
      
 286 
     | 
    
         
            +
                        w = h = int(wxh**0.5)
         
     | 
| 
      
 287 
     | 
    
         
            +
                        x = x.view(batch_size, w, h, channels)
         
     | 
| 
      
 288 
     | 
    
         
            +
                        x = x.permute(0, 3, 1, 2)
         
     | 
| 
      
 289 
     | 
    
         
            +
                        patches = x.unfold(2, 2, 2).unfold(3, 2, 2)
         
     | 
| 
      
 290 
     | 
    
         
            +
                        batch_size, channels, h_patches, w_patches, _, _ = patches.size()
         
     | 
| 
      
 291 
     | 
    
         
            +
                        # Concatenate on channel dimension
         
     | 
| 
      
 292 
     | 
    
         
            +
                        patches = patches.contiguous().view(
         
     | 
| 
      
 293 
     | 
    
         
            +
                            batch_size, channels, h_patches * w_patches, -1
         
     | 
| 
      
 294 
     | 
    
         
            +
                        )
         
     | 
| 
      
 295 
     | 
    
         
            +
             
     | 
| 
      
 296 
     | 
    
         
            +
                        # Pass through linear layer
         
     | 
| 
      
 297 
     | 
    
         
            +
                        patches = patches.permute(0, 2, 1, 3).contiguous()
         
     | 
| 
      
 298 
     | 
    
         
            +
                        patches = patches.view(batch_size, h_patches * w_patches, channels * 4)
         
     | 
| 
      
 299 
     | 
    
         
            +
             
     | 
| 
      
 300 
     | 
    
         
            +
                        x = self.token_pooling_layer(patches)
         
     | 
| 
      
 301 
     | 
    
         
            +
             
     | 
| 
      
 302 
     | 
    
         
            +
                    if self.conv_fusion_high_low_features:
         
     | 
| 
      
 303 
     | 
    
         
            +
                        x = self.fusion_layer(x[:, 0]) + x[:, 1]
         
     | 
| 
      
 304 
     | 
    
         
            +
             
     | 
| 
      
 305 
     | 
    
         
            +
                    if self.projector_type == "low_high_hybrid_split_mlp_gelu":
         
     | 
| 
      
 306 
     | 
    
         
            +
                        high_x, low_x = x[0], x[1]
         
     | 
| 
      
 307 
     | 
    
         
            +
                        high_x = self.high_up_proj(high_x)
         
     | 
| 
      
 308 
     | 
    
         
            +
                        low_x = self.low_up_proj(low_x)
         
     | 
| 
      
 309 
     | 
    
         
            +
                        x = torch.concat([high_x, low_x], dim=-1)
         
     | 
| 
      
 310 
     | 
    
         
            +
             
     | 
| 
      
 311 
     | 
    
         
            +
                    if self.projector_type == "hybrid_split_feature_mlp_gelu":
         
     | 
| 
      
 312 
     | 
    
         
            +
                        high_x = x[..., : self.input_dim[0]]
         
     | 
| 
      
 313 
     | 
    
         
            +
                        low_x = x[..., self.input_dim[0] :]
         
     | 
| 
      
 314 
     | 
    
         
            +
                        high_x = self.high_up_proj(high_x)
         
     | 
| 
      
 315 
     | 
    
         
            +
                        low_x = self.low_up_proj(low_x)
         
     | 
| 
      
 316 
     | 
    
         
            +
                        x = torch.concat([high_x, low_x], dim=-1)
         
     | 
| 
      
 317 
     | 
    
         
            +
             
     | 
| 
      
 318 
     | 
    
         
            +
                    if self.projector_type == "low_high_split_mlp_gelu":
         
     | 
| 
      
 319 
     | 
    
         
            +
                        high_x, low_x = x[0], x[1]
         
     | 
| 
      
 320 
     | 
    
         
            +
                        high_x = self.high_layers(high_x)
         
     | 
| 
      
 321 
     | 
    
         
            +
                        low_x = self.low_layers(low_x)
         
     | 
| 
      
 322 
     | 
    
         
            +
                        x = torch.concat([high_x, low_x], dim=-1)
         
     | 
| 
      
 323 
     | 
    
         
            +
                        return x
         
     | 
| 
      
 324 
     | 
    
         
            +
             
     | 
| 
      
 325 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 326 
     | 
    
         
            +
                        self.projector_type == "downsample_mlp_gelu"
         
     | 
| 
      
 327 
     | 
    
         
            +
                        or self.projector_type == "normlayer_downsample_mlp_gelu"
         
     | 
| 
      
 328 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 329 
     | 
    
         
            +
                        bs, hw, input_dim = x.shape
         
     | 
| 
      
 330 
     | 
    
         
            +
                        h = w = int((hw) ** 0.5)
         
     | 
| 
      
 331 
     | 
    
         
            +
             
     | 
| 
      
 332 
     | 
    
         
            +
                        """compute padding"""
         
     | 
| 
      
 333 
     | 
    
         
            +
                        if h % self.downsample_ratio:
         
     | 
| 
      
 334 
     | 
    
         
            +
                            pad = self.downsample_ratio - h % self.downsample_ratio
         
     | 
| 
      
 335 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 336 
     | 
    
         
            +
                            pad = 0
         
     | 
| 
      
 337 
     | 
    
         
            +
                        x = x.reshape(bs, h, w, input_dim)
         
     | 
| 
      
 338 
     | 
    
         
            +
                        if pad > 0:
         
     | 
| 
      
 339 
     | 
    
         
            +
                            x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
         
     | 
| 
      
 340 
     | 
    
         
            +
             
     | 
| 
      
 341 
     | 
    
         
            +
                        """4 to 1 concat"""
         
     | 
| 
      
 342 
     | 
    
         
            +
                        x = x.permute(0, 3, 1, 2)  # B, C, H, W
         
     | 
| 
      
 343 
     | 
    
         
            +
                        x = F.unfold(
         
     | 
| 
      
 344 
     | 
    
         
            +
                            x,
         
     | 
| 
      
 345 
     | 
    
         
            +
                            kernel_size=self.downsample_ratio,
         
     | 
| 
      
 346 
     | 
    
         
            +
                            stride=self.downsample_ratio,
         
     | 
| 
      
 347 
     | 
    
         
            +
                            padding=0,
         
     | 
| 
      
 348 
     | 
    
         
            +
                        )  # B, C*4, HW // 4
         
     | 
| 
      
 349 
     | 
    
         
            +
                        x = x.permute(0, 2, 1)
         
     | 
| 
      
 350 
     | 
    
         
            +
             
     | 
| 
      
 351 
     | 
    
         
            +
                    return self.layers(x)
         
     | 
| 
      
 352 
     | 
    
         
            +
             
     | 
| 
      
 353 
     | 
    
         
            +
             
     | 
| 
      
 354 
     | 
    
         
            +
            class LayerNorm2d(nn.Module):
         
     | 
| 
      
 355 
     | 
    
         
            +
                def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
         
     | 
| 
      
 356 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 357 
     | 
    
         
            +
                    self.weight = nn.Parameter(torch.ones(num_channels))
         
     | 
| 
      
 358 
     | 
    
         
            +
                    self.bias = nn.Parameter(torch.zeros(num_channels))
         
     | 
| 
      
 359 
     | 
    
         
            +
                    self.eps = eps
         
     | 
| 
      
 360 
     | 
    
         
            +
             
     | 
| 
      
 361 
     | 
    
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 
      
 362 
     | 
    
         
            +
                    u = x.mean(1, keepdim=True)
         
     | 
| 
      
 363 
     | 
    
         
            +
                    s = (x - u).pow(2).mean(1, keepdim=True)
         
     | 
| 
      
 364 
     | 
    
         
            +
                    x = (x - u) / torch.sqrt(s + self.eps)
         
     | 
| 
      
 365 
     | 
    
         
            +
                    x = self.weight[:, None, None] * x + self.bias[:, None, None]
         
     | 
| 
      
 366 
     | 
    
         
            +
                    return x
         
     | 
| 
      
 367 
     | 
    
         
            +
             
     | 
| 
      
 368 
     | 
    
         
            +
             
     | 
| 
      
 369 
     | 
    
         
            +
            class MLPBlock(nn.Module):
         
     | 
| 
      
 370 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 371 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 372 
     | 
    
         
            +
                    embedding_dim: int,
         
     | 
| 
      
 373 
     | 
    
         
            +
                    mlp_dim: int,
         
     | 
| 
      
 374 
     | 
    
         
            +
                    act: Type[nn.Module] = nn.GELU,
         
     | 
| 
      
 375 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 376 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 377 
     | 
    
         
            +
                    self.lin1 = nn.Linear(embedding_dim, mlp_dim)
         
     | 
| 
      
 378 
     | 
    
         
            +
                    self.lin2 = nn.Linear(mlp_dim, embedding_dim)
         
     | 
| 
      
 379 
     | 
    
         
            +
                    self.act = act()
         
     | 
| 
      
 380 
     | 
    
         
            +
             
     | 
| 
      
 381 
     | 
    
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 
      
 382 
     | 
    
         
            +
                    return self.lin2(self.act(self.lin1(x)))
         
     | 
| 
      
 383 
     | 
    
         
            +
             
     | 
| 
      
 384 
     | 
    
         
            +
             
     | 
| 
      
 385 
     | 
    
         
            +
            def add_decomposed_rel_pos(
         
     | 
| 
      
 386 
     | 
    
         
            +
                q: torch.Tensor,
         
     | 
| 
      
 387 
     | 
    
         
            +
                rel_pos_h: torch.Tensor,
         
     | 
| 
      
 388 
     | 
    
         
            +
                rel_pos_w: torch.Tensor,
         
     | 
| 
      
 389 
     | 
    
         
            +
                q_size: Tuple[int, int],
         
     | 
| 
      
 390 
     | 
    
         
            +
                k_size: Tuple[int, int],
         
     | 
| 
      
 391 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 392 
     | 
    
         
            +
                """
         
     | 
| 
      
 393 
     | 
    
         
            +
                Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
         
     | 
| 
      
 394 
     | 
    
         
            +
                https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py   # noqa B950
         
     | 
| 
      
 395 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 396 
     | 
    
         
            +
                    q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
         
     | 
| 
      
 397 
     | 
    
         
            +
                    rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
         
     | 
| 
      
 398 
     | 
    
         
            +
                    rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
         
     | 
| 
      
 399 
     | 
    
         
            +
                    q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
         
     | 
| 
      
 400 
     | 
    
         
            +
                    k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
         
     | 
| 
      
 401 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 402 
     | 
    
         
            +
                    attn (Tensor): attention map with added relative positional embeddings.
         
     | 
| 
      
 403 
     | 
    
         
            +
                """
         
     | 
| 
      
 404 
     | 
    
         
            +
                q_h, q_w = q_size
         
     | 
| 
      
 405 
     | 
    
         
            +
                k_h, k_w = k_size
         
     | 
| 
      
 406 
     | 
    
         
            +
                Rh = get_rel_pos(q_h, k_h, rel_pos_h)
         
     | 
| 
      
 407 
     | 
    
         
            +
                Rw = get_rel_pos(q_w, k_w, rel_pos_w)
         
     | 
| 
      
 408 
     | 
    
         
            +
             
     | 
| 
      
 409 
     | 
    
         
            +
                B, _, dim = q.shape
         
     | 
| 
      
 410 
     | 
    
         
            +
                r_q = q.reshape(B, q_h, q_w, dim)
         
     | 
| 
      
 411 
     | 
    
         
            +
                rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
         
     | 
| 
      
 412 
     | 
    
         
            +
                rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
         
     | 
| 
      
 413 
     | 
    
         
            +
                rel_h = rel_h.unsqueeze(-1)
         
     | 
| 
      
 414 
     | 
    
         
            +
                rel_w = rel_w.unsqueeze(-2)
         
     | 
| 
      
 415 
     | 
    
         
            +
                rel_h = rel_h.reshape(B, q_h * q_w, k_h, 1)
         
     | 
| 
      
 416 
     | 
    
         
            +
                rel_w = rel_w.reshape(B, q_h * q_w, 1, k_w)
         
     | 
| 
      
 417 
     | 
    
         
            +
             
     | 
| 
      
 418 
     | 
    
         
            +
                return rel_h, rel_w
         
     | 
| 
      
 419 
     | 
    
         
            +
             
     | 
| 
      
 420 
     | 
    
         
            +
             
     | 
| 
      
 421 
     | 
    
         
            +
            class Attention(nn.Module):
         
     | 
| 
      
 422 
     | 
    
         
            +
                """Multi-head Attention block with relative position embeddings."""
         
     | 
| 
      
 423 
     | 
    
         
            +
             
     | 
| 
      
 424 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 425 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 426 
     | 
    
         
            +
                    dim: int,
         
     | 
| 
      
 427 
     | 
    
         
            +
                    num_heads: int = 8,
         
     | 
| 
      
 428 
     | 
    
         
            +
                    qkv_bias: bool = True,
         
     | 
| 
      
 429 
     | 
    
         
            +
                    use_rel_pos: bool = False,
         
     | 
| 
      
 430 
     | 
    
         
            +
                    rel_pos_zero_init: bool = True,
         
     | 
| 
      
 431 
     | 
    
         
            +
                    input_size: Optional[Tuple[int, int]] = None,
         
     | 
| 
      
 432 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 433 
     | 
    
         
            +
                    """
         
     | 
| 
      
 434 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 435 
     | 
    
         
            +
                        dim (int): Number of input channels.
         
     | 
| 
      
 436 
     | 
    
         
            +
                        num_heads (int): Number of attention heads.
         
     | 
| 
      
 437 
     | 
    
         
            +
                        qkv_bias (bool):  If True, add a learnable bias to query, key, value.
         
     | 
| 
      
 438 
     | 
    
         
            +
                        rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
         
     | 
| 
      
 439 
     | 
    
         
            +
                        input_size (tuple(int, int) or None): Input resolution for calculating the relative
         
     | 
| 
      
 440 
     | 
    
         
            +
                            positional parameter size.
         
     | 
| 
      
 441 
     | 
    
         
            +
                    """
         
     | 
| 
      
 442 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 443 
     | 
    
         
            +
                    self.num_heads = num_heads
         
     | 
| 
      
 444 
     | 
    
         
            +
                    head_dim = dim // num_heads
         
     | 
| 
      
 445 
     | 
    
         
            +
                    self.scale = head_dim**-0.5
         
     | 
| 
      
 446 
     | 
    
         
            +
             
     | 
| 
      
 447 
     | 
    
         
            +
                    self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
         
     | 
| 
      
 448 
     | 
    
         
            +
                    self.proj = nn.Linear(dim, dim)
         
     | 
| 
      
 449 
     | 
    
         
            +
             
     | 
| 
      
 450 
     | 
    
         
            +
                    self.use_rel_pos = use_rel_pos
         
     | 
| 
      
 451 
     | 
    
         
            +
                    if self.use_rel_pos:
         
     | 
| 
      
 452 
     | 
    
         
            +
                        assert (
         
     | 
| 
      
 453 
     | 
    
         
            +
                            input_size is not None
         
     | 
| 
      
 454 
     | 
    
         
            +
                        ), "Input size must be provided if using relative positional encoding."
         
     | 
| 
      
 455 
     | 
    
         
            +
                        # initialize relative positional embeddings
         
     | 
| 
      
 456 
     | 
    
         
            +
                        self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
         
     | 
| 
      
 457 
     | 
    
         
            +
                        self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
         
     | 
| 
      
 458 
     | 
    
         
            +
             
     | 
| 
      
 459 
     | 
    
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 
      
 460 
     | 
    
         
            +
                    B, H, W, _ = x.shape
         
     | 
| 
      
 461 
     | 
    
         
            +
                    # qkv with shape (3, B, nHead, H * W, C)
         
     | 
| 
      
 462 
     | 
    
         
            +
                    qkv = (
         
     | 
| 
      
 463 
     | 
    
         
            +
                        self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
         
     | 
| 
      
 464 
     | 
    
         
            +
                    )
         
     | 
| 
      
 465 
     | 
    
         
            +
                    # q, k, v with shape (B * nHead, H * W, C)
         
     | 
| 
      
 466 
     | 
    
         
            +
                    q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
         
     | 
| 
      
 467 
     | 
    
         
            +
             
     | 
| 
      
 468 
     | 
    
         
            +
                    rel_h, rel_w = None, None
         
     | 
| 
      
 469 
     | 
    
         
            +
                    if self.use_rel_pos:
         
     | 
| 
      
 470 
     | 
    
         
            +
                        rel_h, rel_w = add_decomposed_rel_pos(
         
     | 
| 
      
 471 
     | 
    
         
            +
                            q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)
         
     | 
| 
      
 472 
     | 
    
         
            +
                        )
         
     | 
| 
      
 473 
     | 
    
         
            +
             
     | 
| 
      
 474 
     | 
    
         
            +
                    q = q.view(B, self.num_heads, H * W, -1)
         
     | 
| 
      
 475 
     | 
    
         
            +
                    k = k.view(B, self.num_heads, H * W, -1)
         
     | 
| 
      
 476 
     | 
    
         
            +
                    v = v.view(B, self.num_heads, H * W, -1)
         
     | 
| 
      
 477 
     | 
    
         
            +
             
     | 
| 
      
 478 
     | 
    
         
            +
                    if self.use_rel_pos:
         
     | 
| 
      
 479 
     | 
    
         
            +
                        rel_h = rel_h.view(
         
     | 
| 
      
 480 
     | 
    
         
            +
                            B, self.num_heads, rel_h.size(1), rel_h.size(2), rel_h.size(3)
         
     | 
| 
      
 481 
     | 
    
         
            +
                        )
         
     | 
| 
      
 482 
     | 
    
         
            +
                        rel_w = rel_w.view(
         
     | 
| 
      
 483 
     | 
    
         
            +
                            B, self.num_heads, rel_w.size(1), rel_w.size(2), rel_w.size(3)
         
     | 
| 
      
 484 
     | 
    
         
            +
                        )
         
     | 
| 
      
 485 
     | 
    
         
            +
                        attn_bias = (rel_h + rel_w).view(
         
     | 
| 
      
 486 
     | 
    
         
            +
                            B, self.num_heads, rel_h.size(2), rel_h.size(3) * rel_w.size(4)
         
     | 
| 
      
 487 
     | 
    
         
            +
                        )
         
     | 
| 
      
 488 
     | 
    
         
            +
                        x = torch.nn.functional.scaled_dot_product_attention(
         
     | 
| 
      
 489 
     | 
    
         
            +
                            q, k, v, attn_mask=attn_bias
         
     | 
| 
      
 490 
     | 
    
         
            +
                        )
         
     | 
| 
      
 491 
     | 
    
         
            +
                        # x = _attention_rel_h_rel_w(q, k, v, rel_h, rel_w)
         
     | 
| 
      
 492 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 493 
     | 
    
         
            +
                        x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
         
     | 
| 
      
 494 
     | 
    
         
            +
             
     | 
| 
      
 495 
     | 
    
         
            +
                    x = (
         
     | 
| 
      
 496 
     | 
    
         
            +
                        x.view(B, self.num_heads, H, W, -1)
         
     | 
| 
      
 497 
     | 
    
         
            +
                        .permute(0, 2, 3, 1, 4)
         
     | 
| 
      
 498 
     | 
    
         
            +
                        .reshape(B, H, W, -1)
         
     | 
| 
      
 499 
     | 
    
         
            +
                    )
         
     | 
| 
      
 500 
     | 
    
         
            +
             
     | 
| 
      
 501 
     | 
    
         
            +
                    x = self.proj(x)
         
     | 
| 
      
 502 
     | 
    
         
            +
             
     | 
| 
      
 503 
     | 
    
         
            +
                    return x
         
     | 
| 
      
 504 
     | 
    
         
            +
             
     | 
| 
      
 505 
     | 
    
         
            +
             
     | 
| 
      
 506 
     | 
    
         
            +
            def window_partition(
         
     | 
| 
      
 507 
     | 
    
         
            +
                x: torch.Tensor, window_size: int
         
     | 
| 
      
 508 
     | 
    
         
            +
            ) -> Tuple[torch.Tensor, Tuple[int, int]]:
         
     | 
| 
      
 509 
     | 
    
         
            +
                """
         
     | 
| 
      
 510 
     | 
    
         
            +
                Partition into non-overlapping windows with padding if needed.
         
     | 
| 
      
 511 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 512 
     | 
    
         
            +
                    x (tensor): input tokens with [B, H, W, C].
         
     | 
| 
      
 513 
     | 
    
         
            +
                    window_size (int): window size.
         
     | 
| 
      
 514 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 515 
     | 
    
         
            +
                    windows: windows after partition with [B * num_windows, window_size, window_size, C].
         
     | 
| 
      
 516 
     | 
    
         
            +
                    (Hp, Wp): padded height and width before partition
         
     | 
| 
      
 517 
     | 
    
         
            +
                """
         
     | 
| 
      
 518 
     | 
    
         
            +
                B, H, W, C = x.shape
         
     | 
| 
      
 519 
     | 
    
         
            +
             
     | 
| 
      
 520 
     | 
    
         
            +
                pad_h = (window_size - H % window_size) % window_size
         
     | 
| 
      
 521 
     | 
    
         
            +
                pad_w = (window_size - W % window_size) % window_size
         
     | 
| 
      
 522 
     | 
    
         
            +
                if pad_h > 0 or pad_w > 0:
         
     | 
| 
      
 523 
     | 
    
         
            +
                    x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
         
     | 
| 
      
 524 
     | 
    
         
            +
                Hp, Wp = H + pad_h, W + pad_w
         
     | 
| 
      
 525 
     | 
    
         
            +
             
     | 
| 
      
 526 
     | 
    
         
            +
                x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
         
     | 
| 
      
 527 
     | 
    
         
            +
                windows = (
         
     | 
| 
      
 528 
     | 
    
         
            +
                    x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
         
     | 
| 
      
 529 
     | 
    
         
            +
                )
         
     | 
| 
      
 530 
     | 
    
         
            +
                return windows, (Hp, Wp)
         
     | 
| 
      
 531 
     | 
    
         
            +
             
     | 
| 
      
 532 
     | 
    
         
            +
             
     | 
| 
      
 533 
     | 
    
         
            +
            def window_unpartition(
         
     | 
| 
      
 534 
     | 
    
         
            +
                windows: torch.Tensor,
         
     | 
| 
      
 535 
     | 
    
         
            +
                window_size: int,
         
     | 
| 
      
 536 
     | 
    
         
            +
                pad_hw: Tuple[int, int],
         
     | 
| 
      
 537 
     | 
    
         
            +
                hw: Tuple[int, int],
         
     | 
| 
      
 538 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 539 
     | 
    
         
            +
                """
         
     | 
| 
      
 540 
     | 
    
         
            +
                Window unpartition into original sequences and removing padding.
         
     | 
| 
      
 541 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 542 
     | 
    
         
            +
                    windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
         
     | 
| 
      
 543 
     | 
    
         
            +
                    window_size (int): window size.
         
     | 
| 
      
 544 
     | 
    
         
            +
                    pad_hw (Tuple): padded height and width (Hp, Wp).
         
     | 
| 
      
 545 
     | 
    
         
            +
                    hw (Tuple): original height and width (H, W) before padding.
         
     | 
| 
      
 546 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 547 
     | 
    
         
            +
                    x: unpartitioned sequences with [B, H, W, C].
         
     | 
| 
      
 548 
     | 
    
         
            +
                """
         
     | 
| 
      
 549 
     | 
    
         
            +
                Hp, Wp = pad_hw
         
     | 
| 
      
 550 
     | 
    
         
            +
                H, W = hw
         
     | 
| 
      
 551 
     | 
    
         
            +
                B = windows.shape[0] // (Hp * Wp // window_size // window_size)
         
     | 
| 
      
 552 
     | 
    
         
            +
                x = windows.view(
         
     | 
| 
      
 553 
     | 
    
         
            +
                    B, Hp // window_size, Wp // window_size, window_size, window_size, -1
         
     | 
| 
      
 554 
     | 
    
         
            +
                )
         
     | 
| 
      
 555 
     | 
    
         
            +
                x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
         
     | 
| 
      
 556 
     | 
    
         
            +
             
     | 
| 
      
 557 
     | 
    
         
            +
                if Hp > H or Wp > W:
         
     | 
| 
      
 558 
     | 
    
         
            +
                    x = x[:, :H, :W, :].contiguous()
         
     | 
| 
      
 559 
     | 
    
         
            +
                return x
         
     | 
| 
      
 560 
     | 
    
         
            +
             
     | 
| 
      
 561 
     | 
    
         
            +
             
     | 
| 
      
 562 
     | 
    
         
            +
            class Block(nn.Module):
         
     | 
| 
      
 563 
     | 
    
         
            +
                """Transformer blocks with support of window attention and residual propagation blocks"""
         
     | 
| 
      
 564 
     | 
    
         
            +
             
     | 
| 
      
 565 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 566 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 567 
     | 
    
         
            +
                    dim: int,
         
     | 
| 
      
 568 
     | 
    
         
            +
                    num_heads: int,
         
     | 
| 
      
 569 
     | 
    
         
            +
                    mlp_ratio: float = 4.0,
         
     | 
| 
      
 570 
     | 
    
         
            +
                    qkv_bias: bool = True,
         
     | 
| 
      
 571 
     | 
    
         
            +
                    norm_layer: Type[nn.Module] = nn.LayerNorm,
         
     | 
| 
      
 572 
     | 
    
         
            +
                    act_layer: Type[nn.Module] = nn.GELU,
         
     | 
| 
      
 573 
     | 
    
         
            +
                    use_rel_pos: bool = False,
         
     | 
| 
      
 574 
     | 
    
         
            +
                    rel_pos_zero_init: bool = True,
         
     | 
| 
      
 575 
     | 
    
         
            +
                    window_size: int = 0,
         
     | 
| 
      
 576 
     | 
    
         
            +
                    input_size: Optional[Tuple[int, int]] = None,
         
     | 
| 
      
 577 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 578 
     | 
    
         
            +
                    """
         
     | 
| 
      
 579 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 580 
     | 
    
         
            +
                        dim (int): Number of input channels.
         
     | 
| 
      
 581 
     | 
    
         
            +
                        num_heads (int): Number of attention heads in each ViT block.
         
     | 
| 
      
 582 
     | 
    
         
            +
                        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
         
     | 
| 
      
 583 
     | 
    
         
            +
                        qkv_bias (bool): If True, add a learnable bias to query, key, value.
         
     | 
| 
      
 584 
     | 
    
         
            +
                        norm_layer (nn.Module): Normalization layer.
         
     | 
| 
      
 585 
     | 
    
         
            +
                        act_layer (nn.Module): Activation layer.
         
     | 
| 
      
 586 
     | 
    
         
            +
                        use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
         
     | 
| 
      
 587 
     | 
    
         
            +
                        rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
         
     | 
| 
      
 588 
     | 
    
         
            +
                        window_size (int): Window size for window attention blocks. If it equals 0, then
         
     | 
| 
      
 589 
     | 
    
         
            +
                            use global attention.
         
     | 
| 
      
 590 
     | 
    
         
            +
                        input_size (tuple(int, int) or None): Input resolution for calculating the relative
         
     | 
| 
      
 591 
     | 
    
         
            +
                            positional parameter size.
         
     | 
| 
      
 592 
     | 
    
         
            +
                    """
         
     | 
| 
      
 593 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 594 
     | 
    
         
            +
                    self.norm1 = norm_layer(dim)
         
     | 
| 
      
 595 
     | 
    
         
            +
                    self.attn = Attention(
         
     | 
| 
      
 596 
     | 
    
         
            +
                        dim,
         
     | 
| 
      
 597 
     | 
    
         
            +
                        num_heads=num_heads,
         
     | 
| 
      
 598 
     | 
    
         
            +
                        qkv_bias=qkv_bias,
         
     | 
| 
      
 599 
     | 
    
         
            +
                        use_rel_pos=use_rel_pos,
         
     | 
| 
      
 600 
     | 
    
         
            +
                        rel_pos_zero_init=rel_pos_zero_init,
         
     | 
| 
      
 601 
     | 
    
         
            +
                        input_size=input_size if window_size == 0 else (window_size, window_size),
         
     | 
| 
      
 602 
     | 
    
         
            +
                    )
         
     | 
| 
      
 603 
     | 
    
         
            +
             
     | 
| 
      
 604 
     | 
    
         
            +
                    self.norm2 = norm_layer(dim)
         
     | 
| 
      
 605 
     | 
    
         
            +
                    self.mlp = MLPBlock(
         
     | 
| 
      
 606 
     | 
    
         
            +
                        embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer
         
     | 
| 
      
 607 
     | 
    
         
            +
                    )
         
     | 
| 
      
 608 
     | 
    
         
            +
             
     | 
| 
      
 609 
     | 
    
         
            +
                    self.window_size = window_size
         
     | 
| 
      
 610 
     | 
    
         
            +
             
     | 
| 
      
 611 
     | 
    
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 
      
 612 
     | 
    
         
            +
                    shortcut = x
         
     | 
| 
      
 613 
     | 
    
         
            +
                    x = self.norm1(x)
         
     | 
| 
      
 614 
     | 
    
         
            +
                    # Window partition
         
     | 
| 
      
 615 
     | 
    
         
            +
                    if self.window_size > 0:
         
     | 
| 
      
 616 
     | 
    
         
            +
                        H, W = x.shape[1], x.shape[2]
         
     | 
| 
      
 617 
     | 
    
         
            +
                        x, pad_hw = window_partition(x, self.window_size)
         
     | 
| 
      
 618 
     | 
    
         
            +
             
     | 
| 
      
 619 
     | 
    
         
            +
                    x = self.attn(x)
         
     | 
| 
      
 620 
     | 
    
         
            +
                    # Reverse window partition
         
     | 
| 
      
 621 
     | 
    
         
            +
                    if self.window_size > 0:
         
     | 
| 
      
 622 
     | 
    
         
            +
                        x = window_unpartition(x, self.window_size, pad_hw, (H, W))
         
     | 
| 
      
 623 
     | 
    
         
            +
             
     | 
| 
      
 624 
     | 
    
         
            +
                    x = shortcut + x
         
     | 
| 
      
 625 
     | 
    
         
            +
                    x = x + self.mlp(self.norm2(x))
         
     | 
| 
      
 626 
     | 
    
         
            +
             
     | 
| 
      
 627 
     | 
    
         
            +
                    return x
         
     | 
| 
      
 628 
     | 
    
         
            +
             
     | 
| 
      
 629 
     | 
    
         
            +
             
     | 
| 
      
 630 
     | 
    
         
            +
            class PatchEmbed(nn.Module):
         
     | 
| 
      
 631 
     | 
    
         
            +
                """
         
     | 
| 
      
 632 
     | 
    
         
            +
                Image to Patch Embedding.
         
     | 
| 
      
 633 
     | 
    
         
            +
                """
         
     | 
| 
      
 634 
     | 
    
         
            +
             
     | 
| 
      
 635 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 636 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 637 
     | 
    
         
            +
                    kernel_size: Tuple[int, int] = (16, 16),
         
     | 
| 
      
 638 
     | 
    
         
            +
                    stride: Tuple[int, int] = (16, 16),
         
     | 
| 
      
 639 
     | 
    
         
            +
                    padding: Tuple[int, int] = (0, 0),
         
     | 
| 
      
 640 
     | 
    
         
            +
                    in_chans: int = 3,
         
     | 
| 
      
 641 
     | 
    
         
            +
                    embed_dim: int = 768,
         
     | 
| 
      
 642 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 643 
     | 
    
         
            +
                    """
         
     | 
| 
      
 644 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 645 
     | 
    
         
            +
                        kernel_size (Tuple): kernel size of the projection layer.
         
     | 
| 
      
 646 
     | 
    
         
            +
                        stride (Tuple): stride of the projection layer.
         
     | 
| 
      
 647 
     | 
    
         
            +
                        padding (Tuple): padding size of the projection layer.
         
     | 
| 
      
 648 
     | 
    
         
            +
                        in_chans (int): Number of input image channels.
         
     | 
| 
      
 649 
     | 
    
         
            +
                        embed_dim (int): Patch embedding dimension.
         
     | 
| 
      
 650 
     | 
    
         
            +
                    """
         
     | 
| 
      
 651 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 652 
     | 
    
         
            +
             
     | 
| 
      
 653 
     | 
    
         
            +
                    self.proj = nn.Conv2d(
         
     | 
| 
      
 654 
     | 
    
         
            +
                        in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
         
     | 
| 
      
 655 
     | 
    
         
            +
                    )
         
     | 
| 
      
 656 
     | 
    
         
            +
             
     | 
| 
      
 657 
     | 
    
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 
      
 658 
     | 
    
         
            +
                    x = self.proj(x)
         
     | 
| 
      
 659 
     | 
    
         
            +
                    # B C H W -> B H W C
         
     | 
| 
      
 660 
     | 
    
         
            +
                    x = x.permute(0, 2, 3, 1)
         
     | 
| 
      
 661 
     | 
    
         
            +
                    return x
         
     | 
| 
      
 662 
     | 
    
         
            +
             
     | 
| 
      
 663 
     | 
    
         
            +
             
     | 
| 
      
 664 
     | 
    
         
            +
            def get_abs_pos_sam(abs_pos, tgt_size):
         
     | 
| 
      
 665 
     | 
    
         
            +
                dtype = abs_pos.dtype
         
     | 
| 
      
 666 
     | 
    
         
            +
             
     | 
| 
      
 667 
     | 
    
         
            +
                src_size = abs_pos.size(1)
         
     | 
| 
      
 668 
     | 
    
         
            +
             
     | 
| 
      
 669 
     | 
    
         
            +
                if src_size != tgt_size:
         
     | 
| 
      
 670 
     | 
    
         
            +
                    old_pos_embed = abs_pos.permute(0, 3, 1, 2)
         
     | 
| 
      
 671 
     | 
    
         
            +
                    old_pos_embed = old_pos_embed.to(torch.float32)
         
     | 
| 
      
 672 
     | 
    
         
            +
                    new_pos_embed = F.interpolate(
         
     | 
| 
      
 673 
     | 
    
         
            +
                        old_pos_embed,
         
     | 
| 
      
 674 
     | 
    
         
            +
                        size=(tgt_size, tgt_size),
         
     | 
| 
      
 675 
     | 
    
         
            +
                        mode="bicubic",
         
     | 
| 
      
 676 
     | 
    
         
            +
                        antialias=True,
         
     | 
| 
      
 677 
     | 
    
         
            +
                        align_corners=False,
         
     | 
| 
      
 678 
     | 
    
         
            +
                    ).to(dtype)
         
     | 
| 
      
 679 
     | 
    
         
            +
                    new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
         
     | 
| 
      
 680 
     | 
    
         
            +
                    return new_pos_embed
         
     | 
| 
      
 681 
     | 
    
         
            +
                else:
         
     | 
| 
      
 682 
     | 
    
         
            +
                    return abs_pos
         
     | 
| 
      
 683 
     | 
    
         
            +
             
     | 
| 
      
 684 
     | 
    
         
            +
             
     | 
| 
      
 685 
     | 
    
         
            +
            # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
         
     | 
| 
      
 686 
     | 
    
         
            +
            class ImageEncoderViT(nn.Module):
         
     | 
| 
      
 687 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 688 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 689 
     | 
    
         
            +
                    img_size: int = 1024,
         
     | 
| 
      
 690 
     | 
    
         
            +
                    patch_size: int = 16,
         
     | 
| 
      
 691 
     | 
    
         
            +
                    in_chans: int = 3,
         
     | 
| 
      
 692 
     | 
    
         
            +
                    embed_dim: int = 768,
         
     | 
| 
      
 693 
     | 
    
         
            +
                    depth: int = 12,
         
     | 
| 
      
 694 
     | 
    
         
            +
                    num_heads: int = 12,
         
     | 
| 
      
 695 
     | 
    
         
            +
                    mlp_ratio: float = 4.0,
         
     | 
| 
      
 696 
     | 
    
         
            +
                    out_chans: int = 256,
         
     | 
| 
      
 697 
     | 
    
         
            +
                    qkv_bias: bool = True,
         
     | 
| 
      
 698 
     | 
    
         
            +
                    norm_layer: Type[nn.Module] = nn.LayerNorm,
         
     | 
| 
      
 699 
     | 
    
         
            +
                    act_layer: Type[nn.Module] = nn.GELU,
         
     | 
| 
      
 700 
     | 
    
         
            +
                    use_abs_pos: bool = True,
         
     | 
| 
      
 701 
     | 
    
         
            +
                    use_rel_pos: bool = False,
         
     | 
| 
      
 702 
     | 
    
         
            +
                    rel_pos_zero_init: bool = True,
         
     | 
| 
      
 703 
     | 
    
         
            +
                    window_size: int = 0,
         
     | 
| 
      
 704 
     | 
    
         
            +
                    global_attn_indexes: Tuple[int, ...] = (),
         
     | 
| 
      
 705 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 706 
     | 
    
         
            +
                    """
         
     | 
| 
      
 707 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 708 
     | 
    
         
            +
                        img_size (int): Input image size.
         
     | 
| 
      
 709 
     | 
    
         
            +
                        patch_size (int): Patch size.
         
     | 
| 
      
 710 
     | 
    
         
            +
                        in_chans (int): Number of input image channels.
         
     | 
| 
      
 711 
     | 
    
         
            +
                        embed_dim (int): Patch embedding dimension.
         
     | 
| 
      
 712 
     | 
    
         
            +
                        depth (int): Depth of ViT.
         
     | 
| 
      
 713 
     | 
    
         
            +
                        num_heads (int): Number of attention heads in each ViT block.
         
     | 
| 
      
 714 
     | 
    
         
            +
                        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
         
     | 
| 
      
 715 
     | 
    
         
            +
                        qkv_bias (bool): If True, add a learnable bias to query, key, value.
         
     | 
| 
      
 716 
     | 
    
         
            +
                        norm_layer (nn.Module): Normalization layer.
         
     | 
| 
      
 717 
     | 
    
         
            +
                        act_layer (nn.Module): Activation layer.
         
     | 
| 
      
 718 
     | 
    
         
            +
                        use_abs_pos (bool): If True, use absolute positional embeddings.
         
     | 
| 
      
 719 
     | 
    
         
            +
                        use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
         
     | 
| 
      
 720 
     | 
    
         
            +
                        rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
         
     | 
| 
      
 721 
     | 
    
         
            +
                        window_size (int): Window size for window attention blocks.
         
     | 
| 
      
 722 
     | 
    
         
            +
                        global_attn_indexes (list): Indexes for blocks using global attention.
         
     | 
| 
      
 723 
     | 
    
         
            +
                    """
         
     | 
| 
      
 724 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 725 
     | 
    
         
            +
                    self.img_size = img_size
         
     | 
| 
      
 726 
     | 
    
         
            +
             
     | 
| 
      
 727 
     | 
    
         
            +
                    self.patch_embed = PatchEmbed(
         
     | 
| 
      
 728 
     | 
    
         
            +
                        kernel_size=(patch_size, patch_size),
         
     | 
| 
      
 729 
     | 
    
         
            +
                        stride=(patch_size, patch_size),
         
     | 
| 
      
 730 
     | 
    
         
            +
                        in_chans=in_chans,
         
     | 
| 
      
 731 
     | 
    
         
            +
                        embed_dim=embed_dim,
         
     | 
| 
      
 732 
     | 
    
         
            +
                    )
         
     | 
| 
      
 733 
     | 
    
         
            +
             
     | 
| 
      
 734 
     | 
    
         
            +
                    self.pos_embed: Optional[nn.Parameter] = None
         
     | 
| 
      
 735 
     | 
    
         
            +
                    if use_abs_pos:
         
     | 
| 
      
 736 
     | 
    
         
            +
                        # Initialize absolute positional embedding with pretrain image size.
         
     | 
| 
      
 737 
     | 
    
         
            +
                        self.pos_embed = nn.Parameter(
         
     | 
| 
      
 738 
     | 
    
         
            +
                            torch.zeros(
         
     | 
| 
      
 739 
     | 
    
         
            +
                                1, img_size // patch_size, img_size // patch_size, embed_dim
         
     | 
| 
      
 740 
     | 
    
         
            +
                            )
         
     | 
| 
      
 741 
     | 
    
         
            +
                        )
         
     | 
| 
      
 742 
     | 
    
         
            +
             
     | 
| 
      
 743 
     | 
    
         
            +
                    self.blocks = nn.ModuleList()
         
     | 
| 
      
 744 
     | 
    
         
            +
                    for i in range(depth):
         
     | 
| 
      
 745 
     | 
    
         
            +
                        block = Block(
         
     | 
| 
      
 746 
     | 
    
         
            +
                            dim=embed_dim,
         
     | 
| 
      
 747 
     | 
    
         
            +
                            num_heads=num_heads,
         
     | 
| 
      
 748 
     | 
    
         
            +
                            mlp_ratio=mlp_ratio,
         
     | 
| 
      
 749 
     | 
    
         
            +
                            qkv_bias=qkv_bias,
         
     | 
| 
      
 750 
     | 
    
         
            +
                            norm_layer=norm_layer,
         
     | 
| 
      
 751 
     | 
    
         
            +
                            act_layer=act_layer,
         
     | 
| 
      
 752 
     | 
    
         
            +
                            use_rel_pos=use_rel_pos,
         
     | 
| 
      
 753 
     | 
    
         
            +
                            rel_pos_zero_init=rel_pos_zero_init,
         
     | 
| 
      
 754 
     | 
    
         
            +
                            window_size=window_size if i not in global_attn_indexes else 0,
         
     | 
| 
      
 755 
     | 
    
         
            +
                            input_size=(img_size // patch_size, img_size // patch_size),
         
     | 
| 
      
 756 
     | 
    
         
            +
                        )
         
     | 
| 
      
 757 
     | 
    
         
            +
                        self.blocks.append(block)
         
     | 
| 
      
 758 
     | 
    
         
            +
             
     | 
| 
      
 759 
     | 
    
         
            +
                    self.neck = nn.Sequential(
         
     | 
| 
      
 760 
     | 
    
         
            +
                        nn.Conv2d(
         
     | 
| 
      
 761 
     | 
    
         
            +
                            embed_dim,
         
     | 
| 
      
 762 
     | 
    
         
            +
                            out_chans,
         
     | 
| 
      
 763 
     | 
    
         
            +
                            kernel_size=1,
         
     | 
| 
      
 764 
     | 
    
         
            +
                            bias=False,
         
     | 
| 
      
 765 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 766 
     | 
    
         
            +
                        LayerNorm2d(out_chans),
         
     | 
| 
      
 767 
     | 
    
         
            +
                        nn.Conv2d(
         
     | 
| 
      
 768 
     | 
    
         
            +
                            out_chans,
         
     | 
| 
      
 769 
     | 
    
         
            +
                            out_chans,
         
     | 
| 
      
 770 
     | 
    
         
            +
                            kernel_size=3,
         
     | 
| 
      
 771 
     | 
    
         
            +
                            padding=1,
         
     | 
| 
      
 772 
     | 
    
         
            +
                            bias=False,
         
     | 
| 
      
 773 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 774 
     | 
    
         
            +
                        LayerNorm2d(out_chans),
         
     | 
| 
      
 775 
     | 
    
         
            +
                    )
         
     | 
| 
      
 776 
     | 
    
         
            +
             
     | 
| 
      
 777 
     | 
    
         
            +
                    self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
         
     | 
| 
      
 778 
     | 
    
         
            +
                    self.net_3 = nn.Conv2d(
         
     | 
| 
      
 779 
     | 
    
         
            +
                        512, 1024, kernel_size=3, stride=2, padding=1, bias=False
         
     | 
| 
      
 780 
     | 
    
         
            +
                    )
         
     | 
| 
      
 781 
     | 
    
         
            +
             
     | 
| 
      
 782 
     | 
    
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 
      
 783 
     | 
    
         
            +
                    x = self.patch_embed(x)
         
     | 
| 
      
 784 
     | 
    
         
            +
                    if self.pos_embed is not None:
         
     | 
| 
      
 785 
     | 
    
         
            +
                        x = x + get_abs_pos_sam(self.pos_embed, x.size(1))
         
     | 
| 
      
 786 
     | 
    
         
            +
             
     | 
| 
      
 787 
     | 
    
         
            +
                    for blk in self.blocks:
         
     | 
| 
      
 788 
     | 
    
         
            +
                        x = blk(x)
         
     | 
| 
      
 789 
     | 
    
         
            +
             
     | 
| 
      
 790 
     | 
    
         
            +
                    x = self.neck(x.permute(0, 3, 1, 2))
         
     | 
| 
      
 791 
     | 
    
         
            +
                    x2 = self.net_2(x)
         
     | 
| 
      
 792 
     | 
    
         
            +
                    x3 = self.net_3(x2.clone())
         
     | 
| 
      
 793 
     | 
    
         
            +
             
     | 
| 
      
 794 
     | 
    
         
            +
                    return x3
         
     | 
| 
      
 795 
     | 
    
         
            +
             
     | 
| 
      
 796 
     | 
    
         
            +
             
     | 
| 
      
 797 
     | 
    
         
            +
            def _build_sam(
         
     | 
| 
      
 798 
     | 
    
         
            +
                encoder_embed_dim,
         
     | 
| 
      
 799 
     | 
    
         
            +
                encoder_depth,
         
     | 
| 
      
 800 
     | 
    
         
            +
                encoder_num_heads,
         
     | 
| 
      
 801 
     | 
    
         
            +
                encoder_global_attn_indexes,
         
     | 
| 
      
 802 
     | 
    
         
            +
                checkpoint=None,
         
     | 
| 
      
 803 
     | 
    
         
            +
            ):
         
     | 
| 
      
 804 
     | 
    
         
            +
                prompt_embed_dim = 256
         
     | 
| 
      
 805 
     | 
    
         
            +
                image_size = 1024
         
     | 
| 
      
 806 
     | 
    
         
            +
                vit_patch_size = 16
         
     | 
| 
      
 807 
     | 
    
         
            +
                image_encoder = ImageEncoderViT(
         
     | 
| 
      
 808 
     | 
    
         
            +
                    depth=encoder_depth,
         
     | 
| 
      
 809 
     | 
    
         
            +
                    embed_dim=encoder_embed_dim,
         
     | 
| 
      
 810 
     | 
    
         
            +
                    img_size=image_size,
         
     | 
| 
      
 811 
     | 
    
         
            +
                    mlp_ratio=4,
         
     | 
| 
      
 812 
     | 
    
         
            +
                    norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
         
     | 
| 
      
 813 
     | 
    
         
            +
                    num_heads=encoder_num_heads,
         
     | 
| 
      
 814 
     | 
    
         
            +
                    patch_size=vit_patch_size,
         
     | 
| 
      
 815 
     | 
    
         
            +
                    qkv_bias=True,
         
     | 
| 
      
 816 
     | 
    
         
            +
                    use_rel_pos=True,
         
     | 
| 
      
 817 
     | 
    
         
            +
                    global_attn_indexes=encoder_global_attn_indexes,
         
     | 
| 
      
 818 
     | 
    
         
            +
                    window_size=14,
         
     | 
| 
      
 819 
     | 
    
         
            +
                    out_chans=prompt_embed_dim,
         
     | 
| 
      
 820 
     | 
    
         
            +
                )
         
     | 
| 
      
 821 
     | 
    
         
            +
                image_encoder.eval()
         
     | 
| 
      
 822 
     | 
    
         
            +
                if checkpoint is not None:
         
     | 
| 
      
 823 
     | 
    
         
            +
                    state_dict = torch.load(checkpoint)
         
     | 
| 
      
 824 
     | 
    
         
            +
                    image_encoder.load_state_dict(
         
     | 
| 
      
 825 
     | 
    
         
            +
                        {k[30:]: v for k, v in state_dict.items() if "vision_tower_high" in k},
         
     | 
| 
      
 826 
     | 
    
         
            +
                        strict=True,
         
     | 
| 
      
 827 
     | 
    
         
            +
                    )
         
     | 
| 
      
 828 
     | 
    
         
            +
                return image_encoder
         
     | 
| 
      
 829 
     | 
    
         
            +
             
     | 
| 
      
 830 
     | 
    
         
            +
             
     | 
| 
      
 831 
     | 
    
         
            +
            def build_sam_vit_b(checkpoint=None):
         
     | 
| 
      
 832 
     | 
    
         
            +
                return _build_sam(
         
     | 
| 
      
 833 
     | 
    
         
            +
                    encoder_embed_dim=768,
         
     | 
| 
      
 834 
     | 
    
         
            +
                    encoder_depth=12,
         
     | 
| 
      
 835 
     | 
    
         
            +
                    encoder_num_heads=12,
         
     | 
| 
      
 836 
     | 
    
         
            +
                    encoder_global_attn_indexes=[2, 5, 8, 11],
         
     | 
| 
      
 837 
     | 
    
         
            +
                    checkpoint=checkpoint,
         
     | 
| 
      
 838 
     | 
    
         
            +
                )
         
     | 
| 
      
 839 
     | 
    
         
            +
             
     | 
| 
      
 840 
     | 
    
         
            +
             
     | 
| 
      
 841 
     | 
    
         
            +
            def get_abs_pos(abs_pos, tgt_size):
         
     | 
| 
      
 842 
     | 
    
         
            +
                # abs_pos: L, C
         
     | 
| 
      
 843 
     | 
    
         
            +
                # tgt_size: M
         
     | 
| 
      
 844 
     | 
    
         
            +
                # return: M, C
         
     | 
| 
      
 845 
     | 
    
         
            +
                dim = abs_pos.size(-1)
         
     | 
| 
      
 846 
     | 
    
         
            +
                abs_pos_new = abs_pos.squeeze(0)
         
     | 
| 
      
 847 
     | 
    
         
            +
                cls_token, old_pos_embed = abs_pos_new[:1], abs_pos_new[1:]
         
     | 
| 
      
 848 
     | 
    
         
            +
             
     | 
| 
      
 849 
     | 
    
         
            +
                src_size = int(math.sqrt(abs_pos_new.shape[0] - 1))
         
     | 
| 
      
 850 
     | 
    
         
            +
                tgt_size = int(math.sqrt(tgt_size))
         
     | 
| 
      
 851 
     | 
    
         
            +
                dtype = abs_pos.dtype
         
     | 
| 
      
 852 
     | 
    
         
            +
             
     | 
| 
      
 853 
     | 
    
         
            +
                if src_size != tgt_size:
         
     | 
| 
      
 854 
     | 
    
         
            +
                    old_pos_embed = (
         
     | 
| 
      
 855 
     | 
    
         
            +
                        old_pos_embed.view(1, src_size, src_size, dim)
         
     | 
| 
      
 856 
     | 
    
         
            +
                        .permute(0, 3, 1, 2)
         
     | 
| 
      
 857 
     | 
    
         
            +
                        .contiguous()
         
     | 
| 
      
 858 
     | 
    
         
            +
                    )
         
     | 
| 
      
 859 
     | 
    
         
            +
                    old_pos_embed = old_pos_embed.to(torch.float32)
         
     | 
| 
      
 860 
     | 
    
         
            +
                    new_pos_embed = F.interpolate(
         
     | 
| 
      
 861 
     | 
    
         
            +
                        old_pos_embed,
         
     | 
| 
      
 862 
     | 
    
         
            +
                        size=(tgt_size, tgt_size),
         
     | 
| 
      
 863 
     | 
    
         
            +
                        mode="bicubic",
         
     | 
| 
      
 864 
     | 
    
         
            +
                        antialias=True,
         
     | 
| 
      
 865 
     | 
    
         
            +
                        align_corners=False,
         
     | 
| 
      
 866 
     | 
    
         
            +
                    ).to(dtype)
         
     | 
| 
      
 867 
     | 
    
         
            +
                    new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
         
     | 
| 
      
 868 
     | 
    
         
            +
                    new_pos_embed = new_pos_embed.view(tgt_size * tgt_size, dim)
         
     | 
| 
      
 869 
     | 
    
         
            +
                    vision_pos_embed = torch.cat([cls_token, new_pos_embed], dim=0)
         
     | 
| 
      
 870 
     | 
    
         
            +
                    vision_pos_embed = vision_pos_embed.view(1, tgt_size * tgt_size + 1, dim)
         
     | 
| 
      
 871 
     | 
    
         
            +
                    return vision_pos_embed
         
     | 
| 
      
 872 
     | 
    
         
            +
                else:
         
     | 
| 
      
 873 
     | 
    
         
            +
                    return abs_pos
         
     | 
| 
      
 874 
     | 
    
         
            +
             
     | 
| 
      
 875 
     | 
    
         
            +
             
     | 
| 
      
 876 
     | 
    
         
            +
            class CLIPVisionEmbeddings(nn.Module):
         
     | 
| 
      
 877 
     | 
    
         
            +
                def __init__(self, hidden_size=1024, image_size=224, patch_size=14, num_channels=3):
         
     | 
| 
      
 878 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 879 
     | 
    
         
            +
                    self.embed_dim = hidden_size
         
     | 
| 
      
 880 
     | 
    
         
            +
                    self.image_size = image_size
         
     | 
| 
      
 881 
     | 
    
         
            +
                    self.patch_size = patch_size
         
     | 
| 
      
 882 
     | 
    
         
            +
             
     | 
| 
      
 883 
     | 
    
         
            +
                    self.class_embedding = torch.nn.Parameter(torch.randn(self.embed_dim))
         
     | 
| 
      
 884 
     | 
    
         
            +
             
     | 
| 
      
 885 
     | 
    
         
            +
                    self.patch_embedding = torch.nn.Conv2d(
         
     | 
| 
      
 886 
     | 
    
         
            +
                        in_channels=num_channels,
         
     | 
| 
      
 887 
     | 
    
         
            +
                        out_channels=self.embed_dim,
         
     | 
| 
      
 888 
     | 
    
         
            +
                        kernel_size=self.patch_size,
         
     | 
| 
      
 889 
     | 
    
         
            +
                        stride=self.patch_size,
         
     | 
| 
      
 890 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 891 
     | 
    
         
            +
                    )
         
     | 
| 
      
 892 
     | 
    
         
            +
             
     | 
| 
      
 893 
     | 
    
         
            +
                    self.num_patches = (self.image_size // self.patch_size) ** 2
         
     | 
| 
      
 894 
     | 
    
         
            +
                    self.num_positions = self.num_patches + 1
         
     | 
| 
      
 895 
     | 
    
         
            +
                    self.position_embedding = torch.nn.Embedding(self.num_positions, self.embed_dim)
         
     | 
| 
      
 896 
     | 
    
         
            +
                    self.register_buffer(
         
     | 
| 
      
 897 
     | 
    
         
            +
                        "position_ids", torch.arange(self.num_positions).expand((1, -1))
         
     | 
| 
      
 898 
     | 
    
         
            +
                    )
         
     | 
| 
      
 899 
     | 
    
         
            +
             
     | 
| 
      
 900 
     | 
    
         
            +
                def forward(self, pixel_values, patch_embeds):
         
     | 
| 
      
 901 
     | 
    
         
            +
                    batch_size = pixel_values.shape[0]
         
     | 
| 
      
 902 
     | 
    
         
            +
             
     | 
| 
      
 903 
     | 
    
         
            +
                    if patch_embeds is not None:
         
     | 
| 
      
 904 
     | 
    
         
            +
                        patch_embeds = patch_embeds
         
     | 
| 
      
 905 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 906 
     | 
    
         
            +
                        patch_embeds = self.patch_embedding(pixel_values)
         
     | 
| 
      
 907 
     | 
    
         
            +
             
     | 
| 
      
 908 
     | 
    
         
            +
                    patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
         
     | 
| 
      
 909 
     | 
    
         
            +
             
     | 
| 
      
 910 
     | 
    
         
            +
                    class_embeds = self.class_embedding.expand(batch_size, 1, -1)
         
     | 
| 
      
 911 
     | 
    
         
            +
                    embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
         
     | 
| 
      
 912 
     | 
    
         
            +
             
     | 
| 
      
 913 
     | 
    
         
            +
                    embeddings = embeddings + get_abs_pos(
         
     | 
| 
      
 914 
     | 
    
         
            +
                        self.position_embedding(self.position_ids), embeddings.size(1)
         
     | 
| 
      
 915 
     | 
    
         
            +
                    )
         
     | 
| 
      
 916 
     | 
    
         
            +
                    return embeddings
         
     | 
| 
      
 917 
     | 
    
         
            +
             
     | 
| 
      
 918 
     | 
    
         
            +
             
     | 
| 
      
 919 
     | 
    
         
            +
            class NoTPAttention(torch.nn.Module):
         
     | 
| 
      
 920 
     | 
    
         
            +
                def __init__(self, cfg):
         
     | 
| 
      
 921 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 922 
     | 
    
         
            +
                    self.num_heads = cfg["num_attention_heads"]
         
     | 
| 
      
 923 
     | 
    
         
            +
                    self.n_local_heads = cfg["num_attention_heads"]
         
     | 
| 
      
 924 
     | 
    
         
            +
                    self.head_dim = cfg["hidden_size"] // cfg["num_attention_heads"]
         
     | 
| 
      
 925 
     | 
    
         
            +
                    self.max_seq_len = cfg["seq_length"]
         
     | 
| 
      
 926 
     | 
    
         
            +
                    self.use_flash_attention = cfg["use_flash_attn"]
         
     | 
| 
      
 927 
     | 
    
         
            +
             
     | 
| 
      
 928 
     | 
    
         
            +
                    self.qkv_proj = torch.nn.Linear(
         
     | 
| 
      
 929 
     | 
    
         
            +
                        cfg["hidden_size"], cfg["hidden_size"] * 3, bias=True
         
     | 
| 
      
 930 
     | 
    
         
            +
                    )
         
     | 
| 
      
 931 
     | 
    
         
            +
                    self.out_proj = torch.nn.Linear(
         
     | 
| 
      
 932 
     | 
    
         
            +
                        cfg["hidden_size"], cfg["hidden_size"], bias=True
         
     | 
| 
      
 933 
     | 
    
         
            +
                    )
         
     | 
| 
      
 934 
     | 
    
         
            +
             
     | 
| 
      
 935 
     | 
    
         
            +
                    # self.core_attention = CoreAttention(cfg, AttnType.self_attn)
         
     | 
| 
      
 936 
     | 
    
         
            +
             
     | 
| 
      
 937 
     | 
    
         
            +
                    self.attn_drop = cfg["attention_dropout"]
         
     | 
| 
      
 938 
     | 
    
         
            +
             
     | 
| 
      
 939 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 940 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 941 
     | 
    
         
            +
                    x: torch.Tensor,
         
     | 
| 
      
 942 
     | 
    
         
            +
                ):
         
     | 
| 
      
 943 
     | 
    
         
            +
                    bsz, seqlen, _ = x.shape
         
     | 
| 
      
 944 
     | 
    
         
            +
                    xqkv = self.qkv_proj(x)
         
     | 
| 
      
 945 
     | 
    
         
            +
                    xqkv = xqkv.view(bsz, seqlen, 3, self.num_heads, self.head_dim)
         
     | 
| 
      
 946 
     | 
    
         
            +
             
     | 
| 
      
 947 
     | 
    
         
            +
                    if self.use_flash_attention:
         
     | 
| 
      
 948 
     | 
    
         
            +
             
     | 
| 
      
 949 
     | 
    
         
            +
                        xq, xk, xv = torch.split(xqkv, 1, dim=2)
         
     | 
| 
      
 950 
     | 
    
         
            +
                        xq = xq.squeeze(2)
         
     | 
| 
      
 951 
     | 
    
         
            +
                        xk = xk.squeeze(2)
         
     | 
| 
      
 952 
     | 
    
         
            +
                        xv = xv.squeeze(2)
         
     | 
| 
      
 953 
     | 
    
         
            +
                        # xq, xk, xv = xqkv[:, :, 0, ...], xqkv[:, :, 1, ...], xqkv[:, :, 2, ...]
         
     | 
| 
      
 954 
     | 
    
         
            +
             
     | 
| 
      
 955 
     | 
    
         
            +
                        # (B, num_head, S, head_size)
         
     | 
| 
      
 956 
     | 
    
         
            +
                        xq = xq.permute(0, 2, 1, 3)
         
     | 
| 
      
 957 
     | 
    
         
            +
                        xk = xk.permute(0, 2, 1, 3)
         
     | 
| 
      
 958 
     | 
    
         
            +
                        xv = xv.permute(0, 2, 1, 3)
         
     | 
| 
      
 959 
     | 
    
         
            +
                        output = torch.nn.functional.scaled_dot_product_attention(
         
     | 
| 
      
 960 
     | 
    
         
            +
                            xq, xk, xv, attn_mask=None
         
     | 
| 
      
 961 
     | 
    
         
            +
                        )
         
     | 
| 
      
 962 
     | 
    
         
            +
                        output = output.permute(0, 2, 1, 3).reshape(bsz, seqlen, -1)
         
     | 
| 
      
 963 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 964 
     | 
    
         
            +
                        xq, xk, xv = torch.split(xqkv, 1, dim=2)
         
     | 
| 
      
 965 
     | 
    
         
            +
                        xq = xq.squeeze(2)
         
     | 
| 
      
 966 
     | 
    
         
            +
                        xk = xk.squeeze(2)
         
     | 
| 
      
 967 
     | 
    
         
            +
                        xv = xv.squeeze(2)
         
     | 
| 
      
 968 
     | 
    
         
            +
             
     | 
| 
      
 969 
     | 
    
         
            +
                        xq = xq.permute(0, 2, 1, 3)
         
     | 
| 
      
 970 
     | 
    
         
            +
                        xk = xk.permute(0, 2, 1, 3)
         
     | 
| 
      
 971 
     | 
    
         
            +
                        xv = xv.permute(0, 2, 1, 3)
         
     | 
| 
      
 972 
     | 
    
         
            +
                        output = torch.nn.functional.scaled_dot_product_attention(
         
     | 
| 
      
 973 
     | 
    
         
            +
                            xq, xk, xv, attn_mask=None
         
     | 
| 
      
 974 
     | 
    
         
            +
                        )
         
     | 
| 
      
 975 
     | 
    
         
            +
                        output = output.permute(0, 2, 1, 3).reshape(bsz, seqlen, -1)
         
     | 
| 
      
 976 
     | 
    
         
            +
                    output = self.out_proj(output)
         
     | 
| 
      
 977 
     | 
    
         
            +
                    return output
         
     | 
| 
      
 978 
     | 
    
         
            +
             
     | 
| 
      
 979 
     | 
    
         
            +
             
     | 
| 
      
 980 
     | 
    
         
            +
            @torch.jit.script
         
     | 
| 
      
 981 
     | 
    
         
            +
            def quick_gelu(x):
         
     | 
| 
      
 982 
     | 
    
         
            +
                return x * torch.sigmoid(1.702 * x)
         
     | 
| 
      
 983 
     | 
    
         
            +
             
     | 
| 
      
 984 
     | 
    
         
            +
             
     | 
| 
      
 985 
     | 
    
         
            +
            class NoTPFeedForward(nn.Module):
         
     | 
| 
      
 986 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 987 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 988 
     | 
    
         
            +
                    cfg,
         
     | 
| 
      
 989 
     | 
    
         
            +
                    dim: int,
         
     | 
| 
      
 990 
     | 
    
         
            +
                    hidden_dim: int,
         
     | 
| 
      
 991 
     | 
    
         
            +
                ):
         
     | 
| 
      
 992 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 993 
     | 
    
         
            +
             
     | 
| 
      
 994 
     | 
    
         
            +
                    self.fc1 = torch.nn.Linear(dim, hidden_dim, bias=True)
         
     | 
| 
      
 995 
     | 
    
         
            +
                    self.fc2 = torch.nn.Linear(hidden_dim, dim, bias=True)
         
     | 
| 
      
 996 
     | 
    
         
            +
             
     | 
| 
      
 997 
     | 
    
         
            +
                def forward(self, x):
         
     | 
| 
      
 998 
     | 
    
         
            +
                    output = self.fc2(quick_gelu(self.fc1(x)))
         
     | 
| 
      
 999 
     | 
    
         
            +
                    return output
         
     | 
| 
      
 1000 
     | 
    
         
            +
             
     | 
| 
      
 1001 
     | 
    
         
            +
             
     | 
| 
      
 1002 
     | 
    
         
            +
            class LayerNormfp32(torch.nn.LayerNorm):
         
     | 
| 
      
 1003 
     | 
    
         
            +
                """Subclass torch's LayerNorm to handle fp16."""
         
     | 
| 
      
 1004 
     | 
    
         
            +
             
     | 
| 
      
 1005 
     | 
    
         
            +
                def forward(self, x: torch.Tensor):
         
     | 
| 
      
 1006 
     | 
    
         
            +
                    orig_type = x.dtype
         
     | 
| 
      
 1007 
     | 
    
         
            +
                    ret = super().forward(x.type(torch.float32))
         
     | 
| 
      
 1008 
     | 
    
         
            +
                    return ret.type(orig_type)
         
     | 
| 
      
 1009 
     | 
    
         
            +
             
     | 
| 
      
 1010 
     | 
    
         
            +
             
     | 
| 
      
 1011 
     | 
    
         
            +
            class NoTPTransformerBlock(nn.Module):
         
     | 
| 
      
 1012 
     | 
    
         
            +
                def __init__(self, cfg, layer_id: int, multiple_of=256):
         
     | 
| 
      
 1013 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 1014 
     | 
    
         
            +
             
     | 
| 
      
 1015 
     | 
    
         
            +
                    self.n_heads = cfg["num_attention_heads"]
         
     | 
| 
      
 1016 
     | 
    
         
            +
                    self.dim = cfg["hidden_size"]
         
     | 
| 
      
 1017 
     | 
    
         
            +
                    self.head_dim = cfg["hidden_size"] // cfg["num_attention_heads"]
         
     | 
| 
      
 1018 
     | 
    
         
            +
                    self.self_attn = NoTPAttention(cfg)
         
     | 
| 
      
 1019 
     | 
    
         
            +
                    self.mlp = NoTPFeedForward(
         
     | 
| 
      
 1020 
     | 
    
         
            +
                        cfg, dim=cfg["hidden_size"], hidden_dim=cfg["ffn_hidden_size"]
         
     | 
| 
      
 1021 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1022 
     | 
    
         
            +
                    self.layer_id = layer_id
         
     | 
| 
      
 1023 
     | 
    
         
            +
                    self.layer_norm1 = torch.nn.LayerNorm(
         
     | 
| 
      
 1024 
     | 
    
         
            +
                        cfg["hidden_size"], eps=cfg["layernorm_epsilon"]
         
     | 
| 
      
 1025 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1026 
     | 
    
         
            +
                    self.layer_norm2 = torch.nn.LayerNorm(
         
     | 
| 
      
 1027 
     | 
    
         
            +
                        cfg["hidden_size"], eps=cfg["layernorm_epsilon"]
         
     | 
| 
      
 1028 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1029 
     | 
    
         
            +
             
     | 
| 
      
 1030 
     | 
    
         
            +
                def forward(self, x: torch.Tensor):
         
     | 
| 
      
 1031 
     | 
    
         
            +
                    residual = self.self_attn.forward(self.layer_norm1(x))
         
     | 
| 
      
 1032 
     | 
    
         
            +
                    h = x + residual
         
     | 
| 
      
 1033 
     | 
    
         
            +
                    out = h + self.mlp.forward(self.layer_norm2(h))
         
     | 
| 
      
 1034 
     | 
    
         
            +
                    return out
         
     | 
| 
      
 1035 
     | 
    
         
            +
             
     | 
| 
      
 1036 
     | 
    
         
            +
             
     | 
| 
      
 1037 
     | 
    
         
            +
            class NoTPTransformer(nn.Module):
         
     | 
| 
      
 1038 
     | 
    
         
            +
                def __init__(self, cfg):
         
     | 
| 
      
 1039 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 1040 
     | 
    
         
            +
             
     | 
| 
      
 1041 
     | 
    
         
            +
                    self.cfg = cfg
         
     | 
| 
      
 1042 
     | 
    
         
            +
                    self.num_layers = cfg["num_layers"]
         
     | 
| 
      
 1043 
     | 
    
         
            +
             
     | 
| 
      
 1044 
     | 
    
         
            +
                    self.layers = torch.nn.ModuleList()
         
     | 
| 
      
 1045 
     | 
    
         
            +
                    for layer_id in range(self.num_layers):
         
     | 
| 
      
 1046 
     | 
    
         
            +
                        self.layers.append(
         
     | 
| 
      
 1047 
     | 
    
         
            +
                            NoTPTransformerBlock(
         
     | 
| 
      
 1048 
     | 
    
         
            +
                                cfg,
         
     | 
| 
      
 1049 
     | 
    
         
            +
                                layer_id + 1,
         
     | 
| 
      
 1050 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1051 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1052 
     | 
    
         
            +
             
     | 
| 
      
 1053 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 1054 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 1055 
     | 
    
         
            +
                    hidden_states,
         
     | 
| 
      
 1056 
     | 
    
         
            +
                ):
         
     | 
| 
      
 1057 
     | 
    
         
            +
             
     | 
| 
      
 1058 
     | 
    
         
            +
                    for layer in self.layers:
         
     | 
| 
      
 1059 
     | 
    
         
            +
                        hidden_states = layer(hidden_states)
         
     | 
| 
      
 1060 
     | 
    
         
            +
             
     | 
| 
      
 1061 
     | 
    
         
            +
                    return hidden_states
         
     | 
| 
      
 1062 
     | 
    
         
            +
             
     | 
| 
      
 1063 
     | 
    
         
            +
             
     | 
| 
      
 1064 
     | 
    
         
            +
            class VitModel(nn.Module):
         
     | 
| 
      
 1065 
     | 
    
         
            +
                def __init__(self, cfg, freeze_embed=False, freeze_pre_norm=False) -> None:
         
     | 
| 
      
 1066 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 1067 
     | 
    
         
            +
             
     | 
| 
      
 1068 
     | 
    
         
            +
                    self.embeddings = CLIPVisionEmbeddings(
         
     | 
| 
      
 1069 
     | 
    
         
            +
                        hidden_size=cfg["hidden_size"],
         
     | 
| 
      
 1070 
     | 
    
         
            +
                        image_size=cfg["image_size"],
         
     | 
| 
      
 1071 
     | 
    
         
            +
                        patch_size=cfg["patch_size"],
         
     | 
| 
      
 1072 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1073 
     | 
    
         
            +
             
     | 
| 
      
 1074 
     | 
    
         
            +
                    if freeze_embed:
         
     | 
| 
      
 1075 
     | 
    
         
            +
                        for _, param in self.embeddings.named_parameters():
         
     | 
| 
      
 1076 
     | 
    
         
            +
                            param.requires_grad = False
         
     | 
| 
      
 1077 
     | 
    
         
            +
             
     | 
| 
      
 1078 
     | 
    
         
            +
                    self.transformer = NoTPTransformer(cfg=cfg)
         
     | 
| 
      
 1079 
     | 
    
         
            +
             
     | 
| 
      
 1080 
     | 
    
         
            +
                    if cfg.get("fp32norm", False):
         
     | 
| 
      
 1081 
     | 
    
         
            +
                        logger.info("Load fp32 layernorm for ViT.")
         
     | 
| 
      
 1082 
     | 
    
         
            +
                        self.pre_layrnorm = LayerNormfp32(
         
     | 
| 
      
 1083 
     | 
    
         
            +
                            cfg["hidden_size"],
         
     | 
| 
      
 1084 
     | 
    
         
            +
                            eps=cfg.get("pre_layernorm_epsilon", 1e-5),
         
     | 
| 
      
 1085 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1086 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 1087 
     | 
    
         
            +
                        self.pre_layrnorm = torch.nn.LayerNorm(
         
     | 
| 
      
 1088 
     | 
    
         
            +
                            cfg["hidden_size"],
         
     | 
| 
      
 1089 
     | 
    
         
            +
                            eps=cfg.get("pre_layernorm_epsilon", 1e-5),
         
     | 
| 
      
 1090 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1091 
     | 
    
         
            +
             
     | 
| 
      
 1092 
     | 
    
         
            +
                    if freeze_pre_norm:
         
     | 
| 
      
 1093 
     | 
    
         
            +
                        for _, param in self.pre_layrnorm.named_parameters():
         
     | 
| 
      
 1094 
     | 
    
         
            +
                            param.requires_grad = False
         
     | 
| 
      
 1095 
     | 
    
         
            +
             
     | 
| 
      
 1096 
     | 
    
         
            +
                    for p in self.parameters():
         
     | 
| 
      
 1097 
     | 
    
         
            +
                        p.micro_dp = True
         
     | 
| 
      
 1098 
     | 
    
         
            +
             
     | 
| 
      
 1099 
     | 
    
         
            +
                @property
         
     | 
| 
      
 1100 
     | 
    
         
            +
                def dtype(self):
         
     | 
| 
      
 1101 
     | 
    
         
            +
                    return next(self.parameters()).dtype
         
     | 
| 
      
 1102 
     | 
    
         
            +
             
     | 
| 
      
 1103 
     | 
    
         
            +
                def set_input_tensor(self, input_tensor):
         
     | 
| 
      
 1104 
     | 
    
         
            +
                    if not isinstance(input_tensor, list):
         
     | 
| 
      
 1105 
     | 
    
         
            +
                        input_tensor = [input_tensor]
         
     | 
| 
      
 1106 
     | 
    
         
            +
                    self.transformer.set_input_tensor(input_tensor[0])
         
     | 
| 
      
 1107 
     | 
    
         
            +
             
     | 
| 
      
 1108 
     | 
    
         
            +
                def __str__(self) -> str:
         
     | 
| 
      
 1109 
     | 
    
         
            +
                    return "open_clip"
         
     | 
| 
      
 1110 
     | 
    
         
            +
             
     | 
| 
      
 1111 
     | 
    
         
            +
                def forward(self, x, patch_embeds):
         
     | 
| 
      
 1112 
     | 
    
         
            +
                    x = self.embeddings(x, patch_embeds)
         
     | 
| 
      
 1113 
     | 
    
         
            +
                    hidden_states = self.pre_layrnorm(x)
         
     | 
| 
      
 1114 
     | 
    
         
            +
             
     | 
| 
      
 1115 
     | 
    
         
            +
                    output = self.transformer(hidden_states)
         
     | 
| 
      
 1116 
     | 
    
         
            +
             
     | 
| 
      
 1117 
     | 
    
         
            +
                    return output
         
     | 
| 
      
 1118 
     | 
    
         
            +
             
     | 
| 
      
 1119 
     | 
    
         
            +
             
     | 
| 
      
 1120 
     | 
    
         
            +
            vit_model_cfg = dict(
         
     | 
| 
      
 1121 
     | 
    
         
            +
                num_layers=24,
         
     | 
| 
      
 1122 
     | 
    
         
            +
                hidden_size=1024,
         
     | 
| 
      
 1123 
     | 
    
         
            +
                num_heads=16,
         
     | 
| 
      
 1124 
     | 
    
         
            +
                num_attention_heads=16,
         
     | 
| 
      
 1125 
     | 
    
         
            +
                ffn_hidden_size=4096,
         
     | 
| 
      
 1126 
     | 
    
         
            +
                seq_length=256,
         
     | 
| 
      
 1127 
     | 
    
         
            +
                max_position_embeddings=256,
         
     | 
| 
      
 1128 
     | 
    
         
            +
                use_flash_attn=False,
         
     | 
| 
      
 1129 
     | 
    
         
            +
                understand_projector_stride=2,
         
     | 
| 
      
 1130 
     | 
    
         
            +
                hidden_dropout=0.0,
         
     | 
| 
      
 1131 
     | 
    
         
            +
                attention_dropout=0.0,
         
     | 
| 
      
 1132 
     | 
    
         
            +
                no_persist_layer_norm=False,
         
     | 
| 
      
 1133 
     | 
    
         
            +
                layernorm_epsilon=1e-5,
         
     | 
| 
      
 1134 
     | 
    
         
            +
                pre_layernorm_epsilon=1e-5,
         
     | 
| 
      
 1135 
     | 
    
         
            +
                image_size=224,
         
     | 
| 
      
 1136 
     | 
    
         
            +
                patch_size=14,
         
     | 
| 
      
 1137 
     | 
    
         
            +
                recompute_list=[],
         
     | 
| 
      
 1138 
     | 
    
         
            +
            )
         
     | 
| 
      
 1139 
     | 
    
         
            +
             
     | 
| 
      
 1140 
     | 
    
         
            +
             
     | 
| 
      
 1141 
     | 
    
         
            +
            def build_clip_l():
         
     | 
| 
      
 1142 
     | 
    
         
            +
                return VitModel(
         
     | 
| 
      
 1143 
     | 
    
         
            +
                    cfg=vit_model_cfg,
         
     | 
| 
      
 1144 
     | 
    
         
            +
                    freeze_embed=False,
         
     | 
| 
      
 1145 
     | 
    
         
            +
                    freeze_pre_norm=False,
         
     | 
| 
      
 1146 
     | 
    
         
            +
                )
         
     | 
| 
      
 1147 
     | 
    
         
            +
             
     | 
| 
      
 1148 
     | 
    
         
            +
             
     | 
| 
      
 1149 
     | 
    
         
            +
            class DeepseekOCRForCausalLM(nn.Module):
         
     | 
| 
      
 1150 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 1151 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 1152 
     | 
    
         
            +
                    *,
         
     | 
| 
      
 1153 
     | 
    
         
            +
                    config: DeepseekVLV2Config,
         
     | 
| 
      
 1154 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 1155 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 1156 
     | 
    
         
            +
                ):
         
     | 
| 
      
 1157 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 1158 
     | 
    
         
            +
             
     | 
| 
      
 1159 
     | 
    
         
            +
                    self.config = config
         
     | 
| 
      
 1160 
     | 
    
         
            +
             
     | 
| 
      
 1161 
     | 
    
         
            +
                    self.vision_config = config.vision_config
         
     | 
| 
      
 1162 
     | 
    
         
            +
                    self.projector_config = config.projector_config
         
     | 
| 
      
 1163 
     | 
    
         
            +
                    self.text_config = config.text_config
         
     | 
| 
      
 1164 
     | 
    
         
            +
             
     | 
| 
      
 1165 
     | 
    
         
            +
                    n_embed = 1280
         
     | 
| 
      
 1166 
     | 
    
         
            +
             
     | 
| 
      
 1167 
     | 
    
         
            +
                    self.tile_tag = config.tile_tag
         
     | 
| 
      
 1168 
     | 
    
         
            +
                    self.global_view_pos = config.global_view_pos
         
     | 
| 
      
 1169 
     | 
    
         
            +
             
     | 
| 
      
 1170 
     | 
    
         
            +
                    # special token for image token sequence format
         
     | 
| 
      
 1171 
     | 
    
         
            +
                    embed_std = 1 / torch.sqrt(torch.tensor(n_embed, dtype=torch.float32))
         
     | 
| 
      
 1172 
     | 
    
         
            +
                    if self.tile_tag == "2D":
         
     | 
| 
      
 1173 
     | 
    
         
            +
                        # <|view_separator|>, <|\n|>
         
     | 
| 
      
 1174 
     | 
    
         
            +
                        self.image_newline = nn.Parameter(torch.randn(n_embed) * embed_std)
         
     | 
| 
      
 1175 
     | 
    
         
            +
                        self.view_seperator = nn.Parameter(torch.randn(n_embed) * embed_std)
         
     | 
| 
      
 1176 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 1177 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 1178 
     | 
    
         
            +
                            f"Only 2D tile_tag is supported currently, got: {self.tile_tag}"
         
     | 
| 
      
 1179 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1180 
     | 
    
         
            +
             
     | 
| 
      
 1181 
     | 
    
         
            +
                    if self.text_config.topk_method == "noaux_tc":
         
     | 
| 
      
 1182 
     | 
    
         
            +
                        self.model = DeepseekV3ForCausalLM(
         
     | 
| 
      
 1183 
     | 
    
         
            +
                            config=config.text_config,
         
     | 
| 
      
 1184 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 1185 
     | 
    
         
            +
                            prefix=maybe_prefix(prefix, "language"),
         
     | 
| 
      
 1186 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1187 
     | 
    
         
            +
                    elif not self.text_config.use_mla:
         
     | 
| 
      
 1188 
     | 
    
         
            +
                        self.model = DeepseekForCausalLM(
         
     | 
| 
      
 1189 
     | 
    
         
            +
                            config=config.text_config,
         
     | 
| 
      
 1190 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 1191 
     | 
    
         
            +
                            prefix=maybe_prefix(prefix, "language"),
         
     | 
| 
      
 1192 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1193 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 1194 
     | 
    
         
            +
                        self.model = DeepseekV2ForCausalLM(
         
     | 
| 
      
 1195 
     | 
    
         
            +
                            config=config.text_config,
         
     | 
| 
      
 1196 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 1197 
     | 
    
         
            +
                            prefix=maybe_prefix(prefix, "language"),
         
     | 
| 
      
 1198 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1199 
     | 
    
         
            +
             
     | 
| 
      
 1200 
     | 
    
         
            +
                    self.sam_model = build_sam_vit_b()
         
     | 
| 
      
 1201 
     | 
    
         
            +
                    self.vision_model = build_clip_l()
         
     | 
| 
      
 1202 
     | 
    
         
            +
                    n_embed = 1280
         
     | 
| 
      
 1203 
     | 
    
         
            +
                    self.projector = MlpProjector(
         
     | 
| 
      
 1204 
     | 
    
         
            +
                        projector_type="linear",
         
     | 
| 
      
 1205 
     | 
    
         
            +
                        input_dim=2048,
         
     | 
| 
      
 1206 
     | 
    
         
            +
                        n_embed=n_embed,
         
     | 
| 
      
 1207 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1208 
     | 
    
         
            +
             
     | 
| 
      
 1209 
     | 
    
         
            +
                def _parse_and_validate_image_input(self, **kwargs: object):
         
     | 
| 
      
 1210 
     | 
    
         
            +
             
     | 
| 
      
 1211 
     | 
    
         
            +
                    pixel_values = kwargs.pop("pixel_values", None)
         
     | 
| 
      
 1212 
     | 
    
         
            +
                    images_spatial_crop = kwargs.pop("images_spatial_crop", None)
         
     | 
| 
      
 1213 
     | 
    
         
            +
                    images_crop = kwargs.pop("images_crop", None)
         
     | 
| 
      
 1214 
     | 
    
         
            +
             
     | 
| 
      
 1215 
     | 
    
         
            +
                    if pixel_values is None or torch.sum(pixel_values).item() == 0:
         
     | 
| 
      
 1216 
     | 
    
         
            +
                        return None
         
     | 
| 
      
 1217 
     | 
    
         
            +
             
     | 
| 
      
 1218 
     | 
    
         
            +
                    if pixel_values is not None:
         
     | 
| 
      
 1219 
     | 
    
         
            +
                        if not isinstance(pixel_values, (torch.Tensor, list)):
         
     | 
| 
      
 1220 
     | 
    
         
            +
                            raise ValueError(
         
     | 
| 
      
 1221 
     | 
    
         
            +
                                "Incorrect type of pixel values. " f"Got type: {type(pixel_values)}"
         
     | 
| 
      
 1222 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1223 
     | 
    
         
            +
             
     | 
| 
      
 1224 
     | 
    
         
            +
                        if not isinstance(images_spatial_crop, (torch.Tensor, list)):
         
     | 
| 
      
 1225 
     | 
    
         
            +
                            raise ValueError(
         
     | 
| 
      
 1226 
     | 
    
         
            +
                                "Incorrect type of image sizes. "
         
     | 
| 
      
 1227 
     | 
    
         
            +
                                f"Got type: {type(images_spatial_crop)}"
         
     | 
| 
      
 1228 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1229 
     | 
    
         
            +
             
     | 
| 
      
 1230 
     | 
    
         
            +
                        if not isinstance(images_crop, (torch.Tensor, list)):
         
     | 
| 
      
 1231 
     | 
    
         
            +
                            raise ValueError(
         
     | 
| 
      
 1232 
     | 
    
         
            +
                                "Incorrect type of image crop. " f"Got type: {type(images_crop)}"
         
     | 
| 
      
 1233 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1234 
     | 
    
         
            +
             
     | 
| 
      
 1235 
     | 
    
         
            +
                        return [pixel_values, images_crop, images_spatial_crop]
         
     | 
| 
      
 1236 
     | 
    
         
            +
             
     | 
| 
      
 1237 
     | 
    
         
            +
                    raise AssertionError("This line should be unreachable.")
         
     | 
| 
      
 1238 
     | 
    
         
            +
             
     | 
| 
      
 1239 
     | 
    
         
            +
                def _pixel_values_to_embedding(
         
     | 
| 
      
 1240 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 1241 
     | 
    
         
            +
                    pixel_values: torch.Tensor,
         
     | 
| 
      
 1242 
     | 
    
         
            +
                    images_crop: torch.Tensor,
         
     | 
| 
      
 1243 
     | 
    
         
            +
                    images_spatial_crop: torch.Tensor,
         
     | 
| 
      
 1244 
     | 
    
         
            +
                ) -> NestedTensors:
         
     | 
| 
      
 1245 
     | 
    
         
            +
             
     | 
| 
      
 1246 
     | 
    
         
            +
                    # Pixel_values (global view): [n_image, batch_size, 3, height, width]
         
     | 
| 
      
 1247 
     | 
    
         
            +
                    # images_spatial_crop: [n_image, batch_size, [num_tiles_w, num_tiles_h]]
         
     | 
| 
      
 1248 
     | 
    
         
            +
                    # images_crop (local view): [n_image, batch_size, num_pathes, 3, h, w]
         
     | 
| 
      
 1249 
     | 
    
         
            +
                    # split the pixel and image_crop, all batch_size = 1
         
     | 
| 
      
 1250 
     | 
    
         
            +
             
     | 
| 
      
 1251 
     | 
    
         
            +
                    images_in_this_batch = []
         
     | 
| 
      
 1252 
     | 
    
         
            +
             
     | 
| 
      
 1253 
     | 
    
         
            +
                    with torch.no_grad():
         
     | 
| 
      
 1254 
     | 
    
         
            +
                        for jdx in range(images_spatial_crop.size(0)):
         
     | 
| 
      
 1255 
     | 
    
         
            +
                            patches = images_crop[jdx][0].to(torch.bfloat16)
         
     | 
| 
      
 1256 
     | 
    
         
            +
                            image_ori = pixel_values[jdx]
         
     | 
| 
      
 1257 
     | 
    
         
            +
                            crop_shape = images_spatial_crop[jdx][0]
         
     | 
| 
      
 1258 
     | 
    
         
            +
             
     | 
| 
      
 1259 
     | 
    
         
            +
                            if torch.sum(patches).item() != 0:
         
     | 
| 
      
 1260 
     | 
    
         
            +
                                local_features_1 = self.sam_model(patches)
         
     | 
| 
      
 1261 
     | 
    
         
            +
                                local_features_2 = self.vision_model(patches, local_features_1)
         
     | 
| 
      
 1262 
     | 
    
         
            +
             
     | 
| 
      
 1263 
     | 
    
         
            +
                                local_features = torch.cat(
         
     | 
| 
      
 1264 
     | 
    
         
            +
                                    (
         
     | 
| 
      
 1265 
     | 
    
         
            +
                                        local_features_2[:, 1:],
         
     | 
| 
      
 1266 
     | 
    
         
            +
                                        local_features_1.flatten(2).permute(0, 2, 1),
         
     | 
| 
      
 1267 
     | 
    
         
            +
                                    ),
         
     | 
| 
      
 1268 
     | 
    
         
            +
                                    dim=-1,
         
     | 
| 
      
 1269 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1270 
     | 
    
         
            +
                                local_features = self.projector(local_features)
         
     | 
| 
      
 1271 
     | 
    
         
            +
             
     | 
| 
      
 1272 
     | 
    
         
            +
                                global_features_1 = self.sam_model(image_ori)
         
     | 
| 
      
 1273 
     | 
    
         
            +
                                global_features_2 = self.vision_model(image_ori, global_features_1)
         
     | 
| 
      
 1274 
     | 
    
         
            +
                                global_features = torch.cat(
         
     | 
| 
      
 1275 
     | 
    
         
            +
                                    (
         
     | 
| 
      
 1276 
     | 
    
         
            +
                                        global_features_2[:, 1:],
         
     | 
| 
      
 1277 
     | 
    
         
            +
                                        global_features_1.flatten(2).permute(0, 2, 1),
         
     | 
| 
      
 1278 
     | 
    
         
            +
                                    ),
         
     | 
| 
      
 1279 
     | 
    
         
            +
                                    dim=-1,
         
     | 
| 
      
 1280 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1281 
     | 
    
         
            +
                                global_features = self.projector(global_features)
         
     | 
| 
      
 1282 
     | 
    
         
            +
             
     | 
| 
      
 1283 
     | 
    
         
            +
                                _, hw, n_dim = global_features.shape
         
     | 
| 
      
 1284 
     | 
    
         
            +
                                h = w = int(hw**0.5)
         
     | 
| 
      
 1285 
     | 
    
         
            +
             
     | 
| 
      
 1286 
     | 
    
         
            +
                                _2, hw2, n_dim2 = local_features.shape
         
     | 
| 
      
 1287 
     | 
    
         
            +
                                h2 = w2 = int(hw2**0.5)
         
     | 
| 
      
 1288 
     | 
    
         
            +
             
     | 
| 
      
 1289 
     | 
    
         
            +
                                width_crop_num, height_crop_num = int(crop_shape[0]), int(
         
     | 
| 
      
 1290 
     | 
    
         
            +
                                    crop_shape[1]
         
     | 
| 
      
 1291 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1292 
     | 
    
         
            +
             
     | 
| 
      
 1293 
     | 
    
         
            +
                                global_features = global_features.view(h, w, n_dim)
         
     | 
| 
      
 1294 
     | 
    
         
            +
             
     | 
| 
      
 1295 
     | 
    
         
            +
                                global_features = torch.cat(
         
     | 
| 
      
 1296 
     | 
    
         
            +
                                    [
         
     | 
| 
      
 1297 
     | 
    
         
            +
                                        global_features,
         
     | 
| 
      
 1298 
     | 
    
         
            +
                                        self.image_newline[None, None, :].expand(h, 1, n_dim),
         
     | 
| 
      
 1299 
     | 
    
         
            +
                                    ],
         
     | 
| 
      
 1300 
     | 
    
         
            +
                                    dim=1,
         
     | 
| 
      
 1301 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1302 
     | 
    
         
            +
             
     | 
| 
      
 1303 
     | 
    
         
            +
                                global_features = global_features.view(-1, n_dim)
         
     | 
| 
      
 1304 
     | 
    
         
            +
             
     | 
| 
      
 1305 
     | 
    
         
            +
                                local_features = (
         
     | 
| 
      
 1306 
     | 
    
         
            +
                                    local_features.view(
         
     | 
| 
      
 1307 
     | 
    
         
            +
                                        height_crop_num, width_crop_num, h2, w2, n_dim2
         
     | 
| 
      
 1308 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1309 
     | 
    
         
            +
                                    .permute(0, 2, 1, 3, 4)
         
     | 
| 
      
 1310 
     | 
    
         
            +
                                    .reshape(height_crop_num * h2, width_crop_num * w2, n_dim2)
         
     | 
| 
      
 1311 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1312 
     | 
    
         
            +
                                local_features = torch.cat(
         
     | 
| 
      
 1313 
     | 
    
         
            +
                                    [
         
     | 
| 
      
 1314 
     | 
    
         
            +
                                        local_features,
         
     | 
| 
      
 1315 
     | 
    
         
            +
                                        self.image_newline[None, None, :].expand(
         
     | 
| 
      
 1316 
     | 
    
         
            +
                                            height_crop_num * h2, 1, n_dim2
         
     | 
| 
      
 1317 
     | 
    
         
            +
                                        ),
         
     | 
| 
      
 1318 
     | 
    
         
            +
                                    ],
         
     | 
| 
      
 1319 
     | 
    
         
            +
                                    dim=1,
         
     | 
| 
      
 1320 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1321 
     | 
    
         
            +
                                local_features = local_features.view(-1, n_dim2)
         
     | 
| 
      
 1322 
     | 
    
         
            +
             
     | 
| 
      
 1323 
     | 
    
         
            +
                                global_local_features = torch.cat(
         
     | 
| 
      
 1324 
     | 
    
         
            +
                                    [local_features, global_features, self.view_seperator[None, :]],
         
     | 
| 
      
 1325 
     | 
    
         
            +
                                    dim=0,
         
     | 
| 
      
 1326 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1327 
     | 
    
         
            +
             
     | 
| 
      
 1328 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 1329 
     | 
    
         
            +
                                global_features_1 = self.sam_model(image_ori)
         
     | 
| 
      
 1330 
     | 
    
         
            +
                                global_features_2 = self.vision_model(image_ori, global_features_1)
         
     | 
| 
      
 1331 
     | 
    
         
            +
                                global_features = torch.cat(
         
     | 
| 
      
 1332 
     | 
    
         
            +
                                    (
         
     | 
| 
      
 1333 
     | 
    
         
            +
                                        global_features_2[:, 1:],
         
     | 
| 
      
 1334 
     | 
    
         
            +
                                        global_features_1.flatten(2).permute(0, 2, 1),
         
     | 
| 
      
 1335 
     | 
    
         
            +
                                    ),
         
     | 
| 
      
 1336 
     | 
    
         
            +
                                    dim=-1,
         
     | 
| 
      
 1337 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1338 
     | 
    
         
            +
                                global_features = self.projector(global_features)
         
     | 
| 
      
 1339 
     | 
    
         
            +
             
     | 
| 
      
 1340 
     | 
    
         
            +
                                _, hw, n_dim = global_features.shape
         
     | 
| 
      
 1341 
     | 
    
         
            +
                                h = w = int(hw**0.5)
         
     | 
| 
      
 1342 
     | 
    
         
            +
             
     | 
| 
      
 1343 
     | 
    
         
            +
                                global_features = global_features.view(h, w, n_dim)
         
     | 
| 
      
 1344 
     | 
    
         
            +
             
     | 
| 
      
 1345 
     | 
    
         
            +
                                global_features = torch.cat(
         
     | 
| 
      
 1346 
     | 
    
         
            +
                                    [
         
     | 
| 
      
 1347 
     | 
    
         
            +
                                        global_features,
         
     | 
| 
      
 1348 
     | 
    
         
            +
                                        self.image_newline[None, None, :].expand(h, 1, n_dim),
         
     | 
| 
      
 1349 
     | 
    
         
            +
                                    ],
         
     | 
| 
      
 1350 
     | 
    
         
            +
                                    dim=1,
         
     | 
| 
      
 1351 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1352 
     | 
    
         
            +
             
     | 
| 
      
 1353 
     | 
    
         
            +
                                global_features = global_features.view(-1, n_dim)
         
     | 
| 
      
 1354 
     | 
    
         
            +
             
     | 
| 
      
 1355 
     | 
    
         
            +
                                global_local_features = torch.cat(
         
     | 
| 
      
 1356 
     | 
    
         
            +
                                    [global_features, self.view_seperator[None, :]], dim=0
         
     | 
| 
      
 1357 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1358 
     | 
    
         
            +
             
     | 
| 
      
 1359 
     | 
    
         
            +
                            images_in_this_batch.append(global_local_features)
         
     | 
| 
      
 1360 
     | 
    
         
            +
             
     | 
| 
      
 1361 
     | 
    
         
            +
                    return images_in_this_batch
         
     | 
| 
      
 1362 
     | 
    
         
            +
             
     | 
| 
      
 1363 
     | 
    
         
            +
                def _process_image_input(self, mm_items: List[MultimodalDataItem]) -> torch.Tensor:
         
     | 
| 
      
 1364 
     | 
    
         
            +
                    pixel_values = torch.stack([item.feature for item in mm_items], dim=0).type(
         
     | 
| 
      
 1365 
     | 
    
         
            +
                        self.vision_model.dtype
         
     | 
| 
      
 1366 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1367 
     | 
    
         
            +
             
     | 
| 
      
 1368 
     | 
    
         
            +
                    images_crop = (
         
     | 
| 
      
 1369 
     | 
    
         
            +
                        torch.stack([item.images_crop for item in mm_items], dim=0)
         
     | 
| 
      
 1370 
     | 
    
         
            +
                        .type(torch.long)
         
     | 
| 
      
 1371 
     | 
    
         
            +
                        .to(device=pixel_values.device)
         
     | 
| 
      
 1372 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1373 
     | 
    
         
            +
                    images_spatial_crop = (
         
     | 
| 
      
 1374 
     | 
    
         
            +
                        torch.cat([item.images_spatial_crop for item in mm_items], dim=0)
         
     | 
| 
      
 1375 
     | 
    
         
            +
                        .type(torch.long)
         
     | 
| 
      
 1376 
     | 
    
         
            +
                        .to(device=pixel_values.device)
         
     | 
| 
      
 1377 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1378 
     | 
    
         
            +
             
     | 
| 
      
 1379 
     | 
    
         
            +
                    assert images_crop.dim() == 6
         
     | 
| 
      
 1380 
     | 
    
         
            +
                    assert images_spatial_crop.dim() == 3
         
     | 
| 
      
 1381 
     | 
    
         
            +
             
     | 
| 
      
 1382 
     | 
    
         
            +
                    vision_feature_lists = self._pixel_values_to_embedding(
         
     | 
| 
      
 1383 
     | 
    
         
            +
                        pixel_values=pixel_values,
         
     | 
| 
      
 1384 
     | 
    
         
            +
                        images_crop=images_crop,
         
     | 
| 
      
 1385 
     | 
    
         
            +
                        images_spatial_crop=images_spatial_crop,
         
     | 
| 
      
 1386 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1387 
     | 
    
         
            +
                    vision_features = torch.cat(vision_feature_lists, dim=0).type(
         
     | 
| 
      
 1388 
     | 
    
         
            +
                        self.vision_model.dtype
         
     | 
| 
      
 1389 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1390 
     | 
    
         
            +
             
     | 
| 
      
 1391 
     | 
    
         
            +
                    return vision_features
         
     | 
| 
      
 1392 
     | 
    
         
            +
             
     | 
| 
      
 1393 
     | 
    
         
            +
                def get_language_model(self) -> torch.nn.Module:
         
     | 
| 
      
 1394 
     | 
    
         
            +
                    return self.model
         
     | 
| 
      
 1395 
     | 
    
         
            +
             
     | 
| 
      
 1396 
     | 
    
         
            +
                def get_multimodal_embeddings(
         
     | 
| 
      
 1397 
     | 
    
         
            +
                    self, **kwargs: object
         
     | 
| 
      
 1398 
     | 
    
         
            +
                ) -> Optional[MultiModalEmbeddings]:
         
     | 
| 
      
 1399 
     | 
    
         
            +
                    image_input = self._parse_and_validate_image_input(**kwargs)
         
     | 
| 
      
 1400 
     | 
    
         
            +
                    if image_input is None:
         
     | 
| 
      
 1401 
     | 
    
         
            +
                        return None
         
     | 
| 
      
 1402 
     | 
    
         
            +
                    vision_embeddings = self._process_image_input(image_input)
         
     | 
| 
      
 1403 
     | 
    
         
            +
                    return vision_embeddings
         
     | 
| 
      
 1404 
     | 
    
         
            +
             
     | 
| 
      
 1405 
     | 
    
         
            +
                def get_input_embeddings(
         
     | 
| 
      
 1406 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 1407 
     | 
    
         
            +
                    input_ids: torch.Tensor,
         
     | 
| 
      
 1408 
     | 
    
         
            +
                    multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
         
     | 
| 
      
 1409 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 1410 
     | 
    
         
            +
             
     | 
| 
      
 1411 
     | 
    
         
            +
                    inputs_embeds = self.model.get_input_embeddings(input_ids)
         
     | 
| 
      
 1412 
     | 
    
         
            +
             
     | 
| 
      
 1413 
     | 
    
         
            +
                    if multimodal_embeddings is not None:
         
     | 
| 
      
 1414 
     | 
    
         
            +
                        inputs_embeds = merge_multimodal_embeddings(
         
     | 
| 
      
 1415 
     | 
    
         
            +
                            input_ids, inputs_embeds, multimodal_embeddings, self.image_token_id
         
     | 
| 
      
 1416 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1417 
     | 
    
         
            +
             
     | 
| 
      
 1418 
     | 
    
         
            +
                    return inputs_embeds
         
     | 
| 
      
 1419 
     | 
    
         
            +
             
     | 
| 
      
 1420 
     | 
    
         
            +
                def pad_input_ids(self, input_ids: List[int], mm_inputs: MultimodalInputs):
         
     | 
| 
      
 1421 
     | 
    
         
            +
                    pattern = MultiModalityDataPaddingPatternMultimodalTokens()
         
     | 
| 
      
 1422 
     | 
    
         
            +
                    return pattern.pad_input_tokens(input_ids, mm_inputs)
         
     | 
| 
      
 1423 
     | 
    
         
            +
             
     | 
| 
      
 1424 
     | 
    
         
            +
                def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
         
     | 
| 
      
 1425 
     | 
    
         
            +
                    vision_embeddings = self._process_image_input(items)
         
     | 
| 
      
 1426 
     | 
    
         
            +
                    return vision_embeddings
         
     | 
| 
      
 1427 
     | 
    
         
            +
             
     | 
| 
      
 1428 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 1429 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 1430 
     | 
    
         
            +
                    input_ids: torch.Tensor,
         
     | 
| 
      
 1431 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 1432 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 1433 
     | 
    
         
            +
                    **kwargs: object,
         
     | 
| 
      
 1434 
     | 
    
         
            +
                ):
         
     | 
| 
      
 1435 
     | 
    
         
            +
                    hidden_states = general_mm_embed_routine(
         
     | 
| 
      
 1436 
     | 
    
         
            +
                        input_ids=input_ids,
         
     | 
| 
      
 1437 
     | 
    
         
            +
                        forward_batch=forward_batch,
         
     | 
| 
      
 1438 
     | 
    
         
            +
                        language_model=self.model,
         
     | 
| 
      
 1439 
     | 
    
         
            +
                        multimodal_model=self,
         
     | 
| 
      
 1440 
     | 
    
         
            +
                        positions=positions,
         
     | 
| 
      
 1441 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1442 
     | 
    
         
            +
             
     | 
| 
      
 1443 
     | 
    
         
            +
                    return hidden_states
         
     | 
| 
      
 1444 
     | 
    
         
            +
             
     | 
| 
      
 1445 
     | 
    
         
            +
                def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
         
     | 
| 
      
 1446 
     | 
    
         
            +
                    stacked_params_mapping = [
         
     | 
| 
      
 1447 
     | 
    
         
            +
                        # (param_name, shard_name, shard_id)
         
     | 
| 
      
 1448 
     | 
    
         
            +
                        (".qkv_proj", ".q_proj", "q"),
         
     | 
| 
      
 1449 
     | 
    
         
            +
                        (".qkv_proj", ".k_proj", "k"),
         
     | 
| 
      
 1450 
     | 
    
         
            +
                        (".qkv_proj", ".v_proj", "v"),
         
     | 
| 
      
 1451 
     | 
    
         
            +
                        (".gate_up_proj", ".gate_proj", 0),
         
     | 
| 
      
 1452 
     | 
    
         
            +
                        (".gate_up_proj", ".up_proj", 1),
         
     | 
| 
      
 1453 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 1454 
     | 
    
         
            +
             
     | 
| 
      
 1455 
     | 
    
         
            +
                    params_dict = dict(self.named_parameters())
         
     | 
| 
      
 1456 
     | 
    
         
            +
                    loaded_params: Set[str] = set()
         
     | 
| 
      
 1457 
     | 
    
         
            +
             
     | 
| 
      
 1458 
     | 
    
         
            +
                    for name, loaded_weight in weights:
         
     | 
| 
      
 1459 
     | 
    
         
            +
                        if "rotary_emb.inv_freq" in name:
         
     | 
| 
      
 1460 
     | 
    
         
            +
                            continue
         
     | 
| 
      
 1461 
     | 
    
         
            +
                        if name == "lm_head.weight":
         
     | 
| 
      
 1462 
     | 
    
         
            +
                            name = "model.lm_head.weight"
         
     | 
| 
      
 1463 
     | 
    
         
            +
                        elif name.startswith("model."):
         
     | 
| 
      
 1464 
     | 
    
         
            +
                            if (
         
     | 
| 
      
 1465 
     | 
    
         
            +
                                "image_newline" in name
         
     | 
| 
      
 1466 
     | 
    
         
            +
                                or ".projector" in name
         
     | 
| 
      
 1467 
     | 
    
         
            +
                                or "vision_model" in name
         
     | 
| 
      
 1468 
     | 
    
         
            +
                                or "sam_model" in name
         
     | 
| 
      
 1469 
     | 
    
         
            +
                                or "view_seperator" in name
         
     | 
| 
      
 1470 
     | 
    
         
            +
                            ):
         
     | 
| 
      
 1471 
     | 
    
         
            +
                                name = name[len("model.") :]
         
     | 
| 
      
 1472 
     | 
    
         
            +
                            elif not (
         
     | 
| 
      
 1473 
     | 
    
         
            +
                                ".projector" in name
         
     | 
| 
      
 1474 
     | 
    
         
            +
                                or "vision_model" in name
         
     | 
| 
      
 1475 
     | 
    
         
            +
                                or "sam_model" in name
         
     | 
| 
      
 1476 
     | 
    
         
            +
                                or "image_newline" in name
         
     | 
| 
      
 1477 
     | 
    
         
            +
                            ):
         
     | 
| 
      
 1478 
     | 
    
         
            +
                                name = name.replace("model.", "model.model.")
         
     | 
| 
      
 1479 
     | 
    
         
            +
             
     | 
| 
      
 1480 
     | 
    
         
            +
                        for param_name, weight_name, shard_id in stacked_params_mapping:
         
     | 
| 
      
 1481 
     | 
    
         
            +
                            if weight_name not in name:
         
     | 
| 
      
 1482 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 1483 
     | 
    
         
            +
                            name = name.replace(weight_name, param_name)
         
     | 
| 
      
 1484 
     | 
    
         
            +
                            # Skip loading extra bias for GPTQ models.
         
     | 
| 
      
 1485 
     | 
    
         
            +
                            if name.endswith(".bias") and name not in params_dict:
         
     | 
| 
      
 1486 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 1487 
     | 
    
         
            +
                            # Skip experts that are not assigned to this worker.
         
     | 
| 
      
 1488 
     | 
    
         
            +
                            if (
         
     | 
| 
      
 1489 
     | 
    
         
            +
                                "mlp.experts." in name or "mlp.shared_experts." in name
         
     | 
| 
      
 1490 
     | 
    
         
            +
                            ) and name not in params_dict:
         
     | 
| 
      
 1491 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 1492 
     | 
    
         
            +
                            param = params_dict[name]
         
     | 
| 
      
 1493 
     | 
    
         
            +
                            weight_loader = param.weight_loader
         
     | 
| 
      
 1494 
     | 
    
         
            +
                            weight_loader(param, loaded_weight, shard_id)
         
     | 
| 
      
 1495 
     | 
    
         
            +
                            break
         
     | 
| 
      
 1496 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 1497 
     | 
    
         
            +
                            # Skip loading extra bias for GPTQ models.
         
     | 
| 
      
 1498 
     | 
    
         
            +
                            if name.endswith(".bias") and name not in params_dict:
         
     | 
| 
      
 1499 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 1500 
     | 
    
         
            +
                            # Skip experts that are not assigned to this worker.
         
     | 
| 
      
 1501 
     | 
    
         
            +
                            if (
         
     | 
| 
      
 1502 
     | 
    
         
            +
                                "mlp.experts." in name or "mlp.shared_experts." in name
         
     | 
| 
      
 1503 
     | 
    
         
            +
                            ) and name not in params_dict:
         
     | 
| 
      
 1504 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 1505 
     | 
    
         
            +
                            param = params_dict[name]
         
     | 
| 
      
 1506 
     | 
    
         
            +
                            weight_loader = getattr(param, "weight_loader", default_weight_loader)
         
     | 
| 
      
 1507 
     | 
    
         
            +
                            weight_loader(param, loaded_weight)
         
     | 
| 
      
 1508 
     | 
    
         
            +
                        loaded_params.add(name)
         
     | 
| 
      
 1509 
     | 
    
         
            +
                    unloaded_params = params_dict.keys() - loaded_params
         
     | 
| 
      
 1510 
     | 
    
         
            +
                    if unloaded_params:
         
     | 
| 
      
 1511 
     | 
    
         
            +
                        raise RuntimeError(
         
     | 
| 
      
 1512 
     | 
    
         
            +
                            f"Some weights are not initialized from checkpoints: {unloaded_params}"
         
     | 
| 
      
 1513 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1514 
     | 
    
         
            +
             
     | 
| 
      
 1515 
     | 
    
         
            +
             
     | 
| 
      
 1516 
     | 
    
         
            +
            EntryClass = [DeepseekOCRForCausalLM]
         
     |