sglang 0.5.3rc2__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +378 -160
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +10 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +105 -10
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +136 -25
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +63 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +83 -80
 - sglang/srt/entrypoints/grpc_server.py +430 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +195 -102
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +58 -6
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +33 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +20 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +10 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +24 -10
 - sglang/srt/layers/attention/flashinfer_backend.py +258 -22
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +38 -28
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +362 -43
 - sglang/srt/layers/attention/utils.py +89 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +12 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +5 -9
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +64 -19
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +152 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +351 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +229 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +154 -625
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +79 -73
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +25 -46
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +569 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +6 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +14 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +12 -6
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +127 -110
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +7 -6
 - sglang/srt/layers/moe/utils.py +20 -5
 - sglang/srt/layers/quantization/__init__.py +5 -58
 - sglang/srt/layers/quantization/awq.py +183 -9
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +27 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +152 -81
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +35 -68
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +23 -48
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +87 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +62 -9
 - sglang/srt/layers/rotary_embedding.py +686 -17
 - sglang/srt/layers/sampler.py +47 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +69 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -82
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +420 -514
 - sglang/srt/managers/scheduler_metrics_mixin.py +73 -18
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +60 -14
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +375 -95
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +11 -2
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +517 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +71 -25
 - sglang/srt/model_executor/model_runner.py +362 -270
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +549 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +418 -140
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +327 -382
 - sglang/srt/models/glm4_moe_nextn.py +6 -16
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +32 -199
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +19 -37
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +7 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +2 -6
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +28 -2
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +846 -163
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +36 -31
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +272 -82
 - sglang/srt/utils/hf_transformers_utils.py +44 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +463 -107
 - sglang/test/test_deterministic_utils.py +74 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +48 -35
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +414 -350
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/models/vila.py +0 -306
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,339 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Adapted from https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/quantization/compressed_tensors
         
     | 
| 
      
 2 
     | 
    
         
            +
            # SPDX-License-Identifier: Apache-2.0
         
     | 
| 
      
 3 
     | 
    
         
            +
             
     | 
| 
      
 4 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 5 
     | 
    
         
            +
            from typing import Callable, Optional
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 8 
     | 
    
         
            +
            from compressed_tensors.quantization import ActivationOrdering
         
     | 
| 
      
 9 
     | 
    
         
            +
             
     | 
| 
      
 10 
     | 
    
         
            +
            # yapf conflicts with isort for this block
         
     | 
| 
      
 11 
     | 
    
         
            +
            # yapf: disable
         
     | 
| 
      
 12 
     | 
    
         
            +
            from sglang.srt.layers.parameter import (
         
     | 
| 
      
 13 
     | 
    
         
            +
                BasevLLMParameter,
         
     | 
| 
      
 14 
     | 
    
         
            +
                ChannelQuantScaleParameter,
         
     | 
| 
      
 15 
     | 
    
         
            +
                GroupQuantScaleParameter,
         
     | 
| 
      
 16 
     | 
    
         
            +
                PackedColumnParameter,
         
     | 
| 
      
 17 
     | 
    
         
            +
                PackedvLLMParameter,
         
     | 
| 
      
 18 
     | 
    
         
            +
                RowvLLMParameter,
         
     | 
| 
      
 19 
     | 
    
         
            +
                permute_param_layout_,
         
     | 
| 
      
 20 
     | 
    
         
            +
            )
         
     | 
| 
      
 21 
     | 
    
         
            +
            from sglang.srt.layers.quantization.compressed_tensors.schemes import (
         
     | 
| 
      
 22 
     | 
    
         
            +
                CompressedTensorsScheme,
         
     | 
| 
      
 23 
     | 
    
         
            +
            )
         
     | 
| 
      
 24 
     | 
    
         
            +
            from sglang.srt.layers.quantization.marlin_utils import (
         
     | 
| 
      
 25 
     | 
    
         
            +
                MarlinLinearLayerConfig,
         
     | 
| 
      
 26 
     | 
    
         
            +
                apply_gptq_marlin_linear,
         
     | 
| 
      
 27 
     | 
    
         
            +
                check_marlin_supports_shape,
         
     | 
| 
      
 28 
     | 
    
         
            +
                marlin_is_k_full,
         
     | 
| 
      
 29 
     | 
    
         
            +
                marlin_make_empty_g_idx,
         
     | 
| 
      
 30 
     | 
    
         
            +
                marlin_make_workspace,
         
     | 
| 
      
 31 
     | 
    
         
            +
                marlin_permute_scales,
         
     | 
| 
      
 32 
     | 
    
         
            +
                marlin_repeat_scales_on_all_ranks,
         
     | 
| 
      
 33 
     | 
    
         
            +
                marlin_sort_g_idx,
         
     | 
| 
      
 34 
     | 
    
         
            +
                marlin_zero_points,
         
     | 
| 
      
 35 
     | 
    
         
            +
            )
         
     | 
| 
      
 36 
     | 
    
         
            +
            from sglang.srt.layers.quantization.utils import (
         
     | 
| 
      
 37 
     | 
    
         
            +
                get_scalar_types,
         
     | 
| 
      
 38 
     | 
    
         
            +
                replace_parameter,
         
     | 
| 
      
 39 
     | 
    
         
            +
                unpack_cols,
         
     | 
| 
      
 40 
     | 
    
         
            +
            )
         
     | 
| 
      
 41 
     | 
    
         
            +
            from sglang.srt.utils import is_cuda
         
     | 
| 
      
 42 
     | 
    
         
            +
             
     | 
| 
      
 43 
     | 
    
         
            +
            _is_cuda = is_cuda()
         
     | 
| 
      
 44 
     | 
    
         
            +
             
     | 
| 
      
 45 
     | 
    
         
            +
            if _is_cuda:
         
     | 
| 
      
 46 
     | 
    
         
            +
                from sgl_kernel import gptq_marlin_repack
         
     | 
| 
      
 47 
     | 
    
         
            +
             
     | 
| 
      
 48 
     | 
    
         
            +
             
     | 
| 
      
 49 
     | 
    
         
            +
            ScalarType, scalar_types = get_scalar_types()
         
     | 
| 
      
 50 
     | 
    
         
            +
             
     | 
| 
      
 51 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 52 
     | 
    
         
            +
             
     | 
| 
      
 53 
     | 
    
         
            +
            __all__ = ["CompressedTensorsWNA16"]
         
     | 
| 
      
 54 
     | 
    
         
            +
            WNA16_SUPPORTED_TYPES_MAP = {
         
     | 
| 
      
 55 
     | 
    
         
            +
                4: scalar_types.uint4b8,
         
     | 
| 
      
 56 
     | 
    
         
            +
                8: scalar_types.uint8b128
         
     | 
| 
      
 57 
     | 
    
         
            +
            }
         
     | 
| 
      
 58 
     | 
    
         
            +
            WNA16_ZP_SUPPORTED_TYPES_MAP = {4: scalar_types.uint4, 8: scalar_types.uint8}
         
     | 
| 
      
 59 
     | 
    
         
            +
            WNA16_SUPPORTED_BITS = list(WNA16_SUPPORTED_TYPES_MAP.keys())
         
     | 
| 
      
 60 
     | 
    
         
            +
             
     | 
| 
      
 61 
     | 
    
         
            +
             
     | 
| 
      
 62 
     | 
    
         
            +
            class CompressedTensorsWNA16(CompressedTensorsScheme):
         
     | 
| 
      
 63 
     | 
    
         
            +
                _kernel_backends_being_used: set[str] = set()
         
     | 
| 
      
 64 
     | 
    
         
            +
             
     | 
| 
      
 65 
     | 
    
         
            +
                def __init__(self,
         
     | 
| 
      
 66 
     | 
    
         
            +
                             strategy: str,
         
     | 
| 
      
 67 
     | 
    
         
            +
                             num_bits: int,
         
     | 
| 
      
 68 
     | 
    
         
            +
                             group_size: Optional[int] = None,
         
     | 
| 
      
 69 
     | 
    
         
            +
                             symmetric: Optional[bool] = True,
         
     | 
| 
      
 70 
     | 
    
         
            +
                             actorder: Optional[ActivationOrdering] = None):
         
     | 
| 
      
 71 
     | 
    
         
            +
             
     | 
| 
      
 72 
     | 
    
         
            +
                    self.pack_factor = 32 // num_bits
         
     | 
| 
      
 73 
     | 
    
         
            +
                    self.strategy = strategy
         
     | 
| 
      
 74 
     | 
    
         
            +
                    self.symmetric = symmetric
         
     | 
| 
      
 75 
     | 
    
         
            +
                    self.group_size = -1 if group_size is None else group_size
         
     | 
| 
      
 76 
     | 
    
         
            +
                    self.has_g_idx = actorder == ActivationOrdering.GROUP
         
     | 
| 
      
 77 
     | 
    
         
            +
             
     | 
| 
      
 78 
     | 
    
         
            +
                    if self.group_size == -1 and self.strategy != "channel":
         
     | 
| 
      
 79 
     | 
    
         
            +
                        raise ValueError("Marlin kernels require group quantization or "
         
     | 
| 
      
 80 
     | 
    
         
            +
                                         "channelwise quantization, but found no group "
         
     | 
| 
      
 81 
     | 
    
         
            +
                                         "size and strategy is not channelwise.")
         
     | 
| 
      
 82 
     | 
    
         
            +
             
     | 
| 
      
 83 
     | 
    
         
            +
                    if num_bits not in WNA16_SUPPORTED_TYPES_MAP:
         
     | 
| 
      
 84 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 85 
     | 
    
         
            +
                            f"Unsupported num_bits = {num_bits}. "
         
     | 
| 
      
 86 
     | 
    
         
            +
                            f"Supported num_bits = {WNA16_SUPPORTED_TYPES_MAP.keys()}")
         
     | 
| 
      
 87 
     | 
    
         
            +
             
     | 
| 
      
 88 
     | 
    
         
            +
                    self.quant_type = (WNA16_ZP_SUPPORTED_TYPES_MAP[num_bits]
         
     | 
| 
      
 89 
     | 
    
         
            +
                                       if not self.symmetric else
         
     | 
| 
      
 90 
     | 
    
         
            +
                                       WNA16_SUPPORTED_TYPES_MAP[num_bits])
         
     | 
| 
      
 91 
     | 
    
         
            +
             
     | 
| 
      
 92 
     | 
    
         
            +
                @classmethod
         
     | 
| 
      
 93 
     | 
    
         
            +
                def get_min_capability(cls) -> int:
         
     | 
| 
      
 94 
     | 
    
         
            +
                    # ampere and up
         
     | 
| 
      
 95 
     | 
    
         
            +
                    return 80
         
     | 
| 
      
 96 
     | 
    
         
            +
             
     | 
| 
      
 97 
     | 
    
         
            +
                def create_weights(self, layer: torch.nn.Module, output_size: int,
         
     | 
| 
      
 98 
     | 
    
         
            +
                                   input_size: int, output_partition_sizes: list[int],
         
     | 
| 
      
 99 
     | 
    
         
            +
                                   input_size_per_partition: int,
         
     | 
| 
      
 100 
     | 
    
         
            +
                                   params_dtype: torch.dtype, weight_loader: Callable,
         
     | 
| 
      
 101 
     | 
    
         
            +
                                   **kwargs):
         
     | 
| 
      
 102 
     | 
    
         
            +
             
     | 
| 
      
 103 
     | 
    
         
            +
                    output_size_per_partition = sum(output_partition_sizes)
         
     | 
| 
      
 104 
     | 
    
         
            +
             
     | 
| 
      
 105 
     | 
    
         
            +
                    self.kernel_config = MarlinLinearLayerConfig(
         
     | 
| 
      
 106 
     | 
    
         
            +
                        full_weight_shape=(input_size, output_size),
         
     | 
| 
      
 107 
     | 
    
         
            +
                        partition_weight_shape=(
         
     | 
| 
      
 108 
     | 
    
         
            +
                            input_size_per_partition,
         
     | 
| 
      
 109 
     | 
    
         
            +
                            output_size_per_partition,
         
     | 
| 
      
 110 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 111 
     | 
    
         
            +
                        weight_type=self.quant_type,
         
     | 
| 
      
 112 
     | 
    
         
            +
                        act_type=params_dtype,
         
     | 
| 
      
 113 
     | 
    
         
            +
                        group_size=self.group_size,
         
     | 
| 
      
 114 
     | 
    
         
            +
                        zero_points=not self.symmetric,
         
     | 
| 
      
 115 
     | 
    
         
            +
                        has_g_idx=self.has_g_idx
         
     | 
| 
      
 116 
     | 
    
         
            +
                    )
         
     | 
| 
      
 117 
     | 
    
         
            +
             
     | 
| 
      
 118 
     | 
    
         
            +
                    # If group_size is -1, we are in channelwise case.
         
     | 
| 
      
 119 
     | 
    
         
            +
                    group_size = self.group_size if self.group_size != -1 else input_size
         
     | 
| 
      
 120 
     | 
    
         
            +
                    row_parallel = (input_size != input_size_per_partition)
         
     | 
| 
      
 121 
     | 
    
         
            +
                    partition_scales = not marlin_repeat_scales_on_all_ranks(
         
     | 
| 
      
 122 
     | 
    
         
            +
                        self.has_g_idx, self.group_size, row_parallel)
         
     | 
| 
      
 123 
     | 
    
         
            +
             
     | 
| 
      
 124 
     | 
    
         
            +
                    scales_and_zp_size = input_size // group_size
         
     | 
| 
      
 125 
     | 
    
         
            +
             
     | 
| 
      
 126 
     | 
    
         
            +
                    if partition_scales:
         
     | 
| 
      
 127 
     | 
    
         
            +
                        assert input_size_per_partition % group_size == 0
         
     | 
| 
      
 128 
     | 
    
         
            +
                        scales_and_zp_size = input_size_per_partition // group_size
         
     | 
| 
      
 129 
     | 
    
         
            +
             
     | 
| 
      
 130 
     | 
    
         
            +
                    weight = PackedvLLMParameter(input_dim=1,
         
     | 
| 
      
 131 
     | 
    
         
            +
                                                 output_dim=0,
         
     | 
| 
      
 132 
     | 
    
         
            +
                                                 weight_loader=weight_loader,
         
     | 
| 
      
 133 
     | 
    
         
            +
                                                 packed_factor=self.pack_factor,
         
     | 
| 
      
 134 
     | 
    
         
            +
                                                 packed_dim=1,
         
     | 
| 
      
 135 
     | 
    
         
            +
                                                 data=torch.empty(
         
     | 
| 
      
 136 
     | 
    
         
            +
                                                     output_size_per_partition,
         
     | 
| 
      
 137 
     | 
    
         
            +
                                                     input_size_per_partition //
         
     | 
| 
      
 138 
     | 
    
         
            +
                                                     self.pack_factor,
         
     | 
| 
      
 139 
     | 
    
         
            +
                                                     dtype=torch.int32,
         
     | 
| 
      
 140 
     | 
    
         
            +
                                                 ))
         
     | 
| 
      
 141 
     | 
    
         
            +
             
     | 
| 
      
 142 
     | 
    
         
            +
                    weight_scale_args = {
         
     | 
| 
      
 143 
     | 
    
         
            +
                        "weight_loader":
         
     | 
| 
      
 144 
     | 
    
         
            +
                        weight_loader,
         
     | 
| 
      
 145 
     | 
    
         
            +
                        "data":
         
     | 
| 
      
 146 
     | 
    
         
            +
                        torch.empty(
         
     | 
| 
      
 147 
     | 
    
         
            +
                            output_size_per_partition,
         
     | 
| 
      
 148 
     | 
    
         
            +
                            scales_and_zp_size,
         
     | 
| 
      
 149 
     | 
    
         
            +
                            dtype=params_dtype,
         
     | 
| 
      
 150 
     | 
    
         
            +
                        )
         
     | 
| 
      
 151 
     | 
    
         
            +
                    }
         
     | 
| 
      
 152 
     | 
    
         
            +
             
     | 
| 
      
 153 
     | 
    
         
            +
                    zeros_args = {
         
     | 
| 
      
 154 
     | 
    
         
            +
                        "weight_loader":
         
     | 
| 
      
 155 
     | 
    
         
            +
                        weight_loader,
         
     | 
| 
      
 156 
     | 
    
         
            +
                        "data":
         
     | 
| 
      
 157 
     | 
    
         
            +
                        torch.zeros(
         
     | 
| 
      
 158 
     | 
    
         
            +
                            output_size_per_partition // self.pack_factor,
         
     | 
| 
      
 159 
     | 
    
         
            +
                            scales_and_zp_size,
         
     | 
| 
      
 160 
     | 
    
         
            +
                            dtype=torch.int32,
         
     | 
| 
      
 161 
     | 
    
         
            +
                        )
         
     | 
| 
      
 162 
     | 
    
         
            +
                    }
         
     | 
| 
      
 163 
     | 
    
         
            +
             
     | 
| 
      
 164 
     | 
    
         
            +
                    if not partition_scales:
         
     | 
| 
      
 165 
     | 
    
         
            +
                        weight_scale = ChannelQuantScaleParameter(output_dim=0,
         
     | 
| 
      
 166 
     | 
    
         
            +
                                                                  **weight_scale_args)
         
     | 
| 
      
 167 
     | 
    
         
            +
             
     | 
| 
      
 168 
     | 
    
         
            +
                        if not self.symmetric:
         
     | 
| 
      
 169 
     | 
    
         
            +
                            qzeros = PackedColumnParameter(output_dim=0,
         
     | 
| 
      
 170 
     | 
    
         
            +
                                                           packed_dim=0,
         
     | 
| 
      
 171 
     | 
    
         
            +
                                                           packed_factor=self.pack_factor,
         
     | 
| 
      
 172 
     | 
    
         
            +
                                                           **zeros_args)
         
     | 
| 
      
 173 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 174 
     | 
    
         
            +
                        weight_scale = GroupQuantScaleParameter(output_dim=0,
         
     | 
| 
      
 175 
     | 
    
         
            +
                                                                input_dim=1,
         
     | 
| 
      
 176 
     | 
    
         
            +
                                                                **weight_scale_args)
         
     | 
| 
      
 177 
     | 
    
         
            +
                        if not self.symmetric:
         
     | 
| 
      
 178 
     | 
    
         
            +
                            qzeros = PackedvLLMParameter(input_dim=1,
         
     | 
| 
      
 179 
     | 
    
         
            +
                                                         output_dim=0,
         
     | 
| 
      
 180 
     | 
    
         
            +
                                                         packed_dim=0,
         
     | 
| 
      
 181 
     | 
    
         
            +
                                                         packed_factor=self.pack_factor,
         
     | 
| 
      
 182 
     | 
    
         
            +
                                                         **zeros_args)
         
     | 
| 
      
 183 
     | 
    
         
            +
             
     | 
| 
      
 184 
     | 
    
         
            +
                    # A 2D array defining the original shape of the weights
         
     | 
| 
      
 185 
     | 
    
         
            +
                    # before packing
         
     | 
| 
      
 186 
     | 
    
         
            +
                    weight_shape = BasevLLMParameter(data=torch.empty(2,
         
     | 
| 
      
 187 
     | 
    
         
            +
                                                                      dtype=torch.int64),
         
     | 
| 
      
 188 
     | 
    
         
            +
                                                     weight_loader=weight_loader)
         
     | 
| 
      
 189 
     | 
    
         
            +
             
     | 
| 
      
 190 
     | 
    
         
            +
                    layer.register_parameter("weight_packed", weight)
         
     | 
| 
      
 191 
     | 
    
         
            +
                    layer.register_parameter("weight_scale", weight_scale)
         
     | 
| 
      
 192 
     | 
    
         
            +
                    layer.register_parameter("weight_shape", weight_shape)
         
     | 
| 
      
 193 
     | 
    
         
            +
             
     | 
| 
      
 194 
     | 
    
         
            +
                    if not self.symmetric:
         
     | 
| 
      
 195 
     | 
    
         
            +
                        layer.register_parameter("weight_zero_point", qzeros)
         
     | 
| 
      
 196 
     | 
    
         
            +
             
     | 
| 
      
 197 
     | 
    
         
            +
                    # group index (for activation reordering)
         
     | 
| 
      
 198 
     | 
    
         
            +
                    if self.has_g_idx:
         
     | 
| 
      
 199 
     | 
    
         
            +
                        weight_g_idx = RowvLLMParameter(data=torch.empty(
         
     | 
| 
      
 200 
     | 
    
         
            +
                            input_size_per_partition,
         
     | 
| 
      
 201 
     | 
    
         
            +
                            dtype=torch.int32,
         
     | 
| 
      
 202 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 203 
     | 
    
         
            +
                                                        input_dim=0,
         
     | 
| 
      
 204 
     | 
    
         
            +
                                                        weight_loader=weight_loader)
         
     | 
| 
      
 205 
     | 
    
         
            +
                        layer.register_parameter("weight_g_idx", weight_g_idx)
         
     | 
| 
      
 206 
     | 
    
         
            +
             
     | 
| 
      
 207 
     | 
    
         
            +
                # Checkpoints are serialized in compressed-tensors format, which is
         
     | 
| 
      
 208 
     | 
    
         
            +
                # different from the format the kernel may want. Handle repacking here.
         
     | 
| 
      
 209 
     | 
    
         
            +
                def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
         
     | 
| 
      
 210 
     | 
    
         
            +
                    # Default names since marlin requires empty parameters for these,
         
     | 
| 
      
 211 
     | 
    
         
            +
                    # TODO: remove this requirement from marlin (allow optional tensors)
         
     | 
| 
      
 212 
     | 
    
         
            +
                    self.w_q_name = "weight_packed"
         
     | 
| 
      
 213 
     | 
    
         
            +
                    self.w_s_name = "weight_scale"
         
     | 
| 
      
 214 
     | 
    
         
            +
                    self.w_zp_name = "weight_zero_point"
         
     | 
| 
      
 215 
     | 
    
         
            +
                    self.w_gidx_name = "weight_g_idx"
         
     | 
| 
      
 216 
     | 
    
         
            +
             
     | 
| 
      
 217 
     | 
    
         
            +
                    device = getattr(layer, self.w_q_name).device
         
     | 
| 
      
 218 
     | 
    
         
            +
                    c = self.kernel_config
         
     | 
| 
      
 219 
     | 
    
         
            +
             
     | 
| 
      
 220 
     | 
    
         
            +
                    check_marlin_supports_shape(
         
     | 
| 
      
 221 
     | 
    
         
            +
                        c.partition_weight_shape[1],  # out_features
         
     | 
| 
      
 222 
     | 
    
         
            +
                        c.partition_weight_shape[0],  # in_features
         
     | 
| 
      
 223 
     | 
    
         
            +
                        c.full_weight_shape[0],  # in_features
         
     | 
| 
      
 224 
     | 
    
         
            +
                        c.group_size,
         
     | 
| 
      
 225 
     | 
    
         
            +
                    )
         
     | 
| 
      
 226 
     | 
    
         
            +
             
     | 
| 
      
 227 
     | 
    
         
            +
                    row_parallel = c.partition_weight_shape[0] != c.full_weight_shape[0]
         
     | 
| 
      
 228 
     | 
    
         
            +
                    self.is_k_full = marlin_is_k_full(c.has_g_idx, row_parallel)
         
     | 
| 
      
 229 
     | 
    
         
            +
             
     | 
| 
      
 230 
     | 
    
         
            +
                    # Allocate marlin workspace.
         
     | 
| 
      
 231 
     | 
    
         
            +
                    self.workspace = marlin_make_workspace(device)
         
     | 
| 
      
 232 
     | 
    
         
            +
             
     | 
| 
      
 233 
     | 
    
         
            +
                    def _transform_param(
         
     | 
| 
      
 234 
     | 
    
         
            +
                        layer: torch.nn.Module, name: Optional[str], fn: Callable
         
     | 
| 
      
 235 
     | 
    
         
            +
                    ) -> None:
         
     | 
| 
      
 236 
     | 
    
         
            +
                        if name is not None and getattr(layer, name, None) is not None:
         
     | 
| 
      
 237 
     | 
    
         
            +
             
     | 
| 
      
 238 
     | 
    
         
            +
                            old_param = getattr(layer, name)
         
     | 
| 
      
 239 
     | 
    
         
            +
                            new_param = fn(old_param)
         
     | 
| 
      
 240 
     | 
    
         
            +
                            # replace the parameter with torch.nn.Parameter for TorchDynamo
         
     | 
| 
      
 241 
     | 
    
         
            +
                            # compatibility
         
     | 
| 
      
 242 
     | 
    
         
            +
                            replace_parameter(
         
     | 
| 
      
 243 
     | 
    
         
            +
                                layer, name, torch.nn.Parameter(new_param.data, requires_grad=False)
         
     | 
| 
      
 244 
     | 
    
         
            +
                            )
         
     | 
| 
      
 245 
     | 
    
         
            +
             
     | 
| 
      
 246 
     | 
    
         
            +
                    def transform_w_q(x):
         
     | 
| 
      
 247 
     | 
    
         
            +
                        assert isinstance(x, BasevLLMParameter)
         
     | 
| 
      
 248 
     | 
    
         
            +
                        permute_param_layout_(x, input_dim=0, output_dim=1, packed_dim=0)
         
     | 
| 
      
 249 
     | 
    
         
            +
                        x.data = gptq_marlin_repack(
         
     | 
| 
      
 250 
     | 
    
         
            +
                            x.data.contiguous(),
         
     | 
| 
      
 251 
     | 
    
         
            +
                            perm=layer.g_idx_sort_indices,
         
     | 
| 
      
 252 
     | 
    
         
            +
                            size_k=c.partition_weight_shape[0],
         
     | 
| 
      
 253 
     | 
    
         
            +
                            size_n=c.partition_weight_shape[1],
         
     | 
| 
      
 254 
     | 
    
         
            +
                            num_bits=c.weight_type.size_bits,
         
     | 
| 
      
 255 
     | 
    
         
            +
                        )
         
     | 
| 
      
 256 
     | 
    
         
            +
                        return x
         
     | 
| 
      
 257 
     | 
    
         
            +
             
     | 
| 
      
 258 
     | 
    
         
            +
                    def transform_w_s(x):
         
     | 
| 
      
 259 
     | 
    
         
            +
                        assert isinstance(x, BasevLLMParameter)
         
     | 
| 
      
 260 
     | 
    
         
            +
                        permute_param_layout_(x, input_dim=0, output_dim=1)
         
     | 
| 
      
 261 
     | 
    
         
            +
                        x.data = marlin_permute_scales(
         
     | 
| 
      
 262 
     | 
    
         
            +
                            x.data.contiguous(),
         
     | 
| 
      
 263 
     | 
    
         
            +
                            size_k=c.partition_weight_shape[0],
         
     | 
| 
      
 264 
     | 
    
         
            +
                            size_n=c.partition_weight_shape[1],
         
     | 
| 
      
 265 
     | 
    
         
            +
                            group_size=c.group_size,
         
     | 
| 
      
 266 
     | 
    
         
            +
                        )
         
     | 
| 
      
 267 
     | 
    
         
            +
                        return x
         
     | 
| 
      
 268 
     | 
    
         
            +
             
     | 
| 
      
 269 
     | 
    
         
            +
                    if c.has_g_idx:
         
     | 
| 
      
 270 
     | 
    
         
            +
                        g_idx, g_idx_sort_indices = marlin_sort_g_idx(
         
     | 
| 
      
 271 
     | 
    
         
            +
                            getattr(layer, self.w_gidx_name)
         
     | 
| 
      
 272 
     | 
    
         
            +
                        )
         
     | 
| 
      
 273 
     | 
    
         
            +
                        _transform_param(layer, self.w_gidx_name, lambda _: g_idx)
         
     | 
| 
      
 274 
     | 
    
         
            +
                        layer.g_idx_sort_indices = g_idx_sort_indices
         
     | 
| 
      
 275 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 276 
     | 
    
         
            +
                        setattr(layer, self.w_gidx_name, marlin_make_empty_g_idx(device))
         
     | 
| 
      
 277 
     | 
    
         
            +
                        layer.g_idx_sort_indices = marlin_make_empty_g_idx(device)
         
     | 
| 
      
 278 
     | 
    
         
            +
             
     | 
| 
      
 279 
     | 
    
         
            +
                    if c.zero_points:
         
     | 
| 
      
 280 
     | 
    
         
            +
                        grouped_k = (
         
     | 
| 
      
 281 
     | 
    
         
            +
                            c.partition_weight_shape[0] // c.group_size if c.group_size != -1 else 1
         
     | 
| 
      
 282 
     | 
    
         
            +
                        )
         
     | 
| 
      
 283 
     | 
    
         
            +
                        _transform_param(
         
     | 
| 
      
 284 
     | 
    
         
            +
                            layer,
         
     | 
| 
      
 285 
     | 
    
         
            +
                            self.w_zp_name,
         
     | 
| 
      
 286 
     | 
    
         
            +
                            lambda x: marlin_zero_points(
         
     | 
| 
      
 287 
     | 
    
         
            +
                                unpack_cols(
         
     | 
| 
      
 288 
     | 
    
         
            +
                                    x.t(),
         
     | 
| 
      
 289 
     | 
    
         
            +
                                    c.weight_type.size_bits,
         
     | 
| 
      
 290 
     | 
    
         
            +
                                    grouped_k,
         
     | 
| 
      
 291 
     | 
    
         
            +
                                    c.partition_weight_shape[1],
         
     | 
| 
      
 292 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 293 
     | 
    
         
            +
                                size_k=grouped_k,
         
     | 
| 
      
 294 
     | 
    
         
            +
                                size_n=c.partition_weight_shape[1],
         
     | 
| 
      
 295 
     | 
    
         
            +
                                num_bits=c.weight_type.size_bits,
         
     | 
| 
      
 296 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 297 
     | 
    
         
            +
                        )
         
     | 
| 
      
 298 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 299 
     | 
    
         
            +
                        setattr(layer, self.w_zp_name, marlin_make_empty_g_idx(device))
         
     | 
| 
      
 300 
     | 
    
         
            +
                    _transform_param(layer, self.w_q_name, transform_w_q)
         
     | 
| 
      
 301 
     | 
    
         
            +
                    _transform_param(layer, self.w_s_name, transform_w_s)
         
     | 
| 
      
 302 
     | 
    
         
            +
             
     | 
| 
      
 303 
     | 
    
         
            +
                def apply_weights(self, layer: torch.nn.Module, x: torch.Tensor,
         
     | 
| 
      
 304 
     | 
    
         
            +
                                  bias: Optional[torch.Tensor]) -> torch.Tensor:
         
     | 
| 
      
 305 
     | 
    
         
            +
                    c = self.kernel_config
         
     | 
| 
      
 306 
     | 
    
         
            +
             
     | 
| 
      
 307 
     | 
    
         
            +
                    def _get_weight_params(
         
     | 
| 
      
 308 
     | 
    
         
            +
                        layer: torch.nn.Module,
         
     | 
| 
      
 309 
     | 
    
         
            +
                    ) -> tuple[
         
     | 
| 
      
 310 
     | 
    
         
            +
                        torch.Tensor,  # w_q
         
     | 
| 
      
 311 
     | 
    
         
            +
                        torch.Tensor,  # w_s
         
     | 
| 
      
 312 
     | 
    
         
            +
                        Optional[torch.Tensor],  # w_zp,
         
     | 
| 
      
 313 
     | 
    
         
            +
                        Optional[torch.Tensor],  # w_gidx
         
     | 
| 
      
 314 
     | 
    
         
            +
                    ]:
         
     | 
| 
      
 315 
     | 
    
         
            +
                        return (
         
     | 
| 
      
 316 
     | 
    
         
            +
                            getattr(layer, self.w_q_name),
         
     | 
| 
      
 317 
     | 
    
         
            +
                            getattr(layer, self.w_s_name),
         
     | 
| 
      
 318 
     | 
    
         
            +
                            getattr(layer, self.w_zp_name or "", None),
         
     | 
| 
      
 319 
     | 
    
         
            +
                            getattr(layer, self.w_gidx_name or "", None),
         
     | 
| 
      
 320 
     | 
    
         
            +
                        )
         
     | 
| 
      
 321 
     | 
    
         
            +
             
     | 
| 
      
 322 
     | 
    
         
            +
                    w_q, w_s, w_zp, w_gidx = _get_weight_params(layer)
         
     | 
| 
      
 323 
     | 
    
         
            +
             
     | 
| 
      
 324 
     | 
    
         
            +
                    # `process_weights_after_loading` will ensure w_zp and w_gidx are not
         
     | 
| 
      
 325 
     | 
    
         
            +
                    #  None for marlin
         
     | 
| 
      
 326 
     | 
    
         
            +
                    return apply_gptq_marlin_linear(
         
     | 
| 
      
 327 
     | 
    
         
            +
                        input=x,
         
     | 
| 
      
 328 
     | 
    
         
            +
                        weight=w_q,
         
     | 
| 
      
 329 
     | 
    
         
            +
                        weight_scale=w_s,
         
     | 
| 
      
 330 
     | 
    
         
            +
                        weight_zp=w_zp,  # type: ignore
         
     | 
| 
      
 331 
     | 
    
         
            +
                        g_idx=w_gidx,  # type: ignore
         
     | 
| 
      
 332 
     | 
    
         
            +
                        g_idx_sort_indices=layer.g_idx_sort_indices,
         
     | 
| 
      
 333 
     | 
    
         
            +
                        workspace=self.workspace,
         
     | 
| 
      
 334 
     | 
    
         
            +
                        wtype=c.weight_type,
         
     | 
| 
      
 335 
     | 
    
         
            +
                        input_size_per_partition=c.partition_weight_shape[0],
         
     | 
| 
      
 336 
     | 
    
         
            +
                        output_size_per_partition=c.partition_weight_shape[1],
         
     | 
| 
      
 337 
     | 
    
         
            +
                        is_k_full=self.is_k_full,
         
     | 
| 
      
 338 
     | 
    
         
            +
                        bias=bias,
         
     | 
| 
      
 339 
     | 
    
         
            +
                    )
         
     | 
| 
         @@ -31,8 +31,9 @@ except ImportError: 
     | 
|
| 
       31 
31 
     | 
    
         
             
            from sglang.srt.distributed import get_tensor_model_parallel_world_size
         
     | 
| 
       32 
32 
     | 
    
         
             
            from sglang.srt.layers.amx_utils import _amx_process_weight_after_loading
         
     | 
| 
       33 
33 
     | 
    
         
             
            from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
         
     | 
| 
      
 34 
     | 
    
         
            +
            from sglang.srt.layers.moe.moe_runner.deep_gemm import DeepGemmMoeQuantInfo
         
     | 
| 
       34 
35 
     | 
    
         
             
            from sglang.srt.layers.moe.moe_runner.triton import TritonMoeQuantInfo
         
     | 
| 
       35 
     | 
    
         
            -
            from sglang.srt.layers.moe. 
     | 
| 
      
 36 
     | 
    
         
            +
            from sglang.srt.layers.moe.utils import get_moe_runner_backend
         
     | 
| 
       36 
37 
     | 
    
         
             
            from sglang.srt.layers.parameter import (
         
     | 
| 
       37 
38 
     | 
    
         
             
                BlockQuantScaleParameter,
         
     | 
| 
       38 
39 
     | 
    
         
             
                ModelWeightParameter,
         
     | 
| 
         @@ -525,12 +526,6 @@ class Fp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       525 
526 
     | 
    
         
             
                    self.quant_config = quant_config
         
     | 
| 
       526 
527 
     | 
    
         
             
                    self.block_quant = self.quant_config.weight_block_size is not None
         
     | 
| 
       527 
528 
     | 
    
         
             
                    self.cutlass_fp8_supported = cutlass_fp8_supported()
         
     | 
| 
       528 
     | 
    
         
            -
                    self.use_cutlass_fused_experts_fp8 = (
         
     | 
| 
       529 
     | 
    
         
            -
                        get_bool_env_var("SGLANG_CUTLASS_MOE")
         
     | 
| 
       530 
     | 
    
         
            -
                        and self.cutlass_fp8_supported
         
     | 
| 
       531 
     | 
    
         
            -
                        and self.block_quant
         
     | 
| 
       532 
     | 
    
         
            -
                        and (is_sm100_supported() or is_sm90_supported())
         
     | 
| 
       533 
     | 
    
         
            -
                    )
         
     | 
| 
       534 
529 
     | 
    
         | 
| 
       535 
530 
     | 
    
         
             
                def create_weights(
         
     | 
| 
       536 
531 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -638,58 +633,8 @@ class Fp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       638 
633 
     | 
    
         
             
                        layer.register_parameter("w13_weight_scale_inv", w13_weight_scale)
         
     | 
| 
       639 
634 
     | 
    
         
             
                        layer.register_parameter("w2_weight_scale_inv", w2_weight_scale)
         
     | 
| 
       640 
635 
     | 
    
         
             
                        assert self.quant_config.activation_scheme == "dynamic"
         
     | 
| 
       641 
     | 
    
         
            -
                        if self. 
     | 
| 
       642 
     | 
    
         
            -
                            self. 
     | 
| 
       643 
     | 
    
         
            -
                                (num_experts,),
         
     | 
| 
       644 
     | 
    
         
            -
                                hidden_size,
         
     | 
| 
       645 
     | 
    
         
            -
                                device=w13_weight.device,
         
     | 
| 
       646 
     | 
    
         
            -
                                dtype=torch.int64,
         
     | 
| 
       647 
     | 
    
         
            -
                            )
         
     | 
| 
       648 
     | 
    
         
            -
                            self.c_strides1 = torch.full(
         
     | 
| 
       649 
     | 
    
         
            -
                                (num_experts,),
         
     | 
| 
       650 
     | 
    
         
            -
                                2 * intermediate_size_per_partition,
         
     | 
| 
       651 
     | 
    
         
            -
                                device=w13_weight.device,
         
     | 
| 
       652 
     | 
    
         
            -
                                dtype=torch.int64,
         
     | 
| 
       653 
     | 
    
         
            -
                            )
         
     | 
| 
       654 
     | 
    
         
            -
                            self.ab_strides2 = torch.full(
         
     | 
| 
       655 
     | 
    
         
            -
                                (num_experts,),
         
     | 
| 
       656 
     | 
    
         
            -
                                intermediate_size_per_partition,
         
     | 
| 
       657 
     | 
    
         
            -
                                device=w2_weight.device,
         
     | 
| 
       658 
     | 
    
         
            -
                                dtype=torch.int64,
         
     | 
| 
       659 
     | 
    
         
            -
                            )
         
     | 
| 
       660 
     | 
    
         
            -
                            self.c_strides2 = torch.full(
         
     | 
| 
       661 
     | 
    
         
            -
                                (num_experts,),
         
     | 
| 
       662 
     | 
    
         
            -
                                hidden_size,
         
     | 
| 
       663 
     | 
    
         
            -
                                device=w2_weight.device,
         
     | 
| 
       664 
     | 
    
         
            -
                                dtype=torch.int64,
         
     | 
| 
       665 
     | 
    
         
            -
                            )
         
     | 
| 
       666 
     | 
    
         
            -
                            self.workspace = torch.empty(
         
     | 
| 
       667 
     | 
    
         
            -
                                90000, device=w13_weight.device, dtype=torch.uint8
         
     | 
| 
       668 
     | 
    
         
            -
                            )
         
     | 
| 
       669 
     | 
    
         
            -
                            self.a_ptr = torch.empty(
         
     | 
| 
       670 
     | 
    
         
            -
                                num_experts, device=w13_weight.device, dtype=torch.int64
         
     | 
| 
       671 
     | 
    
         
            -
                            )
         
     | 
| 
       672 
     | 
    
         
            -
                            self.b_ptr = torch.empty(
         
     | 
| 
       673 
     | 
    
         
            -
                                num_experts, device=w13_weight.device, dtype=torch.int64
         
     | 
| 
       674 
     | 
    
         
            -
                            )
         
     | 
| 
       675 
     | 
    
         
            -
                            self.out_ptr = torch.empty(
         
     | 
| 
       676 
     | 
    
         
            -
                                num_experts, device=w13_weight.device, dtype=torch.int64
         
     | 
| 
       677 
     | 
    
         
            -
                            )
         
     | 
| 
       678 
     | 
    
         
            -
                            self.a_scales_ptr = torch.empty(
         
     | 
| 
       679 
     | 
    
         
            -
                                num_experts, device=w13_weight.device, dtype=torch.int64
         
     | 
| 
       680 
     | 
    
         
            -
                            )
         
     | 
| 
       681 
     | 
    
         
            -
                            self.b_scales_ptr = torch.empty(
         
     | 
| 
       682 
     | 
    
         
            -
                                num_experts, device=w13_weight.device, dtype=torch.int64
         
     | 
| 
       683 
     | 
    
         
            -
                            )
         
     | 
| 
       684 
     | 
    
         
            -
                            self.expert_offsets = torch.empty(
         
     | 
| 
       685 
     | 
    
         
            -
                                num_experts + 1, device=w13_weight.device, dtype=torch.int32
         
     | 
| 
       686 
     | 
    
         
            -
                            )
         
     | 
| 
       687 
     | 
    
         
            -
                            self.problem_sizes1 = torch.empty(
         
     | 
| 
       688 
     | 
    
         
            -
                                num_experts, 3, device=w13_weight.device, dtype=torch.int32
         
     | 
| 
       689 
     | 
    
         
            -
                            )
         
     | 
| 
       690 
     | 
    
         
            -
                            self.problem_sizes2 = torch.empty(
         
     | 
| 
       691 
     | 
    
         
            -
                                num_experts, 3, device=w13_weight.device, dtype=torch.int32
         
     | 
| 
       692 
     | 
    
         
            -
                            )
         
     | 
| 
      
 636 
     | 
    
         
            +
                        if self._should_use_cutlass_fused_experts():
         
     | 
| 
      
 637 
     | 
    
         
            +
                            self._ensure_cutlass_buffers_initialized(layer)
         
     | 
| 
       693 
638 
     | 
    
         | 
| 
       694 
639 
     | 
    
         
             
                    else:
         
     | 
| 
       695 
640 
     | 
    
         
             
                        # Allocate 2 scales for w1 and w3 respectively.
         
     | 
| 
         @@ -1006,8 +951,29 @@ class Fp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1006 
951 
     | 
    
         
             
                def create_moe_runner(
         
     | 
| 
       1007 
952 
     | 
    
         
             
                    self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
         
     | 
| 
       1008 
953 
     | 
    
         
             
                ):
         
     | 
| 
      
 954 
     | 
    
         
            +
             
     | 
| 
      
 955 
     | 
    
         
            +
                    from sglang.srt.layers import deep_gemm_wrapper
         
     | 
| 
      
 956 
     | 
    
         
            +
                    from sglang.srt.layers.moe.utils import (
         
     | 
| 
      
 957 
     | 
    
         
            +
                        get_moe_a2a_backend,
         
     | 
| 
      
 958 
     | 
    
         
            +
                        get_moe_runner_backend,
         
     | 
| 
      
 959 
     | 
    
         
            +
                    )
         
     | 
| 
      
 960 
     | 
    
         
            +
             
     | 
| 
       1009 
961 
     | 
    
         
             
                    self.moe_runner_config = moe_runner_config
         
     | 
| 
       1010 
     | 
    
         
            -
                     
     | 
| 
      
 962 
     | 
    
         
            +
                    moe_runner_backend = get_moe_runner_backend()
         
     | 
| 
      
 963 
     | 
    
         
            +
             
     | 
| 
      
 964 
     | 
    
         
            +
                    if moe_runner_backend.is_auto():
         
     | 
| 
      
 965 
     | 
    
         
            +
                        if (
         
     | 
| 
      
 966 
     | 
    
         
            +
                            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
         
     | 
| 
      
 967 
     | 
    
         
            +
                            and get_moe_a2a_backend().is_deepep()
         
     | 
| 
      
 968 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 969 
     | 
    
         
            +
                            moe_runner_backend = MoeRunnerBackend.DEEP_GEMM
         
     | 
| 
      
 970 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 971 
     | 
    
         
            +
                            moe_runner_backend = MoeRunnerBackend.TRITON
         
     | 
| 
      
 972 
     | 
    
         
            +
                    if moe_runner_backend.is_deep_gemm() or moe_runner_backend.is_triton():
         
     | 
| 
      
 973 
     | 
    
         
            +
                        self.runner = MoeRunner(moe_runner_backend, moe_runner_config)
         
     | 
| 
      
 974 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 975 
     | 
    
         
            +
                        # TODO(cwan): refactor other backends
         
     | 
| 
      
 976 
     | 
    
         
            +
                        pass
         
     | 
| 
       1011 
977 
     | 
    
         | 
| 
       1012 
978 
     | 
    
         
             
                def apply(
         
     | 
| 
       1013 
979 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -1018,13 +984,12 @@ class Fp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1018 
984 
     | 
    
         
             
                    from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
         
     | 
| 
       1019 
985 
     | 
    
         | 
| 
       1020 
986 
     | 
    
         
             
                    x = dispatch_output.hidden_states
         
     | 
| 
       1021 
     | 
    
         
            -
                    topk_output = dispatch_output.topk_output
         
     | 
| 
       1022 
987 
     | 
    
         
             
                    moe_runner_config = self.moe_runner_config
         
     | 
| 
       1023 
988 
     | 
    
         | 
| 
       1024 
989 
     | 
    
         
             
                    if use_intel_amx_backend(layer):
         
     | 
| 
       1025 
990 
     | 
    
         
             
                        from sglang.srt.layers.moe.topk import apply_topk_weights_cpu
         
     | 
| 
       1026 
991 
     | 
    
         | 
| 
       1027 
     | 
    
         
            -
                        topk_weights, topk_ids, _ = topk_output
         
     | 
| 
      
 992 
     | 
    
         
            +
                        topk_weights, topk_ids, _ = dispatch_output.topk_output
         
     | 
| 
       1028 
993 
     | 
    
         
             
                        x, topk_weights = apply_topk_weights_cpu(
         
     | 
| 
       1029 
994 
     | 
    
         
             
                            moe_runner_config.apply_router_weight_on_input, topk_weights, x
         
     | 
| 
       1030 
995 
     | 
    
         
             
                        )
         
     | 
| 
         @@ -1051,17 +1016,17 @@ class Fp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1051 
1016 
     | 
    
         
             
                        ret = self.maybe_apply_hip_fused_experts(
         
     | 
| 
       1052 
1017 
     | 
    
         
             
                            layer,
         
     | 
| 
       1053 
1018 
     | 
    
         
             
                            x,
         
     | 
| 
       1054 
     | 
    
         
            -
                            topk_output,
         
     | 
| 
      
 1019 
     | 
    
         
            +
                            dispatch_output.topk_output,
         
     | 
| 
       1055 
1020 
     | 
    
         
             
                            moe_runner_config.activation,
         
     | 
| 
       1056 
1021 
     | 
    
         
             
                            moe_runner_config.no_combine,
         
     | 
| 
       1057 
1022 
     | 
    
         
             
                        )
         
     | 
| 
       1058 
1023 
     | 
    
         
             
                        if ret is not None:
         
     | 
| 
       1059 
1024 
     | 
    
         
             
                            return StandardCombineInput(hidden_states=ret)
         
     | 
| 
       1060 
1025 
     | 
    
         | 
| 
       1061 
     | 
    
         
            -
                    if self. 
     | 
| 
      
 1026 
     | 
    
         
            +
                    if self._should_use_cutlass_fused_experts():
         
     | 
| 
       1062 
1027 
     | 
    
         
             
                        from sglang.srt.layers.moe.cutlass_moe import cutlass_fused_experts_fp8
         
     | 
| 
       1063 
1028 
     | 
    
         | 
| 
       1064 
     | 
    
         
            -
                        topk_weights, topk_ids, _ = topk_output
         
     | 
| 
      
 1029 
     | 
    
         
            +
                        topk_weights, topk_ids, _ = dispatch_output.topk_output
         
     | 
| 
       1065 
1030 
     | 
    
         
             
                        output = cutlass_fused_experts_fp8(
         
     | 
| 
       1066 
1031 
     | 
    
         
             
                            x,
         
     | 
| 
       1067 
1032 
     | 
    
         
             
                            layer.w13_weight.transpose(1, 2),
         
     | 
| 
         @@ -1087,24 +1052,130 @@ class Fp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1087 
1052 
     | 
    
         
             
                        )
         
     | 
| 
       1088 
1053 
     | 
    
         
             
                        return StandardCombineInput(hidden_states=output)
         
     | 
| 
       1089 
1054 
     | 
    
         | 
| 
       1090 
     | 
    
         
            -
                     
     | 
| 
       1091 
     | 
    
         
            -
             
     | 
| 
       1092 
     | 
    
         
            -
                         
     | 
| 
       1093 
     | 
    
         
            -
                         
     | 
| 
       1094 
     | 
    
         
            -
             
     | 
| 
       1095 
     | 
    
         
            -
             
     | 
| 
       1096 
     | 
    
         
            -
                             
     | 
| 
       1097 
     | 
    
         
            -
                             
     | 
| 
       1098 
     | 
    
         
            -
             
     | 
| 
       1099 
     | 
    
         
            -
                         
     | 
| 
       1100 
     | 
    
         
            -
                             
     | 
| 
       1101 
     | 
    
         
            -
             
     | 
| 
       1102 
     | 
    
         
            -
             
     | 
| 
       1103 
     | 
    
         
            -
             
     | 
| 
       1104 
     | 
    
         
            -
             
     | 
| 
       1105 
     | 
    
         
            -
             
     | 
| 
      
 1055 
     | 
    
         
            +
                    if self.runner.runner_backend.is_deep_gemm():
         
     | 
| 
      
 1056 
     | 
    
         
            +
             
     | 
| 
      
 1057 
     | 
    
         
            +
                        w13_weight = layer.w13_weight
         
     | 
| 
      
 1058 
     | 
    
         
            +
                        w2_weight = layer.w2_weight
         
     | 
| 
      
 1059 
     | 
    
         
            +
             
     | 
| 
      
 1060 
     | 
    
         
            +
                        if self.block_quant:
         
     | 
| 
      
 1061 
     | 
    
         
            +
                            block_shape = self.quant_config.weight_block_size
         
     | 
| 
      
 1062 
     | 
    
         
            +
                            w13_scale = layer.w13_weight_scale_inv
         
     | 
| 
      
 1063 
     | 
    
         
            +
                            w2_scale = layer.w2_weight_scale_inv
         
     | 
| 
      
 1064 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 1065 
     | 
    
         
            +
                            # Convert per-tensor quant to per-block quant by repeating scales for forward_deepgemm
         
     | 
| 
      
 1066 
     | 
    
         
            +
                            scale_block_size = 128
         
     | 
| 
      
 1067 
     | 
    
         
            +
                            block_shape = [scale_block_size, scale_block_size]
         
     | 
| 
      
 1068 
     | 
    
         
            +
                            w13_scale_n = (w13_weight.shape[1] - 1) // scale_block_size + 1
         
     | 
| 
      
 1069 
     | 
    
         
            +
                            w13_scale_k = (w13_weight.shape[2] - 1) // scale_block_size + 1
         
     | 
| 
      
 1070 
     | 
    
         
            +
                            w13_scale = (
         
     | 
| 
      
 1071 
     | 
    
         
            +
                                layer.w13_weight_scale.unsqueeze(1)
         
     | 
| 
      
 1072 
     | 
    
         
            +
                                .repeat_interleave(w13_scale_n, dim=1)
         
     | 
| 
      
 1073 
     | 
    
         
            +
                                .unsqueeze(2)
         
     | 
| 
      
 1074 
     | 
    
         
            +
                                .repeat_interleave(w13_scale_k, dim=2)
         
     | 
| 
      
 1075 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1076 
     | 
    
         
            +
                            w2_scale_n = (w2_weight.shape[1] - 1) // scale_block_size + 1
         
     | 
| 
      
 1077 
     | 
    
         
            +
                            w2_scale_k = (w2_weight.shape[2] - 1) // scale_block_size + 1
         
     | 
| 
      
 1078 
     | 
    
         
            +
                            w2_scale = (
         
     | 
| 
      
 1079 
     | 
    
         
            +
                                layer.w2_weight_scale.unsqueeze(1)
         
     | 
| 
      
 1080 
     | 
    
         
            +
                                .repeat_interleave(w2_scale_n, dim=1)
         
     | 
| 
      
 1081 
     | 
    
         
            +
                                .unsqueeze(2)
         
     | 
| 
      
 1082 
     | 
    
         
            +
                                .repeat_interleave(w2_scale_k, dim=2)
         
     | 
| 
      
 1083 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1084 
     | 
    
         
            +
                        quant_info = DeepGemmMoeQuantInfo(
         
     | 
| 
      
 1085 
     | 
    
         
            +
                            w13_weight=w13_weight,
         
     | 
| 
      
 1086 
     | 
    
         
            +
                            w2_weight=w2_weight,
         
     | 
| 
      
 1087 
     | 
    
         
            +
                            use_fp8=True,
         
     | 
| 
      
 1088 
     | 
    
         
            +
                            w13_scale=w13_scale,
         
     | 
| 
      
 1089 
     | 
    
         
            +
                            w2_scale=w2_scale,
         
     | 
| 
      
 1090 
     | 
    
         
            +
                            block_shape=block_shape,
         
     | 
| 
      
 1091 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1092 
     | 
    
         
            +
                    elif self.runner.runner_backend.is_triton():
         
     | 
| 
      
 1093 
     | 
    
         
            +
                        quant_info = TritonMoeQuantInfo(
         
     | 
| 
      
 1094 
     | 
    
         
            +
                            w13_weight=layer.w13_weight,
         
     | 
| 
      
 1095 
     | 
    
         
            +
                            w2_weight=layer.w2_weight,
         
     | 
| 
      
 1096 
     | 
    
         
            +
                            use_fp8_w8a8=True,
         
     | 
| 
      
 1097 
     | 
    
         
            +
                            w13_scale=(
         
     | 
| 
      
 1098 
     | 
    
         
            +
                                layer.w13_weight_scale_inv
         
     | 
| 
      
 1099 
     | 
    
         
            +
                                if self.block_quant
         
     | 
| 
      
 1100 
     | 
    
         
            +
                                else layer.w13_weight_scale
         
     | 
| 
      
 1101 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 1102 
     | 
    
         
            +
                            w2_scale=(
         
     | 
| 
      
 1103 
     | 
    
         
            +
                                layer.w2_weight_scale_inv
         
     | 
| 
      
 1104 
     | 
    
         
            +
                                if self.block_quant
         
     | 
| 
      
 1105 
     | 
    
         
            +
                                else layer.w2_weight_scale
         
     | 
| 
      
 1106 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 1107 
     | 
    
         
            +
                            a13_scale=layer.w13_input_scale,
         
     | 
| 
      
 1108 
     | 
    
         
            +
                            a2_scale=layer.w2_input_scale,
         
     | 
| 
      
 1109 
     | 
    
         
            +
                            block_shape=self.quant_config.weight_block_size,
         
     | 
| 
      
 1110 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1111 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 1112 
     | 
    
         
            +
                        raise NotImplementedError(
         
     | 
| 
      
 1113 
     | 
    
         
            +
                            "Unsupported runner backend: %s" % self.runner.runner_backend
         
     | 
| 
      
 1114 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1115 
     | 
    
         
            +
             
     | 
| 
       1106 
1116 
     | 
    
         
             
                    return self.runner.run(dispatch_output, quant_info)
         
     | 
| 
       1107 
1117 
     | 
    
         | 
| 
      
 1118 
     | 
    
         
            +
                def _should_use_cutlass_fused_experts(self) -> bool:
         
     | 
| 
      
 1119 
     | 
    
         
            +
                    """Decide whether to use Cutlass FP8 fused-experts path based on moe runner backend,
         
     | 
| 
      
 1120 
     | 
    
         
            +
                    with env var override via `SGLANG_CUTLASS_MOE`.
         
     | 
| 
      
 1121 
     | 
    
         
            +
                    """
         
     | 
| 
      
 1122 
     | 
    
         
            +
                    backend = get_moe_runner_backend()
         
     | 
| 
      
 1123 
     | 
    
         
            +
                    env_force = get_bool_env_var("SGLANG_CUTLASS_MOE")
         
     | 
| 
      
 1124 
     | 
    
         
            +
                    # TODO: remove env var in the future, it should be handled by moe runner backend
         
     | 
| 
      
 1125 
     | 
    
         
            +
                    if env_force:
         
     | 
| 
      
 1126 
     | 
    
         
            +
                        return True
         
     | 
| 
      
 1127 
     | 
    
         
            +
                    return (
         
     | 
| 
      
 1128 
     | 
    
         
            +
                        backend.is_flashinfer_cutlass()
         
     | 
| 
      
 1129 
     | 
    
         
            +
                        and self.cutlass_fp8_supported
         
     | 
| 
      
 1130 
     | 
    
         
            +
                        and self.block_quant
         
     | 
| 
      
 1131 
     | 
    
         
            +
                        and (is_sm100_supported() or is_sm90_supported())
         
     | 
| 
      
 1132 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1133 
     | 
    
         
            +
             
     | 
| 
      
 1134 
     | 
    
         
            +
                def _ensure_cutlass_buffers_initialized(self, layer: Module) -> None:
         
     | 
| 
      
 1135 
     | 
    
         
            +
                    if getattr(self, "_cutlass_buffers_ready", False):
         
     | 
| 
      
 1136 
     | 
    
         
            +
                        return
         
     | 
| 
      
 1137 
     | 
    
         
            +
             
     | 
| 
      
 1138 
     | 
    
         
            +
                    device = layer.w13_weight.device
         
     | 
| 
      
 1139 
     | 
    
         
            +
                    num_experts = layer.w13_weight.shape[0]
         
     | 
| 
      
 1140 
     | 
    
         
            +
                    hidden_size = layer.w2_weight.shape[1]
         
     | 
| 
      
 1141 
     | 
    
         
            +
                    intermediate_size_per_partition = layer.intermediate_size_per_partition
         
     | 
| 
      
 1142 
     | 
    
         
            +
             
     | 
| 
      
 1143 
     | 
    
         
            +
                    self.ab_strides1 = torch.full(
         
     | 
| 
      
 1144 
     | 
    
         
            +
                        (num_experts,), hidden_size, device=device, dtype=torch.int64
         
     | 
| 
      
 1145 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1146 
     | 
    
         
            +
                    self.c_strides1 = torch.full(
         
     | 
| 
      
 1147 
     | 
    
         
            +
                        (num_experts,),
         
     | 
| 
      
 1148 
     | 
    
         
            +
                        2 * intermediate_size_per_partition,
         
     | 
| 
      
 1149 
     | 
    
         
            +
                        device=device,
         
     | 
| 
      
 1150 
     | 
    
         
            +
                        dtype=torch.int64,
         
     | 
| 
      
 1151 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1152 
     | 
    
         
            +
                    self.ab_strides2 = torch.full(
         
     | 
| 
      
 1153 
     | 
    
         
            +
                        (num_experts,),
         
     | 
| 
      
 1154 
     | 
    
         
            +
                        intermediate_size_per_partition,
         
     | 
| 
      
 1155 
     | 
    
         
            +
                        device=device,
         
     | 
| 
      
 1156 
     | 
    
         
            +
                        dtype=torch.int64,
         
     | 
| 
      
 1157 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1158 
     | 
    
         
            +
                    self.c_strides2 = torch.full(
         
     | 
| 
      
 1159 
     | 
    
         
            +
                        (num_experts,), hidden_size, device=device, dtype=torch.int64
         
     | 
| 
      
 1160 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1161 
     | 
    
         
            +
                    self.workspace = torch.empty(90000, device=device, dtype=torch.uint8)
         
     | 
| 
      
 1162 
     | 
    
         
            +
                    self.a_ptr = torch.empty(num_experts, device=device, dtype=torch.int64)
         
     | 
| 
      
 1163 
     | 
    
         
            +
                    self.b_ptr = torch.empty(num_experts, device=device, dtype=torch.int64)
         
     | 
| 
      
 1164 
     | 
    
         
            +
                    self.out_ptr = torch.empty(num_experts, device=device, dtype=torch.int64)
         
     | 
| 
      
 1165 
     | 
    
         
            +
                    self.a_scales_ptr = torch.empty(num_experts, device=device, dtype=torch.int64)
         
     | 
| 
      
 1166 
     | 
    
         
            +
                    self.b_scales_ptr = torch.empty(num_experts, device=device, dtype=torch.int64)
         
     | 
| 
      
 1167 
     | 
    
         
            +
                    self.expert_offsets = torch.empty(
         
     | 
| 
      
 1168 
     | 
    
         
            +
                        num_experts + 1, device=device, dtype=torch.int32
         
     | 
| 
      
 1169 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1170 
     | 
    
         
            +
                    self.problem_sizes1 = torch.empty(
         
     | 
| 
      
 1171 
     | 
    
         
            +
                        num_experts, 3, device=device, dtype=torch.int32
         
     | 
| 
      
 1172 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1173 
     | 
    
         
            +
                    self.problem_sizes2 = torch.empty(
         
     | 
| 
      
 1174 
     | 
    
         
            +
                        num_experts, 3, device=device, dtype=torch.int32
         
     | 
| 
      
 1175 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1176 
     | 
    
         
            +
             
     | 
| 
      
 1177 
     | 
    
         
            +
                    self._cutlass_buffers_ready = True
         
     | 
| 
      
 1178 
     | 
    
         
            +
             
     | 
| 
       1108 
1179 
     | 
    
         
             
                def apply_with_router_logits(
         
     | 
| 
       1109 
1180 
     | 
    
         
             
                    self,
         
     | 
| 
       1110 
1181 
     | 
    
         
             
                    layer: torch.nn.Module,
         
     |