passagemath-combinat 10.6.42__cp314-cp314t-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/DELVEWHEEL +2 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +401 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-10-3a5f019e2510aeaad918cab2b57a689d.dll +0 -0
- passagemath_combinat.libs/libsymmetrica-3-7dcf900932804d0df5fd0919b4668720.dll +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +44 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cp314t-win_amd64.pyd +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cp314t-win_amd64.pyd +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cp314t-win_amd64.pyd +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cp314t-win_amd64.pyd +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cp314t-win_amd64.pyd +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cp314t-win_amd64.pyd +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cp314t-win_amd64.pyd +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cp314t-win_amd64.pyd +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cp314t-win_amd64.pyd +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cp314t-win_amd64.pyd +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cp314t-win_amd64.pyd +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cp314t-win_amd64.pyd +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cp314t-win_amd64.pyd +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cp314t-win_amd64.pyd +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,2063 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.modules
|
|
3
|
+
r"""
|
|
4
|
+
Alternating sign matrices
|
|
5
|
+
|
|
6
|
+
AUTHORS:
|
|
7
|
+
|
|
8
|
+
- Mike Hansen (2007): Initial version
|
|
9
|
+
- Pierre Cange, Luis Serrano (2012): Added monotone triangles
|
|
10
|
+
- Travis Scrimshaw (2013-28-03): Added element class for ASM's and made
|
|
11
|
+
:class:`MonotoneTriangles` inherit from :class:`GelfandTsetlinPatterns`
|
|
12
|
+
- Jessica Striker (2013): Added additional methods
|
|
13
|
+
- Vincent Delecroix (2017): cleaning
|
|
14
|
+
"""
|
|
15
|
+
# ****************************************************************************
|
|
16
|
+
# Copyright (C) 2007 Mike Hansen <mhansen@gmail.com>,
|
|
17
|
+
# 2012 Pierre Cagne <pierre.cagne@ens.fr>,
|
|
18
|
+
# Luis Serrano <luisgui.serrano@gmail.com>
|
|
19
|
+
# 2013 Travis Scrimshaw <tscrim@ucdavis.edu>
|
|
20
|
+
# 2013 Jessica Striker <jessicapalencia@gmail.com>
|
|
21
|
+
# 2017 Vincent Delecroix <20100.delecroix@gmail.com>
|
|
22
|
+
#
|
|
23
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
24
|
+
#
|
|
25
|
+
# This code is distributed in the hope that it will be useful, but
|
|
26
|
+
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
27
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
28
|
+
# General Public License for more details.
|
|
29
|
+
#
|
|
30
|
+
# The full text of the GPL is available at:
|
|
31
|
+
#
|
|
32
|
+
# https://www.gnu.org/licenses/
|
|
33
|
+
# ****************************************************************************
|
|
34
|
+
|
|
35
|
+
import copy
|
|
36
|
+
from sage.misc.classcall_metaclass import ClasscallMetaclass
|
|
37
|
+
from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass
|
|
38
|
+
from sage.misc.flatten import flatten
|
|
39
|
+
from sage.misc.misc_c import prod
|
|
40
|
+
from sage.structure.unique_representation import UniqueRepresentation
|
|
41
|
+
from sage.structure.parent import Parent
|
|
42
|
+
from sage.structure.element import Element
|
|
43
|
+
from sage.structure.richcmp import richcmp
|
|
44
|
+
from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets
|
|
45
|
+
from sage.matrix.matrix_space import MatrixSpace
|
|
46
|
+
from sage.matrix.constructor import matrix
|
|
47
|
+
from sage.modules.free_module_element import zero_vector
|
|
48
|
+
from sage.misc.cachefunc import cached_method
|
|
49
|
+
from sage.misc.lazy_import import lazy_import
|
|
50
|
+
from sage.rings.integer_ring import ZZ
|
|
51
|
+
from sage.arith.misc import factorial
|
|
52
|
+
from sage.rings.integer import Integer
|
|
53
|
+
from sage.combinat.gelfand_tsetlin_patterns import GelfandTsetlinPatternsTopRow
|
|
54
|
+
from sage.combinat.combinatorial_map import combinatorial_map
|
|
55
|
+
from sage.combinat.non_decreasing_parking_function import NonDecreasingParkingFunction
|
|
56
|
+
from sage.combinat.permutation import Permutation
|
|
57
|
+
from sage.combinat.six_vertex_model import SquareIceModel
|
|
58
|
+
|
|
59
|
+
lazy_import('sage.combinat.posets.lattices', 'LatticePoset')
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def _inplace_height_function_gyration(hf):
|
|
63
|
+
k = hf.nrows() - 1
|
|
64
|
+
for i in range(1,k):
|
|
65
|
+
for j in range(1,k):
|
|
66
|
+
if (i+j) % 2 == 0 \
|
|
67
|
+
and hf[i-1,j] == hf[i+1,j] == hf[i,j+1] == hf[i,j-1]:
|
|
68
|
+
if hf[i,j] < hf[i+1,j]:
|
|
69
|
+
hf[i,j] += 2
|
|
70
|
+
else:
|
|
71
|
+
hf[i,j] -= 2
|
|
72
|
+
for i in range(1,k):
|
|
73
|
+
for j in range(1,k):
|
|
74
|
+
if (i+j) % 2 == 1 \
|
|
75
|
+
and hf[i-1,j] == hf[i+1,j] == hf[i,j+1] == hf[i,j-1]:
|
|
76
|
+
if hf[i,j] < hf[i+1,j]:
|
|
77
|
+
hf[i,j] += 2
|
|
78
|
+
else:
|
|
79
|
+
hf[i,j] -= 2
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
class AlternatingSignMatrix(Element,
|
|
83
|
+
metaclass=InheritComparisonClasscallMetaclass):
|
|
84
|
+
r"""
|
|
85
|
+
An alternating sign matrix.
|
|
86
|
+
|
|
87
|
+
An alternating sign matrix is a square matrix of `0`'s, `1`'s and `-1`'s
|
|
88
|
+
such that the sum of each row and column is `1` and the nonzero
|
|
89
|
+
entries in each row and column alternate in sign.
|
|
90
|
+
|
|
91
|
+
These were introduced in [MRR1983]_.
|
|
92
|
+
"""
|
|
93
|
+
@staticmethod
|
|
94
|
+
def __classcall_private__(cls, asm, check=True):
|
|
95
|
+
"""
|
|
96
|
+
Create an ASM.
|
|
97
|
+
|
|
98
|
+
EXAMPLES::
|
|
99
|
+
|
|
100
|
+
sage: AlternatingSignMatrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
|
|
101
|
+
[1 0 0]
|
|
102
|
+
[0 1 0]
|
|
103
|
+
[0 0 1]
|
|
104
|
+
|
|
105
|
+
sage: AlternatingSignMatrix([[0, 1, 0],[1, -1, 1],[0, 1, 0]])
|
|
106
|
+
[ 0 1 0]
|
|
107
|
+
[ 1 -1 1]
|
|
108
|
+
[ 0 1 0]
|
|
109
|
+
|
|
110
|
+
TESTS:
|
|
111
|
+
|
|
112
|
+
Check that :issue:`22032` is fixed::
|
|
113
|
+
|
|
114
|
+
sage: AlternatingSignMatrix([])
|
|
115
|
+
[]
|
|
116
|
+
|
|
117
|
+
Check dimension 1::
|
|
118
|
+
|
|
119
|
+
sage: AlternatingSignMatrix([1])
|
|
120
|
+
[1]
|
|
121
|
+
|
|
122
|
+
sage: AlternatingSignMatrix([-1])
|
|
123
|
+
Traceback (most recent call last):
|
|
124
|
+
...
|
|
125
|
+
ValueError: invalid alternating sign matrix
|
|
126
|
+
"""
|
|
127
|
+
asm = matrix(ZZ, asm)
|
|
128
|
+
if not asm.is_square():
|
|
129
|
+
raise ValueError("the alternating sign matrices must be square")
|
|
130
|
+
return AlternatingSignMatrices(asm.nrows())(asm, check=check)
|
|
131
|
+
|
|
132
|
+
def __init__(self, parent, asm):
|
|
133
|
+
"""
|
|
134
|
+
Initialize ``self``.
|
|
135
|
+
|
|
136
|
+
EXAMPLES::
|
|
137
|
+
|
|
138
|
+
sage: A = AlternatingSignMatrices(3)
|
|
139
|
+
sage: elt = A([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
|
|
140
|
+
sage: TestSuite(elt).run()
|
|
141
|
+
"""
|
|
142
|
+
self._matrix = asm
|
|
143
|
+
Element.__init__(self, parent)
|
|
144
|
+
|
|
145
|
+
def __hash__(self):
|
|
146
|
+
r"""
|
|
147
|
+
TESTS::
|
|
148
|
+
|
|
149
|
+
sage: A = AlternatingSignMatrices(3)
|
|
150
|
+
sage: elt = A([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
151
|
+
sage: hash(elt)
|
|
152
|
+
1
|
|
153
|
+
"""
|
|
154
|
+
return hash(self._matrix)
|
|
155
|
+
|
|
156
|
+
def _repr_(self):
|
|
157
|
+
"""
|
|
158
|
+
Return a string representation of ``self``.
|
|
159
|
+
|
|
160
|
+
EXAMPLES::
|
|
161
|
+
|
|
162
|
+
sage: A = AlternatingSignMatrices(3)
|
|
163
|
+
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
|
|
164
|
+
[1 0 0]
|
|
165
|
+
[0 1 0]
|
|
166
|
+
[0 0 1]
|
|
167
|
+
"""
|
|
168
|
+
return repr(self._matrix)
|
|
169
|
+
|
|
170
|
+
def _unicode_art_(self):
|
|
171
|
+
"""
|
|
172
|
+
Unicode art representation of ``self``.
|
|
173
|
+
|
|
174
|
+
TESTS::
|
|
175
|
+
|
|
176
|
+
sage: A = AlternatingSignMatrices(3)
|
|
177
|
+
sage: M = A([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
|
|
178
|
+
sage: M._unicode_art_()
|
|
179
|
+
⎛1 0 0⎞
|
|
180
|
+
⎜0 1 0⎟
|
|
181
|
+
⎝0 0 1⎠
|
|
182
|
+
"""
|
|
183
|
+
return self._matrix._unicode_art_()
|
|
184
|
+
|
|
185
|
+
def _richcmp_(self, other, op):
|
|
186
|
+
"""
|
|
187
|
+
Do the comparison.
|
|
188
|
+
|
|
189
|
+
EXAMPLES::
|
|
190
|
+
|
|
191
|
+
sage: A = AlternatingSignMatrices(3)
|
|
192
|
+
sage: M = A([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
|
|
193
|
+
sage: M == A([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
|
|
194
|
+
True
|
|
195
|
+
sage: M == A([[1, 0, 0],[0, 0, 1],[0, 1, 0]])
|
|
196
|
+
False
|
|
197
|
+
sage: A = AlternatingSignMatrices(3)
|
|
198
|
+
sage: M = A([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
|
|
199
|
+
sage: M != A([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
|
|
200
|
+
False
|
|
201
|
+
sage: M != A([[1, 0, 0],[0, 0, 1],[0, 1, 0]])
|
|
202
|
+
True
|
|
203
|
+
|
|
204
|
+
sage: A = AlternatingSignMatrices(3)
|
|
205
|
+
sage: M = A([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
|
|
206
|
+
sage: M <= A([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
|
|
207
|
+
True
|
|
208
|
+
sage: M <= A([[1, 0, 0],[0, 0, 1],[0, 1, 0]])
|
|
209
|
+
False
|
|
210
|
+
"""
|
|
211
|
+
return richcmp(self._matrix, other._matrix, op)
|
|
212
|
+
|
|
213
|
+
def _latex_(self):
|
|
214
|
+
r"""
|
|
215
|
+
Return a `\LaTeX` representation of ``self``.
|
|
216
|
+
|
|
217
|
+
EXAMPLES::
|
|
218
|
+
|
|
219
|
+
sage: A = AlternatingSignMatrices(3)
|
|
220
|
+
sage: latex(A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]))
|
|
221
|
+
\left(\begin{array}{rrr}
|
|
222
|
+
1 & 0 & 0 \\
|
|
223
|
+
0 & 1 & 0 \\
|
|
224
|
+
0 & 0 & 1
|
|
225
|
+
\end{array}\right)
|
|
226
|
+
"""
|
|
227
|
+
return self._matrix._latex_()
|
|
228
|
+
|
|
229
|
+
def to_matrix(self):
|
|
230
|
+
"""
|
|
231
|
+
Return ``self`` as a regular matrix.
|
|
232
|
+
|
|
233
|
+
EXAMPLES::
|
|
234
|
+
|
|
235
|
+
sage: A = AlternatingSignMatrices(3)
|
|
236
|
+
sage: asm = A([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
|
|
237
|
+
sage: m = asm.to_matrix(); m
|
|
238
|
+
[1 0 0]
|
|
239
|
+
[0 1 0]
|
|
240
|
+
[0 0 1]
|
|
241
|
+
sage: m.parent()
|
|
242
|
+
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
|
|
243
|
+
"""
|
|
244
|
+
return copy.copy(self._matrix)
|
|
245
|
+
|
|
246
|
+
@combinatorial_map(name='to monotone triangle')
|
|
247
|
+
def to_monotone_triangle(self):
|
|
248
|
+
r"""
|
|
249
|
+
Return a monotone triangle from ``self``.
|
|
250
|
+
|
|
251
|
+
EXAMPLES::
|
|
252
|
+
|
|
253
|
+
sage: A = AlternatingSignMatrices(3)
|
|
254
|
+
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).to_monotone_triangle()
|
|
255
|
+
[[3, 2, 1], [2, 1], [1]]
|
|
256
|
+
sage: asm = A([[0, 1, 0],[1, -1, 1],[0, 1, 0]])
|
|
257
|
+
sage: asm.to_monotone_triangle()
|
|
258
|
+
[[3, 2, 1], [3, 1], [2]]
|
|
259
|
+
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
|
|
260
|
+
sage: asm.to_monotone_triangle()
|
|
261
|
+
[[3, 2, 1], [3, 1], [3]]
|
|
262
|
+
sage: A.from_monotone_triangle(asm.to_monotone_triangle()) == asm
|
|
263
|
+
True
|
|
264
|
+
"""
|
|
265
|
+
n = self._matrix.nrows()
|
|
266
|
+
triangle = [0] * n
|
|
267
|
+
add_row = zero_vector(ZZ, n)
|
|
268
|
+
for j, row in enumerate(self._matrix):
|
|
269
|
+
add_row = row + add_row
|
|
270
|
+
triangle[n - 1 - j] = [i + 1 for i in range(n - 1, -1, -1)
|
|
271
|
+
if add_row[i] == 1]
|
|
272
|
+
return MonotoneTriangles(n)(triangle)
|
|
273
|
+
|
|
274
|
+
@combinatorial_map(name='rotate counterclockwise')
|
|
275
|
+
def rotate_ccw(self):
|
|
276
|
+
r"""
|
|
277
|
+
Return the counterclockwise quarter turn rotation of ``self``.
|
|
278
|
+
|
|
279
|
+
EXAMPLES::
|
|
280
|
+
|
|
281
|
+
sage: A = AlternatingSignMatrices(3)
|
|
282
|
+
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).rotate_ccw()
|
|
283
|
+
[0 0 1]
|
|
284
|
+
[0 1 0]
|
|
285
|
+
[1 0 0]
|
|
286
|
+
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
|
|
287
|
+
sage: asm.rotate_ccw()
|
|
288
|
+
[1 0 0]
|
|
289
|
+
[0 0 1]
|
|
290
|
+
[0 1 0]
|
|
291
|
+
"""
|
|
292
|
+
li = list(self._matrix.transpose())
|
|
293
|
+
li.reverse()
|
|
294
|
+
return AlternatingSignMatrix(li)
|
|
295
|
+
|
|
296
|
+
def inversion_number(self):
|
|
297
|
+
r"""
|
|
298
|
+
Return the inversion number of ``self``.
|
|
299
|
+
|
|
300
|
+
If we denote the entries of the alternating sign matrix as `a_{i,j}`,
|
|
301
|
+
the inversion number is defined as `\sum_{i>k}\sum_{j<l}a_{i,j}a_{k,l}`.
|
|
302
|
+
When restricted to permutation matrices, this gives the usual inversion
|
|
303
|
+
number of the permutation.
|
|
304
|
+
|
|
305
|
+
This definition is equivalent to the one given in [MRR1983]_.
|
|
306
|
+
|
|
307
|
+
EXAMPLES::
|
|
308
|
+
|
|
309
|
+
sage: A = AlternatingSignMatrices(3)
|
|
310
|
+
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).inversion_number()
|
|
311
|
+
0
|
|
312
|
+
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
|
|
313
|
+
sage: asm.inversion_number()
|
|
314
|
+
2
|
|
315
|
+
sage: asm = A([[0, 1, 0],[1, -1, 1],[0, 1, 0]])
|
|
316
|
+
sage: asm.inversion_number()
|
|
317
|
+
2
|
|
318
|
+
sage: P = Permutations(5)
|
|
319
|
+
sage: all(p.number_of_inversions()==AlternatingSignMatrix(p.to_matrix()).inversion_number() for p in P)
|
|
320
|
+
True
|
|
321
|
+
"""
|
|
322
|
+
inversion_num = 0
|
|
323
|
+
asm_matrix = self.to_matrix()
|
|
324
|
+
nonzero_cells = asm_matrix.nonzero_positions()
|
|
325
|
+
for (i, j) in nonzero_cells:
|
|
326
|
+
for (k, l) in nonzero_cells:
|
|
327
|
+
if i > k and j < l:
|
|
328
|
+
inversion_num += asm_matrix[i][j] * asm_matrix[k][l]
|
|
329
|
+
return inversion_num
|
|
330
|
+
|
|
331
|
+
@combinatorial_map(name='rotate clockwise')
|
|
332
|
+
def rotate_cw(self):
|
|
333
|
+
r"""
|
|
334
|
+
Return the clockwise quarter turn rotation of ``self``.
|
|
335
|
+
|
|
336
|
+
EXAMPLES::
|
|
337
|
+
|
|
338
|
+
sage: A = AlternatingSignMatrices(3)
|
|
339
|
+
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).rotate_cw()
|
|
340
|
+
[0 0 1]
|
|
341
|
+
[0 1 0]
|
|
342
|
+
[1 0 0]
|
|
343
|
+
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
|
|
344
|
+
sage: asm.rotate_cw()
|
|
345
|
+
[0 1 0]
|
|
346
|
+
[1 0 0]
|
|
347
|
+
[0 0 1]
|
|
348
|
+
"""
|
|
349
|
+
li = list(self._matrix.transpose())
|
|
350
|
+
li.reverse()
|
|
351
|
+
return AlternatingSignMatrix(matrix(li).transpose().antitranspose())
|
|
352
|
+
|
|
353
|
+
@combinatorial_map(name='transpose')
|
|
354
|
+
def transpose(self):
|
|
355
|
+
r"""
|
|
356
|
+
Return ``self`` transposed.
|
|
357
|
+
|
|
358
|
+
EXAMPLES::
|
|
359
|
+
|
|
360
|
+
sage: A = AlternatingSignMatrices(3)
|
|
361
|
+
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).transpose()
|
|
362
|
+
[1 0 0]
|
|
363
|
+
[0 1 0]
|
|
364
|
+
[0 0 1]
|
|
365
|
+
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
|
|
366
|
+
sage: asm.transpose()
|
|
367
|
+
[0 1 0]
|
|
368
|
+
[0 0 1]
|
|
369
|
+
[1 0 0]
|
|
370
|
+
"""
|
|
371
|
+
return AlternatingSignMatrix(self._matrix.transpose())
|
|
372
|
+
|
|
373
|
+
def corner_sum_matrix(self):
|
|
374
|
+
r"""
|
|
375
|
+
Return the corner sum matrix of ``self``.
|
|
376
|
+
|
|
377
|
+
EXAMPLES::
|
|
378
|
+
|
|
379
|
+
sage: A = AlternatingSignMatrices(3)
|
|
380
|
+
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).corner_sum_matrix()
|
|
381
|
+
[0 0 0 0]
|
|
382
|
+
[0 1 1 1]
|
|
383
|
+
[0 1 2 2]
|
|
384
|
+
[0 1 2 3]
|
|
385
|
+
sage: asm = A([[0, 1, 0],[1, -1, 1],[0, 1, 0]])
|
|
386
|
+
sage: asm.corner_sum_matrix()
|
|
387
|
+
[0 0 0 0]
|
|
388
|
+
[0 0 1 1]
|
|
389
|
+
[0 1 1 2]
|
|
390
|
+
[0 1 2 3]
|
|
391
|
+
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
|
|
392
|
+
sage: asm.corner_sum_matrix()
|
|
393
|
+
[0 0 0 0]
|
|
394
|
+
[0 0 0 1]
|
|
395
|
+
[0 1 1 2]
|
|
396
|
+
[0 1 2 3]
|
|
397
|
+
|
|
398
|
+
TESTS:
|
|
399
|
+
|
|
400
|
+
Some non-symmetric tests::
|
|
401
|
+
|
|
402
|
+
sage: A = AlternatingSignMatrices(3)
|
|
403
|
+
sage: asm = A([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
|
|
404
|
+
sage: asm.corner_sum_matrix()
|
|
405
|
+
[0 0 0 0]
|
|
406
|
+
[0 0 1 1]
|
|
407
|
+
[0 0 1 2]
|
|
408
|
+
[0 1 2 3]
|
|
409
|
+
sage: B = AlternatingSignMatrices(4)
|
|
410
|
+
sage: asm = B([[0, 0, 1, 0], [1, 0, 0, 0], [0, 1, -1, 1], [0, 0, 1, 0]])
|
|
411
|
+
sage: asm.corner_sum_matrix()
|
|
412
|
+
[0 0 0 0 0]
|
|
413
|
+
[0 0 0 1 1]
|
|
414
|
+
[0 1 1 2 2]
|
|
415
|
+
[0 1 2 2 3]
|
|
416
|
+
[0 1 2 3 4]
|
|
417
|
+
"""
|
|
418
|
+
asm = self._matrix
|
|
419
|
+
n = asm.nrows()
|
|
420
|
+
ans = matrix(ZZ, n + 1)
|
|
421
|
+
col_sum = [ZZ.zero()] * n
|
|
422
|
+
for i in range(n):
|
|
423
|
+
for j in range(n):
|
|
424
|
+
col_sum[j] += asm[i, j]
|
|
425
|
+
ans[i + 1, j + 1] = ans[i + 1, j] + col_sum[j]
|
|
426
|
+
return ans
|
|
427
|
+
|
|
428
|
+
def height_function(self):
|
|
429
|
+
r"""
|
|
430
|
+
Return the height function from ``self``.
|
|
431
|
+
|
|
432
|
+
A height function
|
|
433
|
+
corresponding to an `n \times n` ASM is an `(n+1) \times (n+1)` matrix
|
|
434
|
+
such that the first row is `0, 1, \ldots, n`, the last row is
|
|
435
|
+
`n, n-1, \ldots, 1, 0`, and the difference between adjacent entries
|
|
436
|
+
is 1.
|
|
437
|
+
|
|
438
|
+
EXAMPLES::
|
|
439
|
+
|
|
440
|
+
sage: A = AlternatingSignMatrices(3)
|
|
441
|
+
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).height_function()
|
|
442
|
+
[0 1 2 3]
|
|
443
|
+
[1 0 1 2]
|
|
444
|
+
[2 1 0 1]
|
|
445
|
+
[3 2 1 0]
|
|
446
|
+
sage: asm = A([[0, 1, 0],[1, -1, 1],[0, 1, 0]])
|
|
447
|
+
sage: asm.height_function()
|
|
448
|
+
[0 1 2 3]
|
|
449
|
+
[1 2 1 2]
|
|
450
|
+
[2 1 2 1]
|
|
451
|
+
[3 2 1 0]
|
|
452
|
+
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
|
|
453
|
+
sage: asm.height_function()
|
|
454
|
+
[0 1 2 3]
|
|
455
|
+
[1 2 1 2]
|
|
456
|
+
[2 3 2 1]
|
|
457
|
+
[3 2 1 0]
|
|
458
|
+
|
|
459
|
+
sage: A = AlternatingSignMatrices(4)
|
|
460
|
+
sage: all(A.from_height_function(a.height_function()) == a for a in A)
|
|
461
|
+
True
|
|
462
|
+
"""
|
|
463
|
+
asm = self._matrix
|
|
464
|
+
n = asm.nrows()
|
|
465
|
+
ans = matrix(ZZ, n + 1)
|
|
466
|
+
for i in range(1, n + 1):
|
|
467
|
+
ans[0, i] = ans[i, 0] = i
|
|
468
|
+
col_sum = [ZZ.zero()] * n
|
|
469
|
+
for i in range(n):
|
|
470
|
+
for j in range(n):
|
|
471
|
+
col_sum[j] += asm[i, j]
|
|
472
|
+
ans[j+1, i+1] = ans[j, i+1] + 1 - 2 * col_sum[j]
|
|
473
|
+
return ans
|
|
474
|
+
|
|
475
|
+
def to_six_vertex_model(self):
|
|
476
|
+
r"""
|
|
477
|
+
Return the six vertex model configuration from ``self``.
|
|
478
|
+
|
|
479
|
+
This method calls :meth:`sage.combinat.six_vertex_model.from_alternating_sign_matrix`.
|
|
480
|
+
|
|
481
|
+
EXAMPLES::
|
|
482
|
+
|
|
483
|
+
sage: asm = AlternatingSignMatrix([[0,1,0],[1,-1,1],[0,1,0]])
|
|
484
|
+
sage: asm.to_six_vertex_model()
|
|
485
|
+
^ ^ ^
|
|
486
|
+
| | |
|
|
487
|
+
--> # -> # <- # <--
|
|
488
|
+
^ | ^
|
|
489
|
+
| V |
|
|
490
|
+
--> # <- # -> # <--
|
|
491
|
+
| ^ |
|
|
492
|
+
V | V
|
|
493
|
+
--> # -> # <- # <--
|
|
494
|
+
| | |
|
|
495
|
+
V V V
|
|
496
|
+
|
|
497
|
+
TESTS::
|
|
498
|
+
|
|
499
|
+
sage: ASM = AlternatingSignMatrices(5)
|
|
500
|
+
sage: all((x.to_six_vertex_model()).to_alternating_sign_matrix() == x
|
|
501
|
+
....: for x in ASM)
|
|
502
|
+
True
|
|
503
|
+
"""
|
|
504
|
+
asm = self.to_matrix()
|
|
505
|
+
n = asm.nrows()
|
|
506
|
+
M = SquareIceModel(n)
|
|
507
|
+
return M.from_alternating_sign_matrix(self)
|
|
508
|
+
|
|
509
|
+
def to_fully_packed_loop(self):
|
|
510
|
+
r"""
|
|
511
|
+
Return the fully packed loop configuration from ``self``.
|
|
512
|
+
|
|
513
|
+
.. SEEALSO::
|
|
514
|
+
|
|
515
|
+
:class:`FullyPackedLoop`
|
|
516
|
+
|
|
517
|
+
EXAMPLES::
|
|
518
|
+
|
|
519
|
+
sage: asm = AlternatingSignMatrix([[1,0,0],[0,1,0],[0,0,1]])
|
|
520
|
+
sage: fpl = asm.to_fully_packed_loop()
|
|
521
|
+
sage: fpl
|
|
522
|
+
│ │
|
|
523
|
+
│ │
|
|
524
|
+
+ + ── +
|
|
525
|
+
│ │
|
|
526
|
+
│ │
|
|
527
|
+
── + + + ──
|
|
528
|
+
│ │
|
|
529
|
+
│ │
|
|
530
|
+
+ ── + +
|
|
531
|
+
│ │
|
|
532
|
+
│ │
|
|
533
|
+
"""
|
|
534
|
+
from sage.combinat.fully_packed_loop import FullyPackedLoop
|
|
535
|
+
return FullyPackedLoop(self)
|
|
536
|
+
|
|
537
|
+
def link_pattern(self):
|
|
538
|
+
"""
|
|
539
|
+
Return the link pattern corresponding to the fully packed loop
|
|
540
|
+
corresponding to ``self``.
|
|
541
|
+
|
|
542
|
+
EXAMPLES:
|
|
543
|
+
|
|
544
|
+
We can extract the underlying link pattern (a non-crossing
|
|
545
|
+
partition) from a fully packed loop::
|
|
546
|
+
|
|
547
|
+
sage: A = AlternatingSignMatrix([[0, 1, 0], [1, -1, 1], [0, 1, 0]])
|
|
548
|
+
sage: A.link_pattern()
|
|
549
|
+
[(1, 2), (3, 6), (4, 5)]
|
|
550
|
+
|
|
551
|
+
sage: B = AlternatingSignMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
552
|
+
sage: B.link_pattern()
|
|
553
|
+
[(1, 6), (2, 5), (3, 4)]
|
|
554
|
+
"""
|
|
555
|
+
return self.to_fully_packed_loop().link_pattern()
|
|
556
|
+
|
|
557
|
+
@combinatorial_map(name='gyration')
|
|
558
|
+
def gyration(self):
|
|
559
|
+
r"""
|
|
560
|
+
Return the alternating sign matrix obtained by applying gyration
|
|
561
|
+
to the height function in bijection with ``self``.
|
|
562
|
+
|
|
563
|
+
Gyration acts on height functions as follows. Go through the entries of
|
|
564
|
+
the matrix, first those for which the sum of the row and column indices
|
|
565
|
+
is even, then for those for which it is odd, and increment or decrement
|
|
566
|
+
the squares by 2 wherever possible such that the resulting matrix is
|
|
567
|
+
still a height function. Gyration was first defined in [Wie2000]_ as
|
|
568
|
+
an action on fully-packed loops.
|
|
569
|
+
|
|
570
|
+
EXAMPLES::
|
|
571
|
+
|
|
572
|
+
sage: A = AlternatingSignMatrices(3)
|
|
573
|
+
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).gyration()
|
|
574
|
+
[0 0 1]
|
|
575
|
+
[0 1 0]
|
|
576
|
+
[1 0 0]
|
|
577
|
+
sage: asm = A([[0, 1, 0],[1, -1, 1],[0, 1, 0]])
|
|
578
|
+
sage: asm.gyration()
|
|
579
|
+
[1 0 0]
|
|
580
|
+
[0 1 0]
|
|
581
|
+
[0 0 1]
|
|
582
|
+
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
|
|
583
|
+
sage: asm.gyration()
|
|
584
|
+
[0 1 0]
|
|
585
|
+
[0 0 1]
|
|
586
|
+
[1 0 0]
|
|
587
|
+
sage: A = AlternatingSignMatrices(3)
|
|
588
|
+
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).gyration().gyration()
|
|
589
|
+
[ 0 1 0]
|
|
590
|
+
[ 1 -1 1]
|
|
591
|
+
[ 0 1 0]
|
|
592
|
+
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).gyration().gyration().gyration()
|
|
593
|
+
[1 0 0]
|
|
594
|
+
[0 1 0]
|
|
595
|
+
[0 0 1]
|
|
596
|
+
|
|
597
|
+
sage: A = AlternatingSignMatrices(4)
|
|
598
|
+
sage: M = A([[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]])
|
|
599
|
+
sage: for i in range(5):
|
|
600
|
+
....: M = M.gyration()
|
|
601
|
+
sage: M
|
|
602
|
+
[1 0 0 0]
|
|
603
|
+
[0 0 0 1]
|
|
604
|
+
[0 1 0 0]
|
|
605
|
+
[0 0 1 0]
|
|
606
|
+
|
|
607
|
+
sage: a0 = a = AlternatingSignMatrices(5).random_element()
|
|
608
|
+
sage: for i in range(20):
|
|
609
|
+
....: a = a.gyration()
|
|
610
|
+
sage: a == a0
|
|
611
|
+
True
|
|
612
|
+
"""
|
|
613
|
+
hf = self.height_function()
|
|
614
|
+
_inplace_height_function_gyration(hf)
|
|
615
|
+
return self.parent().from_height_function(hf)
|
|
616
|
+
|
|
617
|
+
def gyration_orbit(self):
|
|
618
|
+
r"""
|
|
619
|
+
Return the gyration orbit of ``self`` (including ``self``).
|
|
620
|
+
|
|
621
|
+
EXAMPLES::
|
|
622
|
+
|
|
623
|
+
sage: AlternatingSignMatrix([[0,1,0],[1,-1,1],[0,1,0]]).gyration_orbit()
|
|
624
|
+
[
|
|
625
|
+
[ 0 1 0] [1 0 0] [0 0 1]
|
|
626
|
+
[ 1 -1 1] [0 1 0] [0 1 0]
|
|
627
|
+
[ 0 1 0], [0 0 1], [1 0 0]
|
|
628
|
+
]
|
|
629
|
+
|
|
630
|
+
sage: AlternatingSignMatrix([[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]).gyration_orbit()
|
|
631
|
+
[
|
|
632
|
+
[ 0 1 0 0] [1 0 0 0] [ 0 0 1 0] [0 0 0 1]
|
|
633
|
+
[ 1 -1 1 0] [0 1 0 0] [ 0 1 -1 1] [0 0 1 0]
|
|
634
|
+
[ 0 1 -1 1] [0 0 1 0] [ 1 -1 1 0] [0 1 0 0]
|
|
635
|
+
[ 0 0 1 0], [0 0 0 1], [ 0 1 0 0], [1 0 0 0]
|
|
636
|
+
]
|
|
637
|
+
|
|
638
|
+
sage: len(AlternatingSignMatrix([[0,1,0,0,0,0],[0,0,1,0,0,0],[1,-1,0,0,0,1],
|
|
639
|
+
....: [0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]).gyration_orbit())
|
|
640
|
+
12
|
|
641
|
+
"""
|
|
642
|
+
hf = self.height_function()
|
|
643
|
+
|
|
644
|
+
cyc = [hf.__copy__()]
|
|
645
|
+
cyc[-1].set_immutable()
|
|
646
|
+
|
|
647
|
+
_inplace_height_function_gyration(hf)
|
|
648
|
+
|
|
649
|
+
while hf != cyc[0]:
|
|
650
|
+
cyc.append(hf.__copy__())
|
|
651
|
+
cyc[-1].set_immutable()
|
|
652
|
+
_inplace_height_function_gyration(hf)
|
|
653
|
+
|
|
654
|
+
P = self.parent()
|
|
655
|
+
return [P.from_height_function(hfun) for hfun in cyc]
|
|
656
|
+
|
|
657
|
+
def ASM_compatible(self, B):
|
|
658
|
+
r"""
|
|
659
|
+
Return ``True`` if ``self`` and ``B`` are compatible alternating sign
|
|
660
|
+
matrices in the sense of [EKLP1992]_. (If ``self`` is of size `n`, ``B``
|
|
661
|
+
must be of size `n+1`.)
|
|
662
|
+
|
|
663
|
+
In [EKLP1992]_, there is a notion of a pair of ASM's with sizes differing
|
|
664
|
+
by 1 being compatible, in the sense that they can be combined to encode
|
|
665
|
+
a tiling of the Aztec Diamond.
|
|
666
|
+
|
|
667
|
+
EXAMPLES::
|
|
668
|
+
|
|
669
|
+
sage: A = AlternatingSignMatrix(matrix([[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]))
|
|
670
|
+
sage: B = AlternatingSignMatrix(matrix([[0,0,1,0,0],[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,0,1,0]]))
|
|
671
|
+
sage: A.ASM_compatible(B)
|
|
672
|
+
True
|
|
673
|
+
sage: A = AlternatingSignMatrix(matrix([[0,1,0],[1,-1,1],[0,1,0]]))
|
|
674
|
+
sage: B = AlternatingSignMatrix(matrix([[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]))
|
|
675
|
+
sage: A.ASM_compatible(B)
|
|
676
|
+
False
|
|
677
|
+
"""
|
|
678
|
+
if B.parent()._n - self.parent()._n != 1:
|
|
679
|
+
raise ValueError("mismatched sizes")
|
|
680
|
+
|
|
681
|
+
AA = self.corner_sum_matrix()
|
|
682
|
+
BB = B.corner_sum_matrix()
|
|
683
|
+
for i in range(len(AA[0])):
|
|
684
|
+
for j in range(len(AA[0])):
|
|
685
|
+
if not (AA[i,j] >= BB[i,j] and AA[i,j] >= BB[i+1,j+1]-1
|
|
686
|
+
and AA[i,j] <= BB[i+1,j] and AA[i,j] <= BB[i,j+1]):
|
|
687
|
+
return False
|
|
688
|
+
return True
|
|
689
|
+
|
|
690
|
+
def ASM_compatible_bigger(self):
|
|
691
|
+
r"""
|
|
692
|
+
Return all ASM's compatible with ``self`` that are of size one greater
|
|
693
|
+
than ``self``.
|
|
694
|
+
|
|
695
|
+
Given an `n \times n` alternating sign matrix `A`, there are as many
|
|
696
|
+
ASM's of size `n+1` compatible with `A` as 2 raised to the power of
|
|
697
|
+
the number of 1s in `A` [EKLP1992]_.
|
|
698
|
+
|
|
699
|
+
EXAMPLES::
|
|
700
|
+
|
|
701
|
+
sage: A = AlternatingSignMatrix([[1,0],[0,1]])
|
|
702
|
+
sage: A.ASM_compatible_bigger()
|
|
703
|
+
[
|
|
704
|
+
[ 0 1 0] [1 0 0] [0 1 0] [1 0 0]
|
|
705
|
+
[ 1 -1 1] [0 0 1] [1 0 0] [0 1 0]
|
|
706
|
+
[ 0 1 0], [0 1 0], [0 0 1], [0 0 1]
|
|
707
|
+
]
|
|
708
|
+
sage: B = AlternatingSignMatrix([[0,1],[1,0]])
|
|
709
|
+
sage: B.ASM_compatible_bigger()
|
|
710
|
+
[
|
|
711
|
+
[0 0 1] [0 0 1] [0 1 0] [ 0 1 0]
|
|
712
|
+
[0 1 0] [1 0 0] [0 0 1] [ 1 -1 1]
|
|
713
|
+
[1 0 0], [0 1 0], [1 0 0], [ 0 1 0]
|
|
714
|
+
]
|
|
715
|
+
|
|
716
|
+
sage: B = AlternatingSignMatrix([[0,1,0],[1,-1,1],[0,1,0]])
|
|
717
|
+
sage: len(B.ASM_compatible_bigger()) == 2**4
|
|
718
|
+
True
|
|
719
|
+
"""
|
|
720
|
+
n = self.parent()._n + 1
|
|
721
|
+
M = AlternatingSignMatrices(n)
|
|
722
|
+
sign = []
|
|
723
|
+
B = matrix(ZZ, n+1)
|
|
724
|
+
A = 2 * self.height_function()
|
|
725
|
+
for i in range(n):
|
|
726
|
+
for j in range(n):
|
|
727
|
+
A.add_to_entry(i, j, ZZ.one())
|
|
728
|
+
for a in range(n+1):
|
|
729
|
+
B[a,0] = B[0,a] = 2*a
|
|
730
|
+
B[a,n] = B[n,a] = 2*(n-a)
|
|
731
|
+
|
|
732
|
+
for i in range(1,n):
|
|
733
|
+
for j in range(1,n):
|
|
734
|
+
if A[i-1,j-1] == A[i,j] == A[i-1,j]-2 == A[i,j-1]-2:
|
|
735
|
+
B[i,j] = -A[i,j]
|
|
736
|
+
sign.append([i,j])
|
|
737
|
+
else:
|
|
738
|
+
s = {A[i-1,j-1]-1,A[i-1,j-1]+3} & {A[i-1,j]-3,A[i-1,j]+1} & {A[i,j-1]-3,A[i,j-1]+1} & {A[i,j]-1,A[i,j]+3}
|
|
739
|
+
assert len(s) == 1
|
|
740
|
+
B[i,j] = s.pop()
|
|
741
|
+
|
|
742
|
+
output = [B]
|
|
743
|
+
for b in range(len(sign)):
|
|
744
|
+
N = len(output)
|
|
745
|
+
for c in range(N):
|
|
746
|
+
d = copy.copy(output[c])
|
|
747
|
+
output[c][sign[b][0],sign[b][1]] = -output[c][sign[b][0], sign[b][1]] + 3
|
|
748
|
+
d[sign[b][0],sign[b][1]] = -d[sign[b][0], sign[b][1]]-1
|
|
749
|
+
output.append(d)
|
|
750
|
+
|
|
751
|
+
for k in range(len(output)):
|
|
752
|
+
output[k] = M.from_height_function(output[k]/2)
|
|
753
|
+
return output
|
|
754
|
+
|
|
755
|
+
def ASM_compatible_smaller(self):
|
|
756
|
+
r"""
|
|
757
|
+
Return the list of all ASMs compatible with ``self`` that are of size
|
|
758
|
+
one smaller than ``self``.
|
|
759
|
+
|
|
760
|
+
Given an alternating sign matrix `A` of size `n`, there are as many
|
|
761
|
+
ASM's of size `n-1` compatible with it as 2 raised to the power of
|
|
762
|
+
the number of `-1`'s in `A` [EKLP1992]_.
|
|
763
|
+
|
|
764
|
+
EXAMPLES::
|
|
765
|
+
|
|
766
|
+
sage: A = AlternatingSignMatrix(matrix([[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]))
|
|
767
|
+
sage: A.ASM_compatible_smaller()
|
|
768
|
+
[
|
|
769
|
+
[0 0 1] [ 0 1 0]
|
|
770
|
+
[1 0 0] [ 1 -1 1]
|
|
771
|
+
[0 1 0], [ 0 1 0]
|
|
772
|
+
]
|
|
773
|
+
sage: B = AlternatingSignMatrix(matrix([[1,0,0],[0,0,1],[0,1,0]]))
|
|
774
|
+
sage: B.ASM_compatible_smaller()
|
|
775
|
+
[
|
|
776
|
+
[1 0]
|
|
777
|
+
[0 1]
|
|
778
|
+
]
|
|
779
|
+
"""
|
|
780
|
+
n = self.parent()._n
|
|
781
|
+
M = AlternatingSignMatrices(n-1)
|
|
782
|
+
A = matrix(ZZ, n)
|
|
783
|
+
B = 2*self.height_function()[:n,:n]
|
|
784
|
+
sign = []
|
|
785
|
+
for a in range(n):
|
|
786
|
+
A[a,0] = 2*a + 1
|
|
787
|
+
A[0,a] = 2*a + 1
|
|
788
|
+
A[n-1,a] = 2*(n-a) - 1
|
|
789
|
+
A[a,n-1] = 2*(n-a) - 1
|
|
790
|
+
|
|
791
|
+
for i in range(n-1):
|
|
792
|
+
for j in range(n-1):
|
|
793
|
+
if B[i+1,j+1] == B[i,j] == B[i,j+1]+2 == B[i+1,j]+2:
|
|
794
|
+
A[i,j] = -B[i,j]
|
|
795
|
+
sign.append([i,j])
|
|
796
|
+
else:
|
|
797
|
+
A[i,j] = list({B[i,j]+1,B[i,j]-3} & {B[i,j+1]+3,B[i,j+1]-1} & {B[i+1,j]+3,B[i+1,j]-1} & {B[i+1,j+1]+1,B[i+1,j+1]-3})[0]
|
|
798
|
+
|
|
799
|
+
output = [A]
|
|
800
|
+
for b in range(len(sign)):
|
|
801
|
+
N = len(output)
|
|
802
|
+
for c in range(N):
|
|
803
|
+
d = copy.copy(output[c])
|
|
804
|
+
output[c][sign[b][0],sign[b][1]] = -output[c][sign[b][0], sign[b][1]]+1
|
|
805
|
+
d[sign[b][0],sign[b][1]] = -d[sign[b][0], sign[b][1]]-3
|
|
806
|
+
output.append(d)
|
|
807
|
+
for k in range(len(output)):
|
|
808
|
+
output[k] = M.from_height_function((output[k]-matrix.ones(n,n))/2)
|
|
809
|
+
return output
|
|
810
|
+
|
|
811
|
+
@combinatorial_map(name='to Dyck word')
|
|
812
|
+
def to_dyck_word(self, algorithm):
|
|
813
|
+
r"""
|
|
814
|
+
Return a Dyck word determined by the specified algorithm.
|
|
815
|
+
|
|
816
|
+
The algorithm 'last_diagonal' uses the last diagonal of the monotone
|
|
817
|
+
triangle corresponding to ``self``. The algorithm 'link_pattern' returns
|
|
818
|
+
the Dyck word in bijection with the link pattern of the fully packed
|
|
819
|
+
loop.
|
|
820
|
+
|
|
821
|
+
Note that these two algorithms in general yield different Dyck words for a
|
|
822
|
+
given alternating sign matrix.
|
|
823
|
+
|
|
824
|
+
INPUT:
|
|
825
|
+
|
|
826
|
+
- ``algorithm`` -- either ``'last_diagonal'`` or ``'link_pattern'``
|
|
827
|
+
|
|
828
|
+
EXAMPLES::
|
|
829
|
+
|
|
830
|
+
sage: A = AlternatingSignMatrices(3)
|
|
831
|
+
sage: A([[0,1,0],[1,0,0],[0,0,1]]).to_dyck_word(algorithm = 'last_diagonal')
|
|
832
|
+
[1, 1, 0, 0, 1, 0]
|
|
833
|
+
sage: d = A([[0,1,0],[1,-1,1],[0,1,0]]).to_dyck_word(algorithm = 'last_diagonal'); d
|
|
834
|
+
[1, 1, 0, 1, 0, 0]
|
|
835
|
+
sage: parent(d)
|
|
836
|
+
Complete Dyck words
|
|
837
|
+
sage: A = AlternatingSignMatrices(3)
|
|
838
|
+
sage: asm = A([[0,1,0],[1,0,0],[0,0,1]])
|
|
839
|
+
sage: asm.to_dyck_word(algorithm = 'link_pattern')
|
|
840
|
+
[1, 0, 1, 0, 1, 0]
|
|
841
|
+
sage: asm = A([[0,1,0],[1,-1,1],[0,1,0]])
|
|
842
|
+
sage: asm.to_dyck_word(algorithm = 'link_pattern')
|
|
843
|
+
[1, 0, 1, 1, 0, 0]
|
|
844
|
+
sage: A = AlternatingSignMatrices(4)
|
|
845
|
+
sage: asm = A([[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]])
|
|
846
|
+
sage: asm.to_dyck_word(algorithm = 'link_pattern')
|
|
847
|
+
[1, 1, 1, 0, 1, 0, 0, 0]
|
|
848
|
+
sage: asm.to_dyck_word()
|
|
849
|
+
Traceback (most recent call last):
|
|
850
|
+
...
|
|
851
|
+
TypeError: ...to_dyck_word() ...argument...
|
|
852
|
+
sage: asm.to_dyck_word(algorithm = 'notamethod')
|
|
853
|
+
Traceback (most recent call last):
|
|
854
|
+
...
|
|
855
|
+
ValueError: unknown algorithm 'notamethod'
|
|
856
|
+
"""
|
|
857
|
+
if algorithm == 'last_diagonal':
|
|
858
|
+
MT = self.to_monotone_triangle()
|
|
859
|
+
nplus = self._matrix.nrows() + 1
|
|
860
|
+
parkfn = [nplus - row[0] for row in list(MT) if row]
|
|
861
|
+
return NonDecreasingParkingFunction(parkfn).to_dyck_word().reverse()
|
|
862
|
+
|
|
863
|
+
elif algorithm == 'link_pattern':
|
|
864
|
+
from sage.combinat.perfect_matching import PerfectMatching
|
|
865
|
+
from sage.combinat.dyck_word import DyckWords
|
|
866
|
+
p = PerfectMatching(self.link_pattern()).to_noncrossing_set_partition()
|
|
867
|
+
asm = self.to_matrix()
|
|
868
|
+
n = asm.nrows()
|
|
869
|
+
d = DyckWords(n)
|
|
870
|
+
return d.from_noncrossing_partition(p)
|
|
871
|
+
|
|
872
|
+
raise ValueError("unknown algorithm '%s'" % algorithm)
|
|
873
|
+
|
|
874
|
+
def number_negative_ones(self):
|
|
875
|
+
"""
|
|
876
|
+
Return the number of entries in ``self`` equal to -1.
|
|
877
|
+
|
|
878
|
+
EXAMPLES::
|
|
879
|
+
|
|
880
|
+
sage: A = AlternatingSignMatrices(3)
|
|
881
|
+
sage: asm = A([[0,1,0],[1,0,0],[0,0,1]])
|
|
882
|
+
sage: asm.number_negative_ones()
|
|
883
|
+
0
|
|
884
|
+
sage: asm = A([[0,1,0],[1,-1,1],[0,1,0]])
|
|
885
|
+
sage: asm.number_negative_ones()
|
|
886
|
+
1
|
|
887
|
+
"""
|
|
888
|
+
a = self._matrix
|
|
889
|
+
return ZZ((len(a.nonzero_positions()) - a.nrows()) // 2)
|
|
890
|
+
|
|
891
|
+
def is_permutation(self):
|
|
892
|
+
"""
|
|
893
|
+
Return ``True`` if ``self`` is a permutation matrix
|
|
894
|
+
and ``False`` otherwise.
|
|
895
|
+
|
|
896
|
+
EXAMPLES::
|
|
897
|
+
|
|
898
|
+
sage: A = AlternatingSignMatrices(3)
|
|
899
|
+
sage: asm = A([[0,1,0],[1,0,0],[0,0,1]])
|
|
900
|
+
sage: asm.is_permutation()
|
|
901
|
+
True
|
|
902
|
+
sage: asm = A([[0,1,0],[1,-1,1],[0,1,0]])
|
|
903
|
+
sage: asm.is_permutation()
|
|
904
|
+
False
|
|
905
|
+
"""
|
|
906
|
+
return self.number_negative_ones() == 0
|
|
907
|
+
|
|
908
|
+
def to_permutation(self):
|
|
909
|
+
"""
|
|
910
|
+
Return the corresponding permutation if ``self`` is a permutation
|
|
911
|
+
matrix.
|
|
912
|
+
|
|
913
|
+
EXAMPLES::
|
|
914
|
+
|
|
915
|
+
sage: A = AlternatingSignMatrices(3)
|
|
916
|
+
sage: asm = A([[0,1,0],[1,0,0],[0,0,1]])
|
|
917
|
+
sage: p = asm.to_permutation(); p
|
|
918
|
+
[2, 1, 3]
|
|
919
|
+
sage: parent(p)
|
|
920
|
+
Standard permutations
|
|
921
|
+
sage: asm = A([[0,1,0],[1,-1,1],[0,1,0]])
|
|
922
|
+
sage: asm.to_permutation()
|
|
923
|
+
Traceback (most recent call last):
|
|
924
|
+
...
|
|
925
|
+
ValueError: not a permutation matrix
|
|
926
|
+
"""
|
|
927
|
+
if not self.is_permutation():
|
|
928
|
+
raise ValueError('not a permutation matrix')
|
|
929
|
+
asm_matrix = self.to_matrix()
|
|
930
|
+
return Permutation([j + 1 for (i, j) in asm_matrix.nonzero_positions()])
|
|
931
|
+
|
|
932
|
+
@combinatorial_map(name='to semistandard tableau')
|
|
933
|
+
def to_semistandard_tableau(self):
|
|
934
|
+
"""
|
|
935
|
+
Return the semistandard tableau corresponding the monotone triangle
|
|
936
|
+
corresponding to ``self``.
|
|
937
|
+
|
|
938
|
+
EXAMPLES::
|
|
939
|
+
|
|
940
|
+
sage: A = AlternatingSignMatrices(3)
|
|
941
|
+
sage: A([[0,0,1],[1,0,0],[0,1,0]]).to_semistandard_tableau()
|
|
942
|
+
[[1, 1, 3], [2, 3], [3]]
|
|
943
|
+
sage: t = A([[0,1,0],[1,-1,1],[0,1,0]]).to_semistandard_tableau(); t
|
|
944
|
+
[[1, 1, 2], [2, 3], [3]]
|
|
945
|
+
sage: parent(t)
|
|
946
|
+
Semistandard tableaux
|
|
947
|
+
"""
|
|
948
|
+
from sage.combinat.tableau import SemistandardTableau
|
|
949
|
+
mt = self.to_monotone_triangle()
|
|
950
|
+
ssyt = [[0]*(len(mt) - j) for j in range(len(mt))]
|
|
951
|
+
for i in range(len(mt)):
|
|
952
|
+
for j in range(len(mt[i])):
|
|
953
|
+
ssyt[i][j] = mt[j][-(i+1)]
|
|
954
|
+
return SemistandardTableau(ssyt)
|
|
955
|
+
|
|
956
|
+
def left_key(self):
|
|
957
|
+
r"""
|
|
958
|
+
Return the left key of the alternating sign matrix ``self``.
|
|
959
|
+
|
|
960
|
+
The left key of an alternating sign matrix was defined by Lascoux
|
|
961
|
+
in [Lasc]_ and is obtained by successively removing all the
|
|
962
|
+
`-1`'s until what remains is a permutation matrix. This notion
|
|
963
|
+
corresponds to the notion of left key for semistandard tableaux. So
|
|
964
|
+
our algorithm proceeds as follows: we map ``self`` to its
|
|
965
|
+
corresponding monotone triangle, view that monotone triangle as a
|
|
966
|
+
semistandard tableau, take its left key, and then map back through
|
|
967
|
+
monotone triangles to the permutation matrix which is the left key.
|
|
968
|
+
|
|
969
|
+
See also [Ava2007]_.
|
|
970
|
+
|
|
971
|
+
EXAMPLES::
|
|
972
|
+
|
|
973
|
+
sage: A = AlternatingSignMatrices(3)
|
|
974
|
+
sage: A([[0,0,1],[1,0,0],[0,1,0]]).left_key()
|
|
975
|
+
[0 0 1]
|
|
976
|
+
[1 0 0]
|
|
977
|
+
[0 1 0]
|
|
978
|
+
sage: t = A([[0,1,0],[1,-1,1],[0,1,0]]).left_key(); t
|
|
979
|
+
[1 0 0]
|
|
980
|
+
[0 0 1]
|
|
981
|
+
[0 1 0]
|
|
982
|
+
sage: parent(t)
|
|
983
|
+
Alternating sign matrices of size 3
|
|
984
|
+
"""
|
|
985
|
+
lkey = self.to_semistandard_tableau().left_key_tableau()
|
|
986
|
+
mt = [[0]*(len(lkey) - j) for j in range(len(lkey))]
|
|
987
|
+
for i in range(len(lkey)):
|
|
988
|
+
for j in range(len(lkey[i])):
|
|
989
|
+
mt[i][j] = lkey[len(lkey[i])-j-1][i]
|
|
990
|
+
A = AlternatingSignMatrices(len(lkey))
|
|
991
|
+
return A.from_monotone_triangle(mt)
|
|
992
|
+
|
|
993
|
+
@combinatorial_map(name='to left key permutation')
|
|
994
|
+
def left_key_as_permutation(self):
|
|
995
|
+
"""
|
|
996
|
+
Return the permutation of the left key of ``self``.
|
|
997
|
+
|
|
998
|
+
.. SEEALSO::
|
|
999
|
+
|
|
1000
|
+
- :meth:`left_key()`
|
|
1001
|
+
|
|
1002
|
+
EXAMPLES::
|
|
1003
|
+
|
|
1004
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1005
|
+
sage: A([[0,0,1],[1,0,0],[0,1,0]]).left_key_as_permutation()
|
|
1006
|
+
[3, 1, 2]
|
|
1007
|
+
sage: t = A([[0,1,0],[1,-1,1],[0,1,0]]).left_key_as_permutation(); t
|
|
1008
|
+
[1, 3, 2]
|
|
1009
|
+
sage: parent(t)
|
|
1010
|
+
Standard permutations
|
|
1011
|
+
"""
|
|
1012
|
+
return self.left_key().to_permutation()
|
|
1013
|
+
|
|
1014
|
+
|
|
1015
|
+
class AlternatingSignMatrices(UniqueRepresentation, Parent):
|
|
1016
|
+
r"""
|
|
1017
|
+
Class of all `n \times n` alternating sign matrices.
|
|
1018
|
+
|
|
1019
|
+
An alternating sign matrix of size `n` is an `n \times n` matrix of `0`'s,
|
|
1020
|
+
`1`'s and `-1`'s such that the sum of each row and column is `1` and the
|
|
1021
|
+
nonzero entries in each row and column alternate in sign.
|
|
1022
|
+
|
|
1023
|
+
Alternating sign matrices of size `n` are in bijection with
|
|
1024
|
+
:class:`monotone triangles <MonotoneTriangles>` with `n` rows.
|
|
1025
|
+
|
|
1026
|
+
INPUT:
|
|
1027
|
+
|
|
1028
|
+
- ``n`` -- integer; the size of the matrices
|
|
1029
|
+
|
|
1030
|
+
EXAMPLES:
|
|
1031
|
+
|
|
1032
|
+
This will create an instance to manipulate the alternating sign
|
|
1033
|
+
matrices of size 3::
|
|
1034
|
+
|
|
1035
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1036
|
+
sage: A
|
|
1037
|
+
Alternating sign matrices of size 3
|
|
1038
|
+
sage: A.cardinality()
|
|
1039
|
+
7
|
|
1040
|
+
|
|
1041
|
+
Notably, this implementation allows to make a lattice of it::
|
|
1042
|
+
|
|
1043
|
+
sage: # needs sage.graphs
|
|
1044
|
+
sage: L = A.lattice(); L
|
|
1045
|
+
Finite lattice containing 7 elements
|
|
1046
|
+
sage: L.category()
|
|
1047
|
+
Category of facade finite enumerated lattice posets
|
|
1048
|
+
"""
|
|
1049
|
+
|
|
1050
|
+
def __init__(self, n):
|
|
1051
|
+
r"""
|
|
1052
|
+
Initialize ``self``.
|
|
1053
|
+
|
|
1054
|
+
TESTS::
|
|
1055
|
+
|
|
1056
|
+
sage: A = AlternatingSignMatrices(4)
|
|
1057
|
+
sage: TestSuite(A).run()
|
|
1058
|
+
"""
|
|
1059
|
+
self._n = n
|
|
1060
|
+
self._matrix_space = MatrixSpace(ZZ, n)
|
|
1061
|
+
Parent.__init__(self, category=FiniteEnumeratedSets())
|
|
1062
|
+
|
|
1063
|
+
def _repr_(self):
|
|
1064
|
+
r"""
|
|
1065
|
+
Return a string representation of ``self``.
|
|
1066
|
+
|
|
1067
|
+
TESTS::
|
|
1068
|
+
|
|
1069
|
+
sage: A = AlternatingSignMatrices(4); A
|
|
1070
|
+
Alternating sign matrices of size 4
|
|
1071
|
+
"""
|
|
1072
|
+
return "Alternating sign matrices of size %s" % self._n
|
|
1073
|
+
|
|
1074
|
+
def _repr_option(self, key):
|
|
1075
|
+
"""
|
|
1076
|
+
Metadata about the :meth:`_repr_` output.
|
|
1077
|
+
|
|
1078
|
+
See :meth:`sage.structure.parent._repr_option` for details.
|
|
1079
|
+
|
|
1080
|
+
EXAMPLES::
|
|
1081
|
+
|
|
1082
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1083
|
+
sage: A._repr_option('element_ascii_art')
|
|
1084
|
+
True
|
|
1085
|
+
"""
|
|
1086
|
+
return self._matrix_space._repr_option(key)
|
|
1087
|
+
|
|
1088
|
+
def __contains__(self, asm):
|
|
1089
|
+
"""
|
|
1090
|
+
Check if ``asm`` is in ``self``.
|
|
1091
|
+
|
|
1092
|
+
TESTS::
|
|
1093
|
+
|
|
1094
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1095
|
+
sage: [[0,1,0],[1,0,0],[0,0,1]] in A
|
|
1096
|
+
True
|
|
1097
|
+
sage: [[0,1,0],[1,-1,1],[0,1,0]] in A
|
|
1098
|
+
True
|
|
1099
|
+
sage: [[0, 1],[1,0]] in A
|
|
1100
|
+
False
|
|
1101
|
+
sage: [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] in A
|
|
1102
|
+
False
|
|
1103
|
+
sage: [[-1, 1, 1],[1,-1,1],[1,1,-1]] in A
|
|
1104
|
+
False
|
|
1105
|
+
|
|
1106
|
+
sage: M = MatrixSpace(ZZ, 3)
|
|
1107
|
+
sage: for p in [[-1,1,1,1,0,0,1,0,0],
|
|
1108
|
+
....: [0,1,0,0,1,0,1,-1,1],
|
|
1109
|
+
....: [0,1,0,0,2,0,1,-2,1],
|
|
1110
|
+
....: [0,2,0,1,-2,1,0,1,0]]:
|
|
1111
|
+
....: m = M(p)
|
|
1112
|
+
....: assert not m in A
|
|
1113
|
+
....: m = m.transpose()
|
|
1114
|
+
....: assert not m in A
|
|
1115
|
+
....: m = m.antitranspose()
|
|
1116
|
+
....: assert not m in A
|
|
1117
|
+
....: m = m.transpose()
|
|
1118
|
+
....: assert not m in A
|
|
1119
|
+
|
|
1120
|
+
Exhaustive verifications for `2 \times 2` and `3 \times 3` matrices::
|
|
1121
|
+
|
|
1122
|
+
sage: from itertools import product
|
|
1123
|
+
|
|
1124
|
+
sage: M = MatrixSpace(ZZ, 2)
|
|
1125
|
+
sage: A = AlternatingSignMatrices(2)
|
|
1126
|
+
sage: mats = [M(p) for p in product([-1,0,1], repeat=4)]
|
|
1127
|
+
sage: sum(1 for m in mats if m in A)
|
|
1128
|
+
2
|
|
1129
|
+
|
|
1130
|
+
sage: M = MatrixSpace(ZZ, 3)
|
|
1131
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1132
|
+
sage: mats = [M(p) for p in product([-1,0,1], repeat=9)]
|
|
1133
|
+
sage: sum(1 for m in mats if m in A)
|
|
1134
|
+
7
|
|
1135
|
+
"""
|
|
1136
|
+
if isinstance(asm, AlternatingSignMatrix):
|
|
1137
|
+
return asm._matrix.nrows() == self._n
|
|
1138
|
+
try:
|
|
1139
|
+
asm = self._matrix_space(asm)
|
|
1140
|
+
except (TypeError, ValueError):
|
|
1141
|
+
return False
|
|
1142
|
+
|
|
1143
|
+
if not asm.is_square():
|
|
1144
|
+
return False
|
|
1145
|
+
|
|
1146
|
+
n = asm.nrows()
|
|
1147
|
+
for i in range(n):
|
|
1148
|
+
# check that partial sums of the i-th row
|
|
1149
|
+
# and i-th column are either 0 or 1
|
|
1150
|
+
rs = cs = ZZ.zero()
|
|
1151
|
+
for j in range(n):
|
|
1152
|
+
rs += asm[i,j]
|
|
1153
|
+
if not (rs.is_zero() or rs.is_one()):
|
|
1154
|
+
return False
|
|
1155
|
+
|
|
1156
|
+
cs += asm[j,i]
|
|
1157
|
+
if not (cs.is_zero() or cs.is_one()):
|
|
1158
|
+
return False
|
|
1159
|
+
|
|
1160
|
+
# check that the total sums of the i-th
|
|
1161
|
+
# row and i-th column is 1
|
|
1162
|
+
if not (rs.is_one() and cs.is_one()):
|
|
1163
|
+
return False
|
|
1164
|
+
|
|
1165
|
+
return True
|
|
1166
|
+
|
|
1167
|
+
def _element_constructor_(self, asm, check=True):
|
|
1168
|
+
"""
|
|
1169
|
+
Construct an element of ``self``.
|
|
1170
|
+
|
|
1171
|
+
EXAMPLES::
|
|
1172
|
+
|
|
1173
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1174
|
+
sage: elt = A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]); elt
|
|
1175
|
+
[1 0 0]
|
|
1176
|
+
[0 1 0]
|
|
1177
|
+
[0 0 1]
|
|
1178
|
+
sage: elt.parent() is A
|
|
1179
|
+
True
|
|
1180
|
+
sage: A([[3, 2, 1], [2, 1], [1]])
|
|
1181
|
+
[1 0 0]
|
|
1182
|
+
[0 1 0]
|
|
1183
|
+
[0 0 1]
|
|
1184
|
+
|
|
1185
|
+
Check that checking is disabled with ``check=False``::
|
|
1186
|
+
|
|
1187
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1188
|
+
sage: A([[1,2,3],[4,5,6],[7,8,9]])
|
|
1189
|
+
Traceback (most recent call last):
|
|
1190
|
+
...
|
|
1191
|
+
ValueError: invalid alternating sign matrix
|
|
1192
|
+
sage: A([[1,2,3],[4,5,6],[7,8,9]], check=False)
|
|
1193
|
+
[1 2 3]
|
|
1194
|
+
[4 5 6]
|
|
1195
|
+
[7 8 9]
|
|
1196
|
+
"""
|
|
1197
|
+
if isinstance(asm, AlternatingSignMatrix):
|
|
1198
|
+
if asm.parent() is self:
|
|
1199
|
+
return asm
|
|
1200
|
+
raise ValueError("cannot convert between alternating sign matrices of different sizes")
|
|
1201
|
+
try:
|
|
1202
|
+
m = self._matrix_space(asm)
|
|
1203
|
+
except (TypeError, ValueError):
|
|
1204
|
+
try:
|
|
1205
|
+
return self.from_monotone_triangle(asm, check=check)
|
|
1206
|
+
except (TypeError, ValueError):
|
|
1207
|
+
raise ValueError('invalid alternating sign matrix')
|
|
1208
|
+
|
|
1209
|
+
m.set_immutable()
|
|
1210
|
+
if check and m not in self:
|
|
1211
|
+
raise ValueError('invalid alternating sign matrix')
|
|
1212
|
+
return self.element_class(self, m)
|
|
1213
|
+
|
|
1214
|
+
Element = AlternatingSignMatrix
|
|
1215
|
+
|
|
1216
|
+
def _an_element_(self):
|
|
1217
|
+
"""
|
|
1218
|
+
Return an element of ``self``.
|
|
1219
|
+
|
|
1220
|
+
EXAMPLES::
|
|
1221
|
+
|
|
1222
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1223
|
+
sage: A._an_element_()
|
|
1224
|
+
[1 0 0]
|
|
1225
|
+
[0 1 0]
|
|
1226
|
+
[0 0 1]
|
|
1227
|
+
"""
|
|
1228
|
+
return self.element_class(self, self._matrix_space.identity_matrix())
|
|
1229
|
+
|
|
1230
|
+
def random_element(self):
|
|
1231
|
+
r"""
|
|
1232
|
+
Return a uniformly random alternating sign matrix.
|
|
1233
|
+
|
|
1234
|
+
EXAMPLES::
|
|
1235
|
+
|
|
1236
|
+
sage: AlternatingSignMatrices(7).random_element() # random
|
|
1237
|
+
[ 0 0 0 0 1 0 0]
|
|
1238
|
+
[ 0 0 1 0 -1 0 1]
|
|
1239
|
+
[ 0 0 0 0 1 0 0]
|
|
1240
|
+
[ 0 1 -1 0 0 1 0]
|
|
1241
|
+
[ 1 -1 1 0 0 0 0]
|
|
1242
|
+
[ 0 0 0 1 0 0 0]
|
|
1243
|
+
[ 0 1 0 0 0 0 0]
|
|
1244
|
+
sage: a = AlternatingSignMatrices(5).random_element()
|
|
1245
|
+
sage: bool(a.number_negative_ones()) or a.is_permutation()
|
|
1246
|
+
True
|
|
1247
|
+
|
|
1248
|
+
This is done using a modified version of Propp and Wilson's "coupling
|
|
1249
|
+
from the past" algorithm. It creates a uniformly random Gelfand-Tsetlin
|
|
1250
|
+
triangle with top row `[n, n-1, \ldots 2, 1]`, and then converts it to
|
|
1251
|
+
an alternating sign matrix.
|
|
1252
|
+
"""
|
|
1253
|
+
from sage.combinat.gelfand_tsetlin_patterns import GelfandTsetlinPatterns
|
|
1254
|
+
n = self._n
|
|
1255
|
+
toprow = [n - i for i in range(n)]
|
|
1256
|
+
gt = GelfandTsetlinPatterns(top_row=toprow, strict=True)
|
|
1257
|
+
randomgt = gt.random_element()
|
|
1258
|
+
A = AlternatingSignMatrices(n)
|
|
1259
|
+
return A.from_monotone_triangle(randomgt)
|
|
1260
|
+
|
|
1261
|
+
def from_monotone_triangle(self, triangle, check=True):
|
|
1262
|
+
r"""
|
|
1263
|
+
Return an alternating sign matrix from a monotone triangle.
|
|
1264
|
+
|
|
1265
|
+
EXAMPLES::
|
|
1266
|
+
|
|
1267
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1268
|
+
sage: A.from_monotone_triangle([[3, 2, 1], [2, 1], [1]])
|
|
1269
|
+
[1 0 0]
|
|
1270
|
+
[0 1 0]
|
|
1271
|
+
[0 0 1]
|
|
1272
|
+
sage: A.from_monotone_triangle([[3, 2, 1], [3, 2], [3]])
|
|
1273
|
+
[0 0 1]
|
|
1274
|
+
[0 1 0]
|
|
1275
|
+
[1 0 0]
|
|
1276
|
+
|
|
1277
|
+
|
|
1278
|
+
sage: A.from_monotone_triangle([[3, 2, 1], [2, 2], [1]])
|
|
1279
|
+
Traceback (most recent call last):
|
|
1280
|
+
...
|
|
1281
|
+
ValueError: not a valid triangle
|
|
1282
|
+
"""
|
|
1283
|
+
n = len(triangle)
|
|
1284
|
+
if n != self._n:
|
|
1285
|
+
raise ValueError("incorrect size")
|
|
1286
|
+
|
|
1287
|
+
asm = self._matrix_space()
|
|
1288
|
+
for i in range(n - 1):
|
|
1289
|
+
for k in triangle[n - i - 1]:
|
|
1290
|
+
asm[i, k - 1] += 1
|
|
1291
|
+
asm[i + 1, k - 1] -= 1
|
|
1292
|
+
for i in range(n):
|
|
1293
|
+
asm[n - 1, i] += 1
|
|
1294
|
+
|
|
1295
|
+
asm.set_immutable()
|
|
1296
|
+
if check and asm not in self:
|
|
1297
|
+
raise ValueError('not a valid triangle')
|
|
1298
|
+
return self.element_class(self, asm)
|
|
1299
|
+
|
|
1300
|
+
def from_corner_sum(self, corner):
|
|
1301
|
+
r"""
|
|
1302
|
+
Return an alternating sign matrix from a corner sum matrix.
|
|
1303
|
+
|
|
1304
|
+
EXAMPLES::
|
|
1305
|
+
|
|
1306
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1307
|
+
sage: A.from_corner_sum(matrix([[0,0,0,0],[0,1,1,1],[0,1,2,2],[0,1,2,3]]))
|
|
1308
|
+
[1 0 0]
|
|
1309
|
+
[0 1 0]
|
|
1310
|
+
[0 0 1]
|
|
1311
|
+
sage: A.from_corner_sum(matrix([[0,0,0,0],[0,0,1,1],[0,1,1,2],[0,1,2,3]]))
|
|
1312
|
+
[ 0 1 0]
|
|
1313
|
+
[ 1 -1 1]
|
|
1314
|
+
[ 0 1 0]
|
|
1315
|
+
|
|
1316
|
+
TESTS::
|
|
1317
|
+
|
|
1318
|
+
sage: A = AlternatingSignMatrices(4)
|
|
1319
|
+
sage: all(A.from_corner_sum(a.corner_sum_matrix()) == a for a in A)
|
|
1320
|
+
True
|
|
1321
|
+
"""
|
|
1322
|
+
n = self._n
|
|
1323
|
+
corner = MatrixSpace(ZZ, n+1)(corner)
|
|
1324
|
+
asm = corner[1:,1:] + corner[:n,:n] - corner[:n,1:] - corner[1:,:n]
|
|
1325
|
+
return self.element_class(self, asm)
|
|
1326
|
+
|
|
1327
|
+
def from_height_function(self, height):
|
|
1328
|
+
r"""
|
|
1329
|
+
Return an alternating sign matrix from a height function.
|
|
1330
|
+
|
|
1331
|
+
EXAMPLES::
|
|
1332
|
+
|
|
1333
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1334
|
+
sage: A.from_height_function(matrix([[0,1,2,3],[1,2,1,2],[2,3,2,1],[3,2,1,0]]))
|
|
1335
|
+
[0 0 1]
|
|
1336
|
+
[1 0 0]
|
|
1337
|
+
[0 1 0]
|
|
1338
|
+
sage: A.from_height_function(matrix([[0,1,2,3],[1,2,1,2],[2,1,2,1],[3,2,1,0]]))
|
|
1339
|
+
[ 0 1 0]
|
|
1340
|
+
[ 1 -1 1]
|
|
1341
|
+
[ 0 1 0]
|
|
1342
|
+
"""
|
|
1343
|
+
n = self._n
|
|
1344
|
+
height = MatrixSpace(ZZ, n + 1)(height)
|
|
1345
|
+
return self.from_corner_sum([[(i + j - height[i, j]) // 2
|
|
1346
|
+
for i in range(n + 1)]
|
|
1347
|
+
for j in range(n + 1)])
|
|
1348
|
+
|
|
1349
|
+
def from_contre_tableau(self, comps):
|
|
1350
|
+
r"""
|
|
1351
|
+
Return an alternating sign matrix from a contre-tableau.
|
|
1352
|
+
|
|
1353
|
+
EXAMPLES::
|
|
1354
|
+
|
|
1355
|
+
sage: ASM = AlternatingSignMatrices(3)
|
|
1356
|
+
sage: ASM.from_contre_tableau([[1, 2, 3], [1, 2], [1]])
|
|
1357
|
+
[0 0 1]
|
|
1358
|
+
[0 1 0]
|
|
1359
|
+
[1 0 0]
|
|
1360
|
+
sage: ASM.from_contre_tableau([[1, 2, 3], [2, 3], [3]])
|
|
1361
|
+
[1 0 0]
|
|
1362
|
+
[0 1 0]
|
|
1363
|
+
[0 0 1]
|
|
1364
|
+
"""
|
|
1365
|
+
n = len(comps)
|
|
1366
|
+
M = [[0 for _ in range(n)] for _ in range(n)]
|
|
1367
|
+
|
|
1368
|
+
previous_set = set()
|
|
1369
|
+
for col in range(n-1, -1, -1):
|
|
1370
|
+
s = set(comps[col])
|
|
1371
|
+
for x in s.difference(previous_set):
|
|
1372
|
+
M[x-1][col] = 1
|
|
1373
|
+
for x in previous_set.difference(s):
|
|
1374
|
+
M[x-1][col] = -1
|
|
1375
|
+
|
|
1376
|
+
previous_set = s
|
|
1377
|
+
|
|
1378
|
+
return AlternatingSignMatrix(M)
|
|
1379
|
+
|
|
1380
|
+
def size(self):
|
|
1381
|
+
r"""
|
|
1382
|
+
Return the size of the matrices in ``self``.
|
|
1383
|
+
|
|
1384
|
+
TESTS::
|
|
1385
|
+
|
|
1386
|
+
sage: A = AlternatingSignMatrices(4)
|
|
1387
|
+
sage: A.size()
|
|
1388
|
+
4
|
|
1389
|
+
"""
|
|
1390
|
+
return self._n
|
|
1391
|
+
|
|
1392
|
+
def cardinality(self):
|
|
1393
|
+
r"""
|
|
1394
|
+
Return the cardinality of ``self``.
|
|
1395
|
+
|
|
1396
|
+
The number of `n \times n` alternating sign matrices is equal to
|
|
1397
|
+
|
|
1398
|
+
.. MATH::
|
|
1399
|
+
|
|
1400
|
+
\prod_{k=0}^{n-1} \frac{(3k+1)!}{(n+k)!} = \frac{1! 4! 7! 10!
|
|
1401
|
+
\cdots (3n-2)!}{n! (n+1)! (n+2)! (n+3)! \cdots (2n-1)!}
|
|
1402
|
+
|
|
1403
|
+
EXAMPLES::
|
|
1404
|
+
|
|
1405
|
+
sage: [AlternatingSignMatrices(n).cardinality() for n in range(11)]
|
|
1406
|
+
[1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700]
|
|
1407
|
+
"""
|
|
1408
|
+
return Integer(prod(factorial(3 * k + 1) / factorial(self._n + k)
|
|
1409
|
+
for k in range(self._n)))
|
|
1410
|
+
|
|
1411
|
+
def matrix_space(self):
|
|
1412
|
+
"""
|
|
1413
|
+
Return the underlying matrix space.
|
|
1414
|
+
|
|
1415
|
+
EXAMPLES::
|
|
1416
|
+
|
|
1417
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1418
|
+
sage: A.matrix_space()
|
|
1419
|
+
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
|
|
1420
|
+
"""
|
|
1421
|
+
return self._matrix_space
|
|
1422
|
+
|
|
1423
|
+
def __iter__(self):
|
|
1424
|
+
r"""
|
|
1425
|
+
Iterator on the alternating sign matrices of size `n`.
|
|
1426
|
+
|
|
1427
|
+
TESTS::
|
|
1428
|
+
|
|
1429
|
+
sage: AlternatingSignMatrices(3).list()
|
|
1430
|
+
[
|
|
1431
|
+
[1 0 0] [0 1 0] [1 0 0] [ 0 1 0] [0 0 1] [0 1 0] [0 0 1]
|
|
1432
|
+
[0 1 0] [1 0 0] [0 0 1] [ 1 -1 1] [1 0 0] [0 0 1] [0 1 0]
|
|
1433
|
+
[0 0 1], [0 0 1], [0 1 0], [ 0 1 0], [0 1 0], [1 0 0], [1 0 0]
|
|
1434
|
+
]
|
|
1435
|
+
sage: sum(1 for a in AlternatingSignMatrices(4))
|
|
1436
|
+
42
|
|
1437
|
+
"""
|
|
1438
|
+
for t in MonotoneTriangles(self._n):
|
|
1439
|
+
yield self.from_monotone_triangle(t, check=False)
|
|
1440
|
+
|
|
1441
|
+
def first(self):
|
|
1442
|
+
r"""
|
|
1443
|
+
Return the first alternating sign matrix.
|
|
1444
|
+
|
|
1445
|
+
EXAMPLES::
|
|
1446
|
+
|
|
1447
|
+
sage: AlternatingSignMatrices(5).first()
|
|
1448
|
+
[1 0 0 0 0]
|
|
1449
|
+
[0 1 0 0 0]
|
|
1450
|
+
[0 0 1 0 0]
|
|
1451
|
+
[0 0 0 1 0]
|
|
1452
|
+
[0 0 0 0 1]
|
|
1453
|
+
"""
|
|
1454
|
+
return self.element_class(self, self._matrix_space.one())
|
|
1455
|
+
|
|
1456
|
+
def last(self):
|
|
1457
|
+
r"""
|
|
1458
|
+
Return the last alternating sign matrix.
|
|
1459
|
+
|
|
1460
|
+
EXAMPLES::
|
|
1461
|
+
|
|
1462
|
+
sage: AlternatingSignMatrices(5).last()
|
|
1463
|
+
[0 0 0 0 1]
|
|
1464
|
+
[0 0 0 1 0]
|
|
1465
|
+
[0 0 1 0 0]
|
|
1466
|
+
[0 1 0 0 0]
|
|
1467
|
+
[1 0 0 0 0]
|
|
1468
|
+
"""
|
|
1469
|
+
m = self._matrix_space.zero().__copy__()
|
|
1470
|
+
for i in range(self._n):
|
|
1471
|
+
m[i, self._n - i - 1] = 1
|
|
1472
|
+
m.set_immutable()
|
|
1473
|
+
return self.element_class(self, m)
|
|
1474
|
+
|
|
1475
|
+
def _lattice_initializer(self):
|
|
1476
|
+
r"""
|
|
1477
|
+
Return a 2-tuple to use in argument of ``LatticePoset``.
|
|
1478
|
+
|
|
1479
|
+
For more details about the cover relations, see
|
|
1480
|
+
``MonotoneTriangles``. Notice that the returned matrices are
|
|
1481
|
+
made immutable to ensure their hashability required by
|
|
1482
|
+
``LatticePoset``.
|
|
1483
|
+
|
|
1484
|
+
EXAMPLES:
|
|
1485
|
+
|
|
1486
|
+
Proof of the lattice property for alternating sign matrices of
|
|
1487
|
+
size 3::
|
|
1488
|
+
|
|
1489
|
+
sage: # needs sage.graphs
|
|
1490
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1491
|
+
sage: P = Poset(A._lattice_initializer())
|
|
1492
|
+
sage: P.is_lattice()
|
|
1493
|
+
True
|
|
1494
|
+
"""
|
|
1495
|
+
mts, rels = MonotoneTriangles(self._n)._lattice_initializer()
|
|
1496
|
+
bij = {t: self.from_monotone_triangle(t) for t in mts}
|
|
1497
|
+
return (bij.values(), [(bij[a], bij[b]) for (a, b) in rels])
|
|
1498
|
+
|
|
1499
|
+
def cover_relations(self):
|
|
1500
|
+
r"""
|
|
1501
|
+
Iterate on the cover relations between the alternating sign
|
|
1502
|
+
matrices.
|
|
1503
|
+
|
|
1504
|
+
EXAMPLES::
|
|
1505
|
+
|
|
1506
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1507
|
+
sage: for (a,b) in A.cover_relations():
|
|
1508
|
+
....: eval('a, b')
|
|
1509
|
+
(
|
|
1510
|
+
[1 0 0] [0 1 0]
|
|
1511
|
+
[0 1 0] [1 0 0]
|
|
1512
|
+
[0 0 1], [0 0 1]
|
|
1513
|
+
)
|
|
1514
|
+
(
|
|
1515
|
+
[1 0 0] [1 0 0]
|
|
1516
|
+
[0 1 0] [0 0 1]
|
|
1517
|
+
[0 0 1], [0 1 0]
|
|
1518
|
+
)
|
|
1519
|
+
(
|
|
1520
|
+
[0 1 0] [ 0 1 0]
|
|
1521
|
+
[1 0 0] [ 1 -1 1]
|
|
1522
|
+
[0 0 1], [ 0 1 0]
|
|
1523
|
+
)
|
|
1524
|
+
(
|
|
1525
|
+
[1 0 0] [ 0 1 0]
|
|
1526
|
+
[0 0 1] [ 1 -1 1]
|
|
1527
|
+
[0 1 0], [ 0 1 0]
|
|
1528
|
+
)
|
|
1529
|
+
(
|
|
1530
|
+
[ 0 1 0] [0 0 1]
|
|
1531
|
+
[ 1 -1 1] [1 0 0]
|
|
1532
|
+
[ 0 1 0], [0 1 0]
|
|
1533
|
+
)
|
|
1534
|
+
(
|
|
1535
|
+
[ 0 1 0] [0 1 0]
|
|
1536
|
+
[ 1 -1 1] [0 0 1]
|
|
1537
|
+
[ 0 1 0], [1 0 0]
|
|
1538
|
+
)
|
|
1539
|
+
(
|
|
1540
|
+
[0 0 1] [0 0 1]
|
|
1541
|
+
[1 0 0] [0 1 0]
|
|
1542
|
+
[0 1 0], [1 0 0]
|
|
1543
|
+
)
|
|
1544
|
+
(
|
|
1545
|
+
[0 1 0] [0 0 1]
|
|
1546
|
+
[0 0 1] [0 1 0]
|
|
1547
|
+
[1 0 0], [1 0 0]
|
|
1548
|
+
)
|
|
1549
|
+
"""
|
|
1550
|
+
return iter(self._lattice_initializer()[1])
|
|
1551
|
+
|
|
1552
|
+
def lattice(self):
|
|
1553
|
+
r"""
|
|
1554
|
+
Return the lattice of the alternating sign matrices of size
|
|
1555
|
+
`n`, created by ``LatticePoset``.
|
|
1556
|
+
|
|
1557
|
+
EXAMPLES::
|
|
1558
|
+
|
|
1559
|
+
sage: A = AlternatingSignMatrices(3)
|
|
1560
|
+
sage: L = A.lattice(); L # needs sage.graphs
|
|
1561
|
+
Finite lattice containing 7 elements
|
|
1562
|
+
"""
|
|
1563
|
+
return LatticePoset(self._lattice_initializer(), cover_relations=True,
|
|
1564
|
+
check=False)
|
|
1565
|
+
|
|
1566
|
+
@cached_method
|
|
1567
|
+
def gyration_orbits(self):
|
|
1568
|
+
r"""
|
|
1569
|
+
Return the list of gyration orbits of ``self``.
|
|
1570
|
+
|
|
1571
|
+
EXAMPLES::
|
|
1572
|
+
|
|
1573
|
+
sage: AlternatingSignMatrices(3).gyration_orbits()
|
|
1574
|
+
((
|
|
1575
|
+
[1 0 0] [0 0 1] [ 0 1 0]
|
|
1576
|
+
[0 1 0] [0 1 0] [ 1 -1 1]
|
|
1577
|
+
[0 0 1], [1 0 0], [ 0 1 0]
|
|
1578
|
+
),
|
|
1579
|
+
(
|
|
1580
|
+
[0 1 0] [1 0 0]
|
|
1581
|
+
[1 0 0] [0 0 1]
|
|
1582
|
+
[0 0 1], [0 1 0]
|
|
1583
|
+
),
|
|
1584
|
+
(
|
|
1585
|
+
[0 0 1] [0 1 0]
|
|
1586
|
+
[1 0 0] [0 0 1]
|
|
1587
|
+
[0 1 0], [1 0 0]
|
|
1588
|
+
))
|
|
1589
|
+
"""
|
|
1590
|
+
ASMs = list(self)
|
|
1591
|
+
perm = Permutation([ASMs.index(asm.gyration())+1 for asm in ASMs])
|
|
1592
|
+
return tuple([tuple([ASMs[i-1] for i in cyc])
|
|
1593
|
+
for cyc in perm.cycle_tuples()])
|
|
1594
|
+
|
|
1595
|
+
def gyration_orbit_sizes(self):
|
|
1596
|
+
r"""
|
|
1597
|
+
Return the sizes of gyration orbits of ``self``.
|
|
1598
|
+
|
|
1599
|
+
EXAMPLES::
|
|
1600
|
+
|
|
1601
|
+
sage: AlternatingSignMatrices(3).gyration_orbit_sizes()
|
|
1602
|
+
[3, 2, 2]
|
|
1603
|
+
sage: AlternatingSignMatrices(4).gyration_orbit_sizes()
|
|
1604
|
+
[4, 8, 2, 8, 8, 8, 2, 2]
|
|
1605
|
+
|
|
1606
|
+
sage: A = AlternatingSignMatrices(5)
|
|
1607
|
+
sage: li = [5,10,10,10,10,10,2,5,10,10,10,10,10,10,10,10,10,10,10,10,
|
|
1608
|
+
....: 4,10,10,10,10,10,10,4,5,10,10,10,10,10,10,10,2,4,5,10,10,10,10,10,10,
|
|
1609
|
+
....: 4,5,10,10,2,2]
|
|
1610
|
+
sage: A.gyration_orbit_sizes() == li
|
|
1611
|
+
True
|
|
1612
|
+
"""
|
|
1613
|
+
return [len(orbit) for orbit in self.gyration_orbits()]
|
|
1614
|
+
|
|
1615
|
+
|
|
1616
|
+
class MonotoneTriangles(GelfandTsetlinPatternsTopRow):
|
|
1617
|
+
r"""
|
|
1618
|
+
Monotone triangles with `n` rows.
|
|
1619
|
+
|
|
1620
|
+
A monotone triangle is a number triangle `(a_{i,j})_{1 \leq i \leq
|
|
1621
|
+
n , 1 \leq j \leq i}` on `\{1, \dots, n\}` such that:
|
|
1622
|
+
|
|
1623
|
+
- `a_{i,j} < a_{i,j+1}`
|
|
1624
|
+
|
|
1625
|
+
- `a_{i+1,j} < a_{i,j} \leq a_{i+1,j+1}`
|
|
1626
|
+
|
|
1627
|
+
This notably requires that the bottom column is ``[1,...,n]``.
|
|
1628
|
+
|
|
1629
|
+
Alternatively a monotone triangle is a strict Gelfand-Tsetlin pattern with
|
|
1630
|
+
top row `(n, \ldots, 2, 1)`.
|
|
1631
|
+
|
|
1632
|
+
INPUT:
|
|
1633
|
+
|
|
1634
|
+
- ``n`` -- the number of rows in the monotone triangles
|
|
1635
|
+
|
|
1636
|
+
EXAMPLES:
|
|
1637
|
+
|
|
1638
|
+
This represents the monotone triangles with base ``[3,2,1]``::
|
|
1639
|
+
|
|
1640
|
+
sage: M = MonotoneTriangles(3)
|
|
1641
|
+
sage: M
|
|
1642
|
+
Monotone triangles with 3 rows
|
|
1643
|
+
sage: M.cardinality()
|
|
1644
|
+
7
|
|
1645
|
+
|
|
1646
|
+
The monotone triangles are a lattice::
|
|
1647
|
+
|
|
1648
|
+
sage: M.lattice() # needs sage.graphs
|
|
1649
|
+
Finite lattice containing 7 elements
|
|
1650
|
+
|
|
1651
|
+
Monotone triangles can be converted to alternating sign matrices
|
|
1652
|
+
and back::
|
|
1653
|
+
|
|
1654
|
+
sage: M = MonotoneTriangles(5)
|
|
1655
|
+
sage: A = AlternatingSignMatrices(5)
|
|
1656
|
+
sage: all(A.from_monotone_triangle(m).to_monotone_triangle() == m for m in M)
|
|
1657
|
+
True
|
|
1658
|
+
"""
|
|
1659
|
+
|
|
1660
|
+
def __init__(self, n):
|
|
1661
|
+
r"""
|
|
1662
|
+
Initialize ``self``.
|
|
1663
|
+
|
|
1664
|
+
TESTS::
|
|
1665
|
+
|
|
1666
|
+
sage: M = MonotoneTriangles(4)
|
|
1667
|
+
sage: TestSuite(M).run()
|
|
1668
|
+
sage: M2 = MonotoneTriangles(int(4))
|
|
1669
|
+
sage: M is M2
|
|
1670
|
+
True
|
|
1671
|
+
"""
|
|
1672
|
+
GelfandTsetlinPatternsTopRow.__init__(self, tuple(reversed(range(1, n+1))), True)
|
|
1673
|
+
|
|
1674
|
+
def _repr_(self):
|
|
1675
|
+
r"""
|
|
1676
|
+
String representation.
|
|
1677
|
+
|
|
1678
|
+
TESTS::
|
|
1679
|
+
|
|
1680
|
+
sage: M = MonotoneTriangles(4)
|
|
1681
|
+
sage: M
|
|
1682
|
+
Monotone triangles with 4 rows
|
|
1683
|
+
"""
|
|
1684
|
+
return "Monotone triangles with %s rows" % self._n
|
|
1685
|
+
|
|
1686
|
+
def cardinality(self):
|
|
1687
|
+
r"""
|
|
1688
|
+
Cardinality of ``self``.
|
|
1689
|
+
|
|
1690
|
+
The number of monotone triangles with `n` rows is equal to
|
|
1691
|
+
|
|
1692
|
+
.. MATH::
|
|
1693
|
+
|
|
1694
|
+
\prod_{k=0}^{n-1} \frac{(3k+1)!}{(n+k)!} = \frac{1! 4! 7! 10!
|
|
1695
|
+
\cdots (3n-2)!}{n! (n+1)! (n+2)! (n+3)! \cdots (2n-1)!}
|
|
1696
|
+
|
|
1697
|
+
EXAMPLES::
|
|
1698
|
+
|
|
1699
|
+
sage: M = MonotoneTriangles(4)
|
|
1700
|
+
sage: M.cardinality()
|
|
1701
|
+
42
|
|
1702
|
+
"""
|
|
1703
|
+
return Integer(prod(factorial(3 * k + 1) / factorial(self._n + k)
|
|
1704
|
+
for k in range(self._n)))
|
|
1705
|
+
|
|
1706
|
+
def _lattice_initializer(self):
|
|
1707
|
+
r"""
|
|
1708
|
+
Return a 2-tuple to use in argument of ``LatticePoset``.
|
|
1709
|
+
|
|
1710
|
+
This couple is composed by the set of the monotone triangles
|
|
1711
|
+
with `n` rows and the cover relations. Specializing this
|
|
1712
|
+
function allows to generate the monotone triangles just once,
|
|
1713
|
+
and so to speed up the computation in comparison of
|
|
1714
|
+
``(list(self), self.cover_relations())``. Notice that the
|
|
1715
|
+
function also switch the representation of monotone triangles
|
|
1716
|
+
from list of list to tuple of tuple in order to make them
|
|
1717
|
+
hashable (required to make a poset with them).
|
|
1718
|
+
|
|
1719
|
+
EXAMPLES::
|
|
1720
|
+
|
|
1721
|
+
sage: # needs sage.graphs
|
|
1722
|
+
sage: M = MonotoneTriangles(3)
|
|
1723
|
+
sage: P = Poset(M._lattice_initializer())
|
|
1724
|
+
sage: P.is_lattice()
|
|
1725
|
+
True
|
|
1726
|
+
"""
|
|
1727
|
+
# get a list of the elements and switch to a tuple representation
|
|
1728
|
+
set_ = [tuple(tuple(t) for t in x) for x in list(self)]
|
|
1729
|
+
return (set_, [(a, b) for a in set_ for b in set_ if _is_a_cover(a, b)])
|
|
1730
|
+
|
|
1731
|
+
def cover_relations(self):
|
|
1732
|
+
r"""
|
|
1733
|
+
Iterate on the cover relations in the set of monotone triangles
|
|
1734
|
+
with `n` rows.
|
|
1735
|
+
|
|
1736
|
+
EXAMPLES::
|
|
1737
|
+
|
|
1738
|
+
sage: M = MonotoneTriangles(3)
|
|
1739
|
+
sage: for (a,b) in M.cover_relations():
|
|
1740
|
+
....: eval('a, b')
|
|
1741
|
+
([[3, 2, 1], [2, 1], [1]], [[3, 2, 1], [2, 1], [2]])
|
|
1742
|
+
([[3, 2, 1], [2, 1], [1]], [[3, 2, 1], [3, 1], [1]])
|
|
1743
|
+
([[3, 2, 1], [2, 1], [2]], [[3, 2, 1], [3, 1], [2]])
|
|
1744
|
+
([[3, 2, 1], [3, 1], [1]], [[3, 2, 1], [3, 1], [2]])
|
|
1745
|
+
([[3, 2, 1], [3, 1], [2]], [[3, 2, 1], [3, 1], [3]])
|
|
1746
|
+
([[3, 2, 1], [3, 1], [2]], [[3, 2, 1], [3, 2], [2]])
|
|
1747
|
+
([[3, 2, 1], [3, 1], [3]], [[3, 2, 1], [3, 2], [3]])
|
|
1748
|
+
([[3, 2, 1], [3, 2], [2]], [[3, 2, 1], [3, 2], [3]])
|
|
1749
|
+
"""
|
|
1750
|
+
set_ = list(self)
|
|
1751
|
+
return ((a, b) for a in set_ for b in set_ if _is_a_cover(a, b))
|
|
1752
|
+
|
|
1753
|
+
def lattice(self):
|
|
1754
|
+
r"""
|
|
1755
|
+
Return the lattice of the monotone triangles with `n` rows.
|
|
1756
|
+
|
|
1757
|
+
EXAMPLES::
|
|
1758
|
+
|
|
1759
|
+
sage: M = MonotoneTriangles(3)
|
|
1760
|
+
sage: P = M.lattice(); P # needs sage.graphs
|
|
1761
|
+
Finite lattice containing 7 elements
|
|
1762
|
+
"""
|
|
1763
|
+
return LatticePoset(self._lattice_initializer(), cover_relations=True,
|
|
1764
|
+
check=False)
|
|
1765
|
+
|
|
1766
|
+
|
|
1767
|
+
def _is_a_cover(mt0, mt1):
|
|
1768
|
+
r"""
|
|
1769
|
+
Define the cover relations.
|
|
1770
|
+
|
|
1771
|
+
Return ``True`` if and only if the second argument is a cover of
|
|
1772
|
+
the first one.
|
|
1773
|
+
|
|
1774
|
+
EXAMPLES::
|
|
1775
|
+
|
|
1776
|
+
sage: import sage.combinat.alternating_sign_matrix as asm
|
|
1777
|
+
sage: asm._is_a_cover([[1,2,3],[1,2],[1]], [[1,2,3],[1,3],[1]])
|
|
1778
|
+
True
|
|
1779
|
+
sage: asm._is_a_cover([[1,2,3],[1,3],[2]], [[1,2,3],[1,2],[1]])
|
|
1780
|
+
False
|
|
1781
|
+
"""
|
|
1782
|
+
diffs = 0
|
|
1783
|
+
for (a, b) in zip(flatten(mt0), flatten(mt1)):
|
|
1784
|
+
if a != b:
|
|
1785
|
+
if a + 1 == b:
|
|
1786
|
+
diffs += 1
|
|
1787
|
+
else:
|
|
1788
|
+
return False
|
|
1789
|
+
if diffs > 1:
|
|
1790
|
+
return False
|
|
1791
|
+
return diffs == 1
|
|
1792
|
+
|
|
1793
|
+
|
|
1794
|
+
from sage.misc.persist import register_unpickle_override
|
|
1795
|
+
register_unpickle_override('sage.combinat.alternating_sign_matrix', 'AlternatingSignMatrices_n', AlternatingSignMatrices)
|
|
1796
|
+
register_unpickle_override('sage.combinat.alternating_sign_matrix', 'MonotoneTriangles_n', MonotoneTriangles)
|
|
1797
|
+
|
|
1798
|
+
|
|
1799
|
+
class ContreTableaux(Parent, metaclass=ClasscallMetaclass):
|
|
1800
|
+
"""
|
|
1801
|
+
Factory class for the combinatorial class of contre tableaux of size `n`.
|
|
1802
|
+
|
|
1803
|
+
EXAMPLES::
|
|
1804
|
+
|
|
1805
|
+
sage: ct4 = ContreTableaux(4); ct4
|
|
1806
|
+
Contre tableaux of size 4
|
|
1807
|
+
sage: ct4.cardinality()
|
|
1808
|
+
42
|
|
1809
|
+
"""
|
|
1810
|
+
@staticmethod
|
|
1811
|
+
def __classcall_private__(cls, n, **kwds):
|
|
1812
|
+
r"""
|
|
1813
|
+
Factory pattern.
|
|
1814
|
+
|
|
1815
|
+
Check properties on arguments, then call the appropriate class.
|
|
1816
|
+
|
|
1817
|
+
EXAMPLES::
|
|
1818
|
+
|
|
1819
|
+
sage: C = ContreTableaux(4)
|
|
1820
|
+
sage: type(C)
|
|
1821
|
+
<class 'sage.combinat.alternating_sign_matrix.ContreTableaux_n'>
|
|
1822
|
+
"""
|
|
1823
|
+
assert isinstance(n, (int, Integer))
|
|
1824
|
+
return ContreTableaux_n(n, **kwds)
|
|
1825
|
+
|
|
1826
|
+
|
|
1827
|
+
class ContreTableaux_n(ContreTableaux):
|
|
1828
|
+
def __init__(self, n):
|
|
1829
|
+
"""
|
|
1830
|
+
TESTS::
|
|
1831
|
+
|
|
1832
|
+
sage: ct2 = ContreTableaux(2); ct2
|
|
1833
|
+
Contre tableaux of size 2
|
|
1834
|
+
sage: ct2 == loads(dumps(ct2))
|
|
1835
|
+
True
|
|
1836
|
+
"""
|
|
1837
|
+
self.n = n
|
|
1838
|
+
|
|
1839
|
+
def __repr__(self):
|
|
1840
|
+
"""
|
|
1841
|
+
TESTS::
|
|
1842
|
+
|
|
1843
|
+
sage: repr(ContreTableaux(2))
|
|
1844
|
+
'Contre tableaux of size 2'
|
|
1845
|
+
"""
|
|
1846
|
+
return "Contre tableaux of size %s" % self.n
|
|
1847
|
+
|
|
1848
|
+
def __eq__(self, other):
|
|
1849
|
+
"""
|
|
1850
|
+
TESTS::
|
|
1851
|
+
|
|
1852
|
+
sage: C = ContreTableaux(4)
|
|
1853
|
+
sage: C == loads(dumps(C))
|
|
1854
|
+
True
|
|
1855
|
+
"""
|
|
1856
|
+
return self.n == other.n
|
|
1857
|
+
|
|
1858
|
+
def cardinality(self):
|
|
1859
|
+
"""
|
|
1860
|
+
EXAMPLES::
|
|
1861
|
+
|
|
1862
|
+
sage: [ContreTableaux(n).cardinality() for n in range(11)]
|
|
1863
|
+
[1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700]
|
|
1864
|
+
"""
|
|
1865
|
+
return Integer(prod(factorial(3 * k + 1) / factorial(self.n + k)
|
|
1866
|
+
for k in range(self.n)))
|
|
1867
|
+
|
|
1868
|
+
def _iterator_rec(self, i):
|
|
1869
|
+
"""
|
|
1870
|
+
EXAMPLES::
|
|
1871
|
+
|
|
1872
|
+
sage: c = ContreTableaux(2)
|
|
1873
|
+
sage: list(c._iterator_rec(0))
|
|
1874
|
+
[[]]
|
|
1875
|
+
sage: list(c._iterator_rec(1))
|
|
1876
|
+
[[[1, 2]]]
|
|
1877
|
+
sage: list(c._iterator_rec(2))
|
|
1878
|
+
[[[1, 2], [1]], [[1, 2], [2]]]
|
|
1879
|
+
"""
|
|
1880
|
+
if i == 0:
|
|
1881
|
+
yield []
|
|
1882
|
+
elif i == 1:
|
|
1883
|
+
yield [list(range(1, self.n + 1))]
|
|
1884
|
+
else:
|
|
1885
|
+
for columns in self._iterator_rec(i-1):
|
|
1886
|
+
previous_column = columns[-1]
|
|
1887
|
+
for column in _next_column_iterator(previous_column, len(previous_column)-1):
|
|
1888
|
+
yield columns + [column]
|
|
1889
|
+
|
|
1890
|
+
def __iter__(self):
|
|
1891
|
+
"""
|
|
1892
|
+
EXAMPLES::
|
|
1893
|
+
|
|
1894
|
+
sage: list(ContreTableaux(0))
|
|
1895
|
+
[[]]
|
|
1896
|
+
sage: list(ContreTableaux(1))
|
|
1897
|
+
[[[1]]]
|
|
1898
|
+
sage: list(ContreTableaux(2))
|
|
1899
|
+
[[[1, 2], [1]], [[1, 2], [2]]]
|
|
1900
|
+
sage: list(ContreTableaux(3))
|
|
1901
|
+
[[[1, 2, 3], [1, 2], [1]],
|
|
1902
|
+
[[1, 2, 3], [1, 2], [2]],
|
|
1903
|
+
[[1, 2, 3], [1, 3], [1]],
|
|
1904
|
+
[[1, 2, 3], [1, 3], [2]],
|
|
1905
|
+
[[1, 2, 3], [1, 3], [3]],
|
|
1906
|
+
[[1, 2, 3], [2, 3], [2]],
|
|
1907
|
+
[[1, 2, 3], [2, 3], [3]]]
|
|
1908
|
+
"""
|
|
1909
|
+
yield from self._iterator_rec(self.n)
|
|
1910
|
+
|
|
1911
|
+
|
|
1912
|
+
def _next_column_iterator(previous_column, height, i=None):
|
|
1913
|
+
r"""
|
|
1914
|
+
Return a generator for all columns of height ``height``
|
|
1915
|
+
properly filled from row 1 to ``i``.
|
|
1916
|
+
|
|
1917
|
+
"Properly filled" means strictly increasing and having
|
|
1918
|
+
the property that the `k`-th entry is `\geq` to the `k`-th
|
|
1919
|
+
entry of ``previous_column`` for each `k`.
|
|
1920
|
+
|
|
1921
|
+
EXAMPLES::
|
|
1922
|
+
|
|
1923
|
+
sage: import sage.combinat.alternating_sign_matrix as asm
|
|
1924
|
+
sage: list(asm._next_column_iterator([1], 0))
|
|
1925
|
+
[[]]
|
|
1926
|
+
sage: list(asm._next_column_iterator([1,5],1))
|
|
1927
|
+
[[1], [2], [3], [4], [5]]
|
|
1928
|
+
sage: list(asm._next_column_iterator([1,4,5],2))
|
|
1929
|
+
[[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5], [4, 5]]
|
|
1930
|
+
"""
|
|
1931
|
+
if i is None:
|
|
1932
|
+
i = height
|
|
1933
|
+
if i == 0:
|
|
1934
|
+
yield [-1] * height
|
|
1935
|
+
else:
|
|
1936
|
+
for column in _next_column_iterator(previous_column, height, i-1):
|
|
1937
|
+
min_value = previous_column[i-1]
|
|
1938
|
+
if i > 1:
|
|
1939
|
+
min_value = max(min_value, column[i-2]+1)
|
|
1940
|
+
for value in range(min_value, previous_column[i]+1):
|
|
1941
|
+
c = column[:]
|
|
1942
|
+
c[i-1] = value
|
|
1943
|
+
yield c
|
|
1944
|
+
|
|
1945
|
+
|
|
1946
|
+
def _previous_column_iterator(column, height, max_value):
|
|
1947
|
+
"""
|
|
1948
|
+
EXAMPLES::
|
|
1949
|
+
|
|
1950
|
+
sage: import sage.combinat.alternating_sign_matrix as asm
|
|
1951
|
+
sage: list(asm._previous_column_iterator([2,3], 3, 4))
|
|
1952
|
+
[[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
|
|
1953
|
+
"""
|
|
1954
|
+
new_column = [1] + column + [max_value] * (height - len(column))
|
|
1955
|
+
return _next_column_iterator(new_column, height)
|
|
1956
|
+
|
|
1957
|
+
|
|
1958
|
+
class TruncatedStaircases(Parent, metaclass=ClasscallMetaclass):
|
|
1959
|
+
"""
|
|
1960
|
+
Factory class for the combinatorial class of truncated staircases
|
|
1961
|
+
of size ``n`` with last column ``last_column``.
|
|
1962
|
+
|
|
1963
|
+
EXAMPLES::
|
|
1964
|
+
|
|
1965
|
+
sage: t4 = TruncatedStaircases(4, [2,3]); t4
|
|
1966
|
+
Truncated staircases of size 4 with last column [2, 3]
|
|
1967
|
+
sage: t4.cardinality()
|
|
1968
|
+
4
|
|
1969
|
+
"""
|
|
1970
|
+
@staticmethod
|
|
1971
|
+
def __classcall_private__(cls, n, last_column, **kwds):
|
|
1972
|
+
r"""
|
|
1973
|
+
Factory pattern.
|
|
1974
|
+
|
|
1975
|
+
Check properties on arguments, then call the appropriate class.
|
|
1976
|
+
|
|
1977
|
+
TESTS::
|
|
1978
|
+
|
|
1979
|
+
sage: T = TruncatedStaircases(4, [2,3])
|
|
1980
|
+
sage: type(T)
|
|
1981
|
+
<class 'sage.combinat.alternating_sign_matrix.TruncatedStaircases_nlastcolumn'>
|
|
1982
|
+
"""
|
|
1983
|
+
assert isinstance(n, (int, Integer))
|
|
1984
|
+
return TruncatedStaircases_nlastcolumn(n, last_column, **kwds)
|
|
1985
|
+
|
|
1986
|
+
|
|
1987
|
+
class TruncatedStaircases_nlastcolumn(TruncatedStaircases):
|
|
1988
|
+
def __init__(self, n, last_column):
|
|
1989
|
+
"""
|
|
1990
|
+
TESTS::
|
|
1991
|
+
|
|
1992
|
+
sage: t4 = TruncatedStaircases(4, [2,3]); t4
|
|
1993
|
+
Truncated staircases of size 4 with last column [2, 3]
|
|
1994
|
+
sage: t4 == loads(dumps(t4))
|
|
1995
|
+
True
|
|
1996
|
+
"""
|
|
1997
|
+
self.n = n
|
|
1998
|
+
self.last_column = last_column
|
|
1999
|
+
|
|
2000
|
+
def __repr__(self):
|
|
2001
|
+
"""
|
|
2002
|
+
TESTS::
|
|
2003
|
+
|
|
2004
|
+
sage: repr(TruncatedStaircases(4, [2,3]))
|
|
2005
|
+
'Truncated staircases of size 4 with last column [2, 3]'
|
|
2006
|
+
"""
|
|
2007
|
+
return "Truncated staircases of size %s with last column %s" % (self.n, self.last_column)
|
|
2008
|
+
|
|
2009
|
+
def _iterator_rec(self, i):
|
|
2010
|
+
"""
|
|
2011
|
+
EXAMPLES::
|
|
2012
|
+
|
|
2013
|
+
sage: t = TruncatedStaircases(3, [2,3])
|
|
2014
|
+
sage: list(t._iterator_rec(1))
|
|
2015
|
+
[]
|
|
2016
|
+
sage: list(t._iterator_rec(2))
|
|
2017
|
+
[[[2, 3]]]
|
|
2018
|
+
sage: list(t._iterator_rec(3))
|
|
2019
|
+
[[[1, 2, 3], [2, 3]]]
|
|
2020
|
+
"""
|
|
2021
|
+
if i < len(self.last_column):
|
|
2022
|
+
return
|
|
2023
|
+
elif i == len(self.last_column):
|
|
2024
|
+
yield [self.last_column]
|
|
2025
|
+
else:
|
|
2026
|
+
for columns in self._iterator_rec(i-1):
|
|
2027
|
+
previous_column = columns[0]
|
|
2028
|
+
for column in _previous_column_iterator(previous_column, len(previous_column)+1, self.n):
|
|
2029
|
+
yield [column] + columns
|
|
2030
|
+
|
|
2031
|
+
def __iter__(self):
|
|
2032
|
+
"""
|
|
2033
|
+
EXAMPLES::
|
|
2034
|
+
|
|
2035
|
+
sage: list(TruncatedStaircases(4, [2,3]))
|
|
2036
|
+
[[[4, 3, 2, 1], [3, 2, 1], [3, 2]], [[4, 3, 2, 1], [4, 2, 1], [3, 2]], [[4, 3, 2, 1], [4, 3, 1], [3, 2]], [[4, 3, 2, 1], [4, 3, 2], [3, 2]]]
|
|
2037
|
+
"""
|
|
2038
|
+
for z in self._iterator_rec(self.n):
|
|
2039
|
+
yield [list(reversed(x)) for x in z]
|
|
2040
|
+
|
|
2041
|
+
def __eq__(self, other):
|
|
2042
|
+
r"""
|
|
2043
|
+
TESTS::
|
|
2044
|
+
|
|
2045
|
+
sage: T = TruncatedStaircases(4, [2,3])
|
|
2046
|
+
sage: T == loads(dumps(T))
|
|
2047
|
+
True
|
|
2048
|
+
"""
|
|
2049
|
+
return (self.n == other.n and
|
|
2050
|
+
self.last_column == other.last_column)
|
|
2051
|
+
|
|
2052
|
+
def cardinality(self):
|
|
2053
|
+
r"""
|
|
2054
|
+
EXAMPLES::
|
|
2055
|
+
|
|
2056
|
+
sage: T = TruncatedStaircases(4, [2,3])
|
|
2057
|
+
sage: T.cardinality()
|
|
2058
|
+
4
|
|
2059
|
+
"""
|
|
2060
|
+
c = 0
|
|
2061
|
+
for _ in self:
|
|
2062
|
+
c += 1
|
|
2063
|
+
return c
|