passagemath-combinat 10.6.42__cp314-cp314t-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/DELVEWHEEL +2 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +401 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-10-3a5f019e2510aeaad918cab2b57a689d.dll +0 -0
- passagemath_combinat.libs/libsymmetrica-3-7dcf900932804d0df5fd0919b4668720.dll +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +44 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cp314t-win_amd64.pyd +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cp314t-win_amd64.pyd +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cp314t-win_amd64.pyd +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cp314t-win_amd64.pyd +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cp314t-win_amd64.pyd +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cp314t-win_amd64.pyd +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cp314t-win_amd64.pyd +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cp314t-win_amd64.pyd +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cp314t-win_amd64.pyd +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cp314t-win_amd64.pyd +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cp314t-win_amd64.pyd +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cp314t-win_amd64.pyd +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cp314t-win_amd64.pyd +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cp314t-win_amd64.pyd +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
r"""
|
|
3
|
+
Noncommutative symmetric functions and quasi-symmetric functions
|
|
4
|
+
|
|
5
|
+
- :ref:`sage.combinat.ncsf_qsym.tutorial`
|
|
6
|
+
|
|
7
|
+
- :ref:`Non-Commutative Symmetric Functions (NCSF) <sage.combinat.ncsf_qsym.ncsf>`
|
|
8
|
+
- :ref:`Quasi-Symmetric Functions (QSym) <sage.combinat.ncsf_qsym.qsym>`
|
|
9
|
+
- :ref:`sage.combinat.ncsf_qsym.generic_basis_code`
|
|
10
|
+
"""
|
|
11
|
+
# install the docstring of this module to the containing package
|
|
12
|
+
from sage.misc.namespace_package import install_doc
|
|
13
|
+
install_doc(__package__, __doc__)
|
|
14
|
+
|
|
15
|
+
from sage.misc.lazy_import import lazy_import
|
|
16
|
+
|
|
17
|
+
lazy_import('sage.combinat.ncsf_qsym.qsym', 'QuasiSymmetricFunctions')
|
|
18
|
+
lazy_import('sage.combinat.ncsf_qsym.ncsf', 'NonCommutativeSymmetricFunctions')
|
|
19
|
+
|
|
20
|
+
del install_doc
|
|
21
|
+
del lazy_import
|
|
@@ -0,0 +1,317 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
r"""
|
|
3
|
+
Common combinatorial tools
|
|
4
|
+
|
|
5
|
+
REFERENCES:
|
|
6
|
+
|
|
7
|
+
.. [NCSF] Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon,
|
|
8
|
+
*Noncommutative Symmetric Functions*, Adv. Math. 112 (1995), no. 2, 218-348.
|
|
9
|
+
|
|
10
|
+
.. [QSCHUR] Haglund, Luoto, Mason, van Willigenburg,
|
|
11
|
+
*Quasisymmetric Schur functions*, J. Comb. Theory Ser. A 118 (2011), 463-490.
|
|
12
|
+
http://www.sciencedirect.com/science/article/pii/S0097316509001745 ,
|
|
13
|
+
:arxiv:`0810.2489v2`.
|
|
14
|
+
|
|
15
|
+
.. [Tev2007] Lenny Tevlin,
|
|
16
|
+
*Noncommutative Analogs of Monomial Symmetric Functions,
|
|
17
|
+
Cauchy Identity, and Hall Scalar Product*,
|
|
18
|
+
:arxiv:`0712.2201v1`.
|
|
19
|
+
"""
|
|
20
|
+
from sage.misc.misc_c import prod
|
|
21
|
+
from sage.arith.misc import factorial
|
|
22
|
+
from sage.misc.cachefunc import cached_function
|
|
23
|
+
from sage.combinat.composition import Composition, Compositions
|
|
24
|
+
from sage.combinat.composition_tableau import CompositionTableaux
|
|
25
|
+
from sage.rings.integer_ring import ZZ
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
# The following might call for defining a morphism from ``structure
|
|
29
|
+
# coefficients'' / matrix using something like:
|
|
30
|
+
# Complete.module_morphism( coeff = coeff_pi, codomain=Psi, triangularity="finer" )
|
|
31
|
+
# the difficulty is how to best describe the support of the output.
|
|
32
|
+
|
|
33
|
+
def coeff_pi(J, I):
|
|
34
|
+
r"""
|
|
35
|
+
Return the coefficient `\pi_{J,I}` as defined in [NCSF]_.
|
|
36
|
+
|
|
37
|
+
INPUT:
|
|
38
|
+
|
|
39
|
+
- ``J`` -- a composition
|
|
40
|
+
- ``I`` -- a composition refining ``J``
|
|
41
|
+
|
|
42
|
+
OUTPUT: integer
|
|
43
|
+
|
|
44
|
+
EXAMPLES::
|
|
45
|
+
|
|
46
|
+
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_pi
|
|
47
|
+
sage: coeff_pi(Composition([1,1,1]), Composition([2,1]))
|
|
48
|
+
2
|
|
49
|
+
sage: coeff_pi(Composition([2,1]), Composition([3]))
|
|
50
|
+
6
|
|
51
|
+
"""
|
|
52
|
+
return prod(prod(K.partial_sums()) for K in J.refinement_splitting(I))
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def coeff_lp(J, I):
|
|
56
|
+
r"""
|
|
57
|
+
Return the coefficient `lp_{J,I}` as defined in [NCSF]_.
|
|
58
|
+
|
|
59
|
+
INPUT:
|
|
60
|
+
|
|
61
|
+
- ``J`` -- a composition
|
|
62
|
+
- ``I`` -- a composition refining ``J``
|
|
63
|
+
|
|
64
|
+
OUTPUT: integer
|
|
65
|
+
|
|
66
|
+
EXAMPLES::
|
|
67
|
+
|
|
68
|
+
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_lp
|
|
69
|
+
sage: coeff_lp(Composition([1,1,1]), Composition([2,1]))
|
|
70
|
+
1
|
|
71
|
+
sage: coeff_lp(Composition([2,1]), Composition([3]))
|
|
72
|
+
1
|
|
73
|
+
"""
|
|
74
|
+
return prod(K[-1] for K in J.refinement_splitting(I))
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
def coeff_ell(J, I):
|
|
78
|
+
r"""
|
|
79
|
+
Return the coefficient `\ell_{J,I}` as defined in [NCSF]_.
|
|
80
|
+
|
|
81
|
+
INPUT:
|
|
82
|
+
|
|
83
|
+
- ``J`` -- a composition
|
|
84
|
+
- ``I`` -- a composition refining ``J``
|
|
85
|
+
|
|
86
|
+
OUTPUT: integer
|
|
87
|
+
|
|
88
|
+
EXAMPLES::
|
|
89
|
+
|
|
90
|
+
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_ell
|
|
91
|
+
sage: coeff_ell(Composition([1,1,1]), Composition([2,1]))
|
|
92
|
+
2
|
|
93
|
+
sage: coeff_ell(Composition([2,1]), Composition([3]))
|
|
94
|
+
2
|
|
95
|
+
"""
|
|
96
|
+
return prod([len(elt) for elt in J.refinement_splitting(I)])
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
def coeff_sp(J, I):
|
|
100
|
+
r"""
|
|
101
|
+
Return the coefficient `sp_{J,I}` as defined in [NCSF]_.
|
|
102
|
+
|
|
103
|
+
INPUT:
|
|
104
|
+
|
|
105
|
+
- ``J`` -- a composition
|
|
106
|
+
- ``I`` -- a composition refining ``J``
|
|
107
|
+
|
|
108
|
+
OUTPUT: integer
|
|
109
|
+
|
|
110
|
+
EXAMPLES::
|
|
111
|
+
|
|
112
|
+
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_sp
|
|
113
|
+
sage: coeff_sp(Composition([1,1,1]), Composition([2,1]))
|
|
114
|
+
2
|
|
115
|
+
sage: coeff_sp(Composition([2,1]), Composition([3]))
|
|
116
|
+
4
|
|
117
|
+
"""
|
|
118
|
+
return prod(factorial(len(K))*prod(K) for K in J.refinement_splitting(I))
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
def coeff_dab(I, J):
|
|
122
|
+
r"""
|
|
123
|
+
Return the number of standard composition tableaux of shape `I` with
|
|
124
|
+
descent composition `J`.
|
|
125
|
+
|
|
126
|
+
INPUT:
|
|
127
|
+
|
|
128
|
+
- ``I``, ``J`` -- compositions
|
|
129
|
+
|
|
130
|
+
OUTPUT: integer
|
|
131
|
+
|
|
132
|
+
EXAMPLES::
|
|
133
|
+
|
|
134
|
+
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_dab
|
|
135
|
+
sage: coeff_dab(Composition([2,1]),Composition([2,1]))
|
|
136
|
+
1
|
|
137
|
+
sage: coeff_dab(Composition([1,1,2]),Composition([1,2,1]))
|
|
138
|
+
0
|
|
139
|
+
"""
|
|
140
|
+
d = 0
|
|
141
|
+
for T in CompositionTableaux(I):
|
|
142
|
+
if (T.is_standard()) and (T.descent_composition() == J):
|
|
143
|
+
d += 1
|
|
144
|
+
return d
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
def compositions_order(n):
|
|
148
|
+
r"""
|
|
149
|
+
Return the compositions of `n` ordered as defined in [QSCHUR]_.
|
|
150
|
+
|
|
151
|
+
Let `S(\gamma)` return the composition `\gamma` after sorting. For
|
|
152
|
+
compositions `\alpha` and `\beta`, we order `\alpha \rhd \beta` if
|
|
153
|
+
|
|
154
|
+
1) `S(\alpha) > S(\beta)` lexicographically, or
|
|
155
|
+
2) `S(\alpha) = S(\beta)` and `\alpha > \beta` lexicographically.
|
|
156
|
+
|
|
157
|
+
INPUT:
|
|
158
|
+
|
|
159
|
+
- ``n`` -- positive integer
|
|
160
|
+
|
|
161
|
+
OUTPUT: list of the compositions of `n` sorted into decreasing order
|
|
162
|
+
by `\rhd`
|
|
163
|
+
|
|
164
|
+
EXAMPLES::
|
|
165
|
+
|
|
166
|
+
sage: from sage.combinat.ncsf_qsym.combinatorics import compositions_order
|
|
167
|
+
sage: compositions_order(3)
|
|
168
|
+
[[3], [2, 1], [1, 2], [1, 1, 1]]
|
|
169
|
+
sage: compositions_order(4)
|
|
170
|
+
[[4], [3, 1], [1, 3], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
|
|
171
|
+
"""
|
|
172
|
+
def _keyfunction(I):
|
|
173
|
+
return sorted(I, reverse=True), list(I)
|
|
174
|
+
return sorted(Compositions(n), key=_keyfunction, reverse=True)
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
def m_to_s_stat(R, I, K):
|
|
178
|
+
r"""
|
|
179
|
+
Return the coefficient of the complete non-commutative symmetric
|
|
180
|
+
function `S^K` in the expansion of the monomial non-commutative
|
|
181
|
+
symmetric function `M^I` with respect to the complete basis
|
|
182
|
+
over the ring `R`. This is the coefficient in formula (36) of
|
|
183
|
+
Tevlin's paper [Tev2007]_.
|
|
184
|
+
|
|
185
|
+
INPUT:
|
|
186
|
+
|
|
187
|
+
- ``R`` -- a ring; supposed to be a `\QQ`-algebra
|
|
188
|
+
- ``I``, ``K`` -- compositions
|
|
189
|
+
|
|
190
|
+
OUTPUT:
|
|
191
|
+
|
|
192
|
+
- The coefficient of `S^K` in the expansion of `M^I` in the
|
|
193
|
+
complete basis of the non-commutative symmetric functions
|
|
194
|
+
over ``R``.
|
|
195
|
+
|
|
196
|
+
EXAMPLES::
|
|
197
|
+
|
|
198
|
+
sage: from sage.combinat.ncsf_qsym.combinatorics import m_to_s_stat
|
|
199
|
+
sage: m_to_s_stat(QQ, Composition([2,1]), Composition([1,1,1]))
|
|
200
|
+
-1
|
|
201
|
+
sage: m_to_s_stat(QQ, Composition([3]), Composition([1,2]))
|
|
202
|
+
-2
|
|
203
|
+
sage: m_to_s_stat(QQ, Composition([2,1,2]), Composition([2,1,2]))
|
|
204
|
+
8/3
|
|
205
|
+
"""
|
|
206
|
+
stat = 0
|
|
207
|
+
for J in Compositions(I.size()):
|
|
208
|
+
if I.is_finer(J) and K.is_finer(J):
|
|
209
|
+
pvec = [0] + Composition(I).refinement_splitting_lengths(J).partial_sums()
|
|
210
|
+
pp = prod( R( len(I) - pvec[i] ) for i in range( len(pvec)-1 ) )
|
|
211
|
+
stat += R((-1)**(len(I)-len(K)) / pp * coeff_lp(K, J))
|
|
212
|
+
return stat
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
@cached_function
|
|
216
|
+
def number_of_fCT(content_comp, shape_comp):
|
|
217
|
+
r"""
|
|
218
|
+
Return the number of Immaculate tableaux of shape
|
|
219
|
+
``shape_comp`` and content ``content_comp``.
|
|
220
|
+
|
|
221
|
+
See [BBSSZ2012]_, Definition 3.9, for the notion of an
|
|
222
|
+
immaculate tableau.
|
|
223
|
+
|
|
224
|
+
INPUT:
|
|
225
|
+
|
|
226
|
+
- ``content_comp``, ``shape_comp`` -- compositions
|
|
227
|
+
|
|
228
|
+
OUTPUT: integer
|
|
229
|
+
|
|
230
|
+
EXAMPLES::
|
|
231
|
+
|
|
232
|
+
sage: from sage.combinat.ncsf_qsym.combinatorics import number_of_fCT
|
|
233
|
+
sage: number_of_fCT(Composition([3,1]), Composition([1,3]))
|
|
234
|
+
0
|
|
235
|
+
sage: number_of_fCT(Composition([1,2,1]), Composition([1,3]))
|
|
236
|
+
1
|
|
237
|
+
sage: number_of_fCT(Composition([1,1,3,1]), Composition([2,1,3]))
|
|
238
|
+
2
|
|
239
|
+
"""
|
|
240
|
+
if content_comp.to_partition().length() == 1:
|
|
241
|
+
if shape_comp.to_partition().length() == 1:
|
|
242
|
+
return 1
|
|
243
|
+
else:
|
|
244
|
+
return 0
|
|
245
|
+
C = Compositions(content_comp.size()-content_comp[-1], outer=list(shape_comp))
|
|
246
|
+
s = 0
|
|
247
|
+
for x in C:
|
|
248
|
+
if len(x) >= len(shape_comp)-1:
|
|
249
|
+
s += number_of_fCT(Composition(content_comp[:-1]),x)
|
|
250
|
+
return s
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
@cached_function
|
|
254
|
+
def number_of_SSRCT(content_comp, shape_comp):
|
|
255
|
+
r"""
|
|
256
|
+
The number of semi-standard reverse composition tableaux.
|
|
257
|
+
|
|
258
|
+
The dual quasisymmetric-Schur functions satisfy a left Pieri rule
|
|
259
|
+
where `S_n dQS_\gamma` is a sum over dual quasisymmetric-Schur
|
|
260
|
+
functions indexed by compositions which contain the composition
|
|
261
|
+
`\gamma`. The definition of an SSRCT comes from this rule. The
|
|
262
|
+
number of SSRCT of content `\beta` and shape `\alpha` is equal to
|
|
263
|
+
the number of SSRCT of content `(\beta_2, \ldots, \beta_\ell)`
|
|
264
|
+
and shape `\gamma` where `dQS_\alpha` appears in the expansion of
|
|
265
|
+
`S_{\beta_1} dQS_\gamma`.
|
|
266
|
+
|
|
267
|
+
In sage the recording tableau for these objects are called
|
|
268
|
+
:class:`~sage.combinat.composition_tableau.CompositionTableaux`.
|
|
269
|
+
|
|
270
|
+
INPUT:
|
|
271
|
+
|
|
272
|
+
- ``content_comp``, ``shape_comp`` -- compositions
|
|
273
|
+
|
|
274
|
+
OUTPUT: integer
|
|
275
|
+
|
|
276
|
+
EXAMPLES::
|
|
277
|
+
|
|
278
|
+
sage: from sage.combinat.ncsf_qsym.combinatorics import number_of_SSRCT
|
|
279
|
+
sage: number_of_SSRCT(Composition([3,1]), Composition([1,3]))
|
|
280
|
+
0
|
|
281
|
+
sage: number_of_SSRCT(Composition([1,2,1]), Composition([1,3]))
|
|
282
|
+
1
|
|
283
|
+
sage: number_of_SSRCT(Composition([1,1,2,2]), Composition([3,3]))
|
|
284
|
+
2
|
|
285
|
+
sage: all(CompositionTableaux(be).cardinality()
|
|
286
|
+
....: == sum(number_of_SSRCT(al,be)*binomial(4,len(al))
|
|
287
|
+
....: for al in Compositions(4))
|
|
288
|
+
....: for be in Compositions(4))
|
|
289
|
+
True
|
|
290
|
+
"""
|
|
291
|
+
if len(content_comp) == 1:
|
|
292
|
+
if len(shape_comp) == 1:
|
|
293
|
+
return ZZ.one()
|
|
294
|
+
else:
|
|
295
|
+
return ZZ.zero()
|
|
296
|
+
s = ZZ.zero()
|
|
297
|
+
cond = lambda al, be: all(al[j] <= be_val
|
|
298
|
+
and not any(al[i] <= k <= be[i]
|
|
299
|
+
for k in range(al[j], be_val)
|
|
300
|
+
for i in range(j))
|
|
301
|
+
for j, be_val in enumerate(be))
|
|
302
|
+
C = Compositions(content_comp.size()-content_comp[0],
|
|
303
|
+
inner=[1]*len(shape_comp),
|
|
304
|
+
outer=list(shape_comp))
|
|
305
|
+
for x in C:
|
|
306
|
+
if cond(x, shape_comp):
|
|
307
|
+
s += number_of_SSRCT(Composition(content_comp[1:]), x)
|
|
308
|
+
if shape_comp[0] <= content_comp[0]:
|
|
309
|
+
C = Compositions(content_comp.size()-content_comp[0],
|
|
310
|
+
inner=[min(val, shape_comp[0]+1)
|
|
311
|
+
for val in shape_comp[1:]],
|
|
312
|
+
outer=shape_comp[1:])
|
|
313
|
+
Comps = Compositions()
|
|
314
|
+
for x in C:
|
|
315
|
+
if cond([shape_comp[0]]+list(x), shape_comp):
|
|
316
|
+
s += number_of_SSRCT(Comps(content_comp[1:]), x)
|
|
317
|
+
return s
|