passagemath-combinat 10.6.42__cp314-cp314t-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/DELVEWHEEL +2 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +401 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-10-3a5f019e2510aeaad918cab2b57a689d.dll +0 -0
- passagemath_combinat.libs/libsymmetrica-3-7dcf900932804d0df5fd0919b4668720.dll +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +44 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cp314t-win_amd64.pyd +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cp314t-win_amd64.pyd +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cp314t-win_amd64.pyd +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cp314t-win_amd64.pyd +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cp314t-win_amd64.pyd +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cp314t-win_amd64.pyd +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cp314t-win_amd64.pyd +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cp314t-win_amd64.pyd +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cp314t-win_amd64.pyd +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cp314t-win_amd64.pyd +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cp314t-win_amd64.pyd +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cp314t-win_amd64.pyd +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cp314t-win_amd64.pyd +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cp314t-win_amd64.pyd +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,475 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.modules
|
|
3
|
+
r"""
|
|
4
|
+
Ariki-Koike Algebra Representations
|
|
5
|
+
|
|
6
|
+
AUTHORS:
|
|
7
|
+
|
|
8
|
+
- Travis Scrimshaw (2023-12-28): Initial version
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
#*****************************************************************************
|
|
12
|
+
# Copyright (C) 2023 Travis Scrimshaw <tcscrims at gmail.com>
|
|
13
|
+
#
|
|
14
|
+
# This program is free software: you can redistribute it and/or modify
|
|
15
|
+
# it under the terms of the GNU General Public License as published by
|
|
16
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
17
|
+
# (at your option) any later version.
|
|
18
|
+
# http://www.gnu.org/licenses/
|
|
19
|
+
#*****************************************************************************
|
|
20
|
+
|
|
21
|
+
from sage.misc.misc_c import prod
|
|
22
|
+
from sage.misc.latex import latex
|
|
23
|
+
from sage.categories.modules import Modules
|
|
24
|
+
from sage.rings.integer_ring import ZZ
|
|
25
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
26
|
+
from sage.combinat.partition_tuple import PartitionTuples
|
|
27
|
+
from sage.combinat.permutation import Permutations
|
|
28
|
+
from sage.combinat.tableau_tuple import StandardTableauTuples
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class SpechtModule(CombinatorialFreeModule):
|
|
32
|
+
r"""
|
|
33
|
+
Specht module of the Ariki-Koike algebra.
|
|
34
|
+
|
|
35
|
+
Let `H_{r,n}(q, u)` be the Ariki-Koike algebra with parameters `q`
|
|
36
|
+
and `u = (u_1, \ldots, u_r)` (note our indexing convention for
|
|
37
|
+
the `u` parameters differs from
|
|
38
|
+
:mod:`sage.algebras.hecke_algebras.ariki_koike_algebra`) over a
|
|
39
|
+
commutative ring `R`. Let `\lambda` be a partition tuple of level
|
|
40
|
+
`r` and size `n`. The *Specht module* of shape `\lambda` is the (right)
|
|
41
|
+
`H_{r,n}(q,u)`-representation `S^{\lambda}` given as free `R`-module
|
|
42
|
+
with basis given by the standard tableau (tuples) of shape `\lambda`.
|
|
43
|
+
|
|
44
|
+
We will now describe the right action of the Ariki-Koike algebra,
|
|
45
|
+
but we first need to set some notation and definitions.
|
|
46
|
+
Let `t` be a standard tableau tuple of level `r` and size `n`.
|
|
47
|
+
Define the *residue* of `i` in `t` to be `r_t(i) = q^{c-r} u_k`,
|
|
48
|
+
where `i` is in cell `(r, c)` of the `k`-th tableau.
|
|
49
|
+
|
|
50
|
+
The action of `L_i` is given by `t \cdot L_i = r_T(i) t`. For `T_i`,
|
|
51
|
+
we need to consider the following cases. If `i, i+1` are in the same
|
|
52
|
+
row (resp. column), then `t \cdot T_i = q t` (resp. `t \cdot T_i = -t`).
|
|
53
|
+
Otherwise if we swap `i, i+1`, the resulting tableau tuple `s` is again
|
|
54
|
+
standard and the action is given by
|
|
55
|
+
|
|
56
|
+
.. MATH::
|
|
57
|
+
|
|
58
|
+
t \cdot T_i = \frac{(q - 1) r_t(i)}{r_s(i) - r_t(i)} t
|
|
59
|
+
+ \frac{q r_t(i) - r_s(i)}{r_s(i) - r_t(i)} s.
|
|
60
|
+
|
|
61
|
+
Note that `r_s(i) = r_t(i+1)`.
|
|
62
|
+
|
|
63
|
+
Over a field of characteristic `0`, the set of Specht modules for all
|
|
64
|
+
partition tuples of level `r` and size `n` form the complete set
|
|
65
|
+
of irreducible modules for `H_{r,n}(q, u)` [AK1994]_. (The condition
|
|
66
|
+
on the base ring can be weakened; see Theorem 3.2 of [Mathas2002]_.)
|
|
67
|
+
|
|
68
|
+
EXAMPLES:
|
|
69
|
+
|
|
70
|
+
We construct the Specht module `S^{(2,1,21)}` for `H_{3,6}(q, u)` with
|
|
71
|
+
generic parameters `q, u` over `\GF(3)` and perform some basic
|
|
72
|
+
computations. We change the tableaux to use the compact representation
|
|
73
|
+
to condense the output::
|
|
74
|
+
|
|
75
|
+
sage: TableauTuples.options.display = 'compact'
|
|
76
|
+
|
|
77
|
+
sage: R = PolynomialRing(GF(3), 'u', 3)
|
|
78
|
+
sage: u = R.gens()
|
|
79
|
+
sage: q = R['q'].gen()
|
|
80
|
+
sage: H = algebras.ArikiKoike(3, 6, q, u, use_fraction_field=True)
|
|
81
|
+
sage: LT = H.LT()
|
|
82
|
+
sage: T0, T1, T2, T3, T4, T5 = LT.T()
|
|
83
|
+
sage: S = H.specht_module([[2], [1], [2,1]])
|
|
84
|
+
sage: S.dimension()
|
|
85
|
+
120
|
|
86
|
+
sage: elt = S.an_element(); elt
|
|
87
|
+
S[1,2|3|4,5/6] - S[1,3|2|4,5/6] + S[1,3|4|2,5/6]
|
|
88
|
+
sage: elt * LT.L(3)
|
|
89
|
+
u1*S[1,2|3|4,5/6] + (-u0*q)*S[1,3|2|4,5/6] + u0*q*S[1,3|4|2,5/6]
|
|
90
|
+
sage: elt * T2
|
|
91
|
+
(((-u0-u1)*q-u1)/(-u0*q+u1))*S[1,2|3|4,5/6]
|
|
92
|
+
+ (((-u0+u2)*q)/(u0*q-u2))*S[1,2|4|3,5/6]
|
|
93
|
+
+ ((-u0*q^2-u0*q-u1)/(-u0*q+u1))*S[1,3|2|4,5/6]
|
|
94
|
+
+ ((u0*q^2-u0*q)/(u0*q-u2))*S[1,3|4|2,5/6]
|
|
95
|
+
sage: (elt * T3) * T2 == elt * (T3 * T2)
|
|
96
|
+
True
|
|
97
|
+
sage: elt * T2 * T3 * T2 == elt * T3 * T2 * T3
|
|
98
|
+
True
|
|
99
|
+
sage: elt * T0 * T1 * T0 * T1 == elt * T1 * T0 * T1 * T0
|
|
100
|
+
True
|
|
101
|
+
sage: elt * T2 * T5 == elt * T5 * T2
|
|
102
|
+
True
|
|
103
|
+
|
|
104
|
+
sage: TableauTuples.options._reset()
|
|
105
|
+
|
|
106
|
+
REFERENCES:
|
|
107
|
+
|
|
108
|
+
- [AK1994]_
|
|
109
|
+
- [DJM1998]_
|
|
110
|
+
- [DR2001]_
|
|
111
|
+
- [Mathas2002]_
|
|
112
|
+
- [Mathas2004]_
|
|
113
|
+
"""
|
|
114
|
+
@staticmethod
|
|
115
|
+
def __classcall_private__(cls, AK, la):
|
|
116
|
+
"""
|
|
117
|
+
Normalize input to ensure a unique representation.
|
|
118
|
+
|
|
119
|
+
EXAMPLES::
|
|
120
|
+
|
|
121
|
+
sage: AK = algebras.ArikiKoike(3, 6)
|
|
122
|
+
sage: S1 = AK.specht_module([[3], [1], [1,1]])
|
|
123
|
+
sage: S2 = AK.specht_module(PartitionTuple([[3], [1], [1,1]]))
|
|
124
|
+
sage: S1 is S2
|
|
125
|
+
True
|
|
126
|
+
"""
|
|
127
|
+
la = PartitionTuples(AK._r, AK._n)(la)
|
|
128
|
+
return super().__classcall__(cls, AK, la)
|
|
129
|
+
|
|
130
|
+
def __init__(self, AK, la):
|
|
131
|
+
r"""
|
|
132
|
+
Initialize ``self``.
|
|
133
|
+
|
|
134
|
+
EXAMPLES::
|
|
135
|
+
|
|
136
|
+
sage: AK = algebras.ArikiKoike(3, 6, use_fraction_field=True)
|
|
137
|
+
sage: S = AK.specht_module([[3], [1], [1,1]])
|
|
138
|
+
sage: TestSuite(S).run() # long time
|
|
139
|
+
sage: Sp = AK.specht_module([[], [2,1,1], [2]])
|
|
140
|
+
sage: TestSuite(Sp).run() # long time
|
|
141
|
+
"""
|
|
142
|
+
self._shape = la
|
|
143
|
+
self._AK = AK
|
|
144
|
+
self._q = AK.q()
|
|
145
|
+
self._u = AK.u()
|
|
146
|
+
self._Pn = Permutations(la.size())
|
|
147
|
+
indices = StandardTableauTuples(la)
|
|
148
|
+
R = AK.base_ring()
|
|
149
|
+
cat = Modules(R).FiniteDimensional().WithBasis()
|
|
150
|
+
CombinatorialFreeModule.__init__(self, R, indices, category=cat, prefix='S')
|
|
151
|
+
|
|
152
|
+
def _repr_(self):
|
|
153
|
+
r"""
|
|
154
|
+
Return a string representation of ``self``.
|
|
155
|
+
|
|
156
|
+
EXAMPLES::
|
|
157
|
+
|
|
158
|
+
sage: AK = algebras.ArikiKoike(3, 8)
|
|
159
|
+
sage: AK.specht_module([[3], [], [2,2,1]])
|
|
160
|
+
Specht module of shape ([3], [], [2, 2, 1]) for
|
|
161
|
+
Ariki-Koike algebra of rank 3 and order 8 with q=q and u=(u0, u1, u2)
|
|
162
|
+
over ... over Integer Ring
|
|
163
|
+
"""
|
|
164
|
+
return "Specht module of shape {} for {}".format(self._shape, self._AK)
|
|
165
|
+
|
|
166
|
+
def _latex_(self):
|
|
167
|
+
r"""
|
|
168
|
+
Return a latex representation of ``self``.
|
|
169
|
+
|
|
170
|
+
EXAMPLES::
|
|
171
|
+
|
|
172
|
+
sage: AK = algebras.ArikiKoike(3, 8)
|
|
173
|
+
sage: S = AK.specht_module([[3], [], [2,2,1]])
|
|
174
|
+
sage: latex(S)
|
|
175
|
+
S^{{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}}
|
|
176
|
+
\raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\cline{1-3}
|
|
177
|
+
\lr{\phantom{x}}&\lr{\phantom{x}}&\lr{\phantom{x}}\\\cline{1-3}
|
|
178
|
+
\end{array}$},\emptyset,\raisebox{-.6ex}{$\begin{array}[b]{*{2}c}\cline{1-2}
|
|
179
|
+
\lr{\phantom{x}}&\lr{\phantom{x}}\\\cline{1-2}
|
|
180
|
+
\lr{\phantom{x}}&\lr{\phantom{x}}\\\cline{1-2}
|
|
181
|
+
\lr{\phantom{x}}\\\cline{1-1}
|
|
182
|
+
\end{array}$}
|
|
183
|
+
}}_{\mathcal{H}_{3,8}(q)}
|
|
184
|
+
"""
|
|
185
|
+
return "S^{{{}}}_{{{}}}".format(latex(self._shape), latex(self._AK))
|
|
186
|
+
|
|
187
|
+
def _test_representation(self, **options):
|
|
188
|
+
r"""
|
|
189
|
+
Test that the relations of the Ariki-Koike algebra are satisfied.
|
|
190
|
+
|
|
191
|
+
EXAMPLES::
|
|
192
|
+
|
|
193
|
+
sage: q = ZZ['q'].fraction_field().gen()
|
|
194
|
+
sage: AK = algebras.ArikiKoike(2, 4, q, [q^2+1, q-3], q.parent())
|
|
195
|
+
sage: S = AK.specht_module([[2,1], [1]])
|
|
196
|
+
sage: S._test_representation(elements=S.basis())
|
|
197
|
+
"""
|
|
198
|
+
tester = self._tester(**options)
|
|
199
|
+
n = self._shape.size()
|
|
200
|
+
q = self._q
|
|
201
|
+
from sage.misc.misc import some_tuples
|
|
202
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
203
|
+
|
|
204
|
+
# Build the polynomial for testing the T0 action
|
|
205
|
+
z = PolynomialRing(self.base_ring(), 'DUMMY').gen()
|
|
206
|
+
T0_poly = -prod(z - val for val in self._u)
|
|
207
|
+
|
|
208
|
+
def apply_T0_power(b, exp):
|
|
209
|
+
for i in range(exp):
|
|
210
|
+
b = b.T(0)
|
|
211
|
+
return b
|
|
212
|
+
|
|
213
|
+
AKelts = self._AK.some_elements()
|
|
214
|
+
for b in tester.some_elements():
|
|
215
|
+
t0 = self.linear_combination((apply_T0_power(b, exp), c)
|
|
216
|
+
for exp, c in enumerate(T0_poly))
|
|
217
|
+
tester.assertEqual(t0, self.zero())
|
|
218
|
+
|
|
219
|
+
tester.assertEqual(b.T([0, 1, 0, 1]), b.T([1, 0, 1, 0]))
|
|
220
|
+
tester.assertEqual(b.T(1).T(1), (q-1)*b.T(1) + q*b)
|
|
221
|
+
for i in range(2, n):
|
|
222
|
+
tester.assertEqual(b.T(i).T(i), (q-1)*b.T(i) + q*b)
|
|
223
|
+
tester.assertEqual(b.T(i).T(0), b.T(0).T(i))
|
|
224
|
+
if i < n - 1:
|
|
225
|
+
tester.assertEqual(b.T([i, i+1, i]), b.T([i+1, i, i+1]))
|
|
226
|
+
for j in range(i+2, n):
|
|
227
|
+
tester.assertEqual(b.T([i, j]), b.T([j, i]))
|
|
228
|
+
|
|
229
|
+
for (x, y) in some_tuples(AKelts, 2, tester._max_runs):
|
|
230
|
+
tester.assertEqual(b*(x*y), (b*x)*y)
|
|
231
|
+
|
|
232
|
+
def _L_on_basis(self, i, t):
|
|
233
|
+
"""
|
|
234
|
+
Return the action of `L_i` on the basis element indexed by
|
|
235
|
+
the standard tableau tuple ``t``.
|
|
236
|
+
|
|
237
|
+
EXAMPLES::
|
|
238
|
+
|
|
239
|
+
sage: AK = algebras.ArikiKoike(3, 10)
|
|
240
|
+
sage: S = AK.specht_module([[2,1], [], [3,2,2]])
|
|
241
|
+
sage: P = S.basis().keys()
|
|
242
|
+
sage: t = P([[[2,4],[8]], [], [[1,3,7],[5,6],[9,10]]])
|
|
243
|
+
sage: S._L_on_basis(1, t)
|
|
244
|
+
u2*S[([[2, 4], [8]], [], [[1, 3, 7], [5, 6], [9, 10]])]
|
|
245
|
+
sage: S._L_on_basis(4, t)
|
|
246
|
+
u0*q*S[([[2, 4], [8]], [], [[1, 3, 7], [5, 6], [9, 10]])]
|
|
247
|
+
sage: S._L_on_basis(6, t)
|
|
248
|
+
u2*S[([[2, 4], [8]], [], [[1, 3, 7], [5, 6], [9, 10]])]
|
|
249
|
+
sage: S._L_on_basis(8, t)
|
|
250
|
+
(u0*q^-1)*S[([[2, 4], [8]], [], [[1, 3, 7], [5, 6], [9, 10]])]
|
|
251
|
+
sage: S._L_on_basis(9, t)
|
|
252
|
+
(u2*q^-2)*S[([[2, 4], [8]], [], [[1, 3, 7], [5, 6], [9, 10]])]
|
|
253
|
+
"""
|
|
254
|
+
c = t.cells_containing(i)[0]
|
|
255
|
+
if len(c) == 2: # it is of level 1 and a regular tableau
|
|
256
|
+
c = (0,) + c
|
|
257
|
+
res = self._q**(c[2]-c[1]) * self._u[c[0]]
|
|
258
|
+
R = self.base_ring()
|
|
259
|
+
return self.element_class(self, {t: R(res)})
|
|
260
|
+
|
|
261
|
+
def _T_on_basis(self, i, t):
|
|
262
|
+
r"""
|
|
263
|
+
Return the action of `T_i` on the basis element indexed by
|
|
264
|
+
the standard tableau tuple ``t``.
|
|
265
|
+
|
|
266
|
+
EXAMPLES::
|
|
267
|
+
|
|
268
|
+
sage: AK = algebras.ArikiKoike(3, 10, use_fraction_field=True)
|
|
269
|
+
sage: S = AK.specht_module([[2,1], [], [3,2,2]])
|
|
270
|
+
sage: P = S.basis().keys()
|
|
271
|
+
sage: t = P([[[2,4],[8]], [], [[1,5,7],[3,6],[9,10]]])
|
|
272
|
+
sage: S._T_on_basis(0, t) == S._L_on_basis(1, t)
|
|
273
|
+
True
|
|
274
|
+
sage: S._T_on_basis(1, t)
|
|
275
|
+
((u2*q-u0)/(u0-u2))*S[([[1, 4], [8]], [], [[2, 5, 7], [3, 6], [9, 10]])]
|
|
276
|
+
+ ((u0*q-u0)/(u0-u2))*S[([[2, 4], [8]], [], [[1, 5, 7], [3, 6], [9, 10]])]
|
|
277
|
+
sage: S._T_on_basis(2, t)
|
|
278
|
+
((u2*q-u2)/(-u0*q+u2))*S[([[2, 4], [8]], [], [[1, 5, 7], [3, 6], [9, 10]])]
|
|
279
|
+
+ ((u0*q^2-u2)/(-u0*q+u2))*S[([[3, 4], [8]], [], [[1, 5, 7], [2, 6], [9, 10]])]
|
|
280
|
+
sage: S._T_on_basis(5, t)
|
|
281
|
+
-S[([[2, 4], [8]], [], [[1, 5, 7], [3, 6], [9, 10]])]
|
|
282
|
+
sage: S._T_on_basis(7, t)
|
|
283
|
+
((u2*q^4-u0)/(-u2*q^3+u0))*S[([[2, 4], [7]], [], [[1, 5, 8], [3, 6], [9, 10]])]
|
|
284
|
+
+ ((u0*q-u0)/(-u2*q^3+u0))*S[([[2, 4], [8]], [], [[1, 5, 7], [3, 6], [9, 10]])]
|
|
285
|
+
sage: S._T_on_basis(9, t)
|
|
286
|
+
q*S[([[2, 4], [8]], [], [[1, 5, 7], [3, 6], [9, 10]])]
|
|
287
|
+
"""
|
|
288
|
+
R = self.base_ring()
|
|
289
|
+
if i == 0:
|
|
290
|
+
return self._L_on_basis(1, t)
|
|
291
|
+
|
|
292
|
+
ct = t.cells_containing(i)[0]
|
|
293
|
+
cs = t.cells_containing(i+1)[0]
|
|
294
|
+
if len(ct) == 2: # it is of level 1 and a regular tableau
|
|
295
|
+
ct = (0,) + ct
|
|
296
|
+
cs = (0,) + cs
|
|
297
|
+
|
|
298
|
+
if ct[0] == cs[0] and ct[2] == cs[2]: # same column
|
|
299
|
+
return self.element_class(self, {t: -R.one()})
|
|
300
|
+
|
|
301
|
+
if ct[0] == cs[0] and ct[1] == cs[1]: # same row
|
|
302
|
+
return self.element_class(self, {t: self._q})
|
|
303
|
+
|
|
304
|
+
# result is standard
|
|
305
|
+
s = t.symmetric_group_action_on_entries(self._Pn.simple_reflection(i))
|
|
306
|
+
assert s.parent() is t.parent()
|
|
307
|
+
|
|
308
|
+
def res(cell):
|
|
309
|
+
return self._q**(cell[2]-cell[1]) * self._u[cell[0]]
|
|
310
|
+
|
|
311
|
+
# Note that the residue of i in t is given by the cell c
|
|
312
|
+
# and of i in s corresponds to cell cp because the
|
|
313
|
+
# corresponding action of the permutation on t.
|
|
314
|
+
one = self.base_ring().one()
|
|
315
|
+
denom = res(cs) - res(ct)
|
|
316
|
+
coefft = (self._q - one) * res(cs) / denom
|
|
317
|
+
coeffs = (self._q * res(ct) - res(cs)) / denom
|
|
318
|
+
return self.element_class(self, {t: R(coefft), s: R(coeffs)})
|
|
319
|
+
|
|
320
|
+
def ariki_koike_algebra(self):
|
|
321
|
+
r"""
|
|
322
|
+
Return the Ariki-Koike algebra that ``self`` is a representation of.
|
|
323
|
+
|
|
324
|
+
EXAMPLES::
|
|
325
|
+
|
|
326
|
+
sage: AK = algebras.ArikiKoike(3, 6)
|
|
327
|
+
sage: S = AK.specht_module([[2], [], [3,1]])
|
|
328
|
+
sage: S.ariki_koike_algebra() is AK
|
|
329
|
+
True
|
|
330
|
+
"""
|
|
331
|
+
return self._AK
|
|
332
|
+
|
|
333
|
+
class Element(CombinatorialFreeModule.Element):
|
|
334
|
+
def _acted_upon_(self, scalar, self_on_left):
|
|
335
|
+
r"""
|
|
336
|
+
Return the action of ``scalar`` on ``self``.
|
|
337
|
+
|
|
338
|
+
EXAMPLES::
|
|
339
|
+
|
|
340
|
+
sage: TableauTuples.options.display = 'compact'
|
|
341
|
+
sage: AK = algebras.ArikiKoike(4, 6, use_fraction_field=True)
|
|
342
|
+
sage: q = AK.q()
|
|
343
|
+
sage: LT = AK.LT()
|
|
344
|
+
sage: T = AK.T()
|
|
345
|
+
sage: S = AK.specht_module([[], [2], [1], [2,1]])
|
|
346
|
+
sage: elt = S.an_element()
|
|
347
|
+
sage: 5 * elt
|
|
348
|
+
5*S[-|1,2|3|4,5/6] + 10*S[-|1,3|2|4,5/6] + 5*S[-|1,3|4|2,5/6]
|
|
349
|
+
+ 15*S[-|2,3|1|4,5/6]
|
|
350
|
+
sage: elt * (q - 2)
|
|
351
|
+
(q-2)*S[-|1,2|3|4,5/6] + (2*q-4)*S[-|1,3|2|4,5/6]
|
|
352
|
+
+ (q-2)*S[-|1,3|4|2,5/6] + (3*q-6)*S[-|2,3|1|4,5/6]
|
|
353
|
+
sage: elt * LT.an_element() == elt * T(LT.an_element())
|
|
354
|
+
True
|
|
355
|
+
sage: T.an_element() * elt
|
|
356
|
+
Traceback (most recent call last):
|
|
357
|
+
...
|
|
358
|
+
TypeError: unsupported operand parent(s) for *: 'Ariki-Koike algebra ... over Integer Ring'
|
|
359
|
+
sage: TableauTuples.options._reset()
|
|
360
|
+
|
|
361
|
+
TESTS::
|
|
362
|
+
|
|
363
|
+
sage: AK = algebras.ArikiKoike(2, 4, use_fraction_field=True)
|
|
364
|
+
sage: LT = AK.LT()
|
|
365
|
+
sage: T = AK.T()
|
|
366
|
+
sage: S = AK.specht_module([[1], [2,1]])
|
|
367
|
+
sage: B = list(LT.basis())[::55]
|
|
368
|
+
sage: all(b * x == b * T(x) for b in S.basis() for x in B) # long time
|
|
369
|
+
True
|
|
370
|
+
"""
|
|
371
|
+
ret = super()._acted_upon_(scalar, self_on_left)
|
|
372
|
+
if ret is not None:
|
|
373
|
+
return ret
|
|
374
|
+
if not self_on_left: # only a right action
|
|
375
|
+
return None
|
|
376
|
+
P = self.parent()
|
|
377
|
+
if scalar not in P._AK:
|
|
378
|
+
return None
|
|
379
|
+
scalar = P._AK(scalar)
|
|
380
|
+
if scalar.parent() is P._AK.LT():
|
|
381
|
+
return P.linear_combination((self.L(sum(([i]*val for i, val in enumerate(m[0], start=1)), [])).T(m[1].reduced_word()), c)
|
|
382
|
+
for m, c in scalar)
|
|
383
|
+
elif scalar.parent() is P._AK.T():
|
|
384
|
+
AKT = P._AK.T()
|
|
385
|
+
return P.linear_combination((self.T(AKT._basis_to_word(m)), c)
|
|
386
|
+
for m, c in scalar)
|
|
387
|
+
return self * P._AK.LT()(scalar)
|
|
388
|
+
|
|
389
|
+
def L(self, i):
|
|
390
|
+
r"""
|
|
391
|
+
Return the (right) action of `L_i` on ``self``.
|
|
392
|
+
|
|
393
|
+
INPUT:
|
|
394
|
+
|
|
395
|
+
- ``i`` -- an integer or a list of integers
|
|
396
|
+
|
|
397
|
+
EXAMPLES::
|
|
398
|
+
|
|
399
|
+
sage: TableauTuples.options.display = 'compact' # compact tableau printing
|
|
400
|
+
sage: AK = algebras.ArikiKoike(3, 6, use_fraction_field=True)
|
|
401
|
+
sage: S = AK.specht_module([[2], [], [3,1]])
|
|
402
|
+
sage: elt = S.an_element(); elt
|
|
403
|
+
S[1,2|-|3,4,5/6] + 2*S[1,3|-|2,4,5/6]
|
|
404
|
+
+ 3*S[2,3|-|1,4,5/6] + S[2,4|-|1,3,5/6]
|
|
405
|
+
sage: elt.L(1)
|
|
406
|
+
u0*S[1,2|-|3,4,5/6] + 2*u0*S[1,3|-|2,4,5/6]
|
|
407
|
+
+ 3*u2*S[2,3|-|1,4,5/6] + u2*S[2,4|-|1,3,5/6]
|
|
408
|
+
sage: elt.L(2)
|
|
409
|
+
u0*q*S[1,2|-|3,4,5/6] + 2*u2*S[1,3|-|2,4,5/6]
|
|
410
|
+
+ 3*u0*S[2,3|-|1,4,5/6] + u0*S[2,4|-|1,3,5/6]
|
|
411
|
+
sage: elt.L(6)
|
|
412
|
+
u2/q*S[1,2|-|3,4,5/6] + 2*u2/q*S[1,3|-|2,4,5/6]
|
|
413
|
+
+ 3*u2/q*S[2,3|-|1,4,5/6] + u2/q*S[2,4|-|1,3,5/6]
|
|
414
|
+
sage: elt.L([3,3,3])
|
|
415
|
+
u2^3*S[1,2|-|3,4,5/6] + 2*u0^3*q^3*S[1,3|-|2,4,5/6]
|
|
416
|
+
+ 3*u0^3*q^3*S[2,3|-|1,4,5/6] + u2^3*q^3*S[2,4|-|1,3,5/6]
|
|
417
|
+
sage: LT = AK.LT()
|
|
418
|
+
sage: elt.L([3,3,3]) == elt * (LT.L(3)^3)
|
|
419
|
+
True
|
|
420
|
+
sage: TableauTuples.options._reset() # reset
|
|
421
|
+
"""
|
|
422
|
+
if not self: # action on 0 is 0
|
|
423
|
+
return self
|
|
424
|
+
if i not in ZZ:
|
|
425
|
+
ret = self
|
|
426
|
+
for val in i:
|
|
427
|
+
ret = ret.L(val)
|
|
428
|
+
return ret
|
|
429
|
+
P = self.parent()
|
|
430
|
+
return P.linear_combination((P._L_on_basis(i, t), c) for t, c in self)
|
|
431
|
+
|
|
432
|
+
def T(self, i):
|
|
433
|
+
r"""
|
|
434
|
+
Return the (right) action of `T_i` on ``self``.
|
|
435
|
+
|
|
436
|
+
INPUT:
|
|
437
|
+
|
|
438
|
+
- ``i`` -- an integer or a list of integers
|
|
439
|
+
|
|
440
|
+
EXAMPLES::
|
|
441
|
+
|
|
442
|
+
sage: TableauTuples.options.display = 'compact' # compact tableau printing
|
|
443
|
+
sage: AK = algebras.ArikiKoike(3, 10, use_fraction_field=True)
|
|
444
|
+
sage: q = AK.q()
|
|
445
|
+
sage: S = AK.specht_module([[2,1], [], [3,2,2]])
|
|
446
|
+
sage: P = S.basis().keys()
|
|
447
|
+
sage: t = P([[[2,4],[8]], [], [[1,5,7],[3,6],[9,10]]])
|
|
448
|
+
sage: b = S.basis()[t]
|
|
449
|
+
sage: b.T(2)
|
|
450
|
+
((u2*q-u2)/(-u0*q+u2))*S[2,4/8|-|1,5,7/3,6/9,10]
|
|
451
|
+
+ ((u0*q^2-u2)/(-u0*q+u2))*S[3,4/8|-|1,5,7/2,6/9,10]
|
|
452
|
+
sage: b.T(6)
|
|
453
|
+
((-q)/(q+1))*S[2,4/8|-|1,5,6/3,7/9,10]
|
|
454
|
+
+ (q^2/(q+1))*S[2,4/8|-|1,5,7/3,6/9,10]
|
|
455
|
+
sage: b.T([2,1,2]) == b.T([1,2,1])
|
|
456
|
+
True
|
|
457
|
+
sage: b.T(9)
|
|
458
|
+
q*S[2,4/8|-|1,5,7/3,6/9,10]
|
|
459
|
+
sage: all(b.T([i,i]) == (q-1)*b.T(i) + q*b for i in range(1,10))
|
|
460
|
+
True
|
|
461
|
+
sage: b.T(0)
|
|
462
|
+
u2*S[2,4/8|-|1,5,7/3,6/9,10]
|
|
463
|
+
sage: b.T([0,1,0,1]) == b.T([1,0,1,0])
|
|
464
|
+
True
|
|
465
|
+
sage: TableauTuples.options._reset() # reset
|
|
466
|
+
"""
|
|
467
|
+
if not self: # action on 0 is 0
|
|
468
|
+
return self
|
|
469
|
+
if i not in ZZ:
|
|
470
|
+
ret = self
|
|
471
|
+
for val in i:
|
|
472
|
+
ret = ret.T(val)
|
|
473
|
+
return ret
|
|
474
|
+
P = self.parent()
|
|
475
|
+
return P.linear_combination((P._T_on_basis(i, t), c) for t, c in self)
|