passagemath-combinat 10.6.42__cp314-cp314t-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/DELVEWHEEL +2 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +401 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-10-3a5f019e2510aeaad918cab2b57a689d.dll +0 -0
- passagemath_combinat.libs/libsymmetrica-3-7dcf900932804d0df5fd0919b4668720.dll +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +44 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cp314t-win_amd64.pyd +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cp314t-win_amd64.pyd +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cp314t-win_amd64.pyd +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cp314t-win_amd64.pyd +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cp314t-win_amd64.pyd +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cp314t-win_amd64.pyd +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cp314t-win_amd64.pyd +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cp314t-win_amd64.pyd +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cp314t-win_amd64.pyd +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cp314t-win_amd64.pyd +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cp314t-win_amd64.pyd +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cp314t-win_amd64.pyd +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cp314t-win_amd64.pyd +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cp314t-win_amd64.pyd +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,525 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.modules
|
|
3
|
+
"""
|
|
4
|
+
Rational Cherednik Algebras
|
|
5
|
+
"""
|
|
6
|
+
# ****************************************************************************
|
|
7
|
+
# Copyright (C) 2015 Travis Scrimshaw <tscrim at ucdavis.edu>
|
|
8
|
+
#
|
|
9
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
10
|
+
# https://www.gnu.org/licenses/
|
|
11
|
+
# ****************************************************************************
|
|
12
|
+
|
|
13
|
+
from sage.misc.cachefunc import cached_method
|
|
14
|
+
from sage.misc.lazy_attribute import lazy_attribute
|
|
15
|
+
from sage.categories.algebras import Algebras
|
|
16
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
17
|
+
from sage.combinat.root_system.cartan_type import CartanType
|
|
18
|
+
from sage.combinat.root_system.cartan_matrix import CartanMatrix
|
|
19
|
+
from sage.combinat.root_system.root_system import RootSystem
|
|
20
|
+
from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets
|
|
21
|
+
from sage.sets.family import Family
|
|
22
|
+
from sage.monoids.indexed_free_monoid import IndexedFreeAbelianMonoid
|
|
23
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
24
|
+
from sage.rings.rational_field import QQ
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class RationalCherednikAlgebra(CombinatorialFreeModule):
|
|
28
|
+
r"""
|
|
29
|
+
A rational Cherednik algebra.
|
|
30
|
+
|
|
31
|
+
Let `k` be a field. Let `W` be a complex reflection group acting on
|
|
32
|
+
a vector space `\mathfrak{h}` (over `k`). Let `\mathfrak{h}^*` denote
|
|
33
|
+
the corresponding dual vector space. Let `\cdot` denote the
|
|
34
|
+
natural action of `w` on `\mathfrak{h}` and `\mathfrak{h}^*`. Let
|
|
35
|
+
`\mathcal{S}` denote the set of reflections of `W` and `\alpha_s`
|
|
36
|
+
and `\alpha_s^{\vee}` are the associated root and coroot of `s`. Let
|
|
37
|
+
`c = (c_s)_{s \in W}` such that `c_s = c_{tst^{-1}}` for all `t \in W`.
|
|
38
|
+
|
|
39
|
+
The *rational Cherednik algebra* is the `k`-algebra
|
|
40
|
+
`H_{c,t}(W) = T(\mathfrak{h} \oplus \mathfrak{h}^*) \otimes kW` with
|
|
41
|
+
parameters `c, t \in k` that is subject to the relations:
|
|
42
|
+
|
|
43
|
+
.. MATH::
|
|
44
|
+
|
|
45
|
+
\begin{aligned}
|
|
46
|
+
w \alpha & = (w \cdot \alpha) w,
|
|
47
|
+
\\ \alpha^{\vee} w & = w (w^{-1} \cdot \alpha^{\vee}),
|
|
48
|
+
\\ \alpha \alpha^{\vee} & = \alpha^{\vee} \alpha
|
|
49
|
+
+ t \langle \alpha^{\vee}, \alpha \rangle
|
|
50
|
+
+ \sum_{s \in \mathcal{S}} c_s \frac{\langle \alpha^{\vee},
|
|
51
|
+
\alpha_s \rangle \langle \alpha^{\vee}_s, \alpha \rangle}{
|
|
52
|
+
\langle \alpha^{\vee}, \alpha \rangle} s,
|
|
53
|
+
\end{aligned}
|
|
54
|
+
|
|
55
|
+
where `w \in W` and `\alpha \in \mathfrak{h}` and
|
|
56
|
+
`\alpha^{\vee} \in \mathfrak{h}^*`.
|
|
57
|
+
|
|
58
|
+
INPUT:
|
|
59
|
+
|
|
60
|
+
- ``ct`` -- a finite Cartan type
|
|
61
|
+
- ``c`` -- the parameters `c_s` given as an element or a tuple, where
|
|
62
|
+
the first entry is the one for the long roots and (for
|
|
63
|
+
non-simply-laced types) the second is for the short roots
|
|
64
|
+
- ``t`` -- the parameter `t`
|
|
65
|
+
- ``base_ring`` -- (optional) the base ring
|
|
66
|
+
- ``prefix`` -- (default: ``('a', 's', 'ac')``) the prefixes
|
|
67
|
+
|
|
68
|
+
.. TODO::
|
|
69
|
+
|
|
70
|
+
Implement a version for complex reflection groups.
|
|
71
|
+
|
|
72
|
+
REFERENCES:
|
|
73
|
+
|
|
74
|
+
- [GGOR2003]_
|
|
75
|
+
- [EM2001]_
|
|
76
|
+
"""
|
|
77
|
+
@staticmethod
|
|
78
|
+
def __classcall_private__(cls, ct, c=1, t=None, base_ring=None, prefix=('a', 's', 'ac')):
|
|
79
|
+
"""
|
|
80
|
+
Normalize input to ensure a unique representation.
|
|
81
|
+
|
|
82
|
+
EXAMPLES::
|
|
83
|
+
|
|
84
|
+
sage: R1 = algebras.RationalCherednik(['B',2], 1, 1, QQ)
|
|
85
|
+
sage: R2 = algebras.RationalCherednik(CartanType(['B',2]), [1,1], 1, QQ, ('a', 's', 'ac'))
|
|
86
|
+
sage: R1 is R2
|
|
87
|
+
True
|
|
88
|
+
"""
|
|
89
|
+
ct = CartanType(ct)
|
|
90
|
+
if not ct.is_finite():
|
|
91
|
+
raise ValueError("the Cartan type must be finite")
|
|
92
|
+
if base_ring is None:
|
|
93
|
+
if t is None:
|
|
94
|
+
base_ring = QQ
|
|
95
|
+
else:
|
|
96
|
+
base_ring = t.parent()
|
|
97
|
+
if t is None:
|
|
98
|
+
t = base_ring.one()
|
|
99
|
+
else:
|
|
100
|
+
t = base_ring(t)
|
|
101
|
+
|
|
102
|
+
# Normalize the parameter c
|
|
103
|
+
if isinstance(c, (tuple, list)):
|
|
104
|
+
if ct.is_simply_laced():
|
|
105
|
+
if len(c) != 1:
|
|
106
|
+
raise ValueError("1 parameter c_s must be given for simply-laced types")
|
|
107
|
+
c = (base_ring(c[0]),)
|
|
108
|
+
else:
|
|
109
|
+
if len(c) != 2:
|
|
110
|
+
raise ValueError("2 parameters c_s must be given for non-simply-laced types")
|
|
111
|
+
c = (base_ring(c[0]), base_ring(c[1]))
|
|
112
|
+
else:
|
|
113
|
+
c = base_ring(c)
|
|
114
|
+
if ct.is_simply_laced():
|
|
115
|
+
c = (c,)
|
|
116
|
+
else:
|
|
117
|
+
c = (c, c)
|
|
118
|
+
|
|
119
|
+
return super().__classcall__(cls, ct, c, t, base_ring, tuple(prefix))
|
|
120
|
+
|
|
121
|
+
def __init__(self, ct, c, t, base_ring, prefix) -> None:
|
|
122
|
+
r"""
|
|
123
|
+
Initialize ``self``.
|
|
124
|
+
|
|
125
|
+
EXAMPLES::
|
|
126
|
+
|
|
127
|
+
sage: k = QQ['c,t']
|
|
128
|
+
sage: R = algebras.RationalCherednik(['A',2], k.gen(0), k.gen(1))
|
|
129
|
+
sage: TestSuite(R).run() # long time
|
|
130
|
+
"""
|
|
131
|
+
self._c = c
|
|
132
|
+
self._t = t
|
|
133
|
+
self._cartan_type = ct
|
|
134
|
+
self._weyl = RootSystem(ct).root_lattice().weyl_group(prefix=prefix[1])
|
|
135
|
+
self._hd = IndexedFreeAbelianMonoid(ct.index_set(), prefix=prefix[0],
|
|
136
|
+
bracket=False)
|
|
137
|
+
self._h = IndexedFreeAbelianMonoid(ct.index_set(), prefix=prefix[2],
|
|
138
|
+
bracket=False)
|
|
139
|
+
indices = DisjointUnionEnumeratedSets([self._hd, self._weyl, self._h])
|
|
140
|
+
CombinatorialFreeModule.__init__(self, base_ring, indices,
|
|
141
|
+
category=Algebras(base_ring).WithBasis().Graded(),
|
|
142
|
+
sorting_key=self._genkey)
|
|
143
|
+
|
|
144
|
+
def _genkey(self, t):
|
|
145
|
+
r"""
|
|
146
|
+
Construct a key for comparison for a term indexed by ``t``.
|
|
147
|
+
|
|
148
|
+
The key we create is the tuple in the following order:
|
|
149
|
+
|
|
150
|
+
- overall degree
|
|
151
|
+
- length of the Weyl group element
|
|
152
|
+
- the Weyl group element
|
|
153
|
+
- the element of `\mathfrak{h}`
|
|
154
|
+
- the element of `\mathfrak{h}^*`
|
|
155
|
+
|
|
156
|
+
EXAMPLES::
|
|
157
|
+
|
|
158
|
+
sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
|
|
159
|
+
sage: R.an_element()**2 # indirect doctest
|
|
160
|
+
9*ac1^2 + 10*I + 6*a1*ac1 + 6*s1 + 3/2*s2 + 3/2*s1*s2*s1 + a1^2
|
|
161
|
+
"""
|
|
162
|
+
return (self.degree_on_basis(t), t[1].length(), t[1], str(t[0]), str(t[2]))
|
|
163
|
+
|
|
164
|
+
@lazy_attribute
|
|
165
|
+
def _reflections(self) -> dict:
|
|
166
|
+
"""
|
|
167
|
+
A dictionary of reflections to a pair of the associated root
|
|
168
|
+
and coroot.
|
|
169
|
+
|
|
170
|
+
EXAMPLES::
|
|
171
|
+
|
|
172
|
+
sage: R = algebras.RationalCherednik(['B',2], [1,2], 1, QQ)
|
|
173
|
+
sage: [R._reflections[k] for k in sorted(R._reflections, key=str)]
|
|
174
|
+
[(alpha[1], alphacheck[1], 1),
|
|
175
|
+
(alpha[1] + alpha[2], 2*alphacheck[1] + alphacheck[2], 2),
|
|
176
|
+
(alpha[2], alphacheck[2], 2),
|
|
177
|
+
(alpha[1] + 2*alpha[2], alphacheck[1] + alphacheck[2], 1)]
|
|
178
|
+
"""
|
|
179
|
+
d = {}
|
|
180
|
+
for r in RootSystem(self._cartan_type).root_lattice().positive_roots():
|
|
181
|
+
s = self._weyl.from_reduced_word(r.associated_reflection())
|
|
182
|
+
if r.is_short_root():
|
|
183
|
+
c = self._c[1]
|
|
184
|
+
else:
|
|
185
|
+
c = self._c[0]
|
|
186
|
+
d[s] = (r, r.associated_coroot(), c)
|
|
187
|
+
return d
|
|
188
|
+
|
|
189
|
+
def _repr_(self) -> str:
|
|
190
|
+
r"""
|
|
191
|
+
Return a string representation of ``self``.
|
|
192
|
+
|
|
193
|
+
EXAMPLES::
|
|
194
|
+
|
|
195
|
+
sage: RationalCherednikAlgebra(['A',4], 2, 1, QQ)
|
|
196
|
+
Rational Cherednik Algebra of type ['A', 4] with c=2 and t=1
|
|
197
|
+
over Rational Field
|
|
198
|
+
sage: algebras.RationalCherednik(['B',2], [1,2], 1, QQ)
|
|
199
|
+
Rational Cherednik Algebra of type ['B', 2] with c_L=1 and c_S=2
|
|
200
|
+
and t=1 over Rational Field
|
|
201
|
+
"""
|
|
202
|
+
ret = "Rational Cherednik Algebra of type {} with ".format(self._cartan_type)
|
|
203
|
+
if self._cartan_type.is_simply_laced():
|
|
204
|
+
ret += "c={}".format(self._c[0])
|
|
205
|
+
else:
|
|
206
|
+
ret += "c_L={} and c_S={}".format(*self._c)
|
|
207
|
+
return ret + " and t={} over {}".format(self._t, self.base_ring())
|
|
208
|
+
|
|
209
|
+
def _repr_term(self, t) -> str:
|
|
210
|
+
"""
|
|
211
|
+
Return a string representation of the term indexed by ``t``.
|
|
212
|
+
|
|
213
|
+
EXAMPLES::
|
|
214
|
+
|
|
215
|
+
sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
|
|
216
|
+
sage: R.an_element() # indirect doctest
|
|
217
|
+
3*ac1 + 2*s1 + a1
|
|
218
|
+
sage: R.one() # indirect doctest
|
|
219
|
+
I
|
|
220
|
+
"""
|
|
221
|
+
r = []
|
|
222
|
+
if t[0] != self._hd.one():
|
|
223
|
+
r.append(t[0])
|
|
224
|
+
if t[1] != self._weyl.one():
|
|
225
|
+
r.append(t[1])
|
|
226
|
+
if t[2] != self._h.one():
|
|
227
|
+
r.append(t[2])
|
|
228
|
+
if not r:
|
|
229
|
+
return 'I'
|
|
230
|
+
return '*'.join(repr(x) for x in r)
|
|
231
|
+
|
|
232
|
+
def algebra_generators(self):
|
|
233
|
+
"""
|
|
234
|
+
Return the algebra generators of ``self``.
|
|
235
|
+
|
|
236
|
+
EXAMPLES::
|
|
237
|
+
|
|
238
|
+
sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
|
|
239
|
+
sage: list(R.algebra_generators())
|
|
240
|
+
[a1, a2, s1, s2, ac1, ac2]
|
|
241
|
+
"""
|
|
242
|
+
keys = ['a' + str(i) for i in self._cartan_type.index_set()]
|
|
243
|
+
keys += ['s' + str(i) for i in self._cartan_type.index_set()]
|
|
244
|
+
keys += ['ac' + str(i) for i in self._cartan_type.index_set()]
|
|
245
|
+
|
|
246
|
+
def gen_map(k):
|
|
247
|
+
if k[0] == 's':
|
|
248
|
+
i = int(k[1:])
|
|
249
|
+
return self.monomial((self._hd.one(),
|
|
250
|
+
self._weyl.group_generators()[i],
|
|
251
|
+
self._h.one()))
|
|
252
|
+
if k[1] == 'c':
|
|
253
|
+
i = int(k[2:])
|
|
254
|
+
return self.monomial((self._hd.one(),
|
|
255
|
+
self._weyl.one(),
|
|
256
|
+
self._h.monoid_generators()[i]))
|
|
257
|
+
|
|
258
|
+
i = int(k[1:])
|
|
259
|
+
return self.monomial((self._hd.monoid_generators()[i],
|
|
260
|
+
self._weyl.one(),
|
|
261
|
+
self._h.one()))
|
|
262
|
+
return Family(keys, gen_map)
|
|
263
|
+
|
|
264
|
+
@cached_method
|
|
265
|
+
def one_basis(self):
|
|
266
|
+
"""
|
|
267
|
+
Return the index of the element `1`.
|
|
268
|
+
|
|
269
|
+
EXAMPLES::
|
|
270
|
+
|
|
271
|
+
sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
|
|
272
|
+
sage: R.one_basis()
|
|
273
|
+
(1, 1, 1)
|
|
274
|
+
"""
|
|
275
|
+
return (self._hd.one(), self._weyl.one(), self._h.one())
|
|
276
|
+
|
|
277
|
+
def product_on_basis(self, left, right):
|
|
278
|
+
r"""
|
|
279
|
+
Return ``left`` multiplied by ``right`` in ``self``.
|
|
280
|
+
|
|
281
|
+
EXAMPLES::
|
|
282
|
+
|
|
283
|
+
sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
|
|
284
|
+
sage: a2 = R.algebra_generators()['a2']
|
|
285
|
+
sage: ac1 = R.algebra_generators()['ac1']
|
|
286
|
+
sage: a2 * ac1 # indirect doctest
|
|
287
|
+
a2*ac1
|
|
288
|
+
sage: ac1 * a2
|
|
289
|
+
-I + a2*ac1 - s1 - s2 + 1/2*s1*s2*s1
|
|
290
|
+
sage: x = R.an_element()
|
|
291
|
+
sage: [y * x for y in R.some_elements()]
|
|
292
|
+
[0,
|
|
293
|
+
3*ac1 + 2*s1 + a1,
|
|
294
|
+
9*ac1^2 + 10*I + 6*a1*ac1 + 6*s1 + 3/2*s2 + 3/2*s1*s2*s1 + a1^2,
|
|
295
|
+
3*a1*ac1 + 2*a1*s1 + a1^2,
|
|
296
|
+
3*a2*ac1 + 2*a2*s1 + a1*a2,
|
|
297
|
+
3*s1*ac1 + 2*I - a1*s1,
|
|
298
|
+
3*s2*ac1 + 2*s2*s1 + a1*s2 + a2*s2,
|
|
299
|
+
3*ac1^2 - 2*s1*ac1 + 2*I + a1*ac1 + 2*s1 + 1/2*s2 + 1/2*s1*s2*s1,
|
|
300
|
+
3*ac1*ac2 + 2*s1*ac1 + 2*s1*ac2 - I + a1*ac2 - s1 - s2 + 1/2*s1*s2*s1]
|
|
301
|
+
sage: [x * y for y in R.some_elements()]
|
|
302
|
+
[0,
|
|
303
|
+
3*ac1 + 2*s1 + a1,
|
|
304
|
+
9*ac1^2 + 10*I + 6*a1*ac1 + 6*s1 + 3/2*s2 + 3/2*s1*s2*s1 + a1^2,
|
|
305
|
+
6*I + 3*a1*ac1 + 6*s1 + 3/2*s2 + 3/2*s1*s2*s1 - 2*a1*s1 + a1^2,
|
|
306
|
+
-3*I + 3*a2*ac1 - 3*s1 - 3*s2 + 3/2*s1*s2*s1 + 2*a1*s1 + 2*a2*s1 + a1*a2,
|
|
307
|
+
-3*s1*ac1 + 2*I + a1*s1,
|
|
308
|
+
3*s2*ac1 + 3*s2*ac2 + 2*s1*s2 + a1*s2,
|
|
309
|
+
3*ac1^2 + 2*s1*ac1 + a1*ac1,
|
|
310
|
+
3*ac1*ac2 + 2*s1*ac2 + a1*ac2]
|
|
311
|
+
"""
|
|
312
|
+
# Make copies of the internal dictionaries
|
|
313
|
+
dl = dict(left[2]._monomial)
|
|
314
|
+
dr = dict(right[0]._monomial)
|
|
315
|
+
|
|
316
|
+
# If there is nothing to commute
|
|
317
|
+
if not dl and not dr:
|
|
318
|
+
return self.monomial((left[0], left[1] * right[1], right[2]))
|
|
319
|
+
|
|
320
|
+
R = self.base_ring()
|
|
321
|
+
I = self._cartan_type.index_set()
|
|
322
|
+
P = PolynomialRing(R, 'x', len(I))
|
|
323
|
+
G = P.gens()
|
|
324
|
+
gens_dict = {a: G[i] for i, a in enumerate(I)}
|
|
325
|
+
Q = RootSystem(self._cartan_type).root_lattice()
|
|
326
|
+
alpha = Q.simple_roots()
|
|
327
|
+
alphacheck = Q.simple_coroots()
|
|
328
|
+
|
|
329
|
+
def commute_w_hd(w, al): # al is given as a dictionary
|
|
330
|
+
ret = P.one()
|
|
331
|
+
for k in al:
|
|
332
|
+
x = sum(c * gens_dict[i] for i, c in alpha[k].weyl_action(w))
|
|
333
|
+
ret *= x**al[k]
|
|
334
|
+
ret = ret.monomial_coefficients()
|
|
335
|
+
for k in ret:
|
|
336
|
+
yield (self._hd({I[i]: e for i, e in enumerate(k) if e != 0}), ret[k])
|
|
337
|
+
|
|
338
|
+
# Do Lac Ra if they are both non-trivial
|
|
339
|
+
if dl and dr:
|
|
340
|
+
il = next(iter(dl.keys()))
|
|
341
|
+
ir = next(iter(dr.keys()))
|
|
342
|
+
|
|
343
|
+
# Compute the commutator
|
|
344
|
+
terms = self._product_coroot_root(il, ir)
|
|
345
|
+
|
|
346
|
+
# remove the generator from the elements
|
|
347
|
+
dl[il] -= 1
|
|
348
|
+
if dl[il] == 0:
|
|
349
|
+
del dl[il]
|
|
350
|
+
dr[ir] -= 1
|
|
351
|
+
if dr[ir] == 0:
|
|
352
|
+
del dr[ir]
|
|
353
|
+
|
|
354
|
+
# We now commute right roots past the left reflections: s Ra = Ra' s
|
|
355
|
+
cur = self._from_dict({(hd, s * right[1], right[2]): c * cc
|
|
356
|
+
for s, c in terms
|
|
357
|
+
for hd, cc in commute_w_hd(s, dr)})
|
|
358
|
+
cur = self.monomial((left[0], left[1], self._h(dl))) * cur
|
|
359
|
+
|
|
360
|
+
# Add back in the commuted h and hd elements
|
|
361
|
+
rem = self.monomial((left[0], left[1], self._h(dl)))
|
|
362
|
+
rem = rem * self.monomial((self._hd({ir: 1}), self._weyl.one(),
|
|
363
|
+
self._h({il: 1})))
|
|
364
|
+
rem = rem * self.monomial((self._hd(dr), right[1], right[2]))
|
|
365
|
+
|
|
366
|
+
return cur + rem
|
|
367
|
+
|
|
368
|
+
if dl:
|
|
369
|
+
# We have La Ls Lac Rs Rac,
|
|
370
|
+
# so we must commute Lac Rs = Rs Lac'
|
|
371
|
+
# and obtain La (Ls Rs) (Lac' Rac)
|
|
372
|
+
ret = P.one()
|
|
373
|
+
r1_red = right[1].reduced_word()
|
|
374
|
+
for k, dlk in dl.items():
|
|
375
|
+
x = sum(c * gens_dict[i]
|
|
376
|
+
for i, c in alphacheck[k].weyl_action(r1_red,
|
|
377
|
+
inverse=True))
|
|
378
|
+
ret *= x**dlk
|
|
379
|
+
ret = ret.monomial_coefficients()
|
|
380
|
+
w = left[1] * right[1]
|
|
381
|
+
return self._from_dict({(left[0], w,
|
|
382
|
+
self._h({I[i]: e for i, e in enumerate(k)
|
|
383
|
+
if e != 0}) * right[2]
|
|
384
|
+
): ret[k]
|
|
385
|
+
for k in ret})
|
|
386
|
+
|
|
387
|
+
# Otherwise dr is non-trivial and we have La Ls Ra Rs Rac,
|
|
388
|
+
# so we must commute Ls Ra = Ra' Ls
|
|
389
|
+
w = left[1] * right[1]
|
|
390
|
+
return self._from_dict({(left[0] * hd, w, right[2]): c
|
|
391
|
+
for hd, c in commute_w_hd(left[1], dr)})
|
|
392
|
+
|
|
393
|
+
@cached_method
|
|
394
|
+
def _product_coroot_root(self, i, j):
|
|
395
|
+
r"""
|
|
396
|
+
Return the product `\alpha^{\vee}_i \alpha_j`.
|
|
397
|
+
|
|
398
|
+
EXAMPLES::
|
|
399
|
+
|
|
400
|
+
sage: k = QQ['c,t']
|
|
401
|
+
sage: R = algebras.RationalCherednik(['A',3], k.gen(0), k.gen(1))
|
|
402
|
+
sage: sorted(R._product_coroot_root(1, 1))
|
|
403
|
+
[(s1, 2*c),
|
|
404
|
+
(s1*s2*s1, 1/2*c),
|
|
405
|
+
(s1*s2*s3*s2*s1, 1/2*c),
|
|
406
|
+
(1, 2*t),
|
|
407
|
+
(s3, 0),
|
|
408
|
+
(s2, 1/2*c),
|
|
409
|
+
(s2*s3*s2, 1/2*c)]
|
|
410
|
+
|
|
411
|
+
sage: sorted(R._product_coroot_root(1, 2))
|
|
412
|
+
[(s1, -c),
|
|
413
|
+
(s1*s2*s1, 1/2*c),
|
|
414
|
+
(s1*s2*s3*s2*s1, 0),
|
|
415
|
+
(1, -t),
|
|
416
|
+
(s3, 0),
|
|
417
|
+
(s2, -c),
|
|
418
|
+
(s2*s3*s2, -1/2*c)]
|
|
419
|
+
|
|
420
|
+
sage: sorted(R._product_coroot_root(1, 3))
|
|
421
|
+
[(s1, 0),
|
|
422
|
+
(s1*s2*s1, -1/2*c),
|
|
423
|
+
(s1*s2*s3*s2*s1, 1/2*c),
|
|
424
|
+
(1, 0),
|
|
425
|
+
(s3, 0),
|
|
426
|
+
(s2, 1/2*c),
|
|
427
|
+
(s2*s3*s2, -1/2*c)]
|
|
428
|
+
"""
|
|
429
|
+
Q = RootSystem(self._cartan_type).root_lattice()
|
|
430
|
+
ac = Q.simple_coroot(i)
|
|
431
|
+
al = Q.simple_root(j)
|
|
432
|
+
|
|
433
|
+
R = self.base_ring()
|
|
434
|
+
terms = [(self._weyl.one(), self._t * R(ac.scalar(al)))]
|
|
435
|
+
for s in self._reflections:
|
|
436
|
+
# p[0] is the root, p[1] is the coroot, p[2] the value c_s
|
|
437
|
+
pr, pc, c = self._reflections[s]
|
|
438
|
+
terms.append((s, c * R(ac.scalar(pr) * pc.scalar(al)
|
|
439
|
+
/ pc.scalar(pr))))
|
|
440
|
+
return tuple(terms)
|
|
441
|
+
|
|
442
|
+
def degree_on_basis(self, m):
|
|
443
|
+
"""
|
|
444
|
+
Return the degree on the monomial indexed by ``m``.
|
|
445
|
+
|
|
446
|
+
EXAMPLES::
|
|
447
|
+
|
|
448
|
+
sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
|
|
449
|
+
sage: [R.degree_on_basis(g.leading_support())
|
|
450
|
+
....: for g in R.algebra_generators()]
|
|
451
|
+
[1, 1, 0, 0, -1, -1]
|
|
452
|
+
"""
|
|
453
|
+
return m[0].length() - m[2].length()
|
|
454
|
+
|
|
455
|
+
@cached_method
|
|
456
|
+
def trivial_idempotent(self):
|
|
457
|
+
r"""
|
|
458
|
+
Return the trivial idempotent of ``self``.
|
|
459
|
+
|
|
460
|
+
Let `e = |W|^{-1} \sum_{w \in W} w` is the trivial idempotent.
|
|
461
|
+
Thus `e^2 = e` and `eW = We`. The trivial idempotent is used
|
|
462
|
+
in the construction of the spherical Cherednik algebra from
|
|
463
|
+
the rational Cherednik algebra by `U_{c,t}(W) = e H_{c,t}(W) e`.
|
|
464
|
+
|
|
465
|
+
EXAMPLES::
|
|
466
|
+
|
|
467
|
+
sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
|
|
468
|
+
sage: R.trivial_idempotent()
|
|
469
|
+
1/6*I + 1/6*s1 + 1/6*s2 + 1/6*s2*s1 + 1/6*s1*s2 + 1/6*s1*s2*s1
|
|
470
|
+
"""
|
|
471
|
+
coeff = self.base_ring()(~self._weyl.cardinality())
|
|
472
|
+
hd_one = self._hd.one() # root - a
|
|
473
|
+
h_one = self._h.one() # coroot - ac
|
|
474
|
+
return self._from_dict({(hd_one, w, h_one): coeff for w in self._weyl},
|
|
475
|
+
remove_zeros=False)
|
|
476
|
+
|
|
477
|
+
@cached_method
|
|
478
|
+
def deformed_euler(self):
|
|
479
|
+
"""
|
|
480
|
+
Return the element `eu_k`.
|
|
481
|
+
|
|
482
|
+
EXAMPLES::
|
|
483
|
+
|
|
484
|
+
sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
|
|
485
|
+
sage: R.deformed_euler()
|
|
486
|
+
2*I + 2/3*a1*ac1 + 1/3*a1*ac2 + 1/3*a2*ac1 + 2/3*a2*ac2
|
|
487
|
+
+ s1 + s2 + s1*s2*s1
|
|
488
|
+
"""
|
|
489
|
+
I = self._cartan_type.index_set()
|
|
490
|
+
G = self.algebra_generators()
|
|
491
|
+
cm = ~CartanMatrix(self._cartan_type)
|
|
492
|
+
n = len(I)
|
|
493
|
+
ac = [G['ac' + str(i)] for i in I]
|
|
494
|
+
la = [sum(cm[i, j] * G['a' + str(I[i])]
|
|
495
|
+
for i in range(n)) for j in range(n)]
|
|
496
|
+
return self.sum(ac[i] * la[i] for i in range(n))
|
|
497
|
+
|
|
498
|
+
@cached_method
|
|
499
|
+
def _an_element_(self):
|
|
500
|
+
"""
|
|
501
|
+
Return an element of ``self``.
|
|
502
|
+
|
|
503
|
+
EXAMPLES::
|
|
504
|
+
|
|
505
|
+
sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
|
|
506
|
+
sage: R.an_element()
|
|
507
|
+
3*ac1 + 2*s1 + a1
|
|
508
|
+
"""
|
|
509
|
+
G = self.algebra_generators()
|
|
510
|
+
i = str(self._cartan_type.index_set()[0])
|
|
511
|
+
return G['a' + i] + 2 * G['s' + i] + 3 * G['ac' + i]
|
|
512
|
+
|
|
513
|
+
def some_elements(self):
|
|
514
|
+
"""
|
|
515
|
+
Return some elements of ``self``.
|
|
516
|
+
|
|
517
|
+
EXAMPLES::
|
|
518
|
+
|
|
519
|
+
sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
|
|
520
|
+
sage: R.some_elements()
|
|
521
|
+
[0, I, 3*ac1 + 2*s1 + a1, a1, a2, s1, s2, ac1, ac2]
|
|
522
|
+
"""
|
|
523
|
+
ret = [self.zero(), self.one(), self.an_element()]
|
|
524
|
+
ret += list(self.algebra_generators())
|
|
525
|
+
return ret
|