passagemath-combinat 10.6.42__cp314-cp314t-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (401) hide show
  1. passagemath_combinat/__init__.py +3 -0
  2. passagemath_combinat-10.6.42.dist-info/DELVEWHEEL +2 -0
  3. passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
  4. passagemath_combinat-10.6.42.dist-info/RECORD +401 -0
  5. passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
  6. passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
  7. passagemath_combinat.libs/libgmp-10-3a5f019e2510aeaad918cab2b57a689d.dll +0 -0
  8. passagemath_combinat.libs/libsymmetrica-3-7dcf900932804d0df5fd0919b4668720.dll +0 -0
  9. sage/algebras/affine_nil_temperley_lieb.py +263 -0
  10. sage/algebras/all.py +24 -0
  11. sage/algebras/all__sagemath_combinat.py +35 -0
  12. sage/algebras/askey_wilson.py +935 -0
  13. sage/algebras/associated_graded.py +345 -0
  14. sage/algebras/cellular_basis.py +350 -0
  15. sage/algebras/cluster_algebra.py +2766 -0
  16. sage/algebras/down_up_algebra.py +860 -0
  17. sage/algebras/free_algebra.py +1698 -0
  18. sage/algebras/free_algebra_element.py +345 -0
  19. sage/algebras/free_algebra_quotient.py +405 -0
  20. sage/algebras/free_algebra_quotient_element.py +295 -0
  21. sage/algebras/free_zinbiel_algebra.py +885 -0
  22. sage/algebras/hall_algebra.py +783 -0
  23. sage/algebras/hecke_algebras/all.py +4 -0
  24. sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
  25. sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
  26. sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
  27. sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
  28. sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
  29. sage/algebras/iwahori_hecke_algebra.py +3095 -0
  30. sage/algebras/jordan_algebra.py +1773 -0
  31. sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
  32. sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
  33. sage/algebras/lie_conformal_algebras/all.py +18 -0
  34. sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
  35. sage/algebras/lie_conformal_algebras/examples.py +43 -0
  36. sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
  37. sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
  38. sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
  39. sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
  40. sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
  41. sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
  42. sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
  43. sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
  44. sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
  45. sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
  46. sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
  47. sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
  48. sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
  49. sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
  50. sage/algebras/nil_coxeter_algebra.py +191 -0
  51. sage/algebras/q_commuting_polynomials.py +673 -0
  52. sage/algebras/q_system.py +608 -0
  53. sage/algebras/quantum_clifford.py +959 -0
  54. sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
  55. sage/algebras/quantum_groups/all.py +9 -0
  56. sage/algebras/quantum_groups/fock_space.py +2219 -0
  57. sage/algebras/quantum_groups/q_numbers.py +207 -0
  58. sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
  59. sage/algebras/quantum_groups/representations.py +591 -0
  60. sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
  61. sage/algebras/quantum_oscillator.py +623 -0
  62. sage/algebras/quaternion_algebra.py +20 -0
  63. sage/algebras/quaternion_algebra_element.py +55 -0
  64. sage/algebras/rational_cherednik_algebra.py +525 -0
  65. sage/algebras/schur_algebra.py +670 -0
  66. sage/algebras/shuffle_algebra.py +1011 -0
  67. sage/algebras/splitting_algebra.py +779 -0
  68. sage/algebras/tensor_algebra.py +709 -0
  69. sage/algebras/yangian.py +1082 -0
  70. sage/algebras/yokonuma_hecke_algebra.py +1018 -0
  71. sage/all__sagemath_combinat.py +44 -0
  72. sage/combinat/SJT.py +255 -0
  73. sage/combinat/affine_permutation.py +2405 -0
  74. sage/combinat/algebraic_combinatorics.py +55 -0
  75. sage/combinat/all.py +53 -0
  76. sage/combinat/all__sagemath_combinat.py +195 -0
  77. sage/combinat/alternating_sign_matrix.py +2063 -0
  78. sage/combinat/baxter_permutations.py +346 -0
  79. sage/combinat/bijectionist.py +3220 -0
  80. sage/combinat/binary_recurrence_sequences.py +1180 -0
  81. sage/combinat/blob_algebra.py +685 -0
  82. sage/combinat/catalog_partitions.py +27 -0
  83. sage/combinat/chas/all.py +23 -0
  84. sage/combinat/chas/fsym.py +1180 -0
  85. sage/combinat/chas/wqsym.py +2601 -0
  86. sage/combinat/cluster_complex.py +326 -0
  87. sage/combinat/colored_permutations.py +2039 -0
  88. sage/combinat/colored_permutations_representations.py +964 -0
  89. sage/combinat/composition_signed.py +142 -0
  90. sage/combinat/composition_tableau.py +855 -0
  91. sage/combinat/constellation.py +1729 -0
  92. sage/combinat/core.py +751 -0
  93. sage/combinat/counting.py +12 -0
  94. sage/combinat/crystals/affine.py +742 -0
  95. sage/combinat/crystals/affine_factorization.py +518 -0
  96. sage/combinat/crystals/affinization.py +331 -0
  97. sage/combinat/crystals/alcove_path.py +2013 -0
  98. sage/combinat/crystals/all.py +22 -0
  99. sage/combinat/crystals/bkk_crystals.py +141 -0
  100. sage/combinat/crystals/catalog.py +115 -0
  101. sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
  102. sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
  103. sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
  104. sage/combinat/crystals/crystals.py +257 -0
  105. sage/combinat/crystals/direct_sum.py +260 -0
  106. sage/combinat/crystals/elementary_crystals.py +1251 -0
  107. sage/combinat/crystals/fast_crystals.py +441 -0
  108. sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
  109. sage/combinat/crystals/generalized_young_walls.py +1076 -0
  110. sage/combinat/crystals/highest_weight_crystals.py +436 -0
  111. sage/combinat/crystals/induced_structure.py +695 -0
  112. sage/combinat/crystals/infinity_crystals.py +730 -0
  113. sage/combinat/crystals/kac_modules.py +863 -0
  114. sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
  115. sage/combinat/crystals/kyoto_path_model.py +497 -0
  116. sage/combinat/crystals/letters.cp314t-win_amd64.pyd +0 -0
  117. sage/combinat/crystals/letters.pxd +79 -0
  118. sage/combinat/crystals/letters.pyx +3056 -0
  119. sage/combinat/crystals/littelmann_path.py +1518 -0
  120. sage/combinat/crystals/monomial_crystals.py +1262 -0
  121. sage/combinat/crystals/multisegments.py +462 -0
  122. sage/combinat/crystals/mv_polytopes.py +467 -0
  123. sage/combinat/crystals/pbw_crystal.py +511 -0
  124. sage/combinat/crystals/pbw_datum.cp314t-win_amd64.pyd +0 -0
  125. sage/combinat/crystals/pbw_datum.pxd +4 -0
  126. sage/combinat/crystals/pbw_datum.pyx +487 -0
  127. sage/combinat/crystals/polyhedral_realization.py +372 -0
  128. sage/combinat/crystals/spins.cp314t-win_amd64.pyd +0 -0
  129. sage/combinat/crystals/spins.pxd +21 -0
  130. sage/combinat/crystals/spins.pyx +756 -0
  131. sage/combinat/crystals/star_crystal.py +290 -0
  132. sage/combinat/crystals/subcrystal.py +464 -0
  133. sage/combinat/crystals/tensor_product.py +1177 -0
  134. sage/combinat/crystals/tensor_product_element.cp314t-win_amd64.pyd +0 -0
  135. sage/combinat/crystals/tensor_product_element.pxd +35 -0
  136. sage/combinat/crystals/tensor_product_element.pyx +1870 -0
  137. sage/combinat/crystals/virtual_crystal.py +420 -0
  138. sage/combinat/cyclic_sieving_phenomenon.py +204 -0
  139. sage/combinat/debruijn_sequence.cp314t-win_amd64.pyd +0 -0
  140. sage/combinat/debruijn_sequence.pyx +355 -0
  141. sage/combinat/decorated_permutation.py +270 -0
  142. sage/combinat/degree_sequences.cp314t-win_amd64.pyd +0 -0
  143. sage/combinat/degree_sequences.pyx +588 -0
  144. sage/combinat/derangements.py +527 -0
  145. sage/combinat/descent_algebra.py +1008 -0
  146. sage/combinat/diagram.py +1551 -0
  147. sage/combinat/diagram_algebras.py +5886 -0
  148. sage/combinat/dyck_word.py +4349 -0
  149. sage/combinat/e_one_star.py +1623 -0
  150. sage/combinat/enumerated_sets.py +123 -0
  151. sage/combinat/expnums.cp314t-win_amd64.pyd +0 -0
  152. sage/combinat/expnums.pyx +148 -0
  153. sage/combinat/fast_vector_partitions.cp314t-win_amd64.pyd +0 -0
  154. sage/combinat/fast_vector_partitions.pyx +346 -0
  155. sage/combinat/fqsym.py +1977 -0
  156. sage/combinat/free_dendriform_algebra.py +954 -0
  157. sage/combinat/free_prelie_algebra.py +1141 -0
  158. sage/combinat/fully_commutative_elements.py +1077 -0
  159. sage/combinat/fully_packed_loop.py +1523 -0
  160. sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
  161. sage/combinat/gray_codes.py +311 -0
  162. sage/combinat/grossman_larson_algebras.py +667 -0
  163. sage/combinat/growth.py +4352 -0
  164. sage/combinat/hall_polynomial.py +188 -0
  165. sage/combinat/hillman_grassl.py +866 -0
  166. sage/combinat/integer_matrices.py +329 -0
  167. sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
  168. sage/combinat/k_tableau.py +4564 -0
  169. sage/combinat/kazhdan_lusztig.py +215 -0
  170. sage/combinat/key_polynomial.py +885 -0
  171. sage/combinat/knutson_tao_puzzles.py +2286 -0
  172. sage/combinat/lr_tableau.py +311 -0
  173. sage/combinat/matrices/all.py +24 -0
  174. sage/combinat/matrices/hadamard_matrix.py +3790 -0
  175. sage/combinat/matrices/latin.py +2912 -0
  176. sage/combinat/misc.py +401 -0
  177. sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
  178. sage/combinat/ncsf_qsym/all.py +21 -0
  179. sage/combinat/ncsf_qsym/combinatorics.py +317 -0
  180. sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
  181. sage/combinat/ncsf_qsym/ncsf.py +5637 -0
  182. sage/combinat/ncsf_qsym/qsym.py +4053 -0
  183. sage/combinat/ncsf_qsym/tutorial.py +447 -0
  184. sage/combinat/ncsym/all.py +21 -0
  185. sage/combinat/ncsym/bases.py +855 -0
  186. sage/combinat/ncsym/dual.py +593 -0
  187. sage/combinat/ncsym/ncsym.py +2076 -0
  188. sage/combinat/necklace.py +551 -0
  189. sage/combinat/non_decreasing_parking_function.py +634 -0
  190. sage/combinat/nu_dyck_word.py +1474 -0
  191. sage/combinat/output.py +861 -0
  192. sage/combinat/parallelogram_polyomino.py +4326 -0
  193. sage/combinat/parking_functions.py +1602 -0
  194. sage/combinat/partition_algebra.py +1998 -0
  195. sage/combinat/partition_kleshchev.py +1982 -0
  196. sage/combinat/partition_shifting_algebras.py +584 -0
  197. sage/combinat/partition_tuple.py +3114 -0
  198. sage/combinat/path_tableaux/all.py +13 -0
  199. sage/combinat/path_tableaux/catalog.py +29 -0
  200. sage/combinat/path_tableaux/dyck_path.py +380 -0
  201. sage/combinat/path_tableaux/frieze.py +476 -0
  202. sage/combinat/path_tableaux/path_tableau.py +728 -0
  203. sage/combinat/path_tableaux/semistandard.py +510 -0
  204. sage/combinat/perfect_matching.py +779 -0
  205. sage/combinat/plane_partition.py +3300 -0
  206. sage/combinat/q_bernoulli.cp314t-win_amd64.pyd +0 -0
  207. sage/combinat/q_bernoulli.pyx +128 -0
  208. sage/combinat/quickref.py +81 -0
  209. sage/combinat/recognizable_series.py +2051 -0
  210. sage/combinat/regular_sequence.py +4316 -0
  211. sage/combinat/regular_sequence_bounded.py +543 -0
  212. sage/combinat/restricted_growth.py +81 -0
  213. sage/combinat/ribbon.py +20 -0
  214. sage/combinat/ribbon_shaped_tableau.py +489 -0
  215. sage/combinat/ribbon_tableau.py +1180 -0
  216. sage/combinat/rigged_configurations/all.py +46 -0
  217. sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
  218. sage/combinat/rigged_configurations/bij_infinity.py +370 -0
  219. sage/combinat/rigged_configurations/bij_type_A.py +163 -0
  220. sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
  221. sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
  222. sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
  223. sage/combinat/rigged_configurations/bij_type_B.py +900 -0
  224. sage/combinat/rigged_configurations/bij_type_C.py +267 -0
  225. sage/combinat/rigged_configurations/bij_type_D.py +771 -0
  226. sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
  227. sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
  228. sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
  229. sage/combinat/rigged_configurations/bijection.py +143 -0
  230. sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
  231. sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
  232. sage/combinat/rigged_configurations/rc_crystal.py +461 -0
  233. sage/combinat/rigged_configurations/rc_infinity.py +540 -0
  234. sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
  235. sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
  236. sage/combinat/rigged_configurations/rigged_partition.cp314t-win_amd64.pyd +0 -0
  237. sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
  238. sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
  239. sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
  240. sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
  241. sage/combinat/rsk.py +3438 -0
  242. sage/combinat/schubert_polynomial.py +508 -0
  243. sage/combinat/set_partition.py +3318 -0
  244. sage/combinat/set_partition_iterator.cp314t-win_amd64.pyd +0 -0
  245. sage/combinat/set_partition_iterator.pyx +136 -0
  246. sage/combinat/set_partition_ordered.py +1590 -0
  247. sage/combinat/sf/abreu_nigro.py +346 -0
  248. sage/combinat/sf/all.py +52 -0
  249. sage/combinat/sf/character.py +576 -0
  250. sage/combinat/sf/classical.py +319 -0
  251. sage/combinat/sf/dual.py +996 -0
  252. sage/combinat/sf/elementary.py +549 -0
  253. sage/combinat/sf/hall_littlewood.py +1028 -0
  254. sage/combinat/sf/hecke.py +336 -0
  255. sage/combinat/sf/homogeneous.py +464 -0
  256. sage/combinat/sf/jack.py +1428 -0
  257. sage/combinat/sf/k_dual.py +1458 -0
  258. sage/combinat/sf/kfpoly.py +447 -0
  259. sage/combinat/sf/llt.py +789 -0
  260. sage/combinat/sf/macdonald.py +2019 -0
  261. sage/combinat/sf/monomial.py +525 -0
  262. sage/combinat/sf/multiplicative.py +113 -0
  263. sage/combinat/sf/new_kschur.py +1786 -0
  264. sage/combinat/sf/ns_macdonald.py +964 -0
  265. sage/combinat/sf/orthogonal.py +246 -0
  266. sage/combinat/sf/orthotriang.py +355 -0
  267. sage/combinat/sf/powersum.py +963 -0
  268. sage/combinat/sf/schur.py +880 -0
  269. sage/combinat/sf/sf.py +1653 -0
  270. sage/combinat/sf/sfa.py +7053 -0
  271. sage/combinat/sf/symplectic.py +253 -0
  272. sage/combinat/sf/witt.py +721 -0
  273. sage/combinat/shifted_primed_tableau.py +2735 -0
  274. sage/combinat/shuffle.py +830 -0
  275. sage/combinat/sidon_sets.py +146 -0
  276. sage/combinat/similarity_class_type.py +1721 -0
  277. sage/combinat/sine_gordon.py +618 -0
  278. sage/combinat/six_vertex_model.py +784 -0
  279. sage/combinat/skew_partition.py +2053 -0
  280. sage/combinat/skew_tableau.py +2989 -0
  281. sage/combinat/sloane_functions.py +8935 -0
  282. sage/combinat/specht_module.py +1403 -0
  283. sage/combinat/species/all.py +48 -0
  284. sage/combinat/species/characteristic_species.py +321 -0
  285. sage/combinat/species/composition_species.py +273 -0
  286. sage/combinat/species/cycle_species.py +284 -0
  287. sage/combinat/species/empty_species.py +155 -0
  288. sage/combinat/species/functorial_composition_species.py +148 -0
  289. sage/combinat/species/generating_series.py +673 -0
  290. sage/combinat/species/library.py +148 -0
  291. sage/combinat/species/linear_order_species.py +169 -0
  292. sage/combinat/species/misc.py +83 -0
  293. sage/combinat/species/partition_species.py +290 -0
  294. sage/combinat/species/permutation_species.py +268 -0
  295. sage/combinat/species/product_species.py +423 -0
  296. sage/combinat/species/recursive_species.py +476 -0
  297. sage/combinat/species/set_species.py +192 -0
  298. sage/combinat/species/species.py +820 -0
  299. sage/combinat/species/structure.py +539 -0
  300. sage/combinat/species/subset_species.py +243 -0
  301. sage/combinat/species/sum_species.py +225 -0
  302. sage/combinat/subword.py +564 -0
  303. sage/combinat/subword_complex.py +2122 -0
  304. sage/combinat/subword_complex_c.cp314t-win_amd64.pyd +0 -0
  305. sage/combinat/subword_complex_c.pyx +119 -0
  306. sage/combinat/super_tableau.py +821 -0
  307. sage/combinat/superpartition.py +1154 -0
  308. sage/combinat/symmetric_group_algebra.py +3774 -0
  309. sage/combinat/symmetric_group_representations.py +1830 -0
  310. sage/combinat/t_sequences.py +877 -0
  311. sage/combinat/tableau.py +9506 -0
  312. sage/combinat/tableau_residues.py +860 -0
  313. sage/combinat/tableau_tuple.py +5353 -0
  314. sage/combinat/tiling.py +2432 -0
  315. sage/combinat/triangles_FHM.py +777 -0
  316. sage/combinat/tutorial.py +1857 -0
  317. sage/combinat/vector_partition.py +337 -0
  318. sage/combinat/words/abstract_word.py +1722 -0
  319. sage/combinat/words/all.py +59 -0
  320. sage/combinat/words/alphabet.py +268 -0
  321. sage/combinat/words/finite_word.py +7201 -0
  322. sage/combinat/words/infinite_word.py +113 -0
  323. sage/combinat/words/lyndon_word.py +652 -0
  324. sage/combinat/words/morphic.py +351 -0
  325. sage/combinat/words/morphism.py +3878 -0
  326. sage/combinat/words/paths.py +2932 -0
  327. sage/combinat/words/shuffle_product.py +278 -0
  328. sage/combinat/words/suffix_trees.py +1873 -0
  329. sage/combinat/words/word.py +769 -0
  330. sage/combinat/words/word_char.cp314t-win_amd64.pyd +0 -0
  331. sage/combinat/words/word_char.pyx +847 -0
  332. sage/combinat/words/word_datatypes.cp314t-win_amd64.pyd +0 -0
  333. sage/combinat/words/word_datatypes.pxd +4 -0
  334. sage/combinat/words/word_datatypes.pyx +1067 -0
  335. sage/combinat/words/word_generators.py +2026 -0
  336. sage/combinat/words/word_infinite_datatypes.py +1218 -0
  337. sage/combinat/words/word_options.py +99 -0
  338. sage/combinat/words/words.py +2396 -0
  339. sage/data_structures/all__sagemath_combinat.py +1 -0
  340. sage/databases/all__sagemath_combinat.py +13 -0
  341. sage/databases/findstat.py +4897 -0
  342. sage/databases/oeis.py +2058 -0
  343. sage/databases/sloane.py +393 -0
  344. sage/dynamics/all__sagemath_combinat.py +14 -0
  345. sage/dynamics/cellular_automata/all.py +7 -0
  346. sage/dynamics/cellular_automata/catalog.py +34 -0
  347. sage/dynamics/cellular_automata/elementary.py +612 -0
  348. sage/dynamics/cellular_automata/glca.py +477 -0
  349. sage/dynamics/cellular_automata/solitons.py +1463 -0
  350. sage/dynamics/finite_dynamical_system.py +1249 -0
  351. sage/dynamics/finite_dynamical_system_catalog.py +382 -0
  352. sage/games/all.py +7 -0
  353. sage/games/hexad.py +704 -0
  354. sage/games/quantumino.py +591 -0
  355. sage/games/sudoku.py +889 -0
  356. sage/games/sudoku_backtrack.cp314t-win_amd64.pyd +0 -0
  357. sage/games/sudoku_backtrack.pyx +189 -0
  358. sage/groups/all__sagemath_combinat.py +1 -0
  359. sage/groups/indexed_free_group.py +489 -0
  360. sage/libs/all__sagemath_combinat.py +6 -0
  361. sage/libs/lrcalc/__init__.py +1 -0
  362. sage/libs/lrcalc/lrcalc.py +525 -0
  363. sage/libs/symmetrica/__init__.py +7 -0
  364. sage/libs/symmetrica/all.py +101 -0
  365. sage/libs/symmetrica/kostka.pxi +168 -0
  366. sage/libs/symmetrica/part.pxi +193 -0
  367. sage/libs/symmetrica/plet.pxi +42 -0
  368. sage/libs/symmetrica/sab.pxi +196 -0
  369. sage/libs/symmetrica/sb.pxi +332 -0
  370. sage/libs/symmetrica/sc.pxi +192 -0
  371. sage/libs/symmetrica/schur.pxi +956 -0
  372. sage/libs/symmetrica/symmetrica.cp314t-win_amd64.pyd +0 -0
  373. sage/libs/symmetrica/symmetrica.pxi +1172 -0
  374. sage/libs/symmetrica/symmetrica.pyx +39 -0
  375. sage/monoids/all.py +13 -0
  376. sage/monoids/automatic_semigroup.py +1054 -0
  377. sage/monoids/free_abelian_monoid.py +315 -0
  378. sage/monoids/free_abelian_monoid_element.cp314t-win_amd64.pyd +0 -0
  379. sage/monoids/free_abelian_monoid_element.pxd +16 -0
  380. sage/monoids/free_abelian_monoid_element.pyx +397 -0
  381. sage/monoids/free_monoid.py +335 -0
  382. sage/monoids/free_monoid_element.py +431 -0
  383. sage/monoids/hecke_monoid.py +65 -0
  384. sage/monoids/string_monoid.py +817 -0
  385. sage/monoids/string_monoid_element.py +547 -0
  386. sage/monoids/string_ops.py +143 -0
  387. sage/monoids/trace_monoid.py +972 -0
  388. sage/rings/all__sagemath_combinat.py +2 -0
  389. sage/sat/all.py +4 -0
  390. sage/sat/boolean_polynomials.py +405 -0
  391. sage/sat/converters/__init__.py +6 -0
  392. sage/sat/converters/anf2cnf.py +14 -0
  393. sage/sat/converters/polybori.py +611 -0
  394. sage/sat/solvers/__init__.py +5 -0
  395. sage/sat/solvers/cryptominisat.py +287 -0
  396. sage/sat/solvers/dimacs.py +783 -0
  397. sage/sat/solvers/picosat.py +228 -0
  398. sage/sat/solvers/sat_lp.py +156 -0
  399. sage/sat/solvers/satsolver.cp314t-win_amd64.pyd +0 -0
  400. sage/sat/solvers/satsolver.pxd +3 -0
  401. sage/sat/solvers/satsolver.pyx +405 -0
@@ -0,0 +1,860 @@
1
+ # sage_setup: distribution = sagemath-combinat
2
+ r"""
3
+ Residue sequences of tableaux
4
+
5
+ A *residue sequence* for a :class:`~sage.combinat.tableau.StandardTableau`, or
6
+ :class:`~sage.combinat.tableau_tuple.StandardTableauTuple`, of size `n` is an
7
+ `n`-tuple `(i_1, i_2, \ldots, i_n)` of elements of `\ZZ / e\ZZ` for some
8
+ positive integer `e \ge 1`. Such sequences arise in the representation
9
+ theory of the symmetric group and the closely related cyclotomic Hecke
10
+ algebras, and cyclotomic quiver Hecke algebras, where the residue sequences
11
+ play a similar role to weights in the representations of Lie groups and
12
+ Lie algebras. These Hecke algebras are semisimple when `e` is "large enough"
13
+ and in these cases residue sequences are essentially the same as content
14
+ sequences (see :meth:`sage.combinat.partition.Partition.content`) and it
15
+ is not difficult to see that residue sequences are in bijection with the
16
+ set of standard tableaux. In the non-semisimple case, when `e` is "small",
17
+ different standard tableaux can have the same residue sequence. In this
18
+ case the residue sequences describe how to decompose modules into
19
+ generalised eigenspaces for the Jucys-Murphy elements for these algebras.
20
+
21
+ By definition, if `t` is a :class:`~sage.combinat.tableau.StandardTableau` of
22
+ size `n` then the residue sequence of `t` is the `n`-tuple `(i_1, \ldots, i_n)`
23
+ where `i_m = c - r + e\ZZ`, if `m` appears in row `r` and column `c` of `t`.
24
+ If `p` is prime then such sequence arise in the representation theory of the
25
+ symmetric group n characteristic `p`. More generally, `e`-residue sequences
26
+ arise in he representation theory of the Iwahori-Hecke algebra (see
27
+ :class:`~sage.algebras.iwahori_hecke_algebra.IwahoriHeckeAlgebra`) the
28
+ symmetric group with Hecke parameter at an `e`-th root of unity.
29
+
30
+ More generally, the `e`-residue sequence of a
31
+ :class:`~sage.combinat.tableau.StandardTableau` of size `n` and level `l` is
32
+ the `n`-tuple `(i_1, \ldots, i_n)` determined by `e` and a *multicharge*
33
+ `\kappa = (\kappa_1, \ldots, \kappa_l)` by setting
34
+ `i_m = \kappa_k + c - r + e\ZZ`, if `m` appears in component `k`, row `r`
35
+ and column `c` of `t`. These sequences arise in the representation theory
36
+ of the cyclotomic Hecke algebras of type A, which are also known
37
+ as Ariki-Koike algebras.
38
+
39
+ The residue classes are constructed from standard tableaux::
40
+
41
+ sage: StandardTableau([[1,2],[3,4]]).residue_sequence(2)
42
+ 2-residue sequence (0,1,1,0) with multicharge (0)
43
+ sage: StandardTableau([[1,2],[3,4]]).residue_sequence(3)
44
+ 3-residue sequence (0,1,2,0) with multicharge (0)
45
+
46
+ sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue_sequence(3,[0,0])
47
+ 3-residue sequence (0,1,2,0,0) with multicharge (0,0)
48
+ sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue_sequence(3,[0,1])
49
+ 3-residue sequence (1,2,0,1,0) with multicharge (0,1)
50
+ sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue_sequence(3,[0,2])
51
+ 3-residue sequence (2,0,1,2,0) with multicharge (0,2)
52
+
53
+ One of the most useful functions of a :class:`ResidueSequence` is that it can
54
+ return the :class:`~sage.combinat.tableau_tuple.StandardTableaux_residue` and
55
+ :class:`~sage.combinat.tableau_tuple.StandardTableaux_residue_shape` that
56
+ contain all of the tableaux with this residue sequence. Again, these are best
57
+ accessed via the standard tableaux classes::
58
+
59
+ sage: res = StandardTableau([[1,2],[3,4]]).residue_sequence(2)
60
+ sage: res.standard_tableaux()
61
+ Standard tableaux with 2-residue sequence (0,1,1,0) and multicharge (0)
62
+ sage: res.standard_tableaux()[:]
63
+ [[[1, 2, 4], [3]],
64
+ [[1, 2], [3, 4]],
65
+ [[1, 2], [3], [4]],
66
+ [[1, 3, 4], [2]],
67
+ [[1, 3], [2, 4]],
68
+ [[1, 3], [2], [4]]]
69
+ sage: res.standard_tableaux(shape=[4])
70
+ Standard (4)-tableaux with 2-residue sequence (0,1,1,0) and multicharge (0)
71
+ sage: res.standard_tableaux(shape=[4])[:]
72
+ []
73
+
74
+ sage: res=StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue_sequence(3,[0,0])
75
+ sage: res.standard_tableaux()
76
+ Standard tableaux with 3-residue sequence (0,1,2,0,0) and multicharge (0,0)
77
+ sage: res.standard_tableaux(shape=[[1],[2,2]])[:]
78
+ [([[5]], [[1, 2], [3, 4]]), ([[4]], [[1, 2], [3, 5]])]
79
+
80
+ These residue sequences are particularly useful in the graded representation
81
+ theory of the cyclotomic KLR algebras and the cyclotomic Hecke algebras of type~A;
82
+ see [DJM1998]_ and [BK2009]_.
83
+
84
+ This module implements the following classes:
85
+
86
+ * :class:`ResidueSequence`
87
+ * :class:`ResidueSequences`
88
+
89
+ .. SEEALSO::
90
+
91
+ * :class:`Partitions`
92
+ * :class:`PartitionTuples`
93
+ * :class:`~sage.combinat.tableau_tuple.StandardTableaux_residue`
94
+ * :class:`~sage.combinat.tableau_tuple.StandardTableaux_residue_shape`
95
+ * :class:`~sage.combinat.tableau_tuple.RowStandardTableauTuples_residue`
96
+ * :class:`~sage.combinat.tableau_tuple.RowStandardTableauTuples_residue_shape`
97
+ * :class:`StandardTableaux`
98
+ * :class:`StandardTableauTuples`
99
+ * :class:`Tableaux`
100
+ * :class:`TableauTuples`
101
+
102
+ .. TODO::
103
+
104
+ Strictly speaking this module implements residue sequences of
105
+ type `A^{(1)}_e`. Residue sequences of other types also need
106
+ to be implemented.
107
+
108
+ AUTHORS:
109
+
110
+ - Andrew Mathas (2016-07-01): Initial version
111
+ """
112
+
113
+ # ****************************************************************************
114
+ # Copyright (C) 2012,2016 Andrew Mathas <andrew dot mathas at sydney dot edu dot au>
115
+ #
116
+ # This program is free software: you can redistribute it and/or modify
117
+ # it under the terms of the GNU General Public License as published by
118
+ # the Free Software Foundation, either version 2 of the License, or
119
+ # (at your option) any later version.
120
+ # https://www.gnu.org/licenses/
121
+ # ****************************************************************************
122
+
123
+ from sage.categories.sets_cat import Sets
124
+ from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass
125
+ from sage.misc.lazy_attribute import lazy_attribute
126
+ from sage.rings.finite_rings.integer_mod_ring import IntegerModRing
127
+ from sage.structure.list_clone import ClonableArray
128
+ from sage.structure.parent import Parent
129
+ from sage.structure.unique_representation import UniqueRepresentation
130
+
131
+ from .partition_tuple import PartitionTuple
132
+ from .tableau_tuple import (StandardTableaux_residue,
133
+ StandardTableaux_residue_shape,
134
+ RowStandardTableauTuples_residue,
135
+ RowStandardTableauTuples_residue_shape)
136
+
137
+ # -------------------------------------------------
138
+ # Residue sequences
139
+ # -------------------------------------------------
140
+
141
+
142
+ # needed for __classcall_private__
143
+ class ResidueSequence(ClonableArray,
144
+ metaclass=InheritComparisonClasscallMetaclass):
145
+ r"""
146
+ A residue sequence.
147
+
148
+ The *residue sequence* of a tableau `t` (of partition or partition tuple
149
+ shape) is the sequence `(i_1, i_2, \ldots, i_n)` where `i_k` is the
150
+ residue of `l` in `t`, for `k = 1, 2, \ldots, n`, where `n` is the
151
+ size of `t`. Residue sequences are important in the representation
152
+ theory of the cyclotomic Hecke algebras of type `G(r, 1, n)`, and
153
+ of the cyclotomic quiver Hecke algebras, because they determine the
154
+ eigenvalues of the Jucys-Murphy elements upon all modules. More precisely,
155
+ they index and completely determine the irreducible representations
156
+ of the (cyclotomic) Gelfand-Tsetlin algebras.
157
+
158
+ Rather than being called directly, residue sequences are best accessed
159
+ via the standard tableaux classes :class:`StandardTableau` and
160
+ :class:`StandardTableauTuple`.
161
+
162
+ INPUT:
163
+
164
+ Can be of the form:
165
+
166
+ - ``ResidueSequence(e, res)``,
167
+ - ``ResidueSequence(e, multicharge, res)``,
168
+
169
+ where ``e`` is a positive integer not equal to 1 and ``res`` is a
170
+ sequence of integers (the residues).
171
+
172
+ EXAMPLES::
173
+
174
+ sage: res = StandardTableauTuple([[[1,3],[6]],[[2,7],[4],[5]]]).residue_sequence(3,(0,5))
175
+ sage: res
176
+ 3-residue sequence (0,2,1,1,0,2,0) with multicharge (0,2)
177
+ sage: res.quantum_characteristic()
178
+ 3
179
+ sage: res.level()
180
+ 2
181
+ sage: res.size()
182
+ 7
183
+ sage: res.residues()
184
+ [0, 2, 1, 1, 0, 2, 0]
185
+ sage: res.restrict(2)
186
+ 3-residue sequence (0,2) with multicharge (0,2)
187
+ sage: res.standard_tableaux([[2,1],[1],[2,1]])
188
+ Standard (2,1|1|2,1)-tableaux with 3-residue sequence (0,2,1,1,0,2,0) and multicharge (0,2)
189
+ sage: res.standard_tableaux([[2,2],[3]]).list()
190
+ []
191
+ sage: res.standard_tableaux([[2,2],[3]])[:]
192
+ []
193
+ sage: res.standard_tableaux()
194
+ Standard tableaux with 3-residue sequence (0,2,1,1,0,2,0) and multicharge (0,2)
195
+ sage: res.standard_tableaux()[:10]
196
+ [([[1, 3, 6, 7], [2, 5], [4]], []),
197
+ ([[1, 3, 6], [2, 5], [4], [7]], []),
198
+ ([[1, 3], [2, 5], [4, 6], [7]], []),
199
+ ([[1, 3], [2, 5], [4], [7]], [[6]]),
200
+ ([[1, 3], [2, 5], [4]], [[6, 7]]),
201
+ ([[1, 3, 6, 7], [2], [4], [5]], []),
202
+ ([[1, 3, 6], [2, 7], [4], [5]], []),
203
+ ([[1, 3], [2, 7], [4], [5], [6]], []),
204
+ ([[1, 3], [2, 7], [4], [5]], [[6]]),
205
+ ([[1, 3], [2], [4], [5]], [[6, 7]])]
206
+
207
+ The TestSuite fails ``_test_pickling`` because ``__getitem__`` does
208
+ not support slices, so we skip this.
209
+
210
+ TESTS::
211
+
212
+ sage: from sage.combinat.tableau_residues import ResidueSequence
213
+ sage: TestSuite( ResidueSequence(3,(0,0,1), [0,1,2])).run(skip='_test_pickling')
214
+ """
215
+ @staticmethod
216
+ def __classcall_private__(cls, e, multicharge, residues=None, check=True):
217
+ r"""
218
+ Magic to allow class to accept a list (which is not hashable) instead
219
+ of a partition (which is). At the same time we ensure that every
220
+ residue sequence is constructed as an ``element_class`` call of
221
+ an appropriate parent.
222
+
223
+ The ``residues`` must always be specified and, instead, it is the
224
+ ``multicharge`` which is the optional argument with default ``[0]``.
225
+ This means that we have to perform some tricks when ``residues``
226
+ is ``None``.
227
+
228
+ EXAMPLES::
229
+
230
+ sage: from sage.combinat.tableau_residues import ResidueSequence
231
+ sage: ResidueSequence(3, [0,0,1], [0,0,1,1,2,2,3,3]) # indirect doctest
232
+ 3-residue sequence (0,0,1,1,2,2,0,0) with multicharge (0,0,1)
233
+ """
234
+ # if the multicharge is omitted it defaults to (0,) in level 1
235
+ if residues is None:
236
+ residues = multicharge
237
+ multicharge = (0,)
238
+ multicharge = tuple(multicharge)
239
+ return ResidueSequences(e, multicharge).element_class(ResidueSequences(e, multicharge), tuple(residues), check)
240
+
241
+ def __init__(self, parent, residues, check):
242
+ r"""
243
+ Initialize ``self``.
244
+
245
+ The ``multicharge`` is the optional argument which, if omitted,
246
+ defaults to ``(0,)``. On the other hand, the ``residue`` must
247
+ always be specified so, below, we check to see whether or note
248
+ ``residues`` is ``None`` and adjust accordingly in this case.
249
+
250
+ EXAMPLES::
251
+
252
+ sage: from sage.combinat.tableau_residues import ResidueSequence
253
+ sage: ResidueSequence(3, (0,0,1), [0,0,1,1,2,2,3,3])
254
+ 3-residue sequence (0,0,1,1,2,2,0,0) with multicharge (0,0,1)
255
+
256
+ The TestSuite fails ``_test_pickling`` because ``__getitem__`` does
257
+ not support slices, so we skip this.
258
+
259
+ TESTS::
260
+
261
+ sage: from sage.combinat.tableau_residues import ResidueSequence
262
+ sage: TestSuite(ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3])).run(skip='_test_pickling')
263
+ sage: TestSuite( ResidueSequence(3, [0,1,2])).run(skip='_test_pickling')
264
+ sage: TestSuite( ResidueSequence(3, [0], [0,1,2])).run(skip='_test_pickling')
265
+ sage: TestSuite( ResidueSequence(3, [0,0], [0,0,1,2])).run(skip='_test_pickling')
266
+ sage: TestSuite( ResidueSequence(3, [0,0,1,2])).run(skip='_test_pickling')
267
+ """
268
+ residues = tuple(parent._base_ring(i) for i in residues)
269
+ super().__init__(parent, residues, check)
270
+
271
+ def check(self):
272
+ r"""
273
+ Raise a :exc:`ValueError` if ``self`` is not a residue sequence.
274
+
275
+ EXAMPLES::
276
+
277
+ sage: from sage.combinat.tableau_residues import ResidueSequence
278
+ sage: ResidueSequence(3, [0,0,1], [0,0,1,1,2,2,3,3]).check()
279
+ sage: ResidueSequence(3, [0,0,1], [2,0,1,1,2,2,3,3]).check()
280
+ """
281
+ self.parent().check_element(self)
282
+
283
+ def _repr_(self):
284
+ r"""
285
+ EXAMPLES::
286
+
287
+ sage: from sage.combinat.tableau_residues import ResidueSequence
288
+ sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3])
289
+ 3-residue sequence (0,0,1,1,2,2,0,0) with multicharge (0,0,1)
290
+ """
291
+ return self.__str__()
292
+
293
+ def __str__(self, join='with'):
294
+ r"""
295
+ The string representation of a residue sequence is a comma separated
296
+ tuple with no spaces.
297
+
298
+ EXAMPLES::
299
+
300
+ sage: from sage.combinat.tableau_residues import ResidueSequence
301
+ sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]).__str__()
302
+ '3-residue sequence (0,0,1,1,2,2,0,0) with multicharge (0,0,1)'
303
+ sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]).__str__('and')
304
+ '3-residue sequence (0,0,1,1,2,2,0,0) and multicharge (0,0,1)'
305
+ """
306
+ string = '{e}-residue sequence ({res}) {join} multicharge ({charge})'
307
+ return string.format(e=self.quantum_characteristic(),
308
+ res=','.join('%s' % r for r in self), join=join,
309
+ charge=','.join('%s' % r for r in self.multicharge()))
310
+
311
+ def __getitem__(self, k):
312
+ r"""
313
+ Return the ``k``-th residue.
314
+
315
+ INPUT:
316
+
317
+ - ``k`` --- an integer between 1 and the length of the residue
318
+ sequence ``self``
319
+
320
+ The ``k``-th residue is the ``e``-residue (see
321
+ :meth:`sage.combinat.tableau.StandardTable.residue`) of the
322
+ integer ``k`` in some standard tableaux. As the entries of standard
323
+ tableaux are always between `1` and `n`, the size of the tableau,
324
+ the integer ``k`` must also be in this range (that is, this
325
+ is **not** 0-based!).
326
+
327
+ EXAMPLES::
328
+
329
+ sage: from sage.combinat.tableau_residues import ResidueSequence
330
+ sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3])[4]
331
+ 1
332
+ sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3])[7]
333
+ 0
334
+ sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3])[9]
335
+ Traceback (most recent call last):
336
+ ...
337
+ IndexError: k must be in the range 1, 2, ..., 8
338
+ """
339
+ try:
340
+ return ClonableArray.__getitem__(self, k - 1)
341
+ except (IndexError, KeyError):
342
+ raise IndexError('k must be in the range 1, 2, ..., {}'.format(len(self)))
343
+
344
+ def residues(self) -> list:
345
+ r"""
346
+ Return a list of the residue sequence.
347
+
348
+ EXAMPLES::
349
+
350
+ sage: from sage.combinat.tableau_residues import ResidueSequence
351
+ sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]).residues()
352
+ [0, 0, 1, 1, 2, 2, 0, 0]
353
+ """
354
+ return list(self)
355
+
356
+ def restrict(self, m):
357
+ r"""
358
+ Return the subsequence of this sequence of length `m`.
359
+
360
+ The residue sequence ``self`` is of the form `(r_1, \ldots, r_n)`.
361
+ The function returns the residue sequence `(r_1, \ldots, r_m)`, with
362
+ the same :meth:`quantum_characteristic` and :meth:`multicharge`.
363
+
364
+ EXAMPLES::
365
+
366
+ sage: from sage.combinat.tableau_residues import ResidueSequence
367
+ sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]).restrict(7)
368
+ 3-residue sequence (0,0,1,1,2,2,0) with multicharge (0,0,1)
369
+ sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]).restrict(6)
370
+ 3-residue sequence (0,0,1,1,2,2) with multicharge (0,0,1)
371
+ sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]).restrict(4)
372
+ 3-residue sequence (0,0,1,1) with multicharge (0,0,1)
373
+ """
374
+ return ResidueSequence(self.quantum_characteristic(),
375
+ self.multicharge(), self.residues()[:m])
376
+
377
+ def restrict_row(self, cell, row):
378
+ r"""
379
+ Return a residue sequence for the tableau obtained by swapping the row
380
+ in ending in `cell` with the row that is `row` rows above it and which
381
+ has the same length.
382
+
383
+ The residue sequence ``self`` is of the form `(r_1, \ldots, r_n)`.
384
+ The function returns the residue sequence `(r_1, \ldots, r_m)`, with
385
+ the same :meth:`quantum_characteristic` and :meth:`multicharge`.
386
+
387
+ EXAMPLES::
388
+
389
+ sage: from sage.combinat.tableau_residues import ResidueSequence
390
+ sage: ResidueSequence(3, [0,1,2,2,0,1]).restrict_row((1,2),1)
391
+ 3-residue sequence (2,0,1,0,1) with multicharge (0)
392
+ sage: ResidueSequence(3, [1,0], [0,1,2,2,0,1]).restrict_row((1,1,2),1)
393
+ 3-residue sequence (2,0,1,0,1) with multicharge (1,0)
394
+ """
395
+ residues = self.residues() # residue sequence
396
+ residues.reverse() # reversed residue sequence
397
+
398
+ if residues[0] + row == residues[0]:
399
+ # if the residues in the two rows are the same we do not
400
+ # need to do anything special
401
+ return self.restrict(len(residues) - 1)
402
+
403
+ # determine the sets of residues, one_res and two_res, that need to be
404
+ # interchanged in order to swap the corresponding rows
405
+ row_len = cell[-1] # length of the row being swapped
406
+ one_res = [0] # last row of tableau will move
407
+ two_res = [0] # will prune this entry later
408
+ try:
409
+ for c in range(1, row_len + 1):
410
+ # residues decrease by 1 from right to left in each row
411
+ one_res.append(residues.index(residues[0] - c,
412
+ one_res[c - 1] + 1))
413
+ for c in range(row_len + 1):
414
+ two_res.append(residues.index(residues[0] - c + row,
415
+ two_res[c] + 1))
416
+ while two_res[-1] in one_res:
417
+ # entries in one_res and two_res must be disjoint
418
+ two_res[-1] = residues.index(residues[0] - c + row,
419
+ two_res[-1] + 1)
420
+ except ValueError:
421
+ return None
422
+
423
+ # now add row to the residues in two_res and subtract row from those in
424
+ # one_res
425
+ for c in range(row_len + 1):
426
+ residues[one_res[c]] += row
427
+ residues[two_res[c + 1]] -= row # jump over two_res[0]
428
+
429
+ # remove the first residue, reverse the order and return
430
+ return ResidueSequence(self.quantum_characteristic(),
431
+ self.multicharge(),
432
+ residues[1:][::-1])
433
+
434
+ def swap_residues(self, i, j):
435
+ r"""
436
+ Return the *new* residue sequence obtained by swapping the residues
437
+ for ``i`` and ``j``.
438
+
439
+ INPUT:
440
+
441
+ - ``i``, ``j`` -- two integers between `1` and the length of
442
+ the residue sequence
443
+
444
+ If residue sequence ``self`` is of the form `(r_1, \ldots, r_n)`, and
445
+ `i < j`, then the residue sequence
446
+ `(r_1, \ldots, r_j, \ldots, r_i, \ldots, r_m)`, with the same
447
+ :meth:`quantum_characteristic` and :meth:`multicharge`, is returned.
448
+
449
+ EXAMPLES::
450
+
451
+ sage: from sage.combinat.tableau_residues import ResidueSequence
452
+ sage: res = ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]); res
453
+ 3-residue sequence (0,0,1,1,2,2,0,0) with multicharge (0,0,1)
454
+ sage: ser = res.swap_residues(2,6); ser
455
+ 3-residue sequence (0,2,1,1,2,0,0,0) with multicharge (0,0,1)
456
+ sage: res == ser
457
+ False
458
+
459
+ TESTS::
460
+
461
+ sage: res.swap_residues(22,26)
462
+ Traceback (most recent call last):
463
+ ...
464
+ IndexError: 22 and 26 must be between 1 and 8
465
+ """
466
+ with self.clone() as swap:
467
+ try:
468
+ # we have overridden __getitem__ so that indices are 1-based but
469
+ # __setitem__ is still 0-based so we need to renormalise the LHS
470
+ swap[i - 1], swap[j - 1] = self[j], self[i]
471
+ except IndexError:
472
+ raise IndexError('%s and %s must be between 1 and %s' % (i, j, self.size()))
473
+ return swap
474
+
475
+ def standard_tableaux(self, shape=None):
476
+ r"""
477
+ Return the residue-class of standard tableaux that have residue
478
+ sequence ``self``.
479
+
480
+ INPUT:
481
+
482
+ - ``shape`` -- (optional) a partition or partition tuple of
483
+ the correct level
484
+
485
+ OUTPUT:
486
+
487
+ An iterator for the standard tableaux with this residue sequence. If
488
+ the ``shape`` is given then only tableaux of this shape are returned,
489
+ otherwise all of the full residue-class of standard tableaux, or
490
+ standard tableaux tuples, is returned. The residue sequence ``self``
491
+ specifies the :meth:`multicharge` of the tableaux which, in turn,
492
+ determines the :meth:`level` of the tableaux in the residue class.
493
+
494
+ EXAMPLES::
495
+
496
+ sage: from sage.combinat.tableau_residues import ResidueSequence
497
+ sage: ResidueSequence(3,(0,0,0),[0,1,2,0,1,2,0,1,2]).standard_tableaux()
498
+ Standard tableaux with 3-residue sequence (0,1,2,0,1,2,0,1,2) and multicharge (0,0,0)
499
+ sage: ResidueSequence(3,(0,0,0),[0,1,2,0,1,2,0,1,2]).standard_tableaux([[3],[3],[3]])
500
+ Standard (3|3|3)-tableaux with 3-residue sequence (0,1,2,0,1,2,0,1,2) and multicharge (0,0,0)
501
+ """
502
+ if shape is None:
503
+ return StandardTableaux_residue(residue=self)
504
+ else:
505
+ return StandardTableaux_residue_shape(residue=self,
506
+ shape=PartitionTuple(shape))
507
+
508
+ def row_standard_tableaux(self, shape=None):
509
+ r"""
510
+ Return the residue-class of row standard tableaux that have residue
511
+ sequence ``self``.
512
+
513
+ INPUT:
514
+
515
+ - ``shape`` -- (optional) a partition or partition tuple of
516
+ the correct level
517
+
518
+ OUTPUT:
519
+
520
+ An iterator for the row standard tableaux with this residue sequence. If
521
+ the ``shape`` is given then only tableaux of this shape are returned,
522
+ otherwise all of the full residue-class of row standard tableaux, or row
523
+ standard tableaux tuples, is returned. The residue sequence ``self``
524
+ specifies the :meth:`multicharge` of the tableaux which, in turn,
525
+ determines the :meth:`level` of the tableaux in the residue class.
526
+
527
+ EXAMPLES::
528
+
529
+ sage: from sage.combinat.tableau_residues import ResidueSequence
530
+ sage: ResidueSequence(3,(0,0,0),[0,1,2,0,1,2,0,1,2]).row_standard_tableaux()
531
+ Row standard tableaux with 3-residue sequence (0,1,2,0,1,2,0,1,2) and multicharge (0,0,0)
532
+ sage: ResidueSequence(3,(0,0,0),[0,1,2,0,1,2,0,1,2]).row_standard_tableaux([[3],[3],[3]])
533
+ Row standard (3|3|3)-tableaux with 3-residue sequence (0,1,2,0,1,2,0,1,2) and multicharge (0,0,0)
534
+ """
535
+ if shape is None:
536
+ return RowStandardTableauTuples_residue(residue=self)
537
+ else:
538
+ return RowStandardTableauTuples_residue_shape(residue=self, shape=PartitionTuple(shape))
539
+
540
+ def negative(self):
541
+ r"""
542
+ Return the negative of the residue sequence ``self``.
543
+
544
+ That is, if ``self`` is the residue sequence `(i_1, \ldots, i_n)`
545
+ then return `(-i_1, \ldots, -i_n)`. Taking the negative residue
546
+ sequences is a shadow of tensoring with the sign representation
547
+ from the cyclotomic Hecke algebras of type `A`.
548
+
549
+ EXAMPLES::
550
+
551
+ sage: from sage.combinat.tableau_residues import ResidueSequence
552
+ sage: ResidueSequence(3,[0,0,1],[0,0,1,1,2,2,3,3]).negative()
553
+ 3-residue sequence (0,0,2,2,1,1,0,0) with multicharge (0,0,1)
554
+ """
555
+ return ResidueSequence(self.quantum_characteristic(), self.multicharge(),
556
+ (self.base_ring()(-i) for i in self))
557
+
558
+ def block(self):
559
+ r"""
560
+ Return a dictionary `\beta` that determines the block associated to
561
+ the residue sequence ``self``.
562
+
563
+ Two Specht modules for a cyclotomic Hecke algebra of type `A` belong to
564
+ the same block, in this sense, if and only if the residue sequences of
565
+ their standard tableaux have the same block in this sense. The blocks
566
+ of these algebras are actually indexed by positive roots in the root
567
+ lattice of an affine special linear group. Instead of than constructing
568
+ the root lattice, this method simply returns a dictionary `\beta` where
569
+ the keys are residues `i` and where the value of the key `i` is equal
570
+ to the numbers of nodes in the residue sequence ``self`` that are equal
571
+ to `i`. The dictionary `\beta` corresponds to the positive root:
572
+
573
+ .. MATH::
574
+
575
+ \sum_{i\in I} \beta_i \alpha_i \in Q^+,
576
+
577
+ These positive roots also index the blocks of the cyclotomic KLR
578
+ algebras of type `A`.
579
+
580
+ We return a dictionary because when the :meth:`quantum_characteristic` is `0`,
581
+ the Cartan type is `A_{\infty}`, in which case the simple roots are
582
+ indexed by the integers, which is infinite.
583
+
584
+ EXAMPLES::
585
+
586
+ sage: from sage.combinat.tableau_residues import ResidueSequence
587
+ sage: ResidueSequence(3, [0,0,0], [0,1,2,0,1,2,0,1,2]).block()
588
+ {0: 3, 1: 3, 2: 3}
589
+ """
590
+ return {i: self.residues().count(i) for i in set(self.residues())}
591
+
592
+ def base_ring(self):
593
+ r"""
594
+ Return the base ring for the residue sequence.
595
+
596
+ If the :meth:`quantum_characteristic` of the residue sequence ``self``
597
+ is `e` then the base ring for the sequence is `\ZZ / e\ZZ`,
598
+ or `\ZZ` if `e=0`.
599
+
600
+ EXAMPLES::
601
+
602
+ sage: from sage.combinat.tableau_residues import ResidueSequence
603
+ sage: ResidueSequence(3, (0,0,1), [0,0,1,1,2,2,3,3]).base_ring()
604
+ Ring of integers modulo 3
605
+ """
606
+ return self.parent()._base_ring
607
+
608
+ def quantum_characteristic(self):
609
+ r"""
610
+ Return the quantum characteristic of the residue sequence ``self``.
611
+
612
+ The `e`-residue sequences are associated with a cyclotomic Hecke
613
+ algebra that has a parameter `q` of *quantum characteristic* `e`.
614
+ This is the smallest positive integer such that
615
+ `1 + q + \cdots + q^{e-1} = 0`, or `e=0` if no such integer exists.
616
+
617
+ EXAMPLES::
618
+
619
+ sage: from sage.combinat.tableau_residues import ResidueSequence
620
+ sage: ResidueSequence(3, (0,0,1), [0,0,1,1,2,2,3,3]).quantum_characteristic()
621
+ 3
622
+ """
623
+ return self.parent()._quantum_characteristic
624
+
625
+ def multicharge(self):
626
+ r"""
627
+ Return the multicharge for the residue sequence ``self``.
628
+
629
+ The `e`-residue sequences are associated with a cyclotomic Hecke
630
+ algebra with Hecke parameter `q` of :meth:`quantum_characteristic` `e`
631
+ and multicharge `(\kappa_1, \ldots, \kappa_l)`. This means that
632
+ the cyclotomic parameters of the Hecke algebra are
633
+ `q^{\kappa_1}, \ldots, q^{\kappa_l}`. Equivalently, the Hecke
634
+ algebra is determined by the dominant weight
635
+
636
+ .. MATH::
637
+
638
+ \sum_{r \in \ZZ / e\ZZ} \kappa_r \Lambda_r \in P^+.
639
+
640
+ EXAMPLES::
641
+
642
+ sage: from sage.combinat.tableau_residues import ResidueSequence
643
+ sage: ResidueSequence(3, (0,0,1), [0,0,1,1,2,2,3,3]).multicharge()
644
+ (0, 0, 1)
645
+ """
646
+ return self.parent()._multicharge
647
+
648
+ def level(self):
649
+ r"""
650
+ Return the level of the residue sequence. That is, the level of the
651
+ corresponding (tuples of) standard tableaux.
652
+
653
+ The *level* of a residue sequence is the length of its
654
+ :meth:`multicharge`. This is the same as the level of the
655
+ :meth:`standard_tableaux` that belong to the residue class of tableaux
656
+ determined by ``self``.
657
+
658
+ EXAMPLES::
659
+
660
+ sage: from sage.combinat.tableau_residues import ResidueSequence
661
+ sage: ResidueSequence(3, (0,0,1), [0,0,1,1,2,2,3,3]).level()
662
+ 3
663
+ """
664
+ return len(self.multicharge())
665
+
666
+ def size(self):
667
+ r"""
668
+ Return the size of the residue sequence.
669
+
670
+ This is the size, or length, of the residue sequence, which is the
671
+ same as the size of the :meth:`standard_tableaux` that belong to
672
+ the residue class of tableaux determined by ``self``.
673
+
674
+ EXAMPLES::
675
+
676
+ sage: from sage.combinat.tableau_residues import ResidueSequence
677
+ sage: ResidueSequence(3, (0,0,1), [0,0,1,1,2,2,3,3]).size()
678
+ 8
679
+ """
680
+ return len(self)
681
+
682
+
683
+ class ResidueSequences(UniqueRepresentation, Parent):
684
+ r"""
685
+ A parent class for :class:`ResidueSequence`.
686
+
687
+ This class exists because :class:`ResidueSequence` needs to have a parent.
688
+ Apart form being a parent the only useful method that it provides is
689
+ :meth:`cell_residue`, which is a short-hand for computing the residue
690
+ of a cell using the :meth:`ResidueSequence.quantum_characteristic`
691
+ and :meth:`ResidueSequence.multicharge` for the residue class.
692
+
693
+ EXAMPLES::
694
+
695
+ sage: from sage.combinat.tableau_residues import ResidueSequences
696
+ sage: ResidueSequences(e=0, multicharge=(0,1,2))
697
+ 0-residue sequences with multicharge (0, 1, 2)
698
+ sage: ResidueSequences(e=0, multicharge=(0,1,2)) == ResidueSequences(e=0, multicharge=(0,1,2))
699
+ True
700
+ sage: ResidueSequences(e=0, multicharge=(0,1,2)) == ResidueSequences(e=3, multicharge=(0,1,2))
701
+ False
702
+ sage: ResidueSequences(e=0, multicharge=(0,1,2)).element_class
703
+ <class 'sage.combinat.tableau_residues.ResidueSequences_with_category.element_class'>
704
+ """
705
+
706
+ Element = ResidueSequence
707
+
708
+ def __init__(self, e, multicharge=(0,)):
709
+ r"""
710
+ Initialise the parent class for residue sequences.
711
+
712
+ EXAMPLES::
713
+
714
+ sage: from sage.combinat.tableau_residues import ResidueSequences
715
+ sage: ResidueSequences(e=0, multicharge=(0,1,2))
716
+ 0-residue sequences with multicharge (0, 1, 2)
717
+ sage: ResidueSequences(e=0, multicharge=(0,1,2)) == ResidueSequences(e=0, multicharge=(0,1,2))
718
+ True
719
+ sage: ResidueSequences(e=0, multicharge=(0,1,2)) == ResidueSequences(e=3, multicharge=(0,1,2))
720
+ False
721
+
722
+ The TestSuite fails ``_test_pickling`` because ``__getitem__`` does
723
+ not support slices, so we skip this::
724
+
725
+ sage: R = ResidueSequences(e=0, multicharge=(0,1,2))
726
+ sage: TestSuite(R).run(skip='_test_elements')
727
+ """
728
+ self._quantum_characteristic = e
729
+ self._base_ring = IntegerModRing(self._quantum_characteristic)
730
+ self._multicharge = tuple(self._base_ring(i) for i in multicharge)
731
+ super().__init__(category=Sets())
732
+
733
+ def _repr_(self):
734
+ r"""
735
+ The string representation of ``self``.
736
+
737
+ EXAMPLES::
738
+
739
+ sage: from sage.combinat.tableau_residues import ResidueSequences
740
+ sage: ResidueSequences(e=0, multicharge=(0,1,2))
741
+ 0-residue sequences with multicharge (0, 1, 2)
742
+ sage: ResidueSequences(e=3)
743
+ 3-residue sequences with multicharge (0,)
744
+ sage: ResidueSequences(2, (0,1,2,3))
745
+ 2-residue sequences with multicharge (0, 1, 0, 1)
746
+ """
747
+ return '{}-residue sequences with multicharge {}'.format(self._quantum_characteristic,
748
+ self._multicharge)
749
+
750
+ def _an_element_(self):
751
+ r"""
752
+ Return a particular element of ``self``.
753
+
754
+ EXAMPLES::
755
+
756
+ sage: TableauTuples().an_element()
757
+ ([[1]], [[2]], [[3]], [[4]], [[5]], [[6]], [[7]])
758
+ """
759
+ return self.element_class(self, self._multicharge, check=True)
760
+
761
+ def _cell_residue_level_one(self, r, c):
762
+ r"""
763
+ Return the residue a cell of level 1. It is called indirectly via
764
+ :meth:`cell_residue`.
765
+
766
+ EXAMPLES::
767
+
768
+ sage: from sage.combinat.tableau_residues import ResidueSequences
769
+ sage: ResidueSequences(3).cell_residue(1,0) # indirect doctest
770
+ 2
771
+ """
772
+ return self._base_ring(c - r)
773
+
774
+ def _cell_residue_higher_levels(self, k, r, c):
775
+ r"""
776
+ Return the residue a cell of level greater than 1.
777
+
778
+ It is called indirectly via :meth:`cell_residue`.
779
+
780
+ EXAMPLES::
781
+
782
+ sage: from sage.combinat.tableau_residues import ResidueSequences
783
+ sage: ResidueSequences(3,(0,0,1)).cell_residue(2,0,0) # indirect doctest
784
+ 1
785
+ """
786
+ return self._base_ring(self._multicharge[k] + c - r)
787
+
788
+ @lazy_attribute
789
+ def cell_residue(self, *args):
790
+ r"""
791
+ Return the residue a cell with respect to the quantum characteristic
792
+ and the multicharge of the residue sequence.
793
+
794
+ INPUT:
795
+
796
+ - ``r``, ``c`` -- the row and column indices in level one
797
+ - ``k``, ``r``, ``c`` -- the component, row and column indices
798
+ in higher levels
799
+
800
+ EXAMPLES::
801
+
802
+ sage: from sage.combinat.tableau_residues import ResidueSequences
803
+ sage: ResidueSequences(3).cell_residue(1,1)
804
+ 0
805
+ sage: ResidueSequences(3).cell_residue(2,1)
806
+ 2
807
+ sage: ResidueSequences(3).cell_residue(3,1)
808
+ 1
809
+ sage: ResidueSequences(3).cell_residue(3,2)
810
+ 2
811
+ sage: ResidueSequences(3,(0,1,2)).cell_residue(0,0,0)
812
+ 0
813
+ sage: ResidueSequences(3,(0,1,2)).cell_residue(0,1,0)
814
+ 2
815
+ sage: ResidueSequences(3,(0,1,2)).cell_residue(0,1,2)
816
+ 1
817
+ sage: ResidueSequences(3,(0,1,2)).cell_residue(1,0,0)
818
+ 1
819
+ sage: ResidueSequences(3,(0,1,2)).cell_residue(1,1,0)
820
+ 0
821
+ sage: ResidueSequences(3,(0,1,2)).cell_residue(1,0,1)
822
+ 2
823
+ sage: ResidueSequences(3,(0,1,2)).cell_residue(2,0,0)
824
+ 2
825
+ sage: ResidueSequences(3,(0,1,2)).cell_residue(2,1,0)
826
+ 1
827
+ sage: ResidueSequences(3,(0,1,2)).cell_residue(2,0,1)
828
+ 0
829
+ """
830
+ # A shortcut for determining the residue of a cell, which depends on e
831
+ # and the multicharge. The main advantage of this function is that it
832
+ # automatically incorporates the level of this residue class. This is
833
+ # used by the iterators for the corresponding standard tableaux classes.
834
+ if len(self._multicharge) == 1:
835
+ return self._cell_residue_level_one
836
+ else:
837
+ return self._cell_residue_higher_levels
838
+
839
+ def check_element(self, element):
840
+ r"""
841
+ Check that ``element`` is a residue sequence with
842
+ multicharge ``self.multicharge()``.
843
+
844
+ This is weak criteria in that we only require that ``element`` is
845
+ a tuple of elements in the underlying base ring of ``self``. Such
846
+ a sequence is always a valid residue sequence, although there may
847
+ be no tableaux with this residue sequence.
848
+
849
+ EXAMPLES::
850
+
851
+ sage: from sage.combinat.tableau_residues import ResidueSequence
852
+ sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]) # indirect doctest
853
+ 3-residue sequence (0,0,1,1,2,2,0,0) with multicharge (0,0,1)
854
+ sage: ResidueSequence(3,(0,0,1),[2,0,1,4,2,2,5,3]) # indirect doctest
855
+ 3-residue sequence (2,0,1,1,2,2,2,0) with multicharge (0,0,1)
856
+ sage: ResidueSequence(3,(0,0,1),[2,0,1,1,2,2,3,3]) # indirect doctest
857
+ 3-residue sequence (2,0,1,1,2,2,0,0) with multicharge (0,0,1)
858
+ """
859
+ if any(r not in self._base_ring for r in element):
860
+ raise ValueError('not a {}-residue sequence'.format(self._quantum_characteristic))