passagemath-combinat 10.6.42__cp314-cp314t-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/DELVEWHEEL +2 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +401 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-10-3a5f019e2510aeaad918cab2b57a689d.dll +0 -0
- passagemath_combinat.libs/libsymmetrica-3-7dcf900932804d0df5fd0919b4668720.dll +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +44 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cp314t-win_amd64.pyd +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cp314t-win_amd64.pyd +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cp314t-win_amd64.pyd +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cp314t-win_amd64.pyd +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cp314t-win_amd64.pyd +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cp314t-win_amd64.pyd +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cp314t-win_amd64.pyd +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cp314t-win_amd64.pyd +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cp314t-win_amd64.pyd +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cp314t-win_amd64.pyd +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cp314t-win_amd64.pyd +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cp314t-win_amd64.pyd +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cp314t-win_amd64.pyd +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cp314t-win_amd64.pyd +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,591 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.graphs sage.modules
|
|
3
|
+
r"""
|
|
4
|
+
Quantum Group Representations
|
|
5
|
+
|
|
6
|
+
AUTHORS:
|
|
7
|
+
|
|
8
|
+
- Travis Scrimshaw (2018): initial version
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
#*****************************************************************************
|
|
12
|
+
# Copyright (C) 2018 Travis Scrimshaw <tcscrims at gmail.com>
|
|
13
|
+
#
|
|
14
|
+
# This program is free software: you can redistribute it and/or modify
|
|
15
|
+
# it under the terms of the GNU General Public License as published by
|
|
16
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
17
|
+
# (at your option) any later version.
|
|
18
|
+
# http://www.gnu.org/licenses/
|
|
19
|
+
#*****************************************************************************
|
|
20
|
+
|
|
21
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
22
|
+
from sage.misc.lazy_attribute import lazy_attribute
|
|
23
|
+
from sage.misc.cachefunc import cached_method
|
|
24
|
+
from sage.algebras.quantum_groups.q_numbers import q_int
|
|
25
|
+
from sage.categories.crystals import Crystals
|
|
26
|
+
from sage.categories.quantum_group_representations import QuantumGroupRepresentations
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class QuantumGroupRepresentation(CombinatorialFreeModule):
|
|
30
|
+
"""
|
|
31
|
+
A representation of a quantum group whose basis is indexed
|
|
32
|
+
by the corresponding (combinatorial) crystal.
|
|
33
|
+
|
|
34
|
+
INPUT:
|
|
35
|
+
|
|
36
|
+
- ``C`` -- the crystal corresponding to the representation
|
|
37
|
+
- ``R`` -- the base ring
|
|
38
|
+
- ``q`` -- (default: the generator of ``R``) the parameter `q`
|
|
39
|
+
of the quantum group
|
|
40
|
+
"""
|
|
41
|
+
@staticmethod
|
|
42
|
+
def __classcall__(cls, R, C, q=None):
|
|
43
|
+
"""
|
|
44
|
+
Normalize input to ensure a unique representation.
|
|
45
|
+
|
|
46
|
+
EXAMPLES::
|
|
47
|
+
|
|
48
|
+
sage: from sage.algebras.quantum_groups.representations import MinusculeRepresentation
|
|
49
|
+
sage: C = crystals.Tableaux(['A',3], shape=[1,1])
|
|
50
|
+
sage: R = ZZ['q'].fraction_field()
|
|
51
|
+
sage: V1 = MinusculeRepresentation(R, C)
|
|
52
|
+
sage: V2 = MinusculeRepresentation(R, C, R.gen())
|
|
53
|
+
sage: V1 is V2
|
|
54
|
+
True
|
|
55
|
+
"""
|
|
56
|
+
if q is None:
|
|
57
|
+
q = R.gen()
|
|
58
|
+
return super().__classcall__(cls, R, C, q)
|
|
59
|
+
|
|
60
|
+
def __init__(self, R, C, q):
|
|
61
|
+
"""
|
|
62
|
+
Initialize ``self``.
|
|
63
|
+
|
|
64
|
+
EXAMPLES::
|
|
65
|
+
|
|
66
|
+
sage: from sage.algebras.quantum_groups.representations import MinusculeRepresentation
|
|
67
|
+
sage: C = crystals.Tableaux(['A',3], shape=[1,1])
|
|
68
|
+
sage: R = ZZ['q'].fraction_field()
|
|
69
|
+
sage: V = MinusculeRepresentation(R, C)
|
|
70
|
+
sage: TestSuite(V).run()
|
|
71
|
+
"""
|
|
72
|
+
self._q = q
|
|
73
|
+
self._d = C.cartan_type().symmetrizer()
|
|
74
|
+
cat = QuantumGroupRepresentations(R).WithBasis()
|
|
75
|
+
if C in Crystals().Finite():
|
|
76
|
+
cat = cat.FiniteDimensional()
|
|
77
|
+
CombinatorialFreeModule.__init__(self, R, C, category=cat)
|
|
78
|
+
|
|
79
|
+
def cartan_type(self):
|
|
80
|
+
"""
|
|
81
|
+
Return the Cartan type of ``self``.
|
|
82
|
+
|
|
83
|
+
EXAMPLES::
|
|
84
|
+
|
|
85
|
+
sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation
|
|
86
|
+
sage: C = crystals.Tableaux(['C',3], shape=[1])
|
|
87
|
+
sage: R = ZZ['q'].fraction_field()
|
|
88
|
+
sage: V = AdjointRepresentation(R, C)
|
|
89
|
+
sage: V.cartan_type()
|
|
90
|
+
['C', 3]
|
|
91
|
+
"""
|
|
92
|
+
return self.basis().keys().cartan_type()
|
|
93
|
+
|
|
94
|
+
def K_on_basis(self, i, b, power=1):
|
|
95
|
+
r"""
|
|
96
|
+
Return the action of `K_i` on the basis element indexed by ``b``
|
|
97
|
+
to the power ``power``.
|
|
98
|
+
|
|
99
|
+
INPUT:
|
|
100
|
+
|
|
101
|
+
- ``i`` -- an element of the index set
|
|
102
|
+
- ``b`` -- an element of basis keys
|
|
103
|
+
- ``power`` -- (default: 1) the power of `K_i`
|
|
104
|
+
|
|
105
|
+
EXAMPLES::
|
|
106
|
+
|
|
107
|
+
sage: from sage.algebras.quantum_groups.representations import MinusculeRepresentation
|
|
108
|
+
sage: C = crystals.Tableaux(['A',3], shape=[1,1])
|
|
109
|
+
sage: R = ZZ['q'].fraction_field()
|
|
110
|
+
sage: V = MinusculeRepresentation(R, C)
|
|
111
|
+
sage: [[V.K_on_basis(i, b) for i in V.index_set()] for b in C]
|
|
112
|
+
[[B[[[1], [2]]], q*B[[[1], [2]]], B[[[1], [2]]]],
|
|
113
|
+
[q*B[[[1], [3]]], 1/q*B[[[1], [3]]], q*B[[[1], [3]]]],
|
|
114
|
+
[1/q*B[[[2], [3]]], B[[[2], [3]]], q*B[[[2], [3]]]],
|
|
115
|
+
[q*B[[[1], [4]]], B[[[1], [4]]], 1/q*B[[[1], [4]]]],
|
|
116
|
+
[1/q*B[[[2], [4]]], q*B[[[2], [4]]], 1/q*B[[[2], [4]]]],
|
|
117
|
+
[B[[[3], [4]]], 1/q*B[[[3], [4]]], B[[[3], [4]]]]]
|
|
118
|
+
sage: [[V.K_on_basis(i, b, -1) for i in V.index_set()] for b in C]
|
|
119
|
+
[[B[[[1], [2]]], 1/q*B[[[1], [2]]], B[[[1], [2]]]],
|
|
120
|
+
[1/q*B[[[1], [3]]], q*B[[[1], [3]]], 1/q*B[[[1], [3]]]],
|
|
121
|
+
[q*B[[[2], [3]]], B[[[2], [3]]], 1/q*B[[[2], [3]]]],
|
|
122
|
+
[1/q*B[[[1], [4]]], B[[[1], [4]]], q*B[[[1], [4]]]],
|
|
123
|
+
[q*B[[[2], [4]]], 1/q*B[[[2], [4]]], q*B[[[2], [4]]]],
|
|
124
|
+
[B[[[3], [4]]], q*B[[[3], [4]]], B[[[3], [4]]]]]
|
|
125
|
+
"""
|
|
126
|
+
WLR = self.basis().keys().weight_lattice_realization()
|
|
127
|
+
alc = WLR.simple_coroots()
|
|
128
|
+
return self.term(b, self._q**(b.weight().scalar(alc[i]) * self._d[i] * power))
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
class CyclicRepresentation(QuantumGroupRepresentation):
|
|
132
|
+
"""
|
|
133
|
+
A cyclic quantum group representation that is indexed by either a
|
|
134
|
+
highest weight crystal or Kirillov-Reshetikhin crystal.
|
|
135
|
+
|
|
136
|
+
The crystal ``C`` must either allow ``C.module_generator()``,
|
|
137
|
+
otherwise it is assumed to be generated by ``C.module_generators[0]``.
|
|
138
|
+
|
|
139
|
+
This is meant as an abstract base class for
|
|
140
|
+
:class:`~sage.algebras.quantum_groups.representation.AdjointRepresentation`
|
|
141
|
+
and
|
|
142
|
+
:class:`~sage.algebras.quantum_groups.representation.MinusculeRepresentation`.
|
|
143
|
+
"""
|
|
144
|
+
def _repr_(self):
|
|
145
|
+
"""
|
|
146
|
+
Return a string representation of ``self``.
|
|
147
|
+
|
|
148
|
+
EXAMPLES::
|
|
149
|
+
|
|
150
|
+
sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation
|
|
151
|
+
sage: C = crystals.Tableaux(['C',3], shape=[1])
|
|
152
|
+
sage: R = ZZ['q'].fraction_field()
|
|
153
|
+
sage: AdjointRepresentation(R, C)
|
|
154
|
+
V((1, 0, 0))
|
|
155
|
+
"""
|
|
156
|
+
try:
|
|
157
|
+
mg = self.basis().keys().module_generator()
|
|
158
|
+
except (TypeError, AttributeError):
|
|
159
|
+
mg = self.basis().keys().module_generators[0]
|
|
160
|
+
return "V({})".format(mg.weight())
|
|
161
|
+
|
|
162
|
+
def _latex_(self):
|
|
163
|
+
r"""
|
|
164
|
+
Return a latex representation of ``self``.
|
|
165
|
+
|
|
166
|
+
EXAMPLES::
|
|
167
|
+
|
|
168
|
+
sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation
|
|
169
|
+
sage: C = crystals.Tableaux(['G',2], shape=[1])
|
|
170
|
+
sage: R = ZZ['q'].fraction_field()
|
|
171
|
+
sage: V = AdjointRepresentation(R, C)
|
|
172
|
+
sage: latex(V)
|
|
173
|
+
V\left( e_{0} - e_{2} \right)
|
|
174
|
+
|
|
175
|
+
sage: La = RootSystem(['E',7,1]).weight_space().fundamental_weights()
|
|
176
|
+
sage: K = crystals.ProjectedLevelZeroLSPaths(La[1])
|
|
177
|
+
sage: A = AdjointRepresentation(R, K)
|
|
178
|
+
sage: latex(A)
|
|
179
|
+
V\left( -2 \Lambda_{0} + \Lambda_{1} \right)
|
|
180
|
+
"""
|
|
181
|
+
try:
|
|
182
|
+
mg = self.basis().keys().module_generator()
|
|
183
|
+
except (TypeError, AttributeError):
|
|
184
|
+
mg = self.basis().keys().module_generators[0]
|
|
185
|
+
from sage.misc.latex import latex
|
|
186
|
+
return r"V\left( {} \right)".format(latex(mg.weight()))
|
|
187
|
+
|
|
188
|
+
@cached_method
|
|
189
|
+
def module_generator(self):
|
|
190
|
+
"""
|
|
191
|
+
Return the module generator of ``self``.
|
|
192
|
+
|
|
193
|
+
EXAMPLES::
|
|
194
|
+
|
|
195
|
+
sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation
|
|
196
|
+
sage: C = crystals.Tableaux(['G',2], shape=[1,1])
|
|
197
|
+
sage: R = ZZ['q'].fraction_field()
|
|
198
|
+
sage: V = AdjointRepresentation(R, C)
|
|
199
|
+
sage: V.module_generator()
|
|
200
|
+
B[[[1], [2]]]
|
|
201
|
+
|
|
202
|
+
sage: K = crystals.KirillovReshetikhin(['D',4,2], 1,1)
|
|
203
|
+
sage: A = AdjointRepresentation(R, K)
|
|
204
|
+
sage: A.module_generator()
|
|
205
|
+
B[[[1]]]
|
|
206
|
+
"""
|
|
207
|
+
try:
|
|
208
|
+
mg = self.basis().keys().module_generator()
|
|
209
|
+
except (TypeError, AttributeError):
|
|
210
|
+
mg = self.basis().keys().module_generators[0]
|
|
211
|
+
return self.monomial(mg)
|
|
212
|
+
|
|
213
|
+
|
|
214
|
+
class AdjointRepresentation(CyclicRepresentation):
|
|
215
|
+
r"""
|
|
216
|
+
An (generalized) adjoint representation of a quantum group.
|
|
217
|
+
|
|
218
|
+
We define an *(generalized) adjoint representation* `V` of a
|
|
219
|
+
quantum group `U_q` to be a cyclic `U_q`-module with a weight
|
|
220
|
+
space decomposition `V = \bigoplus_{\mu} V_{\mu}` such that
|
|
221
|
+
`\dim V_{\mu} \leq 1` unless `\mu = 0`. Moreover, we require
|
|
222
|
+
that there exists a basis `\{y_j | j \in J\}` for `V_0` such
|
|
223
|
+
that `e_i y_j = 0` for all `j \neq i \in I`.
|
|
224
|
+
|
|
225
|
+
For a base ring `R`, we construct an adjoint representation from
|
|
226
|
+
its (combinatorial) crystal `B` by `V = R \{v_b | b \in B\}` with
|
|
227
|
+
|
|
228
|
+
.. MATH::
|
|
229
|
+
|
|
230
|
+
\begin{aligned}
|
|
231
|
+
e_i v_b & = \begin{cases}
|
|
232
|
+
v_{e_i b} / [\varphi_i(e_i b)]_{q_i},
|
|
233
|
+
& \text{if } \operatorname{wt}(b) \neq 0, \\
|
|
234
|
+
v_{e_i b} + \sum_{j \neq i} [-A_{ij}]_{q_i} / [2]_{q_i} v_{y_j}
|
|
235
|
+
& \text{otherwise}
|
|
236
|
+
\end{cases} \\
|
|
237
|
+
f_i v_b & = \begin{cases}
|
|
238
|
+
v_{f_i b} / [\varepsilon_i(f_i b)]_{q_i},
|
|
239
|
+
& \text{if } \operatorname{wt}(b) \neq 0, \\
|
|
240
|
+
v_{f_i b} + \sum_{j \neq i} [-A_{ij}]_{q_i} / [2]_{q_i} v_{y_j}
|
|
241
|
+
& \text{otherwise}
|
|
242
|
+
\end{cases} \\
|
|
243
|
+
K_i v_b & = q^{\langle h_i, \operatorname{wt}(b) \rangle} v_b,
|
|
244
|
+
\end{aligned}
|
|
245
|
+
|
|
246
|
+
where `(A_{ij})_{i,j \in I}` is the Cartan matrix, and we
|
|
247
|
+
consider `v_0 := 0`.
|
|
248
|
+
|
|
249
|
+
INPUT:
|
|
250
|
+
|
|
251
|
+
- ``C`` -- the crystal corresponding to the representation
|
|
252
|
+
- ``R`` -- the base ring
|
|
253
|
+
- ``q`` -- (default: the generator of ``R``) the parameter `q`
|
|
254
|
+
of the quantum group
|
|
255
|
+
|
|
256
|
+
.. WARNING::
|
|
257
|
+
|
|
258
|
+
This assumes that `q` is generic.
|
|
259
|
+
|
|
260
|
+
EXAMPLES::
|
|
261
|
+
|
|
262
|
+
sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation
|
|
263
|
+
sage: R = ZZ['q'].fraction_field()
|
|
264
|
+
sage: C = crystals.Tableaux(['D',4], shape=[1,1])
|
|
265
|
+
sage: V = AdjointRepresentation(R, C)
|
|
266
|
+
sage: V
|
|
267
|
+
V((1, 1, 0, 0))
|
|
268
|
+
sage: v = V.an_element(); v
|
|
269
|
+
2*B[[[1], [2]]] + 2*B[[[1], [3]]] + 3*B[[[2], [3]]]
|
|
270
|
+
sage: v.e(2)
|
|
271
|
+
2*B[[[1], [2]]]
|
|
272
|
+
sage: v.f(2)
|
|
273
|
+
2*B[[[1], [3]]]
|
|
274
|
+
sage: v.f(4)
|
|
275
|
+
2*B[[[1], [-4]]] + 3*B[[[2], [-4]]]
|
|
276
|
+
sage: v.K(3)
|
|
277
|
+
2*B[[[1], [2]]] + 2*q*B[[[1], [3]]] + 3*q*B[[[2], [3]]]
|
|
278
|
+
sage: v.K(2,-2)
|
|
279
|
+
2/q^2*B[[[1], [2]]] + 2*q^2*B[[[1], [3]]] + 3*B[[[2], [3]]]
|
|
280
|
+
|
|
281
|
+
sage: La = RootSystem(['F',4,1]).weight_space().fundamental_weights()
|
|
282
|
+
sage: K = crystals.ProjectedLevelZeroLSPaths(La[4])
|
|
283
|
+
sage: A = AdjointRepresentation(R, K)
|
|
284
|
+
sage: A
|
|
285
|
+
V(-Lambda[0] + Lambda[4])
|
|
286
|
+
|
|
287
|
+
Sort the summands uniformly in Python 2 and Python 3::
|
|
288
|
+
|
|
289
|
+
sage: A.print_options(sorting_key=lambda x: str(x))
|
|
290
|
+
sage: v = A.an_element(); v
|
|
291
|
+
2*B[(-Lambda[0] + Lambda[3] - Lambda[4],)]
|
|
292
|
+
+ 2*B[(-Lambda[0] + Lambda[4],)]
|
|
293
|
+
+ 3*B[(Lambda[0] - Lambda[1] + Lambda[4],)]
|
|
294
|
+
sage: v.e(0)
|
|
295
|
+
2*B[(Lambda[0] - Lambda[1] + Lambda[3] - Lambda[4],)]
|
|
296
|
+
+ 2*B[(Lambda[0] - Lambda[1] + Lambda[4],)]
|
|
297
|
+
sage: v.f(0)
|
|
298
|
+
3*B[(-Lambda[0] + Lambda[4],)]
|
|
299
|
+
|
|
300
|
+
REFERENCES:
|
|
301
|
+
|
|
302
|
+
- [OS2018]_
|
|
303
|
+
"""
|
|
304
|
+
def __init__(self, R, C, q):
|
|
305
|
+
"""
|
|
306
|
+
Initialize ``self``.
|
|
307
|
+
|
|
308
|
+
EXAMPLES::
|
|
309
|
+
|
|
310
|
+
sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation
|
|
311
|
+
sage: C = crystals.Tableaux(['B',3], shape=[1,1])
|
|
312
|
+
sage: R = ZZ['q'].fraction_field()
|
|
313
|
+
sage: V = AdjointRepresentation(R, C)
|
|
314
|
+
sage: TestSuite(V).run()
|
|
315
|
+
|
|
316
|
+
sage: A = crystals.Tableaux(['A',2], shape=[2,1])
|
|
317
|
+
sage: VA = AdjointRepresentation(R, A)
|
|
318
|
+
sage: TestSuite(VA).run()
|
|
319
|
+
|
|
320
|
+
sage: K1 = crystals.KirillovReshetikhin(['C',3,1], 1,1)
|
|
321
|
+
sage: A1 = AdjointRepresentation(R, K1)
|
|
322
|
+
sage: TestSuite(A1).run()
|
|
323
|
+
sage: K2 = crystals.KirillovReshetikhin(['C',2,1], 1,2)
|
|
324
|
+
sage: A2 = AdjointRepresentation(R, K2)
|
|
325
|
+
sage: TestSuite(A2).run()
|
|
326
|
+
"""
|
|
327
|
+
self._WLR_zero = C.weight_lattice_realization().zero()
|
|
328
|
+
CyclicRepresentation.__init__(self, R, C, q)
|
|
329
|
+
ct = C.cartan_type()
|
|
330
|
+
if ct.is_finite() and ct.type() == 'A':
|
|
331
|
+
def test_zero(x):
|
|
332
|
+
wt = x.weight()
|
|
333
|
+
return all(wt.scalar(ac) == 0
|
|
334
|
+
for ac in self._WLR_zero.parent().simple_coroots())
|
|
335
|
+
self._check_zero_wt = test_zero
|
|
336
|
+
else:
|
|
337
|
+
self._check_zero_wt = lambda x: x.weight() == self._WLR_zero
|
|
338
|
+
|
|
339
|
+
@lazy_attribute
|
|
340
|
+
def _zero_elts(self):
|
|
341
|
+
r"""
|
|
342
|
+
Find all of the elements of weight `0` in the basis keys.
|
|
343
|
+
|
|
344
|
+
EXAMPLES::
|
|
345
|
+
|
|
346
|
+
sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation
|
|
347
|
+
sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,1)
|
|
348
|
+
sage: R = ZZ['q'].fraction_field()
|
|
349
|
+
sage: V = AdjointRepresentation(R, K)
|
|
350
|
+
sage: V._zero_elts
|
|
351
|
+
{0: [], 1: [[2], [-2]], 2: [[3], [-3]],
|
|
352
|
+
3: [[4], [-4]], 4: [[-4], [4]]}
|
|
353
|
+
"""
|
|
354
|
+
C = self.basis().keys()
|
|
355
|
+
ret = {}
|
|
356
|
+
for x in C:
|
|
357
|
+
if self._check_zero_wt(x):
|
|
358
|
+
for i in C.index_set():
|
|
359
|
+
if x.epsilon(i) > 0:
|
|
360
|
+
ret[i] = x
|
|
361
|
+
break
|
|
362
|
+
return ret
|
|
363
|
+
|
|
364
|
+
def e_on_basis(self, i, b):
|
|
365
|
+
r"""
|
|
366
|
+
Return the action of `e_i` on the basis element indexed by ``b``.
|
|
367
|
+
|
|
368
|
+
INPUT:
|
|
369
|
+
|
|
370
|
+
- ``i`` -- an element of the index set
|
|
371
|
+
- ``b`` -- an element of basis keys
|
|
372
|
+
|
|
373
|
+
EXAMPLES::
|
|
374
|
+
|
|
375
|
+
sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation
|
|
376
|
+
sage: K = crystals.KirillovReshetikhin(['D',3,2], 1,1)
|
|
377
|
+
sage: R = ZZ['q'].fraction_field()
|
|
378
|
+
sage: V = AdjointRepresentation(R, K)
|
|
379
|
+
sage: mg0 = K.module_generators[0]; mg0
|
|
380
|
+
[]
|
|
381
|
+
sage: mg1 = K.module_generators[1]; mg1
|
|
382
|
+
[[1]]
|
|
383
|
+
sage: V.e_on_basis(0, mg0)
|
|
384
|
+
((q^2+1)/q)*B[[[-1]]]
|
|
385
|
+
sage: V.e_on_basis(0, mg1)
|
|
386
|
+
B[[]]
|
|
387
|
+
sage: V.e_on_basis(1, mg0)
|
|
388
|
+
0
|
|
389
|
+
sage: V.e_on_basis(1, mg1)
|
|
390
|
+
0
|
|
391
|
+
sage: V.e_on_basis(2, mg0)
|
|
392
|
+
0
|
|
393
|
+
sage: V.e_on_basis(2, mg1)
|
|
394
|
+
0
|
|
395
|
+
|
|
396
|
+
sage: K = crystals.KirillovReshetikhin(['D',4,3], 1,1)
|
|
397
|
+
sage: V = AdjointRepresentation(R, K)
|
|
398
|
+
sage: V.e_on_basis(0, K.module_generator())
|
|
399
|
+
B[[]] + (q/(q^2+1))*B[[[0]]]
|
|
400
|
+
"""
|
|
401
|
+
C = self.basis().keys()
|
|
402
|
+
x = b.e(i)
|
|
403
|
+
if x is None:
|
|
404
|
+
return self.zero()
|
|
405
|
+
I = {j: pos for pos,j in enumerate(C.index_set())}
|
|
406
|
+
if self._check_zero_wt(x):
|
|
407
|
+
A = C.cartan_type().cartan_matrix()
|
|
408
|
+
return self.monomial(x) + sum(self.term(self._zero_elts[j],
|
|
409
|
+
q_int(-A[I[i],I[j]], self._q**self._d[i])
|
|
410
|
+
/ q_int(2, self._q**self._d[j]))
|
|
411
|
+
for j in C.index_set()
|
|
412
|
+
if A[I[i],I[j]] < 0 and j in self._zero_elts)
|
|
413
|
+
return self.term(x, q_int(x.phi(i), self._q**self._d[i]))
|
|
414
|
+
|
|
415
|
+
def f_on_basis(self, i, b):
|
|
416
|
+
r"""
|
|
417
|
+
Return the action of `f_i` on the basis element indexed by ``b``.
|
|
418
|
+
|
|
419
|
+
INPUT:
|
|
420
|
+
|
|
421
|
+
- ``i`` -- an element of the index set
|
|
422
|
+
- ``b`` -- an element of basis keys
|
|
423
|
+
|
|
424
|
+
EXAMPLES::
|
|
425
|
+
|
|
426
|
+
sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation
|
|
427
|
+
sage: K = crystals.KirillovReshetikhin(['D',3,2], 1,1)
|
|
428
|
+
sage: R = ZZ['q'].fraction_field()
|
|
429
|
+
sage: V = AdjointRepresentation(R, K)
|
|
430
|
+
sage: mg0 = K.module_generators[0]; mg0
|
|
431
|
+
[]
|
|
432
|
+
sage: mg1 = K.module_generators[1]; mg1
|
|
433
|
+
[[1]]
|
|
434
|
+
sage: V.f_on_basis(0, mg0)
|
|
435
|
+
((q^2+1)/q)*B[[[1]]]
|
|
436
|
+
sage: V.f_on_basis(0, mg1)
|
|
437
|
+
0
|
|
438
|
+
sage: V.f_on_basis(1, mg0)
|
|
439
|
+
0
|
|
440
|
+
sage: V.f_on_basis(1, mg1)
|
|
441
|
+
B[[[2]]]
|
|
442
|
+
sage: V.f_on_basis(2, mg0)
|
|
443
|
+
0
|
|
444
|
+
sage: V.f_on_basis(2, mg1)
|
|
445
|
+
0
|
|
446
|
+
|
|
447
|
+
sage: K = crystals.KirillovReshetikhin(['D',4,3], 1,1)
|
|
448
|
+
sage: V = AdjointRepresentation(R, K)
|
|
449
|
+
sage: lw = K.module_generator().to_lowest_weight([1,2])[0]
|
|
450
|
+
sage: V.f_on_basis(0, lw)
|
|
451
|
+
B[[]] + (q/(q^2+1))*B[[[0]]]
|
|
452
|
+
"""
|
|
453
|
+
C = self.basis().keys()
|
|
454
|
+
x = b.f(i)
|
|
455
|
+
if x is None:
|
|
456
|
+
return self.zero()
|
|
457
|
+
I = {j: pos for pos,j in enumerate(C.index_set())}
|
|
458
|
+
if self._check_zero_wt(x):
|
|
459
|
+
A = C.cartan_type().cartan_matrix()
|
|
460
|
+
return self.monomial(x) + sum(self.term(self._zero_elts[j],
|
|
461
|
+
q_int(-A[I[i],I[j]],
|
|
462
|
+
self._q**self._d[i])
|
|
463
|
+
/ q_int(2, self._q**self._d[j]))
|
|
464
|
+
for j in C.index_set()
|
|
465
|
+
if A[I[i],I[j]] < 0 and j in self._zero_elts)
|
|
466
|
+
return self.term(x, q_int(x.epsilon(i), self._q**self._d[i]))
|
|
467
|
+
|
|
468
|
+
|
|
469
|
+
class MinusculeRepresentation(CyclicRepresentation):
|
|
470
|
+
r"""
|
|
471
|
+
A minuscule representation of a quantum group.
|
|
472
|
+
|
|
473
|
+
A quantum group representation `V` is *minuscule* if it is
|
|
474
|
+
cyclic, there is a weight space decomposition
|
|
475
|
+
`V = \bigoplus_{\mu} V_{\mu}` with `\dim V_{\mu} \leq 1`,
|
|
476
|
+
and `e_i^2 V = 0` and `f_i^2 V = 0`.
|
|
477
|
+
|
|
478
|
+
For a base ring `R`, we construct a minuscule representation from
|
|
479
|
+
its (combinatorial) crystal `B` by `V = R \{v_b | b \in B\}` with
|
|
480
|
+
`e_i v_b = v_{e_i b}`, `f_i v_b = v_{f_i b}`, and
|
|
481
|
+
`K_i v_b = q^{\langle h_i, \operatorname{wt}(b) \rangle} v_b`,
|
|
482
|
+
where we consider `v_0 := 0`.
|
|
483
|
+
|
|
484
|
+
INPUT:
|
|
485
|
+
|
|
486
|
+
- ``C`` -- the crystal corresponding to the representation
|
|
487
|
+
- ``R`` -- the base ring
|
|
488
|
+
- ``q`` -- (default: the generator of ``R``) the parameter `q`
|
|
489
|
+
of the quantum group
|
|
490
|
+
|
|
491
|
+
.. WARNING::
|
|
492
|
+
|
|
493
|
+
This assumes that `q` is generic.
|
|
494
|
+
|
|
495
|
+
EXAMPLES::
|
|
496
|
+
|
|
497
|
+
sage: from sage.algebras.quantum_groups.representations import MinusculeRepresentation
|
|
498
|
+
sage: R = ZZ['q'].fraction_field()
|
|
499
|
+
sage: C = crystals.Tableaux(['B',3], shape=[1/2,1/2,1/2])
|
|
500
|
+
sage: V = MinusculeRepresentation(R, C)
|
|
501
|
+
sage: V
|
|
502
|
+
V((1/2, 1/2, 1/2))
|
|
503
|
+
sage: v = V.an_element(); v
|
|
504
|
+
2*B[[+++, []]] + 2*B[[++-, []]] + 3*B[[+-+, []]]
|
|
505
|
+
sage: v.e(3)
|
|
506
|
+
2*B[[+++, []]]
|
|
507
|
+
sage: v.f(1)
|
|
508
|
+
3*B[[-++, []]]
|
|
509
|
+
sage: v.f(3)
|
|
510
|
+
2*B[[++-, []]] + 3*B[[+--, []]]
|
|
511
|
+
sage: v.K(2)
|
|
512
|
+
2*B[[+++, []]] + 2*q^2*B[[++-, []]] + 3/q^2*B[[+-+, []]]
|
|
513
|
+
sage: v.K(3, -2)
|
|
514
|
+
2/q^2*B[[+++, []]] + 2*q^2*B[[++-, []]] + 3/q^2*B[[+-+, []]]
|
|
515
|
+
|
|
516
|
+
sage: K = crystals.KirillovReshetikhin(['D',4,2], 3,1)
|
|
517
|
+
sage: A = MinusculeRepresentation(R, K)
|
|
518
|
+
sage: A
|
|
519
|
+
V(-Lambda[0] + Lambda[3])
|
|
520
|
+
sage: v = A.an_element(); v
|
|
521
|
+
2*B[[+++, []]] + 2*B[[++-, []]] + 3*B[[+-+, []]]
|
|
522
|
+
sage: v.f(0)
|
|
523
|
+
0
|
|
524
|
+
sage: v.e(0)
|
|
525
|
+
2*B[[-++, []]] + 2*B[[-+-, []]] + 3*B[[--+, []]]
|
|
526
|
+
|
|
527
|
+
REFERENCES:
|
|
528
|
+
|
|
529
|
+
- [OS2018]_
|
|
530
|
+
"""
|
|
531
|
+
def e_on_basis(self, i, b):
|
|
532
|
+
r"""
|
|
533
|
+
Return the action of `e_i` on the basis element indexed by ``b``.
|
|
534
|
+
|
|
535
|
+
INPUT:
|
|
536
|
+
|
|
537
|
+
- ``i`` -- an element of the index set
|
|
538
|
+
- ``b`` -- an element of basis keys
|
|
539
|
+
|
|
540
|
+
EXAMPLES::
|
|
541
|
+
|
|
542
|
+
sage: from sage.algebras.quantum_groups.representations import MinusculeRepresentation
|
|
543
|
+
sage: C = crystals.Tableaux(['A',3], shape=[1,1])
|
|
544
|
+
sage: R = ZZ['q'].fraction_field()
|
|
545
|
+
sage: V = MinusculeRepresentation(R, C)
|
|
546
|
+
sage: lw = C.lowest_weight_vectors()[0]
|
|
547
|
+
sage: V.e_on_basis(1, lw)
|
|
548
|
+
0
|
|
549
|
+
sage: V.e_on_basis(2, lw)
|
|
550
|
+
B[[[2], [4]]]
|
|
551
|
+
sage: V.e_on_basis(3, lw)
|
|
552
|
+
0
|
|
553
|
+
sage: hw = C.highest_weight_vectors()[0]
|
|
554
|
+
sage: all(V.e_on_basis(i, hw) == V.zero() for i in V.index_set())
|
|
555
|
+
True
|
|
556
|
+
"""
|
|
557
|
+
x = b.e(i)
|
|
558
|
+
if x is None:
|
|
559
|
+
return self.zero()
|
|
560
|
+
return self.monomial(x)
|
|
561
|
+
|
|
562
|
+
def f_on_basis(self, i, b):
|
|
563
|
+
r"""
|
|
564
|
+
Return the action of `f_i` on the basis element indexed by ``b``.
|
|
565
|
+
|
|
566
|
+
INPUT:
|
|
567
|
+
|
|
568
|
+
- ``i`` -- an element of the index set
|
|
569
|
+
- ``b`` -- an element of basis keys
|
|
570
|
+
|
|
571
|
+
EXAMPLES::
|
|
572
|
+
|
|
573
|
+
sage: from sage.algebras.quantum_groups.representations import MinusculeRepresentation
|
|
574
|
+
sage: C = crystals.Tableaux(['A',3], shape=[1,1])
|
|
575
|
+
sage: R = ZZ['q'].fraction_field()
|
|
576
|
+
sage: V = MinusculeRepresentation(R, C)
|
|
577
|
+
sage: hw = C.highest_weight_vectors()[0]
|
|
578
|
+
sage: V.f_on_basis(1, hw)
|
|
579
|
+
0
|
|
580
|
+
sage: V.f_on_basis(2, hw)
|
|
581
|
+
B[[[1], [3]]]
|
|
582
|
+
sage: V.f_on_basis(3, hw)
|
|
583
|
+
0
|
|
584
|
+
sage: lw = C.lowest_weight_vectors()[0]
|
|
585
|
+
sage: all(V.f_on_basis(i, lw) == V.zero() for i in V.index_set())
|
|
586
|
+
True
|
|
587
|
+
"""
|
|
588
|
+
x = b.f(i)
|
|
589
|
+
if x is None:
|
|
590
|
+
return self.zero()
|
|
591
|
+
return self.monomial(x)
|