passagemath-combinat 10.6.42__cp314-cp314t-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/DELVEWHEEL +2 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +401 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-10-3a5f019e2510aeaad918cab2b57a689d.dll +0 -0
- passagemath_combinat.libs/libsymmetrica-3-7dcf900932804d0df5fd0919b4668720.dll +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +44 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cp314t-win_amd64.pyd +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cp314t-win_amd64.pyd +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cp314t-win_amd64.pyd +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cp314t-win_amd64.pyd +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cp314t-win_amd64.pyd +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cp314t-win_amd64.pyd +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cp314t-win_amd64.pyd +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cp314t-win_amd64.pyd +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cp314t-win_amd64.pyd +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cp314t-win_amd64.pyd +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cp314t-win_amd64.pyd +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cp314t-win_amd64.pyd +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cp314t-win_amd64.pyd +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cp314t-win_amd64.pyd +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cp314t-win_amd64.pyd +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,188 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.modules
|
|
3
|
+
r"""
|
|
4
|
+
Hall polynomials
|
|
5
|
+
"""
|
|
6
|
+
# ****************************************************************************
|
|
7
|
+
# Copyright (C) 2013 Travis Scrimshaw <tscrim at ucdavis.edu>,
|
|
8
|
+
#
|
|
9
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
10
|
+
#
|
|
11
|
+
# This code is distributed in the hope that it will be useful,
|
|
12
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
13
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
14
|
+
# General Public License for more details.
|
|
15
|
+
#
|
|
16
|
+
# The full text of the GPL is available at:
|
|
17
|
+
#
|
|
18
|
+
# http://www.gnu.org/licenses/
|
|
19
|
+
# ****************************************************************************
|
|
20
|
+
|
|
21
|
+
from sage.misc.misc_c import prod
|
|
22
|
+
from sage.rings.integer_ring import ZZ
|
|
23
|
+
from sage.combinat.partition import Partition
|
|
24
|
+
from sage.combinat.q_analogues import q_binomial
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def hall_polynomial(nu, mu, la, q=None):
|
|
28
|
+
r"""
|
|
29
|
+
Return the (classical) Hall polynomial `P^{\nu}_{\mu,\lambda}`
|
|
30
|
+
(where `\nu`, `\mu` and `\lambda` are the inputs ``nu``, ``mu``
|
|
31
|
+
and ``la``).
|
|
32
|
+
|
|
33
|
+
Let `\nu,\mu,\lambda` be partitions. The Hall polynomial
|
|
34
|
+
`P^{\nu}_{\mu,\lambda}(q)` (in the indeterminate `q`) is defined
|
|
35
|
+
as follows: Specialize `q` to a prime power, and consider the
|
|
36
|
+
category of `\GF{q}`-vector spaces with a distinguished
|
|
37
|
+
nilpotent endomorphism. The morphisms in this category shall be
|
|
38
|
+
the linear maps commuting with the distinguished endomorphisms.
|
|
39
|
+
The *type* of an object in the category will be the Jordan type
|
|
40
|
+
of the distinguished endomorphism; this is a partition. Now, if
|
|
41
|
+
`N` is any fixed object of type `\nu` in this category, then
|
|
42
|
+
the polynomial `P^{\nu}_{\mu,\lambda}(q)` specialized at the
|
|
43
|
+
prime power `q` counts the number of subobjects `L` of `N` having
|
|
44
|
+
type `\lambda` such that the quotient object `N / L` has type
|
|
45
|
+
`\mu`. This determines the values of the polynomial
|
|
46
|
+
`P^{\nu}_{\mu,\lambda}` at infinitely many points (namely, at all
|
|
47
|
+
prime powers), and hence `P^{\nu}_{\mu,\lambda}` is uniquely
|
|
48
|
+
determined. The degree of this polynomial is at most
|
|
49
|
+
`n(\nu) - n(\lambda) - n(\mu)`, where
|
|
50
|
+
`n(\kappa) = \sum_i (i-1) \kappa_i` for every partition `\kappa`.
|
|
51
|
+
(If this is negative, then the polynomial is zero.)
|
|
52
|
+
|
|
53
|
+
These are the structure coefficients of the
|
|
54
|
+
:class:`(classical) Hall algebra <HallAlgebra>`.
|
|
55
|
+
|
|
56
|
+
If `\lvert \nu \rvert \neq \lvert \mu \rvert + \lvert \lambda \rvert`,
|
|
57
|
+
then we have `P^{\nu}_{\mu,\lambda} = 0`. More generally, if the
|
|
58
|
+
Littlewood-Richardson coefficient `c^{\nu}_{\mu,\lambda}`
|
|
59
|
+
vanishes, then `P^{\nu}_{\mu,\lambda} = 0`.
|
|
60
|
+
|
|
61
|
+
The Hall polynomials satisfy the symmetry property
|
|
62
|
+
`P^{\nu}_{\mu,\lambda} = P^{\nu}_{\lambda,\mu}`.
|
|
63
|
+
|
|
64
|
+
ALGORITHM:
|
|
65
|
+
|
|
66
|
+
If `\lambda = (1^r)` and
|
|
67
|
+
`\lvert \nu \rvert = \lvert \mu \rvert + \lvert \lambda \rvert`,
|
|
68
|
+
then we compute `P^{\nu}_{\mu,\lambda}` as follows (cf. Example 2.4
|
|
69
|
+
in [Sch2006]_):
|
|
70
|
+
|
|
71
|
+
First, write `\nu = (1^{l_1}, 2^{l_2}, \ldots, n^{l_n})`, and
|
|
72
|
+
define a sequence `r = r_0 \geq r_1 \geq \cdots \geq r_n` such that
|
|
73
|
+
|
|
74
|
+
.. MATH::
|
|
75
|
+
|
|
76
|
+
\mu = \left( 1^{l_1 - r_0 + 2r_1 - r_2}, 2^{l_2 - r_1 + 2r_2 - r_3},
|
|
77
|
+
\ldots , (n-1)^{l_{n-1} - r_{n-2} + 2r_{n-1} - r_n},
|
|
78
|
+
n^{l_n - r_{n-1} + r_n} \right).
|
|
79
|
+
|
|
80
|
+
Thus if `\mu = (1^{m_1}, \ldots, n^{m_n})`, we have the following system
|
|
81
|
+
of equations:
|
|
82
|
+
|
|
83
|
+
.. MATH::
|
|
84
|
+
|
|
85
|
+
\begin{aligned}
|
|
86
|
+
m_1 & = l_1 - r + 2r_1 - r_2,
|
|
87
|
+
\\ m_2 & = l_2 - r_1 + 2r_2 - r_3,
|
|
88
|
+
\\ & \vdots ,
|
|
89
|
+
\\ m_{n-1} & = l_{n-1} - r_{n-2} + 2r_{n-1} - r_n,
|
|
90
|
+
\\ m_n & = l_n - r_{n-1} + r_n
|
|
91
|
+
\end{aligned}
|
|
92
|
+
|
|
93
|
+
and solving for `r_i` and back substituting we obtain the equations:
|
|
94
|
+
|
|
95
|
+
.. MATH::
|
|
96
|
+
|
|
97
|
+
\begin{aligned}
|
|
98
|
+
r_n & = r_{n-1} + m_n - l_n,
|
|
99
|
+
\\ r_{n-1} & = r_{n-2} + m_{n-1} - l_{n-1} + m_n - l_n,
|
|
100
|
+
\\ & \vdots ,
|
|
101
|
+
\\ r_1 & = r + \sum_{k=1}^n (m_k - l_k),
|
|
102
|
+
\end{aligned}
|
|
103
|
+
|
|
104
|
+
or in general we have the recursive equation:
|
|
105
|
+
|
|
106
|
+
.. MATH::
|
|
107
|
+
|
|
108
|
+
r_i = r_{i-1} + \sum_{k=i}^n (m_k - l_k).
|
|
109
|
+
|
|
110
|
+
This, combined with the condition that `r_0 = r`, determines the
|
|
111
|
+
`r_i` uniquely (recursively). Next we define
|
|
112
|
+
|
|
113
|
+
.. MATH::
|
|
114
|
+
|
|
115
|
+
t = (r_{n-2} - r_{n-1})(l_n - r_{n-1})
|
|
116
|
+
+ (r_{n-3} - r_{n-2})(l_{n-1} + l_n - r_{n-2}) + \cdots
|
|
117
|
+
+ (r_0 - r_1)(l_2 + \cdots + l_n - r_1),
|
|
118
|
+
|
|
119
|
+
and with these notations we have
|
|
120
|
+
|
|
121
|
+
.. MATH::
|
|
122
|
+
|
|
123
|
+
P^{\nu}_{\mu,(1^r)} = q^t \binom{l_n}{r_{n-1}}_q
|
|
124
|
+
\binom{l_{n-1}}{r_{n-2} - r_{n-1}}_q \cdots \binom{l_1}{r_0 - r_1}_q.
|
|
125
|
+
|
|
126
|
+
To compute `P^{\nu}_{\mu,\lambda}` in general, we compute the product
|
|
127
|
+
`I_{\mu} I_{\lambda}` in the Hall algebra and return the coefficient of
|
|
128
|
+
`I_{\nu}`.
|
|
129
|
+
|
|
130
|
+
EXAMPLES::
|
|
131
|
+
|
|
132
|
+
sage: from sage.combinat.hall_polynomial import hall_polynomial
|
|
133
|
+
sage: hall_polynomial([1,1],[1],[1])
|
|
134
|
+
q + 1
|
|
135
|
+
sage: hall_polynomial([2],[1],[1])
|
|
136
|
+
1
|
|
137
|
+
sage: hall_polynomial([2,1],[2],[1])
|
|
138
|
+
q
|
|
139
|
+
sage: hall_polynomial([2,2,1],[2,1],[1,1])
|
|
140
|
+
q^2 + q
|
|
141
|
+
sage: hall_polynomial([2,2,2,1],[2,2,1],[1,1])
|
|
142
|
+
q^4 + q^3 + q^2
|
|
143
|
+
sage: hall_polynomial([3,2,2,1], [3,2], [2,1])
|
|
144
|
+
q^6 + q^5
|
|
145
|
+
sage: hall_polynomial([4,2,1,1], [3,1,1], [2,1])
|
|
146
|
+
2*q^3 + q^2 - q - 1
|
|
147
|
+
sage: hall_polynomial([4,2], [2,1], [2,1], 0)
|
|
148
|
+
1
|
|
149
|
+
|
|
150
|
+
TESTS::
|
|
151
|
+
|
|
152
|
+
sage: hall_polynomial([3], [1], [1], 0)
|
|
153
|
+
0
|
|
154
|
+
"""
|
|
155
|
+
if q is None:
|
|
156
|
+
q = ZZ['q'].gen()
|
|
157
|
+
R = q.parent()
|
|
158
|
+
|
|
159
|
+
# Make sure they are partitions
|
|
160
|
+
nu = Partition(nu)
|
|
161
|
+
mu = Partition(mu)
|
|
162
|
+
la = Partition(la)
|
|
163
|
+
|
|
164
|
+
if sum(nu) != sum(mu) + sum(la):
|
|
165
|
+
return R.zero()
|
|
166
|
+
|
|
167
|
+
if all(x == 1 for x in la):
|
|
168
|
+
r = [len(la)] # r will be [r_0, r_1, ..., r_n].
|
|
169
|
+
exp_nu = nu.to_exp() # exp_nu == [l_1, l_2, ..., l_n].
|
|
170
|
+
exp_mu = mu.to_exp() # exp_mu == [m_1, m_2, ..., m_n].
|
|
171
|
+
n = max(len(exp_nu), len(exp_mu))
|
|
172
|
+
for k in range(n):
|
|
173
|
+
r.append(r[-1] + sum(exp_mu[k:]) - sum(exp_nu[k:]))
|
|
174
|
+
# Now, r is [r_0, r_1, ..., r_n].
|
|
175
|
+
exp_nu += [0]*(n - len(exp_nu)) # Pad with 0s until it has length n
|
|
176
|
+
# Note that all -1 for exp_nu is due to indexing
|
|
177
|
+
t = sum((r[k-2] - r[k-1])*(sum(exp_nu[k-1:]) - r[k-1]) for k in range(2,n+1))
|
|
178
|
+
if t < 0:
|
|
179
|
+
# This case needs short-circuiting, since otherwise q**-t
|
|
180
|
+
# might throw an exception if q is non-invertible.
|
|
181
|
+
return R.zero()
|
|
182
|
+
return q**t * q_binomial(exp_nu[n-1], r[n-1], q) \
|
|
183
|
+
* prod([q_binomial(exp_nu[k-1], r[k-1] - r[k], q)
|
|
184
|
+
for k in range(1, n)], R.one())
|
|
185
|
+
|
|
186
|
+
from sage.algebras.hall_algebra import HallAlgebra
|
|
187
|
+
H = HallAlgebra(R, q)
|
|
188
|
+
return (H[mu]*H[la]).coefficient(nu)
|