dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (272) hide show
  1. dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
  2. dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
  3. dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
  4. dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
  5. dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
  6. dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
  7. tests/__init__.py +22 -0
  8. tests/conftest.py +83 -0
  9. tests/test_cli.py +138 -0
  10. tests/test_cuda.py +215 -0
  11. tests/test_engine.py +131 -0
  12. tests/test_exports.py +236 -0
  13. tests/test_integrations.py +154 -0
  14. tests/test_python.py +694 -0
  15. tests/test_solutions.py +187 -0
  16. ultralytics/__init__.py +30 -0
  17. ultralytics/assets/bus.jpg +0 -0
  18. ultralytics/assets/zidane.jpg +0 -0
  19. ultralytics/cfg/__init__.py +1023 -0
  20. ultralytics/cfg/datasets/Argoverse.yaml +77 -0
  21. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  22. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  23. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  24. ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
  25. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  26. ultralytics/cfg/datasets/Objects365.yaml +443 -0
  27. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  28. ultralytics/cfg/datasets/VOC.yaml +106 -0
  29. ultralytics/cfg/datasets/VisDrone.yaml +77 -0
  30. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  31. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  32. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  33. ultralytics/cfg/datasets/coco-pose.yaml +42 -0
  34. ultralytics/cfg/datasets/coco.yaml +118 -0
  35. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  36. ultralytics/cfg/datasets/coco128.yaml +101 -0
  37. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  38. ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
  39. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  40. ultralytics/cfg/datasets/coco8.yaml +101 -0
  41. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  42. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  43. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  44. ultralytics/cfg/datasets/dota8.yaml +35 -0
  45. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  46. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  47. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  48. ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
  49. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  50. ultralytics/cfg/datasets/signature.yaml +21 -0
  51. ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
  52. ultralytics/cfg/datasets/xView.yaml +155 -0
  53. ultralytics/cfg/default.yaml +127 -0
  54. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  55. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  56. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  57. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  58. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  59. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  60. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  61. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  62. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  63. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  64. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  65. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  66. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  68. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  69. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  70. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  71. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  74. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  75. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  76. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  77. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  78. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  79. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  80. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  81. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  82. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  83. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
  84. ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
  85. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  86. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  87. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  88. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  89. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  90. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  91. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  92. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  93. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  94. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  95. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  96. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  97. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  98. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  99. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  100. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  101. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  102. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  103. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  105. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  106. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  107. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  108. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  109. ultralytics/cfg/trackers/botsort.yaml +22 -0
  110. ultralytics/cfg/trackers/bytetrack.yaml +14 -0
  111. ultralytics/data/__init__.py +26 -0
  112. ultralytics/data/annotator.py +66 -0
  113. ultralytics/data/augment.py +2945 -0
  114. ultralytics/data/base.py +438 -0
  115. ultralytics/data/build.py +258 -0
  116. ultralytics/data/converter.py +754 -0
  117. ultralytics/data/dataset.py +834 -0
  118. ultralytics/data/loaders.py +676 -0
  119. ultralytics/data/scripts/download_weights.sh +18 -0
  120. ultralytics/data/scripts/get_coco.sh +61 -0
  121. ultralytics/data/scripts/get_coco128.sh +18 -0
  122. ultralytics/data/scripts/get_imagenet.sh +52 -0
  123. ultralytics/data/split.py +125 -0
  124. ultralytics/data/split_dota.py +325 -0
  125. ultralytics/data/utils.py +777 -0
  126. ultralytics/engine/__init__.py +1 -0
  127. ultralytics/engine/exporter.py +1519 -0
  128. ultralytics/engine/model.py +1156 -0
  129. ultralytics/engine/predictor.py +502 -0
  130. ultralytics/engine/results.py +1840 -0
  131. ultralytics/engine/trainer.py +853 -0
  132. ultralytics/engine/tuner.py +243 -0
  133. ultralytics/engine/validator.py +377 -0
  134. ultralytics/hub/__init__.py +168 -0
  135. ultralytics/hub/auth.py +137 -0
  136. ultralytics/hub/google/__init__.py +176 -0
  137. ultralytics/hub/session.py +446 -0
  138. ultralytics/hub/utils.py +248 -0
  139. ultralytics/models/__init__.py +9 -0
  140. ultralytics/models/fastsam/__init__.py +7 -0
  141. ultralytics/models/fastsam/model.py +61 -0
  142. ultralytics/models/fastsam/predict.py +181 -0
  143. ultralytics/models/fastsam/utils.py +24 -0
  144. ultralytics/models/fastsam/val.py +40 -0
  145. ultralytics/models/nas/__init__.py +7 -0
  146. ultralytics/models/nas/model.py +102 -0
  147. ultralytics/models/nas/predict.py +58 -0
  148. ultralytics/models/nas/val.py +39 -0
  149. ultralytics/models/rtdetr/__init__.py +7 -0
  150. ultralytics/models/rtdetr/model.py +63 -0
  151. ultralytics/models/rtdetr/predict.py +84 -0
  152. ultralytics/models/rtdetr/train.py +85 -0
  153. ultralytics/models/rtdetr/val.py +191 -0
  154. ultralytics/models/sam/__init__.py +6 -0
  155. ultralytics/models/sam/amg.py +260 -0
  156. ultralytics/models/sam/build.py +358 -0
  157. ultralytics/models/sam/model.py +170 -0
  158. ultralytics/models/sam/modules/__init__.py +1 -0
  159. ultralytics/models/sam/modules/blocks.py +1129 -0
  160. ultralytics/models/sam/modules/decoders.py +515 -0
  161. ultralytics/models/sam/modules/encoders.py +854 -0
  162. ultralytics/models/sam/modules/memory_attention.py +299 -0
  163. ultralytics/models/sam/modules/sam.py +1006 -0
  164. ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
  165. ultralytics/models/sam/modules/transformer.py +351 -0
  166. ultralytics/models/sam/modules/utils.py +394 -0
  167. ultralytics/models/sam/predict.py +1605 -0
  168. ultralytics/models/utils/__init__.py +1 -0
  169. ultralytics/models/utils/loss.py +455 -0
  170. ultralytics/models/utils/ops.py +268 -0
  171. ultralytics/models/yolo/__init__.py +7 -0
  172. ultralytics/models/yolo/classify/__init__.py +7 -0
  173. ultralytics/models/yolo/classify/predict.py +88 -0
  174. ultralytics/models/yolo/classify/train.py +233 -0
  175. ultralytics/models/yolo/classify/val.py +215 -0
  176. ultralytics/models/yolo/detect/__init__.py +7 -0
  177. ultralytics/models/yolo/detect/predict.py +124 -0
  178. ultralytics/models/yolo/detect/train.py +217 -0
  179. ultralytics/models/yolo/detect/val.py +451 -0
  180. ultralytics/models/yolo/model.py +354 -0
  181. ultralytics/models/yolo/obb/__init__.py +7 -0
  182. ultralytics/models/yolo/obb/predict.py +66 -0
  183. ultralytics/models/yolo/obb/train.py +81 -0
  184. ultralytics/models/yolo/obb/val.py +283 -0
  185. ultralytics/models/yolo/pose/__init__.py +7 -0
  186. ultralytics/models/yolo/pose/predict.py +79 -0
  187. ultralytics/models/yolo/pose/train.py +154 -0
  188. ultralytics/models/yolo/pose/val.py +394 -0
  189. ultralytics/models/yolo/segment/__init__.py +7 -0
  190. ultralytics/models/yolo/segment/predict.py +113 -0
  191. ultralytics/models/yolo/segment/train.py +123 -0
  192. ultralytics/models/yolo/segment/val.py +428 -0
  193. ultralytics/models/yolo/world/__init__.py +5 -0
  194. ultralytics/models/yolo/world/train.py +119 -0
  195. ultralytics/models/yolo/world/train_world.py +176 -0
  196. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  197. ultralytics/models/yolo/yoloe/predict.py +169 -0
  198. ultralytics/models/yolo/yoloe/train.py +298 -0
  199. ultralytics/models/yolo/yoloe/train_seg.py +124 -0
  200. ultralytics/models/yolo/yoloe/val.py +191 -0
  201. ultralytics/nn/__init__.py +29 -0
  202. ultralytics/nn/autobackend.py +842 -0
  203. ultralytics/nn/modules/__init__.py +182 -0
  204. ultralytics/nn/modules/activation.py +53 -0
  205. ultralytics/nn/modules/block.py +1966 -0
  206. ultralytics/nn/modules/conv.py +712 -0
  207. ultralytics/nn/modules/head.py +880 -0
  208. ultralytics/nn/modules/transformer.py +713 -0
  209. ultralytics/nn/modules/utils.py +164 -0
  210. ultralytics/nn/tasks.py +1627 -0
  211. ultralytics/nn/text_model.py +351 -0
  212. ultralytics/solutions/__init__.py +41 -0
  213. ultralytics/solutions/ai_gym.py +116 -0
  214. ultralytics/solutions/analytics.py +252 -0
  215. ultralytics/solutions/config.py +106 -0
  216. ultralytics/solutions/distance_calculation.py +124 -0
  217. ultralytics/solutions/heatmap.py +127 -0
  218. ultralytics/solutions/instance_segmentation.py +84 -0
  219. ultralytics/solutions/object_blurrer.py +90 -0
  220. ultralytics/solutions/object_counter.py +195 -0
  221. ultralytics/solutions/object_cropper.py +84 -0
  222. ultralytics/solutions/parking_management.py +273 -0
  223. ultralytics/solutions/queue_management.py +93 -0
  224. ultralytics/solutions/region_counter.py +120 -0
  225. ultralytics/solutions/security_alarm.py +154 -0
  226. ultralytics/solutions/similarity_search.py +172 -0
  227. ultralytics/solutions/solutions.py +724 -0
  228. ultralytics/solutions/speed_estimation.py +110 -0
  229. ultralytics/solutions/streamlit_inference.py +196 -0
  230. ultralytics/solutions/templates/similarity-search.html +160 -0
  231. ultralytics/solutions/trackzone.py +88 -0
  232. ultralytics/solutions/vision_eye.py +68 -0
  233. ultralytics/trackers/__init__.py +7 -0
  234. ultralytics/trackers/basetrack.py +124 -0
  235. ultralytics/trackers/bot_sort.py +260 -0
  236. ultralytics/trackers/byte_tracker.py +480 -0
  237. ultralytics/trackers/track.py +125 -0
  238. ultralytics/trackers/utils/__init__.py +1 -0
  239. ultralytics/trackers/utils/gmc.py +376 -0
  240. ultralytics/trackers/utils/kalman_filter.py +493 -0
  241. ultralytics/trackers/utils/matching.py +157 -0
  242. ultralytics/utils/__init__.py +1435 -0
  243. ultralytics/utils/autobatch.py +106 -0
  244. ultralytics/utils/autodevice.py +174 -0
  245. ultralytics/utils/benchmarks.py +695 -0
  246. ultralytics/utils/callbacks/__init__.py +5 -0
  247. ultralytics/utils/callbacks/base.py +234 -0
  248. ultralytics/utils/callbacks/clearml.py +153 -0
  249. ultralytics/utils/callbacks/comet.py +552 -0
  250. ultralytics/utils/callbacks/dvc.py +205 -0
  251. ultralytics/utils/callbacks/hub.py +108 -0
  252. ultralytics/utils/callbacks/mlflow.py +138 -0
  253. ultralytics/utils/callbacks/neptune.py +140 -0
  254. ultralytics/utils/callbacks/raytune.py +43 -0
  255. ultralytics/utils/callbacks/tensorboard.py +132 -0
  256. ultralytics/utils/callbacks/wb.py +185 -0
  257. ultralytics/utils/checks.py +897 -0
  258. ultralytics/utils/dist.py +119 -0
  259. ultralytics/utils/downloads.py +499 -0
  260. ultralytics/utils/errors.py +43 -0
  261. ultralytics/utils/export.py +219 -0
  262. ultralytics/utils/files.py +221 -0
  263. ultralytics/utils/instance.py +499 -0
  264. ultralytics/utils/loss.py +813 -0
  265. ultralytics/utils/metrics.py +1356 -0
  266. ultralytics/utils/ops.py +885 -0
  267. ultralytics/utils/patches.py +143 -0
  268. ultralytics/utils/plotting.py +1011 -0
  269. ultralytics/utils/tal.py +416 -0
  270. ultralytics/utils/torch_utils.py +990 -0
  271. ultralytics/utils/triton.py +116 -0
  272. ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,695 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+ """
3
+ Benchmark a YOLO model formats for speed and accuracy.
4
+
5
+ Usage:
6
+ from ultralytics.utils.benchmarks import ProfileModels, benchmark
7
+ ProfileModels(['yolo11n.yaml', 'yolov8s.yaml']).run()
8
+ benchmark(model='yolo11n.pt', imgsz=160)
9
+
10
+ Format | `format=argument` | Model
11
+ --- | --- | ---
12
+ PyTorch | - | yolo11n.pt
13
+ TorchScript | `torchscript` | yolo11n.torchscript
14
+ ONNX | `onnx` | yolo11n.onnx
15
+ OpenVINO | `openvino` | yolo11n_openvino_model/
16
+ TensorRT | `engine` | yolo11n.engine
17
+ CoreML | `coreml` | yolo11n.mlpackage
18
+ TensorFlow SavedModel | `saved_model` | yolo11n_saved_model/
19
+ TensorFlow GraphDef | `pb` | yolo11n.pb
20
+ TensorFlow Lite | `tflite` | yolo11n.tflite
21
+ TensorFlow Edge TPU | `edgetpu` | yolo11n_edgetpu.tflite
22
+ TensorFlow.js | `tfjs` | yolo11n_web_model/
23
+ PaddlePaddle | `paddle` | yolo11n_paddle_model/
24
+ MNN | `mnn` | yolo11n.mnn
25
+ NCNN | `ncnn` | yolo11n_ncnn_model/
26
+ RKNN | `rknn` | yolo11n_rknn_model/
27
+ """
28
+
29
+ import glob
30
+ import os
31
+ import platform
32
+ import re
33
+ import shutil
34
+ import time
35
+ from pathlib import Path
36
+
37
+ import numpy as np
38
+ import torch.cuda
39
+
40
+ from ultralytics import YOLO, YOLOWorld
41
+ from ultralytics.cfg import TASK2DATA, TASK2METRIC
42
+ from ultralytics.engine.exporter import export_formats
43
+ from ultralytics.utils import ARM64, ASSETS, IS_JETSON, LINUX, LOGGER, MACOS, TQDM, WEIGHTS_DIR, YAML
44
+ from ultralytics.utils.checks import IS_PYTHON_3_13, check_imgsz, check_requirements, check_yolo, is_rockchip
45
+ from ultralytics.utils.downloads import safe_download
46
+ from ultralytics.utils.files import file_size
47
+ from ultralytics.utils.torch_utils import get_cpu_info, select_device
48
+
49
+
50
+ def benchmark(
51
+ model=WEIGHTS_DIR / "yolo11n.pt",
52
+ data=None,
53
+ imgsz=160,
54
+ half=False,
55
+ int8=False,
56
+ device="cpu",
57
+ verbose=False,
58
+ eps=1e-3,
59
+ format="",
60
+ ):
61
+ """
62
+ Benchmark a YOLO model across different formats for speed and accuracy.
63
+
64
+ Args:
65
+ model (str | Path): Path to the model file or directory.
66
+ data (str | None): Dataset to evaluate on, inherited from TASK2DATA if not passed.
67
+ imgsz (int): Image size for the benchmark.
68
+ half (bool): Use half-precision for the model if True.
69
+ int8 (bool): Use int8-precision for the model if True.
70
+ device (str): Device to run the benchmark on, either 'cpu' or 'cuda'.
71
+ verbose (bool | float): If True or a float, assert benchmarks pass with given metric.
72
+ eps (float): Epsilon value for divide by zero prevention.
73
+ format (str): Export format for benchmarking. If not supplied all formats are benchmarked.
74
+
75
+ Returns:
76
+ (pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size, metric,
77
+ and inference time.
78
+
79
+ Examples:
80
+ Benchmark a YOLO model with default settings:
81
+ >>> from ultralytics.utils.benchmarks import benchmark
82
+ >>> benchmark(model="yolo11n.pt", imgsz=640)
83
+ """
84
+ imgsz = check_imgsz(imgsz)
85
+ assert imgsz[0] == imgsz[1] if isinstance(imgsz, list) else True, "benchmark() only supports square imgsz."
86
+
87
+ import pandas as pd # scope for faster 'import ultralytics'
88
+
89
+ pd.options.display.max_columns = 10
90
+ pd.options.display.width = 120
91
+ device = select_device(device, verbose=False)
92
+ if isinstance(model, (str, Path)):
93
+ model = YOLO(model)
94
+ is_end2end = getattr(model.model.model[-1], "end2end", False)
95
+ data = data or TASK2DATA[model.task] # task to dataset, i.e. coco8.yaml for task=detect
96
+ key = TASK2METRIC[model.task] # task to metric, i.e. metrics/mAP50-95(B) for task=detect
97
+
98
+ y = []
99
+ t0 = time.time()
100
+
101
+ format_arg = format.lower()
102
+ if format_arg:
103
+ formats = frozenset(export_formats()["Argument"])
104
+ assert format in formats, f"Expected format to be one of {formats}, but got '{format_arg}'."
105
+ for i, (name, format, suffix, cpu, gpu, _) in enumerate(zip(*export_formats().values())):
106
+ emoji, filename = "❌", None # export defaults
107
+ try:
108
+ if format_arg and format_arg != format:
109
+ continue
110
+
111
+ # Checks
112
+ if i == 7: # TF GraphDef
113
+ assert model.task != "obb", "TensorFlow GraphDef not supported for OBB task"
114
+ elif i == 9: # Edge TPU
115
+ assert LINUX and not ARM64, "Edge TPU export only supported on non-aarch64 Linux"
116
+ elif i in {5, 10}: # CoreML and TF.js
117
+ assert MACOS or (LINUX and not ARM64), (
118
+ "CoreML and TF.js export only supported on macOS and non-aarch64 Linux"
119
+ )
120
+ if i in {5}: # CoreML
121
+ assert not IS_PYTHON_3_13, "CoreML not supported on Python 3.13"
122
+ if i in {6, 7, 8, 9, 10}: # TF SavedModel, TF GraphDef, and TFLite, TF EdgeTPU and TF.js
123
+ assert not isinstance(model, YOLOWorld), "YOLOWorldv2 TensorFlow exports not supported by onnx2tf yet"
124
+ # assert not IS_PYTHON_MINIMUM_3_12, "TFLite exports not supported on Python>=3.12 yet"
125
+ if i == 11: # Paddle
126
+ assert not isinstance(model, YOLOWorld), "YOLOWorldv2 Paddle exports not supported yet"
127
+ assert model.task != "obb", "Paddle OBB bug https://github.com/PaddlePaddle/Paddle/issues/72024"
128
+ assert not is_end2end, "End-to-end models not supported by PaddlePaddle yet"
129
+ assert (LINUX and not IS_JETSON) or MACOS, "Windows and Jetson Paddle exports not supported yet"
130
+ if i == 12: # MNN
131
+ assert not isinstance(model, YOLOWorld), "YOLOWorldv2 MNN exports not supported yet"
132
+ if i == 13: # NCNN
133
+ assert not isinstance(model, YOLOWorld), "YOLOWorldv2 NCNN exports not supported yet"
134
+ if i == 14: # IMX
135
+ assert not is_end2end
136
+ assert not isinstance(model, YOLOWorld), "YOLOWorldv2 IMX exports not supported"
137
+ assert model.task == "detect", "IMX only supported for detection task"
138
+ assert "C2f" in model.__str__(), "IMX only supported for YOLOv8" # TODO: enable for YOLO11
139
+ if i == 15: # RKNN
140
+ assert not isinstance(model, YOLOWorld), "YOLOWorldv2 RKNN exports not supported yet"
141
+ assert not is_end2end, "End-to-end models not supported by RKNN yet"
142
+ assert LINUX, "RKNN only supported on Linux"
143
+ assert not is_rockchip(), "RKNN Inference only supported on Rockchip devices"
144
+ if "cpu" in device.type:
145
+ assert cpu, "inference not supported on CPU"
146
+ if "cuda" in device.type:
147
+ assert gpu, "inference not supported on GPU"
148
+
149
+ # Export
150
+ if format == "-":
151
+ filename = model.pt_path or model.ckpt_path or model.model_name
152
+ exported_model = model # PyTorch format
153
+ else:
154
+ filename = model.export(
155
+ imgsz=imgsz, format=format, half=half, int8=int8, data=data, device=device, verbose=False
156
+ )
157
+ exported_model = YOLO(filename, task=model.task)
158
+ assert suffix in str(filename), "export failed"
159
+ emoji = "❎" # indicates export succeeded
160
+
161
+ # Predict
162
+ assert model.task != "pose" or i != 7, "GraphDef Pose inference is not supported"
163
+ assert i not in {9, 10}, "inference not supported" # Edge TPU and TF.js are unsupported
164
+ assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
165
+ if i in {13}:
166
+ assert not is_end2end, "End-to-end torch.topk operation is not supported for NCNN prediction yet"
167
+ exported_model.predict(ASSETS / "bus.jpg", imgsz=imgsz, device=device, half=half, verbose=False)
168
+
169
+ # Validate
170
+ results = exported_model.val(
171
+ data=data, batch=1, imgsz=imgsz, plots=False, device=device, half=half, int8=int8, verbose=False
172
+ )
173
+ metric, speed = results.results_dict[key], results.speed["inference"]
174
+ fps = round(1000 / (speed + eps), 2) # frames per second
175
+ y.append([name, "✅", round(file_size(filename), 1), round(metric, 4), round(speed, 2), fps])
176
+ except Exception as e:
177
+ if verbose:
178
+ assert type(e) is AssertionError, f"Benchmark failure for {name}: {e}"
179
+ LOGGER.error(f"Benchmark failure for {name}: {e}")
180
+ y.append([name, emoji, round(file_size(filename), 1), None, None, None]) # mAP, t_inference
181
+
182
+ # Print results
183
+ check_yolo(device=device) # print system info
184
+ df = pd.DataFrame(y, columns=["Format", "Status❔", "Size (MB)", key, "Inference time (ms/im)", "FPS"])
185
+
186
+ name = model.model_name
187
+ dt = time.time() - t0
188
+ legend = "Benchmarks legend: - ✅ Success - ❎ Export passed but validation failed - ❌️ Export failed"
189
+ s = f"\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({dt:.2f}s)\n{legend}\n{df.fillna('-')}\n"
190
+ LOGGER.info(s)
191
+ with open("benchmarks.log", "a", errors="ignore", encoding="utf-8") as f:
192
+ f.write(s)
193
+
194
+ if verbose and isinstance(verbose, float):
195
+ metrics = df[key].array # values to compare to floor
196
+ floor = verbose # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
197
+ assert all(x > floor for x in metrics if pd.notna(x)), f"Benchmark failure: metric(s) < floor {floor}"
198
+
199
+ return df
200
+
201
+
202
+ class RF100Benchmark:
203
+ """
204
+ Benchmark YOLO model performance across various formats for speed and accuracy.
205
+
206
+ This class provides functionality to benchmark YOLO models on the RF100 dataset collection.
207
+
208
+ Attributes:
209
+ ds_names (List[str]): Names of datasets used for benchmarking.
210
+ ds_cfg_list (List[Path]): List of paths to dataset configuration files.
211
+ rf (Roboflow): Roboflow instance for accessing datasets.
212
+ val_metrics (List[str]): Metrics used for validation.
213
+
214
+ Methods:
215
+ set_key: Set Roboflow API key for accessing datasets.
216
+ parse_dataset: Parse dataset links and download datasets.
217
+ fix_yaml: Fix train and validation paths in YAML files.
218
+ evaluate: Evaluate model performance on validation results.
219
+ """
220
+
221
+ def __init__(self):
222
+ """Initialize the RF100Benchmark class for benchmarking YOLO model performance across various formats."""
223
+ self.ds_names = []
224
+ self.ds_cfg_list = []
225
+ self.rf = None
226
+ self.val_metrics = ["class", "images", "targets", "precision", "recall", "map50", "map95"]
227
+
228
+ def set_key(self, api_key):
229
+ """
230
+ Set Roboflow API key for processing.
231
+
232
+ Args:
233
+ api_key (str): The API key.
234
+
235
+ Examples:
236
+ Set the Roboflow API key for accessing datasets:
237
+ >>> benchmark = RF100Benchmark()
238
+ >>> benchmark.set_key("your_roboflow_api_key")
239
+ """
240
+ check_requirements("roboflow")
241
+ from roboflow import Roboflow
242
+
243
+ self.rf = Roboflow(api_key=api_key)
244
+
245
+ def parse_dataset(self, ds_link_txt="datasets_links.txt"):
246
+ """
247
+ Parse dataset links and download datasets.
248
+
249
+ Args:
250
+ ds_link_txt (str): Path to the file containing dataset links.
251
+
252
+ Returns:
253
+ ds_names (List[str]): List of dataset names.
254
+ ds_cfg_list (List[Path]): List of paths to dataset configuration files.
255
+
256
+ Examples:
257
+ >>> benchmark = RF100Benchmark()
258
+ >>> benchmark.set_key("api_key")
259
+ >>> benchmark.parse_dataset("datasets_links.txt")
260
+ """
261
+ (shutil.rmtree("rf-100"), os.mkdir("rf-100")) if os.path.exists("rf-100") else os.mkdir("rf-100")
262
+ os.chdir("rf-100")
263
+ os.mkdir("ultralytics-benchmarks")
264
+ safe_download("https://github.com/ultralytics/assets/releases/download/v0.0.0/datasets_links.txt")
265
+
266
+ with open(ds_link_txt, encoding="utf-8") as file:
267
+ for line in file:
268
+ try:
269
+ _, url, workspace, project, version = re.split("/+", line.strip())
270
+ self.ds_names.append(project)
271
+ proj_version = f"{project}-{version}"
272
+ if not Path(proj_version).exists():
273
+ self.rf.workspace(workspace).project(project).version(version).download("yolov8")
274
+ else:
275
+ LOGGER.info("Dataset already downloaded.")
276
+ self.ds_cfg_list.append(Path.cwd() / proj_version / "data.yaml")
277
+ except Exception:
278
+ continue
279
+
280
+ return self.ds_names, self.ds_cfg_list
281
+
282
+ @staticmethod
283
+ def fix_yaml(path):
284
+ """Fix the train and validation paths in a given YAML file."""
285
+ yaml_data = YAML.load(path)
286
+ yaml_data["train"] = "train/images"
287
+ yaml_data["val"] = "valid/images"
288
+ YAML.dump(yaml_data, path)
289
+
290
+ def evaluate(self, yaml_path, val_log_file, eval_log_file, list_ind):
291
+ """
292
+ Evaluate model performance on validation results.
293
+
294
+ Args:
295
+ yaml_path (str): Path to the YAML configuration file.
296
+ val_log_file (str): Path to the validation log file.
297
+ eval_log_file (str): Path to the evaluation log file.
298
+ list_ind (int): Index of the current dataset in the list.
299
+
300
+ Returns:
301
+ (float): The mean average precision (mAP) value for the evaluated model.
302
+
303
+ Examples:
304
+ Evaluate a model on a specific dataset
305
+ >>> benchmark = RF100Benchmark()
306
+ >>> benchmark.evaluate("path/to/data.yaml", "path/to/val_log.txt", "path/to/eval_log.txt", 0)
307
+ """
308
+ skip_symbols = ["🚀", "⚠️", "💡", "❌"]
309
+ class_names = YAML.load(yaml_path)["names"]
310
+ with open(val_log_file, encoding="utf-8") as f:
311
+ lines = f.readlines()
312
+ eval_lines = []
313
+ for line in lines:
314
+ if any(symbol in line for symbol in skip_symbols):
315
+ continue
316
+ entries = line.split(" ")
317
+ entries = list(filter(lambda val: val != "", entries))
318
+ entries = [e.strip("\n") for e in entries]
319
+ eval_lines.extend(
320
+ {
321
+ "class": entries[0],
322
+ "images": entries[1],
323
+ "targets": entries[2],
324
+ "precision": entries[3],
325
+ "recall": entries[4],
326
+ "map50": entries[5],
327
+ "map95": entries[6],
328
+ }
329
+ for e in entries
330
+ if e in class_names or (e == "all" and "(AP)" not in entries and "(AR)" not in entries)
331
+ )
332
+ map_val = 0.0
333
+ if len(eval_lines) > 1:
334
+ LOGGER.info("Multiple dicts found")
335
+ for lst in eval_lines:
336
+ if lst["class"] == "all":
337
+ map_val = lst["map50"]
338
+ else:
339
+ LOGGER.info("Single dict found")
340
+ map_val = [res["map50"] for res in eval_lines][0]
341
+
342
+ with open(eval_log_file, "a", encoding="utf-8") as f:
343
+ f.write(f"{self.ds_names[list_ind]}: {map_val}\n")
344
+
345
+
346
+ class ProfileModels:
347
+ """
348
+ ProfileModels class for profiling different models on ONNX and TensorRT.
349
+
350
+ This class profiles the performance of different models, returning results such as model speed and FLOPs.
351
+
352
+ Attributes:
353
+ paths (List[str]): Paths of the models to profile.
354
+ num_timed_runs (int): Number of timed runs for the profiling.
355
+ num_warmup_runs (int): Number of warmup runs before profiling.
356
+ min_time (float): Minimum number of seconds to profile for.
357
+ imgsz (int): Image size used in the models.
358
+ half (bool): Flag to indicate whether to use FP16 half-precision for TensorRT profiling.
359
+ trt (bool): Flag to indicate whether to profile using TensorRT.
360
+ device (torch.device): Device used for profiling.
361
+
362
+ Methods:
363
+ profile: Profiles the models and prints the result.
364
+ get_files: Gets all relevant model files.
365
+ get_onnx_model_info: Extracts metadata from an ONNX model.
366
+ iterative_sigma_clipping: Applies sigma clipping to remove outliers.
367
+ profile_tensorrt_model: Profiles a TensorRT model.
368
+ profile_onnx_model: Profiles an ONNX model.
369
+ generate_table_row: Generates a table row with model metrics.
370
+ generate_results_dict: Generates a dictionary of profiling results.
371
+ print_table: Prints a formatted table of results.
372
+
373
+ Examples:
374
+ Profile models and print results
375
+ >>> from ultralytics.utils.benchmarks import ProfileModels
376
+ >>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
377
+ >>> profiler.run()
378
+ """
379
+
380
+ def __init__(
381
+ self,
382
+ paths: list,
383
+ num_timed_runs=100,
384
+ num_warmup_runs=10,
385
+ min_time=60,
386
+ imgsz=640,
387
+ half=True,
388
+ trt=True,
389
+ device=None,
390
+ ):
391
+ """
392
+ Initialize the ProfileModels class for profiling models.
393
+
394
+ Args:
395
+ paths (List[str]): List of paths of the models to be profiled.
396
+ num_timed_runs (int): Number of timed runs for the profiling.
397
+ num_warmup_runs (int): Number of warmup runs before the actual profiling starts.
398
+ min_time (float): Minimum time in seconds for profiling a model.
399
+ imgsz (int): Size of the image used during profiling.
400
+ half (bool): Flag to indicate whether to use FP16 half-precision for TensorRT profiling.
401
+ trt (bool): Flag to indicate whether to profile using TensorRT.
402
+ device (torch.device | str | None): Device used for profiling. If None, it is determined automatically.
403
+
404
+ Notes:
405
+ FP16 'half' argument option removed for ONNX as slower on CPU than FP32.
406
+
407
+ Examples:
408
+ Initialize and profile models
409
+ >>> from ultralytics.utils.benchmarks import ProfileModels
410
+ >>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
411
+ >>> profiler.run()
412
+ """
413
+ self.paths = paths
414
+ self.num_timed_runs = num_timed_runs
415
+ self.num_warmup_runs = num_warmup_runs
416
+ self.min_time = min_time
417
+ self.imgsz = imgsz
418
+ self.half = half
419
+ self.trt = trt # run TensorRT profiling
420
+ self.device = device if isinstance(device, torch.device) else select_device(device)
421
+
422
+ def run(self):
423
+ """
424
+ Profile YOLO models for speed and accuracy across various formats including ONNX and TensorRT.
425
+
426
+ Returns:
427
+ (List[Dict]): List of dictionaries containing profiling results for each model.
428
+
429
+ Examples:
430
+ Profile models and print results
431
+ >>> from ultralytics.utils.benchmarks import ProfileModels
432
+ >>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"])
433
+ >>> results = profiler.run()
434
+ """
435
+ files = self.get_files()
436
+
437
+ if not files:
438
+ LOGGER.warning("No matching *.pt or *.onnx files found.")
439
+ return
440
+
441
+ table_rows = []
442
+ output = []
443
+ for file in files:
444
+ engine_file = file.with_suffix(".engine")
445
+ if file.suffix in {".pt", ".yaml", ".yml"}:
446
+ model = YOLO(str(file))
447
+ model.fuse() # to report correct params and GFLOPs in model.info()
448
+ model_info = model.info()
449
+ if self.trt and self.device.type != "cpu" and not engine_file.is_file():
450
+ engine_file = model.export(
451
+ format="engine",
452
+ half=self.half,
453
+ imgsz=self.imgsz,
454
+ device=self.device,
455
+ verbose=False,
456
+ )
457
+ onnx_file = model.export(
458
+ format="onnx",
459
+ imgsz=self.imgsz,
460
+ device=self.device,
461
+ verbose=False,
462
+ )
463
+ elif file.suffix == ".onnx":
464
+ model_info = self.get_onnx_model_info(file)
465
+ onnx_file = file
466
+ else:
467
+ continue
468
+
469
+ t_engine = self.profile_tensorrt_model(str(engine_file))
470
+ t_onnx = self.profile_onnx_model(str(onnx_file))
471
+ table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info))
472
+ output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info))
473
+
474
+ self.print_table(table_rows)
475
+ return output
476
+
477
+ def get_files(self):
478
+ """
479
+ Return a list of paths for all relevant model files given by the user.
480
+
481
+ Returns:
482
+ (List[Path]): List of Path objects for the model files.
483
+ """
484
+ files = []
485
+ for path in self.paths:
486
+ path = Path(path)
487
+ if path.is_dir():
488
+ extensions = ["*.pt", "*.onnx", "*.yaml"]
489
+ files.extend([file for ext in extensions for file in glob.glob(str(path / ext))])
490
+ elif path.suffix in {".pt", ".yaml", ".yml"}: # add non-existing
491
+ files.append(str(path))
492
+ else:
493
+ files.extend(glob.glob(str(path)))
494
+
495
+ LOGGER.info(f"Profiling: {sorted(files)}")
496
+ return [Path(file) for file in sorted(files)]
497
+
498
+ @staticmethod
499
+ def get_onnx_model_info(onnx_file: str):
500
+ """Extracts metadata from an ONNX model file including parameters, GFLOPs, and input shape."""
501
+ return 0.0, 0.0, 0.0, 0.0 # return (num_layers, num_params, num_gradients, num_flops)
502
+
503
+ @staticmethod
504
+ def iterative_sigma_clipping(data, sigma=2, max_iters=3):
505
+ """
506
+ Apply iterative sigma clipping to data to remove outliers.
507
+
508
+ Args:
509
+ data (numpy.ndarray): Input data array.
510
+ sigma (float): Number of standard deviations to use for clipping.
511
+ max_iters (int): Maximum number of iterations for the clipping process.
512
+
513
+ Returns:
514
+ (numpy.ndarray): Clipped data array with outliers removed.
515
+ """
516
+ data = np.array(data)
517
+ for _ in range(max_iters):
518
+ mean, std = np.mean(data), np.std(data)
519
+ clipped_data = data[(data > mean - sigma * std) & (data < mean + sigma * std)]
520
+ if len(clipped_data) == len(data):
521
+ break
522
+ data = clipped_data
523
+ return data
524
+
525
+ def profile_tensorrt_model(self, engine_file: str, eps: float = 1e-3):
526
+ """
527
+ Profile YOLO model performance with TensorRT, measuring average run time and standard deviation.
528
+
529
+ Args:
530
+ engine_file (str): Path to the TensorRT engine file.
531
+ eps (float): Small epsilon value to prevent division by zero.
532
+
533
+ Returns:
534
+ mean_time (float): Mean inference time in milliseconds.
535
+ std_time (float): Standard deviation of inference time in milliseconds.
536
+ """
537
+ if not self.trt or not Path(engine_file).is_file():
538
+ return 0.0, 0.0
539
+
540
+ # Model and input
541
+ model = YOLO(engine_file)
542
+ input_data = np.zeros((self.imgsz, self.imgsz, 3), dtype=np.uint8) # use uint8 for Classify
543
+
544
+ # Warmup runs
545
+ elapsed = 0.0
546
+ for _ in range(3):
547
+ start_time = time.time()
548
+ for _ in range(self.num_warmup_runs):
549
+ model(input_data, imgsz=self.imgsz, verbose=False)
550
+ elapsed = time.time() - start_time
551
+
552
+ # Compute number of runs as higher of min_time or num_timed_runs
553
+ num_runs = max(round(self.min_time / (elapsed + eps) * self.num_warmup_runs), self.num_timed_runs * 50)
554
+
555
+ # Timed runs
556
+ run_times = []
557
+ for _ in TQDM(range(num_runs), desc=engine_file):
558
+ results = model(input_data, imgsz=self.imgsz, verbose=False)
559
+ run_times.append(results[0].speed["inference"]) # Convert to milliseconds
560
+
561
+ run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping
562
+ return np.mean(run_times), np.std(run_times)
563
+
564
+ def profile_onnx_model(self, onnx_file: str, eps: float = 1e-3):
565
+ """
566
+ Profile an ONNX model, measuring average inference time and standard deviation across multiple runs.
567
+
568
+ Args:
569
+ onnx_file (str): Path to the ONNX model file.
570
+ eps (float): Small epsilon value to prevent division by zero.
571
+
572
+ Returns:
573
+ mean_time (float): Mean inference time in milliseconds.
574
+ std_time (float): Standard deviation of inference time in milliseconds.
575
+ """
576
+ check_requirements("onnxruntime")
577
+ import onnxruntime as ort
578
+
579
+ # Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
580
+ sess_options = ort.SessionOptions()
581
+ sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
582
+ sess_options.intra_op_num_threads = 8 # Limit the number of threads
583
+ sess = ort.InferenceSession(onnx_file, sess_options, providers=["CPUExecutionProvider"])
584
+
585
+ input_tensor = sess.get_inputs()[0]
586
+ input_type = input_tensor.type
587
+ dynamic = not all(isinstance(dim, int) and dim >= 0 for dim in input_tensor.shape) # dynamic input shape
588
+ input_shape = (1, 3, self.imgsz, self.imgsz) if dynamic else input_tensor.shape
589
+
590
+ # Mapping ONNX datatype to numpy datatype
591
+ if "float16" in input_type:
592
+ input_dtype = np.float16
593
+ elif "float" in input_type:
594
+ input_dtype = np.float32
595
+ elif "double" in input_type:
596
+ input_dtype = np.float64
597
+ elif "int64" in input_type:
598
+ input_dtype = np.int64
599
+ elif "int32" in input_type:
600
+ input_dtype = np.int32
601
+ else:
602
+ raise ValueError(f"Unsupported ONNX datatype {input_type}")
603
+
604
+ input_data = np.random.rand(*input_shape).astype(input_dtype)
605
+ input_name = input_tensor.name
606
+ output_name = sess.get_outputs()[0].name
607
+
608
+ # Warmup runs
609
+ elapsed = 0.0
610
+ for _ in range(3):
611
+ start_time = time.time()
612
+ for _ in range(self.num_warmup_runs):
613
+ sess.run([output_name], {input_name: input_data})
614
+ elapsed = time.time() - start_time
615
+
616
+ # Compute number of runs as higher of min_time or num_timed_runs
617
+ num_runs = max(round(self.min_time / (elapsed + eps) * self.num_warmup_runs), self.num_timed_runs)
618
+
619
+ # Timed runs
620
+ run_times = []
621
+ for _ in TQDM(range(num_runs), desc=onnx_file):
622
+ start_time = time.time()
623
+ sess.run([output_name], {input_name: input_data})
624
+ run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds
625
+
626
+ run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping
627
+ return np.mean(run_times), np.std(run_times)
628
+
629
+ def generate_table_row(self, model_name, t_onnx, t_engine, model_info):
630
+ """
631
+ Generate a table row string with model performance metrics.
632
+
633
+ Args:
634
+ model_name (str): Name of the model.
635
+ t_onnx (tuple): ONNX model inference time statistics (mean, std).
636
+ t_engine (tuple): TensorRT engine inference time statistics (mean, std).
637
+ model_info (tuple): Model information (layers, params, gradients, flops).
638
+
639
+ Returns:
640
+ (str): Formatted table row string with model metrics.
641
+ """
642
+ layers, params, gradients, flops = model_info
643
+ return (
644
+ f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.1f}±{t_onnx[1]:.1f} ms | {t_engine[0]:.1f}±"
645
+ f"{t_engine[1]:.1f} ms | {params / 1e6:.1f} | {flops:.1f} |"
646
+ )
647
+
648
+ @staticmethod
649
+ def generate_results_dict(model_name, t_onnx, t_engine, model_info):
650
+ """
651
+ Generate a dictionary of profiling results.
652
+
653
+ Args:
654
+ model_name (str): Name of the model.
655
+ t_onnx (tuple): ONNX model inference time statistics (mean, std).
656
+ t_engine (tuple): TensorRT engine inference time statistics (mean, std).
657
+ model_info (tuple): Model information (layers, params, gradients, flops).
658
+
659
+ Returns:
660
+ (dict): Dictionary containing profiling results.
661
+ """
662
+ layers, params, gradients, flops = model_info
663
+ return {
664
+ "model/name": model_name,
665
+ "model/parameters": params,
666
+ "model/GFLOPs": round(flops, 3),
667
+ "model/speed_ONNX(ms)": round(t_onnx[0], 3),
668
+ "model/speed_TensorRT(ms)": round(t_engine[0], 3),
669
+ }
670
+
671
+ @staticmethod
672
+ def print_table(table_rows):
673
+ """
674
+ Print a formatted table of model profiling results.
675
+
676
+ Args:
677
+ table_rows (List[str]): List of formatted table row strings.
678
+ """
679
+ gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else "GPU"
680
+ headers = [
681
+ "Model",
682
+ "size<br><sup>(pixels)",
683
+ "mAP<sup>val<br>50-95",
684
+ f"Speed<br><sup>CPU ({get_cpu_info()}) ONNX<br>(ms)",
685
+ f"Speed<br><sup>{gpu} TensorRT<br>(ms)",
686
+ "params<br><sup>(M)",
687
+ "FLOPs<br><sup>(B)",
688
+ ]
689
+ header = "|" + "|".join(f" {h} " for h in headers) + "|"
690
+ separator = "|" + "|".join("-" * (len(h) + 2) for h in headers) + "|"
691
+
692
+ LOGGER.info(f"\n\n{header}")
693
+ LOGGER.info(separator)
694
+ for row in table_rows:
695
+ LOGGER.info(row)