dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (272) hide show
  1. dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
  2. dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
  3. dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
  4. dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
  5. dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
  6. dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
  7. tests/__init__.py +22 -0
  8. tests/conftest.py +83 -0
  9. tests/test_cli.py +138 -0
  10. tests/test_cuda.py +215 -0
  11. tests/test_engine.py +131 -0
  12. tests/test_exports.py +236 -0
  13. tests/test_integrations.py +154 -0
  14. tests/test_python.py +694 -0
  15. tests/test_solutions.py +187 -0
  16. ultralytics/__init__.py +30 -0
  17. ultralytics/assets/bus.jpg +0 -0
  18. ultralytics/assets/zidane.jpg +0 -0
  19. ultralytics/cfg/__init__.py +1023 -0
  20. ultralytics/cfg/datasets/Argoverse.yaml +77 -0
  21. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  22. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  23. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  24. ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
  25. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  26. ultralytics/cfg/datasets/Objects365.yaml +443 -0
  27. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  28. ultralytics/cfg/datasets/VOC.yaml +106 -0
  29. ultralytics/cfg/datasets/VisDrone.yaml +77 -0
  30. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  31. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  32. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  33. ultralytics/cfg/datasets/coco-pose.yaml +42 -0
  34. ultralytics/cfg/datasets/coco.yaml +118 -0
  35. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  36. ultralytics/cfg/datasets/coco128.yaml +101 -0
  37. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  38. ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
  39. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  40. ultralytics/cfg/datasets/coco8.yaml +101 -0
  41. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  42. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  43. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  44. ultralytics/cfg/datasets/dota8.yaml +35 -0
  45. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  46. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  47. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  48. ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
  49. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  50. ultralytics/cfg/datasets/signature.yaml +21 -0
  51. ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
  52. ultralytics/cfg/datasets/xView.yaml +155 -0
  53. ultralytics/cfg/default.yaml +127 -0
  54. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  55. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  56. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  57. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  58. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  59. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  60. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  61. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  62. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  63. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  64. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  65. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  66. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  68. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  69. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  70. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  71. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  74. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  75. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  76. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  77. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  78. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  79. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  80. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  81. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  82. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  83. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
  84. ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
  85. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  86. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  87. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  88. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  89. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  90. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  91. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  92. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  93. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  94. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  95. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  96. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  97. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  98. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  99. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  100. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  101. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  102. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  103. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  105. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  106. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  107. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  108. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  109. ultralytics/cfg/trackers/botsort.yaml +22 -0
  110. ultralytics/cfg/trackers/bytetrack.yaml +14 -0
  111. ultralytics/data/__init__.py +26 -0
  112. ultralytics/data/annotator.py +66 -0
  113. ultralytics/data/augment.py +2945 -0
  114. ultralytics/data/base.py +438 -0
  115. ultralytics/data/build.py +258 -0
  116. ultralytics/data/converter.py +754 -0
  117. ultralytics/data/dataset.py +834 -0
  118. ultralytics/data/loaders.py +676 -0
  119. ultralytics/data/scripts/download_weights.sh +18 -0
  120. ultralytics/data/scripts/get_coco.sh +61 -0
  121. ultralytics/data/scripts/get_coco128.sh +18 -0
  122. ultralytics/data/scripts/get_imagenet.sh +52 -0
  123. ultralytics/data/split.py +125 -0
  124. ultralytics/data/split_dota.py +325 -0
  125. ultralytics/data/utils.py +777 -0
  126. ultralytics/engine/__init__.py +1 -0
  127. ultralytics/engine/exporter.py +1519 -0
  128. ultralytics/engine/model.py +1156 -0
  129. ultralytics/engine/predictor.py +502 -0
  130. ultralytics/engine/results.py +1840 -0
  131. ultralytics/engine/trainer.py +853 -0
  132. ultralytics/engine/tuner.py +243 -0
  133. ultralytics/engine/validator.py +377 -0
  134. ultralytics/hub/__init__.py +168 -0
  135. ultralytics/hub/auth.py +137 -0
  136. ultralytics/hub/google/__init__.py +176 -0
  137. ultralytics/hub/session.py +446 -0
  138. ultralytics/hub/utils.py +248 -0
  139. ultralytics/models/__init__.py +9 -0
  140. ultralytics/models/fastsam/__init__.py +7 -0
  141. ultralytics/models/fastsam/model.py +61 -0
  142. ultralytics/models/fastsam/predict.py +181 -0
  143. ultralytics/models/fastsam/utils.py +24 -0
  144. ultralytics/models/fastsam/val.py +40 -0
  145. ultralytics/models/nas/__init__.py +7 -0
  146. ultralytics/models/nas/model.py +102 -0
  147. ultralytics/models/nas/predict.py +58 -0
  148. ultralytics/models/nas/val.py +39 -0
  149. ultralytics/models/rtdetr/__init__.py +7 -0
  150. ultralytics/models/rtdetr/model.py +63 -0
  151. ultralytics/models/rtdetr/predict.py +84 -0
  152. ultralytics/models/rtdetr/train.py +85 -0
  153. ultralytics/models/rtdetr/val.py +191 -0
  154. ultralytics/models/sam/__init__.py +6 -0
  155. ultralytics/models/sam/amg.py +260 -0
  156. ultralytics/models/sam/build.py +358 -0
  157. ultralytics/models/sam/model.py +170 -0
  158. ultralytics/models/sam/modules/__init__.py +1 -0
  159. ultralytics/models/sam/modules/blocks.py +1129 -0
  160. ultralytics/models/sam/modules/decoders.py +515 -0
  161. ultralytics/models/sam/modules/encoders.py +854 -0
  162. ultralytics/models/sam/modules/memory_attention.py +299 -0
  163. ultralytics/models/sam/modules/sam.py +1006 -0
  164. ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
  165. ultralytics/models/sam/modules/transformer.py +351 -0
  166. ultralytics/models/sam/modules/utils.py +394 -0
  167. ultralytics/models/sam/predict.py +1605 -0
  168. ultralytics/models/utils/__init__.py +1 -0
  169. ultralytics/models/utils/loss.py +455 -0
  170. ultralytics/models/utils/ops.py +268 -0
  171. ultralytics/models/yolo/__init__.py +7 -0
  172. ultralytics/models/yolo/classify/__init__.py +7 -0
  173. ultralytics/models/yolo/classify/predict.py +88 -0
  174. ultralytics/models/yolo/classify/train.py +233 -0
  175. ultralytics/models/yolo/classify/val.py +215 -0
  176. ultralytics/models/yolo/detect/__init__.py +7 -0
  177. ultralytics/models/yolo/detect/predict.py +124 -0
  178. ultralytics/models/yolo/detect/train.py +217 -0
  179. ultralytics/models/yolo/detect/val.py +451 -0
  180. ultralytics/models/yolo/model.py +354 -0
  181. ultralytics/models/yolo/obb/__init__.py +7 -0
  182. ultralytics/models/yolo/obb/predict.py +66 -0
  183. ultralytics/models/yolo/obb/train.py +81 -0
  184. ultralytics/models/yolo/obb/val.py +283 -0
  185. ultralytics/models/yolo/pose/__init__.py +7 -0
  186. ultralytics/models/yolo/pose/predict.py +79 -0
  187. ultralytics/models/yolo/pose/train.py +154 -0
  188. ultralytics/models/yolo/pose/val.py +394 -0
  189. ultralytics/models/yolo/segment/__init__.py +7 -0
  190. ultralytics/models/yolo/segment/predict.py +113 -0
  191. ultralytics/models/yolo/segment/train.py +123 -0
  192. ultralytics/models/yolo/segment/val.py +428 -0
  193. ultralytics/models/yolo/world/__init__.py +5 -0
  194. ultralytics/models/yolo/world/train.py +119 -0
  195. ultralytics/models/yolo/world/train_world.py +176 -0
  196. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  197. ultralytics/models/yolo/yoloe/predict.py +169 -0
  198. ultralytics/models/yolo/yoloe/train.py +298 -0
  199. ultralytics/models/yolo/yoloe/train_seg.py +124 -0
  200. ultralytics/models/yolo/yoloe/val.py +191 -0
  201. ultralytics/nn/__init__.py +29 -0
  202. ultralytics/nn/autobackend.py +842 -0
  203. ultralytics/nn/modules/__init__.py +182 -0
  204. ultralytics/nn/modules/activation.py +53 -0
  205. ultralytics/nn/modules/block.py +1966 -0
  206. ultralytics/nn/modules/conv.py +712 -0
  207. ultralytics/nn/modules/head.py +880 -0
  208. ultralytics/nn/modules/transformer.py +713 -0
  209. ultralytics/nn/modules/utils.py +164 -0
  210. ultralytics/nn/tasks.py +1627 -0
  211. ultralytics/nn/text_model.py +351 -0
  212. ultralytics/solutions/__init__.py +41 -0
  213. ultralytics/solutions/ai_gym.py +116 -0
  214. ultralytics/solutions/analytics.py +252 -0
  215. ultralytics/solutions/config.py +106 -0
  216. ultralytics/solutions/distance_calculation.py +124 -0
  217. ultralytics/solutions/heatmap.py +127 -0
  218. ultralytics/solutions/instance_segmentation.py +84 -0
  219. ultralytics/solutions/object_blurrer.py +90 -0
  220. ultralytics/solutions/object_counter.py +195 -0
  221. ultralytics/solutions/object_cropper.py +84 -0
  222. ultralytics/solutions/parking_management.py +273 -0
  223. ultralytics/solutions/queue_management.py +93 -0
  224. ultralytics/solutions/region_counter.py +120 -0
  225. ultralytics/solutions/security_alarm.py +154 -0
  226. ultralytics/solutions/similarity_search.py +172 -0
  227. ultralytics/solutions/solutions.py +724 -0
  228. ultralytics/solutions/speed_estimation.py +110 -0
  229. ultralytics/solutions/streamlit_inference.py +196 -0
  230. ultralytics/solutions/templates/similarity-search.html +160 -0
  231. ultralytics/solutions/trackzone.py +88 -0
  232. ultralytics/solutions/vision_eye.py +68 -0
  233. ultralytics/trackers/__init__.py +7 -0
  234. ultralytics/trackers/basetrack.py +124 -0
  235. ultralytics/trackers/bot_sort.py +260 -0
  236. ultralytics/trackers/byte_tracker.py +480 -0
  237. ultralytics/trackers/track.py +125 -0
  238. ultralytics/trackers/utils/__init__.py +1 -0
  239. ultralytics/trackers/utils/gmc.py +376 -0
  240. ultralytics/trackers/utils/kalman_filter.py +493 -0
  241. ultralytics/trackers/utils/matching.py +157 -0
  242. ultralytics/utils/__init__.py +1435 -0
  243. ultralytics/utils/autobatch.py +106 -0
  244. ultralytics/utils/autodevice.py +174 -0
  245. ultralytics/utils/benchmarks.py +695 -0
  246. ultralytics/utils/callbacks/__init__.py +5 -0
  247. ultralytics/utils/callbacks/base.py +234 -0
  248. ultralytics/utils/callbacks/clearml.py +153 -0
  249. ultralytics/utils/callbacks/comet.py +552 -0
  250. ultralytics/utils/callbacks/dvc.py +205 -0
  251. ultralytics/utils/callbacks/hub.py +108 -0
  252. ultralytics/utils/callbacks/mlflow.py +138 -0
  253. ultralytics/utils/callbacks/neptune.py +140 -0
  254. ultralytics/utils/callbacks/raytune.py +43 -0
  255. ultralytics/utils/callbacks/tensorboard.py +132 -0
  256. ultralytics/utils/callbacks/wb.py +185 -0
  257. ultralytics/utils/checks.py +897 -0
  258. ultralytics/utils/dist.py +119 -0
  259. ultralytics/utils/downloads.py +499 -0
  260. ultralytics/utils/errors.py +43 -0
  261. ultralytics/utils/export.py +219 -0
  262. ultralytics/utils/files.py +221 -0
  263. ultralytics/utils/instance.py +499 -0
  264. ultralytics/utils/loss.py +813 -0
  265. ultralytics/utils/metrics.py +1356 -0
  266. ultralytics/utils/ops.py +885 -0
  267. ultralytics/utils/patches.py +143 -0
  268. ultralytics/utils/plotting.py +1011 -0
  269. ultralytics/utils/tal.py +416 -0
  270. ultralytics/utils/torch_utils.py +990 -0
  271. ultralytics/utils/triton.py +116 -0
  272. ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,480 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ import numpy as np
4
+
5
+ from ..utils import LOGGER
6
+ from ..utils.ops import xywh2ltwh
7
+ from .basetrack import BaseTrack, TrackState
8
+ from .utils import matching
9
+ from .utils.kalman_filter import KalmanFilterXYAH
10
+
11
+
12
+ class STrack(BaseTrack):
13
+ """
14
+ Single object tracking representation that uses Kalman filtering for state estimation.
15
+
16
+ This class is responsible for storing all the information regarding individual tracklets and performs state updates
17
+ and predictions based on Kalman filter.
18
+
19
+ Attributes:
20
+ shared_kalman (KalmanFilterXYAH): Shared Kalman filter used across all STrack instances for prediction.
21
+ _tlwh (np.ndarray): Private attribute to store top-left corner coordinates and width and height of bounding box.
22
+ kalman_filter (KalmanFilterXYAH): Instance of Kalman filter used for this particular object track.
23
+ mean (np.ndarray): Mean state estimate vector.
24
+ covariance (np.ndarray): Covariance of state estimate.
25
+ is_activated (bool): Boolean flag indicating if the track has been activated.
26
+ score (float): Confidence score of the track.
27
+ tracklet_len (int): Length of the tracklet.
28
+ cls (Any): Class label for the object.
29
+ idx (int): Index or identifier for the object.
30
+ frame_id (int): Current frame ID.
31
+ start_frame (int): Frame where the object was first detected.
32
+
33
+ Methods:
34
+ predict(): Predict the next state of the object using Kalman filter.
35
+ multi_predict(stracks): Predict the next states for multiple tracks.
36
+ multi_gmc(stracks, H): Update multiple track states using a homography matrix.
37
+ activate(kalman_filter, frame_id): Activate a new tracklet.
38
+ re_activate(new_track, frame_id, new_id): Reactivate a previously lost tracklet.
39
+ update(new_track, frame_id): Update the state of a matched track.
40
+ convert_coords(tlwh): Convert bounding box to x-y-aspect-height format.
41
+ tlwh_to_xyah(tlwh): Convert tlwh bounding box to xyah format.
42
+
43
+ Examples:
44
+ Initialize and activate a new track
45
+ >>> track = STrack(xywh=[100, 200, 50, 80, 0], score=0.9, cls="person")
46
+ >>> track.activate(kalman_filter=KalmanFilterXYAH(), frame_id=1)
47
+ """
48
+
49
+ shared_kalman = KalmanFilterXYAH()
50
+
51
+ def __init__(self, xywh, score, cls):
52
+ """
53
+ Initialize a new STrack instance.
54
+
55
+ Args:
56
+ xywh (List[float]): Bounding box coordinates and dimensions in the format (x, y, w, h, [a], idx), where
57
+ (x, y) is the center, (w, h) are width and height, [a] is optional aspect ratio, and idx is the id.
58
+ score (float): Confidence score of the detection.
59
+ cls (Any): Class label for the detected object.
60
+
61
+ Examples:
62
+ >>> xywh = [100.0, 150.0, 50.0, 75.0, 1]
63
+ >>> score = 0.9
64
+ >>> cls = "person"
65
+ >>> track = STrack(xywh, score, cls)
66
+ """
67
+ super().__init__()
68
+ # xywh+idx or xywha+idx
69
+ assert len(xywh) in {5, 6}, f"expected 5 or 6 values but got {len(xywh)}"
70
+ self._tlwh = np.asarray(xywh2ltwh(xywh[:4]), dtype=np.float32)
71
+ self.kalman_filter = None
72
+ self.mean, self.covariance = None, None
73
+ self.is_activated = False
74
+
75
+ self.score = score
76
+ self.tracklet_len = 0
77
+ self.cls = cls
78
+ self.idx = xywh[-1]
79
+ self.angle = xywh[4] if len(xywh) == 6 else None
80
+
81
+ def predict(self):
82
+ """Predicts the next state (mean and covariance) of the object using the Kalman filter."""
83
+ mean_state = self.mean.copy()
84
+ if self.state != TrackState.Tracked:
85
+ mean_state[7] = 0
86
+ self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
87
+
88
+ @staticmethod
89
+ def multi_predict(stracks):
90
+ """Perform multi-object predictive tracking using Kalman filter for the provided list of STrack instances."""
91
+ if len(stracks) <= 0:
92
+ return
93
+ multi_mean = np.asarray([st.mean.copy() for st in stracks])
94
+ multi_covariance = np.asarray([st.covariance for st in stracks])
95
+ for i, st in enumerate(stracks):
96
+ if st.state != TrackState.Tracked:
97
+ multi_mean[i][7] = 0
98
+ multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
99
+ for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
100
+ stracks[i].mean = mean
101
+ stracks[i].covariance = cov
102
+
103
+ @staticmethod
104
+ def multi_gmc(stracks, H=np.eye(2, 3)):
105
+ """Update state tracks positions and covariances using a homography matrix for multiple tracks."""
106
+ if len(stracks) > 0:
107
+ multi_mean = np.asarray([st.mean.copy() for st in stracks])
108
+ multi_covariance = np.asarray([st.covariance for st in stracks])
109
+
110
+ R = H[:2, :2]
111
+ R8x8 = np.kron(np.eye(4, dtype=float), R)
112
+ t = H[:2, 2]
113
+
114
+ for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
115
+ mean = R8x8.dot(mean)
116
+ mean[:2] += t
117
+ cov = R8x8.dot(cov).dot(R8x8.transpose())
118
+
119
+ stracks[i].mean = mean
120
+ stracks[i].covariance = cov
121
+
122
+ def activate(self, kalman_filter, frame_id):
123
+ """Activate a new tracklet using the provided Kalman filter and initialize its state and covariance."""
124
+ self.kalman_filter = kalman_filter
125
+ self.track_id = self.next_id()
126
+ self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh))
127
+
128
+ self.tracklet_len = 0
129
+ self.state = TrackState.Tracked
130
+ if frame_id == 1:
131
+ self.is_activated = True
132
+ self.frame_id = frame_id
133
+ self.start_frame = frame_id
134
+
135
+ def re_activate(self, new_track, frame_id, new_id=False):
136
+ """Reactivates a previously lost track using new detection data and updates its state and attributes."""
137
+ self.mean, self.covariance = self.kalman_filter.update(
138
+ self.mean, self.covariance, self.convert_coords(new_track.tlwh)
139
+ )
140
+ self.tracklet_len = 0
141
+ self.state = TrackState.Tracked
142
+ self.is_activated = True
143
+ self.frame_id = frame_id
144
+ if new_id:
145
+ self.track_id = self.next_id()
146
+ self.score = new_track.score
147
+ self.cls = new_track.cls
148
+ self.angle = new_track.angle
149
+ self.idx = new_track.idx
150
+
151
+ def update(self, new_track, frame_id):
152
+ """
153
+ Update the state of a matched track.
154
+
155
+ Args:
156
+ new_track (STrack): The new track containing updated information.
157
+ frame_id (int): The ID of the current frame.
158
+
159
+ Examples:
160
+ Update the state of a track with new detection information
161
+ >>> track = STrack([100, 200, 50, 80, 0.9, 1])
162
+ >>> new_track = STrack([105, 205, 55, 85, 0.95, 1])
163
+ >>> track.update(new_track, 2)
164
+ """
165
+ self.frame_id = frame_id
166
+ self.tracklet_len += 1
167
+
168
+ new_tlwh = new_track.tlwh
169
+ self.mean, self.covariance = self.kalman_filter.update(
170
+ self.mean, self.covariance, self.convert_coords(new_tlwh)
171
+ )
172
+ self.state = TrackState.Tracked
173
+ self.is_activated = True
174
+
175
+ self.score = new_track.score
176
+ self.cls = new_track.cls
177
+ self.angle = new_track.angle
178
+ self.idx = new_track.idx
179
+
180
+ def convert_coords(self, tlwh):
181
+ """Convert a bounding box's top-left-width-height format to its x-y-aspect-height equivalent."""
182
+ return self.tlwh_to_xyah(tlwh)
183
+
184
+ @property
185
+ def tlwh(self):
186
+ """Returns the bounding box in top-left-width-height format from the current state estimate."""
187
+ if self.mean is None:
188
+ return self._tlwh.copy()
189
+ ret = self.mean[:4].copy()
190
+ ret[2] *= ret[3]
191
+ ret[:2] -= ret[2:] / 2
192
+ return ret
193
+
194
+ @property
195
+ def xyxy(self):
196
+ """Converts bounding box from (top left x, top left y, width, height) to (min x, min y, max x, max y) format."""
197
+ ret = self.tlwh.copy()
198
+ ret[2:] += ret[:2]
199
+ return ret
200
+
201
+ @staticmethod
202
+ def tlwh_to_xyah(tlwh):
203
+ """Convert bounding box from tlwh format to center-x-center-y-aspect-height (xyah) format."""
204
+ ret = np.asarray(tlwh).copy()
205
+ ret[:2] += ret[2:] / 2
206
+ ret[2] /= ret[3]
207
+ return ret
208
+
209
+ @property
210
+ def xywh(self):
211
+ """Returns the current position of the bounding box in (center x, center y, width, height) format."""
212
+ ret = np.asarray(self.tlwh).copy()
213
+ ret[:2] += ret[2:] / 2
214
+ return ret
215
+
216
+ @property
217
+ def xywha(self):
218
+ """Returns position in (center x, center y, width, height, angle) format, warning if angle is missing."""
219
+ if self.angle is None:
220
+ LOGGER.warning("`angle` attr not found, returning `xywh` instead.")
221
+ return self.xywh
222
+ return np.concatenate([self.xywh, self.angle[None]])
223
+
224
+ @property
225
+ def result(self):
226
+ """Returns the current tracking results in the appropriate bounding box format."""
227
+ coords = self.xyxy if self.angle is None else self.xywha
228
+ return coords.tolist() + [self.track_id, self.score, self.cls, self.idx]
229
+
230
+ def __repr__(self):
231
+ """Returns a string representation of the STrack object including start frame, end frame, and track ID."""
232
+ return f"OT_{self.track_id}_({self.start_frame}-{self.end_frame})"
233
+
234
+
235
+ class BYTETracker:
236
+ """
237
+ BYTETracker: A tracking algorithm built on top of YOLOv8 for object detection and tracking.
238
+
239
+ This class encapsulates the functionality for initializing, updating, and managing the tracks for detected objects in a
240
+ video sequence. It maintains the state of tracked, lost, and removed tracks over frames, utilizes Kalman filtering for
241
+ predicting the new object locations, and performs data association.
242
+
243
+ Attributes:
244
+ tracked_stracks (List[STrack]): List of successfully activated tracks.
245
+ lost_stracks (List[STrack]): List of lost tracks.
246
+ removed_stracks (List[STrack]): List of removed tracks.
247
+ frame_id (int): The current frame ID.
248
+ args (Namespace): Command-line arguments.
249
+ max_time_lost (int): The maximum frames for a track to be considered as 'lost'.
250
+ kalman_filter (KalmanFilterXYAH): Kalman Filter object.
251
+
252
+ Methods:
253
+ update(results, img=None): Updates object tracker with new detections.
254
+ get_kalmanfilter(): Returns a Kalman filter object for tracking bounding boxes.
255
+ init_track(dets, scores, cls, img=None): Initialize object tracking with detections.
256
+ get_dists(tracks, detections): Calculates the distance between tracks and detections.
257
+ multi_predict(tracks): Predicts the location of tracks.
258
+ reset_id(): Resets the ID counter of STrack.
259
+ joint_stracks(tlista, tlistb): Combines two lists of stracks.
260
+ sub_stracks(tlista, tlistb): Filters out the stracks present in the second list from the first list.
261
+ remove_duplicate_stracks(stracksa, stracksb): Removes duplicate stracks based on IoU.
262
+
263
+ Examples:
264
+ Initialize BYTETracker and update with detection results
265
+ >>> tracker = BYTETracker(args, frame_rate=30)
266
+ >>> results = yolo_model.detect(image)
267
+ >>> tracked_objects = tracker.update(results)
268
+ """
269
+
270
+ def __init__(self, args, frame_rate=30):
271
+ """
272
+ Initialize a BYTETracker instance for object tracking.
273
+
274
+ Args:
275
+ args (Namespace): Command-line arguments containing tracking parameters.
276
+ frame_rate (int): Frame rate of the video sequence.
277
+
278
+ Examples:
279
+ Initialize BYTETracker with command-line arguments and a frame rate of 30
280
+ >>> args = Namespace(track_buffer=30)
281
+ >>> tracker = BYTETracker(args, frame_rate=30)
282
+ """
283
+ self.tracked_stracks = [] # type: list[STrack]
284
+ self.lost_stracks = [] # type: list[STrack]
285
+ self.removed_stracks = [] # type: list[STrack]
286
+
287
+ self.frame_id = 0
288
+ self.args = args
289
+ self.max_time_lost = int(frame_rate / 30.0 * args.track_buffer)
290
+ self.kalman_filter = self.get_kalmanfilter()
291
+ self.reset_id()
292
+
293
+ def update(self, results, img=None, feats=None):
294
+ """Updates the tracker with new detections and returns the current list of tracked objects."""
295
+ self.frame_id += 1
296
+ activated_stracks = []
297
+ refind_stracks = []
298
+ lost_stracks = []
299
+ removed_stracks = []
300
+
301
+ scores = results.conf
302
+ bboxes = results.xywhr if hasattr(results, "xywhr") else results.xywh
303
+ # Add index
304
+ bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1)
305
+ cls = results.cls
306
+
307
+ remain_inds = scores >= self.args.track_high_thresh
308
+ inds_low = scores > self.args.track_low_thresh
309
+ inds_high = scores < self.args.track_high_thresh
310
+
311
+ inds_second = inds_low & inds_high
312
+ dets_second = bboxes[inds_second]
313
+ dets = bboxes[remain_inds]
314
+ scores_keep = scores[remain_inds]
315
+ scores_second = scores[inds_second]
316
+ cls_keep = cls[remain_inds]
317
+ cls_second = cls[inds_second]
318
+
319
+ detections = self.init_track(dets, scores_keep, cls_keep, img if feats is None else feats)
320
+ # Add newly detected tracklets to tracked_stracks
321
+ unconfirmed = []
322
+ tracked_stracks = [] # type: list[STrack]
323
+ for track in self.tracked_stracks:
324
+ if not track.is_activated:
325
+ unconfirmed.append(track)
326
+ else:
327
+ tracked_stracks.append(track)
328
+ # Step 2: First association, with high score detection boxes
329
+ strack_pool = self.joint_stracks(tracked_stracks, self.lost_stracks)
330
+ # Predict the current location with KF
331
+ self.multi_predict(strack_pool)
332
+ if hasattr(self, "gmc") and img is not None:
333
+ # use try-except here to bypass errors from gmc module
334
+ try:
335
+ warp = self.gmc.apply(img, dets)
336
+ except Exception:
337
+ warp = np.eye(2, 3)
338
+ STrack.multi_gmc(strack_pool, warp)
339
+ STrack.multi_gmc(unconfirmed, warp)
340
+
341
+ dists = self.get_dists(strack_pool, detections)
342
+ matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh)
343
+
344
+ for itracked, idet in matches:
345
+ track = strack_pool[itracked]
346
+ det = detections[idet]
347
+ if track.state == TrackState.Tracked:
348
+ track.update(det, self.frame_id)
349
+ activated_stracks.append(track)
350
+ else:
351
+ track.re_activate(det, self.frame_id, new_id=False)
352
+ refind_stracks.append(track)
353
+ # Step 3: Second association, with low score detection boxes association the untrack to the low score detections
354
+ detections_second = self.init_track(dets_second, scores_second, cls_second, img if feats is None else feats)
355
+ r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
356
+ # TODO
357
+ dists = matching.iou_distance(r_tracked_stracks, detections_second)
358
+ matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5)
359
+ for itracked, idet in matches:
360
+ track = r_tracked_stracks[itracked]
361
+ det = detections_second[idet]
362
+ if track.state == TrackState.Tracked:
363
+ track.update(det, self.frame_id)
364
+ activated_stracks.append(track)
365
+ else:
366
+ track.re_activate(det, self.frame_id, new_id=False)
367
+ refind_stracks.append(track)
368
+
369
+ for it in u_track:
370
+ track = r_tracked_stracks[it]
371
+ if track.state != TrackState.Lost:
372
+ track.mark_lost()
373
+ lost_stracks.append(track)
374
+ # Deal with unconfirmed tracks, usually tracks with only one beginning frame
375
+ detections = [detections[i] for i in u_detection]
376
+ dists = self.get_dists(unconfirmed, detections)
377
+ matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
378
+ for itracked, idet in matches:
379
+ unconfirmed[itracked].update(detections[idet], self.frame_id)
380
+ activated_stracks.append(unconfirmed[itracked])
381
+ for it in u_unconfirmed:
382
+ track = unconfirmed[it]
383
+ track.mark_removed()
384
+ removed_stracks.append(track)
385
+ # Step 4: Init new stracks
386
+ for inew in u_detection:
387
+ track = detections[inew]
388
+ if track.score < self.args.new_track_thresh:
389
+ continue
390
+ track.activate(self.kalman_filter, self.frame_id)
391
+ activated_stracks.append(track)
392
+ # Step 5: Update state
393
+ for track in self.lost_stracks:
394
+ if self.frame_id - track.end_frame > self.max_time_lost:
395
+ track.mark_removed()
396
+ removed_stracks.append(track)
397
+
398
+ self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
399
+ self.tracked_stracks = self.joint_stracks(self.tracked_stracks, activated_stracks)
400
+ self.tracked_stracks = self.joint_stracks(self.tracked_stracks, refind_stracks)
401
+ self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks)
402
+ self.lost_stracks.extend(lost_stracks)
403
+ self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks)
404
+ self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
405
+ self.removed_stracks.extend(removed_stracks)
406
+ if len(self.removed_stracks) > 1000:
407
+ self.removed_stracks = self.removed_stracks[-999:] # clip remove stracks to 1000 maximum
408
+
409
+ return np.asarray([x.result for x in self.tracked_stracks if x.is_activated], dtype=np.float32)
410
+
411
+ def get_kalmanfilter(self):
412
+ """Returns a Kalman filter object for tracking bounding boxes using KalmanFilterXYAH."""
413
+ return KalmanFilterXYAH()
414
+
415
+ def init_track(self, dets, scores, cls, img=None):
416
+ """Initializes object tracking with given detections, scores, and class labels using the STrack algorithm."""
417
+ return [STrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] if len(dets) else [] # detections
418
+
419
+ def get_dists(self, tracks, detections):
420
+ """Calculates the distance between tracks and detections using IoU and optionally fuses scores."""
421
+ dists = matching.iou_distance(tracks, detections)
422
+ if self.args.fuse_score:
423
+ dists = matching.fuse_score(dists, detections)
424
+ return dists
425
+
426
+ def multi_predict(self, tracks):
427
+ """Predict the next states for multiple tracks using Kalman filter."""
428
+ STrack.multi_predict(tracks)
429
+
430
+ @staticmethod
431
+ def reset_id():
432
+ """Resets the ID counter for STrack instances to ensure unique track IDs across tracking sessions."""
433
+ STrack.reset_id()
434
+
435
+ def reset(self):
436
+ """Resets the tracker by clearing all tracked, lost, and removed tracks and reinitializing the Kalman filter."""
437
+ self.tracked_stracks = [] # type: list[STrack]
438
+ self.lost_stracks = [] # type: list[STrack]
439
+ self.removed_stracks = [] # type: list[STrack]
440
+ self.frame_id = 0
441
+ self.kalman_filter = self.get_kalmanfilter()
442
+ self.reset_id()
443
+
444
+ @staticmethod
445
+ def joint_stracks(tlista, tlistb):
446
+ """Combines two lists of STrack objects into a single list, ensuring no duplicates based on track IDs."""
447
+ exists = {}
448
+ res = []
449
+ for t in tlista:
450
+ exists[t.track_id] = 1
451
+ res.append(t)
452
+ for t in tlistb:
453
+ tid = t.track_id
454
+ if not exists.get(tid, 0):
455
+ exists[tid] = 1
456
+ res.append(t)
457
+ return res
458
+
459
+ @staticmethod
460
+ def sub_stracks(tlista, tlistb):
461
+ """Filters out the stracks present in the second list from the first list."""
462
+ track_ids_b = {t.track_id for t in tlistb}
463
+ return [t for t in tlista if t.track_id not in track_ids_b]
464
+
465
+ @staticmethod
466
+ def remove_duplicate_stracks(stracksa, stracksb):
467
+ """Removes duplicate stracks from two lists based on Intersection over Union (IoU) distance."""
468
+ pdist = matching.iou_distance(stracksa, stracksb)
469
+ pairs = np.where(pdist < 0.15)
470
+ dupa, dupb = [], []
471
+ for p, q in zip(*pairs):
472
+ timep = stracksa[p].frame_id - stracksa[p].start_frame
473
+ timeq = stracksb[q].frame_id - stracksb[q].start_frame
474
+ if timep > timeq:
475
+ dupb.append(q)
476
+ else:
477
+ dupa.append(p)
478
+ resa = [t for i, t in enumerate(stracksa) if i not in dupa]
479
+ resb = [t for i, t in enumerate(stracksb) if i not in dupb]
480
+ return resa, resb
@@ -0,0 +1,125 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ from functools import partial
4
+ from pathlib import Path
5
+
6
+ import torch
7
+
8
+ from ultralytics.utils import YAML, IterableSimpleNamespace
9
+ from ultralytics.utils.checks import check_yaml
10
+
11
+ from .bot_sort import BOTSORT
12
+ from .byte_tracker import BYTETracker
13
+
14
+ # A mapping of tracker types to corresponding tracker classes
15
+ TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT}
16
+
17
+
18
+ def on_predict_start(predictor: object, persist: bool = False) -> None:
19
+ """
20
+ Initialize trackers for object tracking during prediction.
21
+
22
+ Args:
23
+ predictor (object): The predictor object to initialize trackers for.
24
+ persist (bool): Whether to persist the trackers if they already exist.
25
+
26
+ Raises:
27
+ AssertionError: If the tracker_type is not 'bytetrack' or 'botsort'.
28
+ ValueError: If the task is 'classify' as classification doesn't support tracking.
29
+
30
+ Examples:
31
+ Initialize trackers for a predictor object:
32
+ >>> predictor = SomePredictorClass()
33
+ >>> on_predict_start(predictor, persist=True)
34
+ """
35
+ if predictor.args.task == "classify":
36
+ raise ValueError("❌ Classification doesn't support 'mode=track'")
37
+
38
+ if hasattr(predictor, "trackers") and persist:
39
+ return
40
+
41
+ tracker = check_yaml(predictor.args.tracker)
42
+ cfg = IterableSimpleNamespace(**YAML.load(tracker))
43
+
44
+ if cfg.tracker_type not in {"bytetrack", "botsort"}:
45
+ raise AssertionError(f"Only 'bytetrack' and 'botsort' are supported for now, but got '{cfg.tracker_type}'")
46
+
47
+ predictor._feats = None # reset in case used earlier
48
+ if hasattr(predictor, "_hook"):
49
+ predictor._hook.remove()
50
+ if cfg.tracker_type == "botsort" and cfg.with_reid and cfg.model == "auto":
51
+ from ultralytics.nn.modules.head import Detect
52
+
53
+ if not (
54
+ isinstance(predictor.model.model, torch.nn.Module)
55
+ and isinstance(predictor.model.model.model[-1], Detect)
56
+ and not predictor.model.model.model[-1].end2end
57
+ ):
58
+ cfg.model = "yolo11n-cls.pt"
59
+ else:
60
+ # Register hook to extract input of Detect layer
61
+ def pre_hook(module, input):
62
+ predictor._feats = list(input[0]) # unroll to new list to avoid mutation in forward
63
+
64
+ predictor._hook = predictor.model.model.model[-1].register_forward_pre_hook(pre_hook)
65
+
66
+ trackers = []
67
+ for _ in range(predictor.dataset.bs):
68
+ tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
69
+ trackers.append(tracker)
70
+ if predictor.dataset.mode != "stream": # only need one tracker for other modes
71
+ break
72
+ predictor.trackers = trackers
73
+ predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video
74
+
75
+
76
+ def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None:
77
+ """
78
+ Postprocess detected boxes and update with object tracking.
79
+
80
+ Args:
81
+ predictor (object): The predictor object containing the predictions.
82
+ persist (bool): Whether to persist the trackers if they already exist.
83
+
84
+ Examples:
85
+ Postprocess predictions and update with tracking
86
+ >>> predictor = YourPredictorClass()
87
+ >>> on_predict_postprocess_end(predictor, persist=True)
88
+ """
89
+ is_obb = predictor.args.task == "obb"
90
+ is_stream = predictor.dataset.mode == "stream"
91
+ for i, result in enumerate(predictor.results):
92
+ tracker = predictor.trackers[i if is_stream else 0]
93
+ vid_path = predictor.save_dir / Path(result.path).name
94
+ if not persist and predictor.vid_path[i if is_stream else 0] != vid_path:
95
+ tracker.reset()
96
+ predictor.vid_path[i if is_stream else 0] = vid_path
97
+
98
+ det = (result.obb if is_obb else result.boxes).cpu().numpy()
99
+ if len(det) == 0:
100
+ continue
101
+ tracks = tracker.update(det, result.orig_img, getattr(result, "feats", None))
102
+ if len(tracks) == 0:
103
+ continue
104
+ idx = tracks[:, -1].astype(int)
105
+ predictor.results[i] = result[idx]
106
+
107
+ update_args = {"obb" if is_obb else "boxes": torch.as_tensor(tracks[:, :-1])}
108
+ predictor.results[i].update(**update_args)
109
+
110
+
111
+ def register_tracker(model: object, persist: bool) -> None:
112
+ """
113
+ Register tracking callbacks to the model for object tracking during prediction.
114
+
115
+ Args:
116
+ model (object): The model object to register tracking callbacks for.
117
+ persist (bool): Whether to persist the trackers if they already exist.
118
+
119
+ Examples:
120
+ Register tracking callbacks to a YOLO model
121
+ >>> model = YOLOModel()
122
+ >>> register_tracker(model, persist=True)
123
+ """
124
+ model.add_callback("on_predict_start", partial(on_predict_start, persist=persist))
125
+ model.add_callback("on_predict_postprocess_end", partial(on_predict_postprocess_end, persist=persist))
@@ -0,0 +1 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license