dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
- tests/__init__.py +22 -0
- tests/conftest.py +83 -0
- tests/test_cli.py +138 -0
- tests/test_cuda.py +215 -0
- tests/test_engine.py +131 -0
- tests/test_exports.py +236 -0
- tests/test_integrations.py +154 -0
- tests/test_python.py +694 -0
- tests/test_solutions.py +187 -0
- ultralytics/__init__.py +30 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1023 -0
- ultralytics/cfg/datasets/Argoverse.yaml +77 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +443 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +106 -0
- ultralytics/cfg/datasets/VisDrone.yaml +77 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +42 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +24 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +22 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +127 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +22 -0
- ultralytics/cfg/trackers/bytetrack.yaml +14 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2945 -0
- ultralytics/data/base.py +438 -0
- ultralytics/data/build.py +258 -0
- ultralytics/data/converter.py +754 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +676 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +125 -0
- ultralytics/data/split_dota.py +325 -0
- ultralytics/data/utils.py +777 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1519 -0
- ultralytics/engine/model.py +1156 -0
- ultralytics/engine/predictor.py +502 -0
- ultralytics/engine/results.py +1840 -0
- ultralytics/engine/trainer.py +853 -0
- ultralytics/engine/tuner.py +243 -0
- ultralytics/engine/validator.py +377 -0
- ultralytics/hub/__init__.py +168 -0
- ultralytics/hub/auth.py +137 -0
- ultralytics/hub/google/__init__.py +176 -0
- ultralytics/hub/session.py +446 -0
- ultralytics/hub/utils.py +248 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +61 -0
- ultralytics/models/fastsam/predict.py +181 -0
- ultralytics/models/fastsam/utils.py +24 -0
- ultralytics/models/fastsam/val.py +40 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +102 -0
- ultralytics/models/nas/predict.py +58 -0
- ultralytics/models/nas/val.py +39 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +84 -0
- ultralytics/models/rtdetr/train.py +85 -0
- ultralytics/models/rtdetr/val.py +191 -0
- ultralytics/models/sam/__init__.py +6 -0
- ultralytics/models/sam/amg.py +260 -0
- ultralytics/models/sam/build.py +358 -0
- ultralytics/models/sam/model.py +170 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1129 -0
- ultralytics/models/sam/modules/decoders.py +515 -0
- ultralytics/models/sam/modules/encoders.py +854 -0
- ultralytics/models/sam/modules/memory_attention.py +299 -0
- ultralytics/models/sam/modules/sam.py +1006 -0
- ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
- ultralytics/models/sam/modules/transformer.py +351 -0
- ultralytics/models/sam/modules/utils.py +394 -0
- ultralytics/models/sam/predict.py +1605 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +455 -0
- ultralytics/models/utils/ops.py +268 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +88 -0
- ultralytics/models/yolo/classify/train.py +233 -0
- ultralytics/models/yolo/classify/val.py +215 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +124 -0
- ultralytics/models/yolo/detect/train.py +217 -0
- ultralytics/models/yolo/detect/val.py +451 -0
- ultralytics/models/yolo/model.py +354 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +66 -0
- ultralytics/models/yolo/obb/train.py +81 -0
- ultralytics/models/yolo/obb/val.py +283 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +79 -0
- ultralytics/models/yolo/pose/train.py +154 -0
- ultralytics/models/yolo/pose/val.py +394 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +113 -0
- ultralytics/models/yolo/segment/train.py +123 -0
- ultralytics/models/yolo/segment/val.py +428 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +119 -0
- ultralytics/models/yolo/world/train_world.py +176 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +169 -0
- ultralytics/models/yolo/yoloe/train.py +298 -0
- ultralytics/models/yolo/yoloe/train_seg.py +124 -0
- ultralytics/models/yolo/yoloe/val.py +191 -0
- ultralytics/nn/__init__.py +29 -0
- ultralytics/nn/autobackend.py +842 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +53 -0
- ultralytics/nn/modules/block.py +1966 -0
- ultralytics/nn/modules/conv.py +712 -0
- ultralytics/nn/modules/head.py +880 -0
- ultralytics/nn/modules/transformer.py +713 -0
- ultralytics/nn/modules/utils.py +164 -0
- ultralytics/nn/tasks.py +1627 -0
- ultralytics/nn/text_model.py +351 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +116 -0
- ultralytics/solutions/analytics.py +252 -0
- ultralytics/solutions/config.py +106 -0
- ultralytics/solutions/distance_calculation.py +124 -0
- ultralytics/solutions/heatmap.py +127 -0
- ultralytics/solutions/instance_segmentation.py +84 -0
- ultralytics/solutions/object_blurrer.py +90 -0
- ultralytics/solutions/object_counter.py +195 -0
- ultralytics/solutions/object_cropper.py +84 -0
- ultralytics/solutions/parking_management.py +273 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +120 -0
- ultralytics/solutions/security_alarm.py +154 -0
- ultralytics/solutions/similarity_search.py +172 -0
- ultralytics/solutions/solutions.py +724 -0
- ultralytics/solutions/speed_estimation.py +110 -0
- ultralytics/solutions/streamlit_inference.py +196 -0
- ultralytics/solutions/templates/similarity-search.html +160 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +68 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +124 -0
- ultralytics/trackers/bot_sort.py +260 -0
- ultralytics/trackers/byte_tracker.py +480 -0
- ultralytics/trackers/track.py +125 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +376 -0
- ultralytics/trackers/utils/kalman_filter.py +493 -0
- ultralytics/trackers/utils/matching.py +157 -0
- ultralytics/utils/__init__.py +1435 -0
- ultralytics/utils/autobatch.py +106 -0
- ultralytics/utils/autodevice.py +174 -0
- ultralytics/utils/benchmarks.py +695 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +234 -0
- ultralytics/utils/callbacks/clearml.py +153 -0
- ultralytics/utils/callbacks/comet.py +552 -0
- ultralytics/utils/callbacks/dvc.py +205 -0
- ultralytics/utils/callbacks/hub.py +108 -0
- ultralytics/utils/callbacks/mlflow.py +138 -0
- ultralytics/utils/callbacks/neptune.py +140 -0
- ultralytics/utils/callbacks/raytune.py +43 -0
- ultralytics/utils/callbacks/tensorboard.py +132 -0
- ultralytics/utils/callbacks/wb.py +185 -0
- ultralytics/utils/checks.py +897 -0
- ultralytics/utils/dist.py +119 -0
- ultralytics/utils/downloads.py +499 -0
- ultralytics/utils/errors.py +43 -0
- ultralytics/utils/export.py +219 -0
- ultralytics/utils/files.py +221 -0
- ultralytics/utils/instance.py +499 -0
- ultralytics/utils/loss.py +813 -0
- ultralytics/utils/metrics.py +1356 -0
- ultralytics/utils/ops.py +885 -0
- ultralytics/utils/patches.py +143 -0
- ultralytics/utils/plotting.py +1011 -0
- ultralytics/utils/tal.py +416 -0
- ultralytics/utils/torch_utils.py +990 -0
- ultralytics/utils/triton.py +116 -0
- ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,880 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
"""Model head modules."""
|
3
|
+
|
4
|
+
import copy
|
5
|
+
import math
|
6
|
+
|
7
|
+
import torch
|
8
|
+
import torch.nn as nn
|
9
|
+
import torch.nn.functional as F
|
10
|
+
from torch.nn.init import constant_, xavier_uniform_
|
11
|
+
|
12
|
+
from ultralytics.utils.tal import TORCH_1_10, dist2bbox, dist2rbox, make_anchors
|
13
|
+
from ultralytics.utils.torch_utils import fuse_conv_and_bn, smart_inference_mode
|
14
|
+
|
15
|
+
from .block import DFL, SAVPE, BNContrastiveHead, ContrastiveHead, Proto, Residual, SwiGLUFFN
|
16
|
+
from .conv import Conv, DWConv
|
17
|
+
from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
|
18
|
+
from .utils import bias_init_with_prob, linear_init
|
19
|
+
|
20
|
+
__all__ = "Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder", "v10Detect", "YOLOEDetect", "YOLOESegment"
|
21
|
+
|
22
|
+
|
23
|
+
class Detect(nn.Module):
|
24
|
+
"""YOLO Detect head for detection models."""
|
25
|
+
|
26
|
+
dynamic = False # force grid reconstruction
|
27
|
+
export = False # export mode
|
28
|
+
format = None # export format
|
29
|
+
end2end = False # end2end
|
30
|
+
max_det = 300 # max_det
|
31
|
+
shape = None
|
32
|
+
anchors = torch.empty(0) # init
|
33
|
+
strides = torch.empty(0) # init
|
34
|
+
legacy = False # backward compatibility for v3/v5/v8/v9 models
|
35
|
+
xyxy = False # xyxy or xywh output
|
36
|
+
|
37
|
+
def __init__(self, nc=80, ch=()):
|
38
|
+
"""Initialize the YOLO detection layer with specified number of classes and channels."""
|
39
|
+
super().__init__()
|
40
|
+
self.nc = nc # number of classes
|
41
|
+
self.nl = len(ch) # number of detection layers
|
42
|
+
self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
|
43
|
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
44
|
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
45
|
+
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels
|
46
|
+
self.cv2 = nn.ModuleList(
|
47
|
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
|
48
|
+
)
|
49
|
+
self.cv3 = (
|
50
|
+
nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
|
51
|
+
if self.legacy
|
52
|
+
else nn.ModuleList(
|
53
|
+
nn.Sequential(
|
54
|
+
nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
|
55
|
+
nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
|
56
|
+
nn.Conv2d(c3, self.nc, 1),
|
57
|
+
)
|
58
|
+
for x in ch
|
59
|
+
)
|
60
|
+
)
|
61
|
+
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
|
62
|
+
|
63
|
+
if self.end2end:
|
64
|
+
self.one2one_cv2 = copy.deepcopy(self.cv2)
|
65
|
+
self.one2one_cv3 = copy.deepcopy(self.cv3)
|
66
|
+
|
67
|
+
def forward(self, x):
|
68
|
+
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
69
|
+
if self.end2end:
|
70
|
+
return self.forward_end2end(x)
|
71
|
+
|
72
|
+
for i in range(self.nl):
|
73
|
+
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
74
|
+
if self.training: # Training path
|
75
|
+
return x
|
76
|
+
y = self._inference(x)
|
77
|
+
return y if self.export else (y, x)
|
78
|
+
|
79
|
+
def forward_end2end(self, x):
|
80
|
+
"""
|
81
|
+
Performs forward pass of the v10Detect module.
|
82
|
+
|
83
|
+
Args:
|
84
|
+
x (List[torch.Tensor]): Input feature maps from different levels.
|
85
|
+
|
86
|
+
Returns:
|
87
|
+
(dict | tuple):
|
88
|
+
|
89
|
+
- If in training mode, returns a dictionary containing outputs of both one2many and one2one detections.
|
90
|
+
- If not in training mode, returns processed detections or a tuple with processed detections and raw outputs.
|
91
|
+
"""
|
92
|
+
x_detach = [xi.detach() for xi in x]
|
93
|
+
one2one = [
|
94
|
+
torch.cat((self.one2one_cv2[i](x_detach[i]), self.one2one_cv3[i](x_detach[i])), 1) for i in range(self.nl)
|
95
|
+
]
|
96
|
+
for i in range(self.nl):
|
97
|
+
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
98
|
+
if self.training: # Training path
|
99
|
+
return {"one2many": x, "one2one": one2one}
|
100
|
+
|
101
|
+
y = self._inference(one2one)
|
102
|
+
y = self.postprocess(y.permute(0, 2, 1), self.max_det, self.nc)
|
103
|
+
return y if self.export else (y, {"one2many": x, "one2one": one2one})
|
104
|
+
|
105
|
+
def _inference(self, x):
|
106
|
+
"""
|
107
|
+
Decode predicted bounding boxes and class probabilities based on multiple-level feature maps.
|
108
|
+
|
109
|
+
Args:
|
110
|
+
x (List[torch.Tensor]): List of feature maps from different detection layers.
|
111
|
+
|
112
|
+
Returns:
|
113
|
+
(torch.Tensor): Concatenated tensor of decoded bounding boxes and class probabilities.
|
114
|
+
"""
|
115
|
+
# Inference path
|
116
|
+
shape = x[0].shape # BCHW
|
117
|
+
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
|
118
|
+
if self.format != "imx" and (self.dynamic or self.shape != shape):
|
119
|
+
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
120
|
+
self.shape = shape
|
121
|
+
|
122
|
+
if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}: # avoid TF FlexSplitV ops
|
123
|
+
box = x_cat[:, : self.reg_max * 4]
|
124
|
+
cls = x_cat[:, self.reg_max * 4 :]
|
125
|
+
else:
|
126
|
+
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
127
|
+
|
128
|
+
if self.export and self.format in {"tflite", "edgetpu"}:
|
129
|
+
# Precompute normalization factor to increase numerical stability
|
130
|
+
# See https://github.com/ultralytics/ultralytics/issues/7371
|
131
|
+
grid_h = shape[2]
|
132
|
+
grid_w = shape[3]
|
133
|
+
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
|
134
|
+
norm = self.strides / (self.stride[0] * grid_size)
|
135
|
+
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
|
136
|
+
elif self.export and self.format == "imx":
|
137
|
+
dbox = self.decode_bboxes(
|
138
|
+
self.dfl(box) * self.strides, self.anchors.unsqueeze(0) * self.strides, xywh=False
|
139
|
+
)
|
140
|
+
return dbox.transpose(1, 2), cls.sigmoid().permute(0, 2, 1)
|
141
|
+
else:
|
142
|
+
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
|
143
|
+
|
144
|
+
return torch.cat((dbox, cls.sigmoid()), 1)
|
145
|
+
|
146
|
+
def bias_init(self):
|
147
|
+
"""Initialize Detect() biases, WARNING: requires stride availability."""
|
148
|
+
m = self # self.model[-1] # Detect() module
|
149
|
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
150
|
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
151
|
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
152
|
+
a[-1].bias.data[:] = 1.0 # box
|
153
|
+
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
154
|
+
if self.end2end:
|
155
|
+
for a, b, s in zip(m.one2one_cv2, m.one2one_cv3, m.stride): # from
|
156
|
+
a[-1].bias.data[:] = 1.0 # box
|
157
|
+
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
158
|
+
|
159
|
+
def decode_bboxes(self, bboxes, anchors, xywh=True):
|
160
|
+
"""Decode bounding boxes."""
|
161
|
+
return dist2bbox(bboxes, anchors, xywh=xywh and not (self.end2end or self.xyxy), dim=1)
|
162
|
+
|
163
|
+
@staticmethod
|
164
|
+
def postprocess(preds: torch.Tensor, max_det: int, nc: int = 80):
|
165
|
+
"""
|
166
|
+
Post-processes YOLO model predictions.
|
167
|
+
|
168
|
+
Args:
|
169
|
+
preds (torch.Tensor): Raw predictions with shape (batch_size, num_anchors, 4 + nc) with last dimension
|
170
|
+
format [x, y, w, h, class_probs].
|
171
|
+
max_det (int): Maximum detections per image.
|
172
|
+
nc (int, optional): Number of classes. Default: 80.
|
173
|
+
|
174
|
+
Returns:
|
175
|
+
(torch.Tensor): Processed predictions with shape (batch_size, min(max_det, num_anchors), 6) and last
|
176
|
+
dimension format [x, y, w, h, max_class_prob, class_index].
|
177
|
+
"""
|
178
|
+
batch_size, anchors, _ = preds.shape # i.e. shape(16,8400,84)
|
179
|
+
boxes, scores = preds.split([4, nc], dim=-1)
|
180
|
+
index = scores.amax(dim=-1).topk(min(max_det, anchors))[1].unsqueeze(-1)
|
181
|
+
boxes = boxes.gather(dim=1, index=index.repeat(1, 1, 4))
|
182
|
+
scores = scores.gather(dim=1, index=index.repeat(1, 1, nc))
|
183
|
+
scores, index = scores.flatten(1).topk(min(max_det, anchors))
|
184
|
+
i = torch.arange(batch_size)[..., None] # batch indices
|
185
|
+
return torch.cat([boxes[i, index // nc], scores[..., None], (index % nc)[..., None].float()], dim=-1)
|
186
|
+
|
187
|
+
|
188
|
+
class Segment(Detect):
|
189
|
+
"""YOLO Segment head for segmentation models."""
|
190
|
+
|
191
|
+
def __init__(self, nc=80, nm=32, npr=256, ch=()):
|
192
|
+
"""Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers."""
|
193
|
+
super().__init__(nc, ch)
|
194
|
+
self.nm = nm # number of masks
|
195
|
+
self.npr = npr # number of protos
|
196
|
+
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
197
|
+
|
198
|
+
c4 = max(ch[0] // 4, self.nm)
|
199
|
+
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
|
200
|
+
|
201
|
+
def forward(self, x):
|
202
|
+
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
|
203
|
+
p = self.proto(x[0]) # mask protos
|
204
|
+
bs = p.shape[0] # batch size
|
205
|
+
|
206
|
+
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
207
|
+
x = Detect.forward(self, x)
|
208
|
+
if self.training:
|
209
|
+
return x, mc, p
|
210
|
+
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
|
211
|
+
|
212
|
+
|
213
|
+
class OBB(Detect):
|
214
|
+
"""YOLO OBB detection head for detection with rotation models."""
|
215
|
+
|
216
|
+
def __init__(self, nc=80, ne=1, ch=()):
|
217
|
+
"""Initialize OBB with number of classes `nc` and layer channels `ch`."""
|
218
|
+
super().__init__(nc, ch)
|
219
|
+
self.ne = ne # number of extra parameters
|
220
|
+
|
221
|
+
c4 = max(ch[0] // 4, self.ne)
|
222
|
+
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch)
|
223
|
+
|
224
|
+
def forward(self, x):
|
225
|
+
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
226
|
+
bs = x[0].shape[0] # batch size
|
227
|
+
angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2) # OBB theta logits
|
228
|
+
# NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.
|
229
|
+
angle = (angle.sigmoid() - 0.25) * math.pi # [-pi/4, 3pi/4]
|
230
|
+
# angle = angle.sigmoid() * math.pi / 2 # [0, pi/2]
|
231
|
+
if not self.training:
|
232
|
+
self.angle = angle
|
233
|
+
x = Detect.forward(self, x)
|
234
|
+
if self.training:
|
235
|
+
return x, angle
|
236
|
+
return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))
|
237
|
+
|
238
|
+
def decode_bboxes(self, bboxes, anchors):
|
239
|
+
"""Decode rotated bounding boxes."""
|
240
|
+
return dist2rbox(bboxes, self.angle, anchors, dim=1)
|
241
|
+
|
242
|
+
|
243
|
+
class Pose(Detect):
|
244
|
+
"""YOLO Pose head for keypoints models."""
|
245
|
+
|
246
|
+
def __init__(self, nc=80, kpt_shape=(17, 3), ch=()):
|
247
|
+
"""Initialize YOLO network with default parameters and Convolutional Layers."""
|
248
|
+
super().__init__(nc, ch)
|
249
|
+
self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
250
|
+
self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total
|
251
|
+
|
252
|
+
c4 = max(ch[0] // 4, self.nk)
|
253
|
+
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)
|
254
|
+
|
255
|
+
def forward(self, x):
|
256
|
+
"""Perform forward pass through YOLO model and return predictions."""
|
257
|
+
bs = x[0].shape[0] # batch size
|
258
|
+
kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w)
|
259
|
+
x = Detect.forward(self, x)
|
260
|
+
if self.training:
|
261
|
+
return x, kpt
|
262
|
+
pred_kpt = self.kpts_decode(bs, kpt)
|
263
|
+
return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
|
264
|
+
|
265
|
+
def kpts_decode(self, bs, kpts):
|
266
|
+
"""Decodes keypoints."""
|
267
|
+
ndim = self.kpt_shape[1]
|
268
|
+
if self.export:
|
269
|
+
if self.format in {
|
270
|
+
"tflite",
|
271
|
+
"edgetpu",
|
272
|
+
}: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
|
273
|
+
# Precompute normalization factor to increase numerical stability
|
274
|
+
y = kpts.view(bs, *self.kpt_shape, -1)
|
275
|
+
grid_h, grid_w = self.shape[2], self.shape[3]
|
276
|
+
grid_size = torch.tensor([grid_w, grid_h], device=y.device).reshape(1, 2, 1)
|
277
|
+
norm = self.strides / (self.stride[0] * grid_size)
|
278
|
+
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * norm
|
279
|
+
else:
|
280
|
+
# NCNN fix
|
281
|
+
y = kpts.view(bs, *self.kpt_shape, -1)
|
282
|
+
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
|
283
|
+
if ndim == 3:
|
284
|
+
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
|
285
|
+
return a.view(bs, self.nk, -1)
|
286
|
+
else:
|
287
|
+
y = kpts.clone()
|
288
|
+
if ndim == 3:
|
289
|
+
y[:, 2::ndim] = y[:, 2::ndim].sigmoid() # sigmoid (WARNING: inplace .sigmoid_() Apple MPS bug)
|
290
|
+
y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
|
291
|
+
y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
|
292
|
+
return y
|
293
|
+
|
294
|
+
|
295
|
+
class Classify(nn.Module):
|
296
|
+
"""YOLO classification head, i.e. x(b,c1,20,20) to x(b,c2)."""
|
297
|
+
|
298
|
+
export = False # export mode
|
299
|
+
|
300
|
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
|
301
|
+
"""Initializes YOLO classification head to transform input tensor from (b,c1,20,20) to (b,c2) shape."""
|
302
|
+
super().__init__()
|
303
|
+
c_ = 1280 # efficientnet_b0 size
|
304
|
+
self.conv = Conv(c1, c_, k, s, p, g)
|
305
|
+
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
|
306
|
+
self.drop = nn.Dropout(p=0.0, inplace=True)
|
307
|
+
self.linear = nn.Linear(c_, c2) # to x(b,c2)
|
308
|
+
|
309
|
+
def forward(self, x):
|
310
|
+
"""Performs a forward pass of the YOLO model on input image data."""
|
311
|
+
if isinstance(x, list):
|
312
|
+
x = torch.cat(x, 1)
|
313
|
+
x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
314
|
+
if self.training:
|
315
|
+
return x
|
316
|
+
y = x.softmax(1) # get final output
|
317
|
+
return y if self.export else (y, x)
|
318
|
+
|
319
|
+
|
320
|
+
class WorldDetect(Detect):
|
321
|
+
"""Head for integrating YOLO detection models with semantic understanding from text embeddings."""
|
322
|
+
|
323
|
+
def __init__(self, nc=80, embed=512, with_bn=False, ch=()):
|
324
|
+
"""Initialize YOLO detection layer with nc classes and layer channels ch."""
|
325
|
+
super().__init__(nc, ch)
|
326
|
+
c3 = max(ch[0], min(self.nc, 100))
|
327
|
+
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
|
328
|
+
self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)
|
329
|
+
|
330
|
+
def forward(self, x, text):
|
331
|
+
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
332
|
+
for i in range(self.nl):
|
333
|
+
x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
|
334
|
+
if self.training:
|
335
|
+
return x
|
336
|
+
self.no = self.nc + self.reg_max * 4 # self.nc could be changed when inference with different texts
|
337
|
+
y = self._inference(x)
|
338
|
+
return y if self.export else (y, x)
|
339
|
+
|
340
|
+
def bias_init(self):
|
341
|
+
"""Initialize Detect() biases, WARNING: requires stride availability."""
|
342
|
+
m = self # self.model[-1] # Detect() module
|
343
|
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
344
|
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
345
|
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
346
|
+
a[-1].bias.data[:] = 1.0 # box
|
347
|
+
# b[-1].bias.data[:] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
348
|
+
|
349
|
+
|
350
|
+
class LRPCHead(nn.Module):
|
351
|
+
"""Lightweight Region Proposal and Classification Head for efficient object detection."""
|
352
|
+
|
353
|
+
def __init__(self, vocab, pf, loc, enabled=True):
|
354
|
+
"""Initialize LRPCHead with vocabulary, proposal filter, and localization components."""
|
355
|
+
super().__init__()
|
356
|
+
self.vocab = self.conv2linear(vocab) if enabled else vocab
|
357
|
+
self.pf = pf
|
358
|
+
self.loc = loc
|
359
|
+
self.enabled = enabled
|
360
|
+
|
361
|
+
def conv2linear(self, conv):
|
362
|
+
"""Convert a 1x1 convolutional layer to a linear layer."""
|
363
|
+
assert isinstance(conv, nn.Conv2d) and conv.kernel_size == (1, 1)
|
364
|
+
linear = nn.Linear(conv.in_channels, conv.out_channels)
|
365
|
+
linear.weight.data = conv.weight.view(conv.out_channels, -1).data
|
366
|
+
linear.bias.data = conv.bias.data
|
367
|
+
return linear
|
368
|
+
|
369
|
+
def forward(self, cls_feat, loc_feat, conf):
|
370
|
+
"""Process classification and localization features to generate detection proposals."""
|
371
|
+
if self.enabled:
|
372
|
+
pf_score = self.pf(cls_feat)[0, 0].flatten(0)
|
373
|
+
mask = pf_score.sigmoid() > conf
|
374
|
+
cls_feat = cls_feat.flatten(2).transpose(-1, -2)
|
375
|
+
cls_feat = self.vocab(cls_feat[:, mask] if conf else cls_feat * mask.unsqueeze(-1).int())
|
376
|
+
return (self.loc(loc_feat), cls_feat.transpose(-1, -2)), mask
|
377
|
+
else:
|
378
|
+
cls_feat = self.vocab(cls_feat)
|
379
|
+
loc_feat = self.loc(loc_feat)
|
380
|
+
return (loc_feat, cls_feat.flatten(2)), torch.ones(
|
381
|
+
cls_feat.shape[2] * cls_feat.shape[3], device=cls_feat.device, dtype=torch.bool
|
382
|
+
)
|
383
|
+
|
384
|
+
|
385
|
+
class YOLOEDetect(Detect):
|
386
|
+
"""Head for integrating YOLO detection models with semantic understanding from text embeddings."""
|
387
|
+
|
388
|
+
is_fused = False
|
389
|
+
|
390
|
+
def __init__(self, nc=80, embed=512, with_bn=False, ch=()):
|
391
|
+
"""Initialize YOLO detection layer with nc classes and layer channels ch."""
|
392
|
+
super().__init__(nc, ch)
|
393
|
+
c3 = max(ch[0], min(self.nc, 100))
|
394
|
+
assert c3 <= embed
|
395
|
+
assert with_bn is True
|
396
|
+
self.cv3 = (
|
397
|
+
nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
|
398
|
+
if self.legacy
|
399
|
+
else nn.ModuleList(
|
400
|
+
nn.Sequential(
|
401
|
+
nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
|
402
|
+
nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
|
403
|
+
nn.Conv2d(c3, embed, 1),
|
404
|
+
)
|
405
|
+
for x in ch
|
406
|
+
)
|
407
|
+
)
|
408
|
+
|
409
|
+
self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)
|
410
|
+
|
411
|
+
self.reprta = Residual(SwiGLUFFN(embed, embed))
|
412
|
+
self.savpe = SAVPE(ch, c3, embed)
|
413
|
+
self.embed = embed
|
414
|
+
|
415
|
+
@smart_inference_mode()
|
416
|
+
def fuse(self, txt_feats):
|
417
|
+
"""Fuse text features with model weights for efficient inference."""
|
418
|
+
if self.is_fused:
|
419
|
+
return
|
420
|
+
|
421
|
+
assert not self.training
|
422
|
+
txt_feats = txt_feats.to(torch.float32).squeeze(0)
|
423
|
+
for cls_head, bn_head in zip(self.cv3, self.cv4):
|
424
|
+
assert isinstance(cls_head, nn.Sequential)
|
425
|
+
assert isinstance(bn_head, BNContrastiveHead)
|
426
|
+
conv = cls_head[-1]
|
427
|
+
assert isinstance(conv, nn.Conv2d)
|
428
|
+
logit_scale = bn_head.logit_scale
|
429
|
+
bias = bn_head.bias
|
430
|
+
norm = bn_head.norm
|
431
|
+
|
432
|
+
t = txt_feats * logit_scale.exp()
|
433
|
+
conv: nn.Conv2d = fuse_conv_and_bn(conv, norm)
|
434
|
+
|
435
|
+
w = conv.weight.data.squeeze(-1).squeeze(-1)
|
436
|
+
b = conv.bias.data
|
437
|
+
|
438
|
+
w = t @ w
|
439
|
+
b1 = (t @ b.reshape(-1).unsqueeze(-1)).squeeze(-1)
|
440
|
+
b2 = torch.ones_like(b1) * bias
|
441
|
+
|
442
|
+
conv = (
|
443
|
+
nn.Conv2d(
|
444
|
+
conv.in_channels,
|
445
|
+
w.shape[0],
|
446
|
+
kernel_size=1,
|
447
|
+
)
|
448
|
+
.requires_grad_(False)
|
449
|
+
.to(conv.weight.device)
|
450
|
+
)
|
451
|
+
|
452
|
+
conv.weight.data.copy_(w.unsqueeze(-1).unsqueeze(-1))
|
453
|
+
conv.bias.data.copy_(b1 + b2)
|
454
|
+
cls_head[-1] = conv
|
455
|
+
|
456
|
+
bn_head.fuse()
|
457
|
+
|
458
|
+
del self.reprta
|
459
|
+
self.reprta = nn.Identity()
|
460
|
+
self.is_fused = True
|
461
|
+
|
462
|
+
def get_tpe(self, tpe):
|
463
|
+
"""Get text prompt embeddings with normalization."""
|
464
|
+
return None if tpe is None else F.normalize(self.reprta(tpe), dim=-1, p=2)
|
465
|
+
|
466
|
+
def get_vpe(self, x, vpe):
|
467
|
+
"""Get visual prompt embeddings with spatial awareness."""
|
468
|
+
if vpe.shape[1] == 0: # no visual prompt embeddings
|
469
|
+
return torch.zeros(x[0].shape[0], 0, self.embed, device=x[0].device)
|
470
|
+
if vpe.ndim == 4: # (B, N, H, W)
|
471
|
+
vpe = self.savpe(x, vpe)
|
472
|
+
assert vpe.ndim == 3 # (B, N, D)
|
473
|
+
return vpe
|
474
|
+
|
475
|
+
def forward_lrpc(self, x, return_mask=False):
|
476
|
+
"""Process features with fused text embeddings to generate detections for prompt-free model."""
|
477
|
+
masks = []
|
478
|
+
assert self.is_fused, "Prompt-free inference requires model to be fused!"
|
479
|
+
for i in range(self.nl):
|
480
|
+
cls_feat = self.cv3[i](x[i])
|
481
|
+
loc_feat = self.cv2[i](x[i])
|
482
|
+
assert isinstance(self.lrpc[i], LRPCHead)
|
483
|
+
x[i], mask = self.lrpc[i](
|
484
|
+
cls_feat, loc_feat, 0 if self.export and not self.dynamic else getattr(self, "conf", 0.001)
|
485
|
+
)
|
486
|
+
masks.append(mask)
|
487
|
+
shape = x[0][0].shape
|
488
|
+
if self.dynamic or self.shape != shape:
|
489
|
+
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors([b[0] for b in x], self.stride, 0.5))
|
490
|
+
self.shape = shape
|
491
|
+
box = torch.cat([xi[0].view(shape[0], self.reg_max * 4, -1) for xi in x], 2)
|
492
|
+
cls = torch.cat([xi[1] for xi in x], 2)
|
493
|
+
|
494
|
+
if self.export and self.format in {"tflite", "edgetpu"}:
|
495
|
+
# Precompute normalization factor to increase numerical stability
|
496
|
+
# See https://github.com/ultralytics/ultralytics/issues/7371
|
497
|
+
grid_h = shape[2]
|
498
|
+
grid_w = shape[3]
|
499
|
+
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
|
500
|
+
norm = self.strides / (self.stride[0] * grid_size)
|
501
|
+
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
|
502
|
+
else:
|
503
|
+
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
|
504
|
+
|
505
|
+
mask = torch.cat(masks)
|
506
|
+
y = torch.cat((dbox if self.export and not self.dynamic else dbox[..., mask], cls.sigmoid()), 1)
|
507
|
+
|
508
|
+
if return_mask:
|
509
|
+
return (y, mask) if self.export else ((y, x), mask)
|
510
|
+
else:
|
511
|
+
return y if self.export else (y, x)
|
512
|
+
|
513
|
+
def forward(self, x, cls_pe, return_mask=False):
|
514
|
+
"""Process features with class prompt embeddings to generate detections."""
|
515
|
+
if hasattr(self, "lrpc"): # for prompt-free inference
|
516
|
+
return self.forward_lrpc(x, return_mask)
|
517
|
+
for i in range(self.nl):
|
518
|
+
x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), cls_pe)), 1)
|
519
|
+
if self.training:
|
520
|
+
return x
|
521
|
+
self.no = self.nc + self.reg_max * 4 # self.nc could be changed when inference with different texts
|
522
|
+
y = self._inference(x)
|
523
|
+
return y if self.export else (y, x)
|
524
|
+
|
525
|
+
def bias_init(self):
|
526
|
+
"""Initialize biases for detection heads."""
|
527
|
+
m = self # self.model[-1] # Detect() module
|
528
|
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
529
|
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
530
|
+
for a, b, c, s in zip(m.cv2, m.cv3, m.cv4, m.stride): # from
|
531
|
+
a[-1].bias.data[:] = 1.0 # box
|
532
|
+
# b[-1].bias.data[:] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
533
|
+
b[-1].bias.data[:] = 0.0
|
534
|
+
c.bias.data[:] = math.log(5 / m.nc / (640 / s) ** 2)
|
535
|
+
|
536
|
+
|
537
|
+
class YOLOESegment(YOLOEDetect):
|
538
|
+
"""YOLO segmentation head with text embedding capabilities."""
|
539
|
+
|
540
|
+
def __init__(self, nc=80, nm=32, npr=256, embed=512, with_bn=False, ch=()):
|
541
|
+
"""Initialize YOLOESegment with class count, mask parameters, and embedding dimensions."""
|
542
|
+
super().__init__(nc, embed, with_bn, ch)
|
543
|
+
self.nm = nm
|
544
|
+
self.npr = npr
|
545
|
+
self.proto = Proto(ch[0], self.npr, self.nm)
|
546
|
+
|
547
|
+
c5 = max(ch[0] // 4, self.nm)
|
548
|
+
self.cv5 = nn.ModuleList(nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nm, 1)) for x in ch)
|
549
|
+
|
550
|
+
def forward(self, x, text):
|
551
|
+
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
|
552
|
+
p = self.proto(x[0]) # mask protos
|
553
|
+
bs = p.shape[0] # batch size
|
554
|
+
|
555
|
+
mc = torch.cat([self.cv5[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
556
|
+
has_lrpc = hasattr(self, "lrpc")
|
557
|
+
|
558
|
+
if not has_lrpc:
|
559
|
+
x = YOLOEDetect.forward(self, x, text)
|
560
|
+
else:
|
561
|
+
x, mask = YOLOEDetect.forward(self, x, text, return_mask=True)
|
562
|
+
|
563
|
+
if self.training:
|
564
|
+
return x, mc, p
|
565
|
+
|
566
|
+
if has_lrpc:
|
567
|
+
mc = (mc * mask.int()) if self.export and not self.dynamic else mc[..., mask]
|
568
|
+
|
569
|
+
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
|
570
|
+
|
571
|
+
|
572
|
+
class RTDETRDecoder(nn.Module):
|
573
|
+
"""
|
574
|
+
Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection.
|
575
|
+
|
576
|
+
This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes
|
577
|
+
and class labels for objects in an image. It integrates features from multiple layers and runs through a series of
|
578
|
+
Transformer decoder layers to output the final predictions.
|
579
|
+
"""
|
580
|
+
|
581
|
+
export = False # export mode
|
582
|
+
|
583
|
+
def __init__(
|
584
|
+
self,
|
585
|
+
nc=80,
|
586
|
+
ch=(512, 1024, 2048),
|
587
|
+
hd=256, # hidden dim
|
588
|
+
nq=300, # num queries
|
589
|
+
ndp=4, # num decoder points
|
590
|
+
nh=8, # num head
|
591
|
+
ndl=6, # num decoder layers
|
592
|
+
d_ffn=1024, # dim of feedforward
|
593
|
+
dropout=0.0,
|
594
|
+
act=nn.ReLU(),
|
595
|
+
eval_idx=-1,
|
596
|
+
# Training args
|
597
|
+
nd=100, # num denoising
|
598
|
+
label_noise_ratio=0.5,
|
599
|
+
box_noise_scale=1.0,
|
600
|
+
learnt_init_query=False,
|
601
|
+
):
|
602
|
+
"""
|
603
|
+
Initializes the RTDETRDecoder module with the given parameters.
|
604
|
+
|
605
|
+
Args:
|
606
|
+
nc (int): Number of classes. Default is 80.
|
607
|
+
ch (tuple): Channels in the backbone feature maps. Default is (512, 1024, 2048).
|
608
|
+
hd (int): Dimension of hidden layers. Default is 256.
|
609
|
+
nq (int): Number of query points. Default is 300.
|
610
|
+
ndp (int): Number of decoder points. Default is 4.
|
611
|
+
nh (int): Number of heads in multi-head attention. Default is 8.
|
612
|
+
ndl (int): Number of decoder layers. Default is 6.
|
613
|
+
d_ffn (int): Dimension of the feed-forward networks. Default is 1024.
|
614
|
+
dropout (float): Dropout rate. Default is 0.0.
|
615
|
+
act (nn.Module): Activation function. Default is nn.ReLU.
|
616
|
+
eval_idx (int): Evaluation index. Default is -1.
|
617
|
+
nd (int): Number of denoising. Default is 100.
|
618
|
+
label_noise_ratio (float): Label noise ratio. Default is 0.5.
|
619
|
+
box_noise_scale (float): Box noise scale. Default is 1.0.
|
620
|
+
learnt_init_query (bool): Whether to learn initial query embeddings. Default is False.
|
621
|
+
"""
|
622
|
+
super().__init__()
|
623
|
+
self.hidden_dim = hd
|
624
|
+
self.nhead = nh
|
625
|
+
self.nl = len(ch) # num level
|
626
|
+
self.nc = nc
|
627
|
+
self.num_queries = nq
|
628
|
+
self.num_decoder_layers = ndl
|
629
|
+
|
630
|
+
# Backbone feature projection
|
631
|
+
self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
|
632
|
+
# NOTE: simplified version but it's not consistent with .pt weights.
|
633
|
+
# self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)
|
634
|
+
|
635
|
+
# Transformer module
|
636
|
+
decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
|
637
|
+
self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)
|
638
|
+
|
639
|
+
# Denoising part
|
640
|
+
self.denoising_class_embed = nn.Embedding(nc, hd)
|
641
|
+
self.num_denoising = nd
|
642
|
+
self.label_noise_ratio = label_noise_ratio
|
643
|
+
self.box_noise_scale = box_noise_scale
|
644
|
+
|
645
|
+
# Decoder embedding
|
646
|
+
self.learnt_init_query = learnt_init_query
|
647
|
+
if learnt_init_query:
|
648
|
+
self.tgt_embed = nn.Embedding(nq, hd)
|
649
|
+
self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)
|
650
|
+
|
651
|
+
# Encoder head
|
652
|
+
self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
|
653
|
+
self.enc_score_head = nn.Linear(hd, nc)
|
654
|
+
self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)
|
655
|
+
|
656
|
+
# Decoder head
|
657
|
+
self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
|
658
|
+
self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])
|
659
|
+
|
660
|
+
self._reset_parameters()
|
661
|
+
|
662
|
+
def forward(self, x, batch=None):
|
663
|
+
"""
|
664
|
+
Runs the forward pass of the module, returning bounding box and classification scores for the input.
|
665
|
+
|
666
|
+
Args:
|
667
|
+
x (List[torch.Tensor]): List of feature maps from the backbone.
|
668
|
+
batch (dict, optional): Batch information for training.
|
669
|
+
|
670
|
+
Returns:
|
671
|
+
(tuple | torch.Tensor): During training, returns a tuple of bounding boxes, scores, and other metadata.
|
672
|
+
During inference, returns a tensor of shape (bs, 300, 4+nc) containing bounding boxes and class scores.
|
673
|
+
"""
|
674
|
+
from ultralytics.models.utils.ops import get_cdn_group
|
675
|
+
|
676
|
+
# Input projection and embedding
|
677
|
+
feats, shapes = self._get_encoder_input(x)
|
678
|
+
|
679
|
+
# Prepare denoising training
|
680
|
+
dn_embed, dn_bbox, attn_mask, dn_meta = get_cdn_group(
|
681
|
+
batch,
|
682
|
+
self.nc,
|
683
|
+
self.num_queries,
|
684
|
+
self.denoising_class_embed.weight,
|
685
|
+
self.num_denoising,
|
686
|
+
self.label_noise_ratio,
|
687
|
+
self.box_noise_scale,
|
688
|
+
self.training,
|
689
|
+
)
|
690
|
+
|
691
|
+
embed, refer_bbox, enc_bboxes, enc_scores = self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)
|
692
|
+
|
693
|
+
# Decoder
|
694
|
+
dec_bboxes, dec_scores = self.decoder(
|
695
|
+
embed,
|
696
|
+
refer_bbox,
|
697
|
+
feats,
|
698
|
+
shapes,
|
699
|
+
self.dec_bbox_head,
|
700
|
+
self.dec_score_head,
|
701
|
+
self.query_pos_head,
|
702
|
+
attn_mask=attn_mask,
|
703
|
+
)
|
704
|
+
x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
|
705
|
+
if self.training:
|
706
|
+
return x
|
707
|
+
# (bs, 300, 4+nc)
|
708
|
+
y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
|
709
|
+
return y if self.export else (y, x)
|
710
|
+
|
711
|
+
def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device="cpu", eps=1e-2):
|
712
|
+
"""
|
713
|
+
Generates anchor bounding boxes for given shapes with specific grid size and validates them.
|
714
|
+
|
715
|
+
Args:
|
716
|
+
shapes (list): List of feature map shapes.
|
717
|
+
grid_size (float, optional): Base size of grid cells. Default is 0.05.
|
718
|
+
dtype (torch.dtype, optional): Data type for tensors. Default is torch.float32.
|
719
|
+
device (str, optional): Device to create tensors on. Default is "cpu".
|
720
|
+
eps (float, optional): Small value for numerical stability. Default is 1e-2.
|
721
|
+
|
722
|
+
Returns:
|
723
|
+
(tuple): Tuple containing anchors and valid mask tensors.
|
724
|
+
"""
|
725
|
+
anchors = []
|
726
|
+
for i, (h, w) in enumerate(shapes):
|
727
|
+
sy = torch.arange(end=h, dtype=dtype, device=device)
|
728
|
+
sx = torch.arange(end=w, dtype=dtype, device=device)
|
729
|
+
grid_y, grid_x = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_10 else torch.meshgrid(sy, sx)
|
730
|
+
grid_xy = torch.stack([grid_x, grid_y], -1) # (h, w, 2)
|
731
|
+
|
732
|
+
valid_WH = torch.tensor([w, h], dtype=dtype, device=device)
|
733
|
+
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH # (1, h, w, 2)
|
734
|
+
wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0**i)
|
735
|
+
anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4)) # (1, h*w, 4)
|
736
|
+
|
737
|
+
anchors = torch.cat(anchors, 1) # (1, h*w*nl, 4)
|
738
|
+
valid_mask = ((anchors > eps) & (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1
|
739
|
+
anchors = torch.log(anchors / (1 - anchors))
|
740
|
+
anchors = anchors.masked_fill(~valid_mask, float("inf"))
|
741
|
+
return anchors, valid_mask
|
742
|
+
|
743
|
+
def _get_encoder_input(self, x):
|
744
|
+
"""
|
745
|
+
Processes and returns encoder inputs by getting projection features from input and concatenating them.
|
746
|
+
|
747
|
+
Args:
|
748
|
+
x (List[torch.Tensor]): List of feature maps from the backbone.
|
749
|
+
|
750
|
+
Returns:
|
751
|
+
(tuple): Tuple containing processed features and their shapes.
|
752
|
+
"""
|
753
|
+
# Get projection features
|
754
|
+
x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
|
755
|
+
# Get encoder inputs
|
756
|
+
feats = []
|
757
|
+
shapes = []
|
758
|
+
for feat in x:
|
759
|
+
h, w = feat.shape[2:]
|
760
|
+
# [b, c, h, w] -> [b, h*w, c]
|
761
|
+
feats.append(feat.flatten(2).permute(0, 2, 1))
|
762
|
+
# [nl, 2]
|
763
|
+
shapes.append([h, w])
|
764
|
+
|
765
|
+
# [b, h*w, c]
|
766
|
+
feats = torch.cat(feats, 1)
|
767
|
+
return feats, shapes
|
768
|
+
|
769
|
+
def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None):
|
770
|
+
"""
|
771
|
+
Generates and prepares the input required for the decoder from the provided features and shapes.
|
772
|
+
|
773
|
+
Args:
|
774
|
+
feats (torch.Tensor): Processed features from encoder.
|
775
|
+
shapes (list): List of feature map shapes.
|
776
|
+
dn_embed (torch.Tensor, optional): Denoising embeddings. Default is None.
|
777
|
+
dn_bbox (torch.Tensor, optional): Denoising bounding boxes. Default is None.
|
778
|
+
|
779
|
+
Returns:
|
780
|
+
(tuple): Tuple containing embeddings, reference bounding boxes, encoded bounding boxes, and scores.
|
781
|
+
"""
|
782
|
+
bs = feats.shape[0]
|
783
|
+
# Prepare input for decoder
|
784
|
+
anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device)
|
785
|
+
features = self.enc_output(valid_mask * feats) # bs, h*w, 256
|
786
|
+
|
787
|
+
enc_outputs_scores = self.enc_score_head(features) # (bs, h*w, nc)
|
788
|
+
|
789
|
+
# Query selection
|
790
|
+
# (bs, num_queries)
|
791
|
+
topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1)
|
792
|
+
# (bs, num_queries)
|
793
|
+
batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1)
|
794
|
+
|
795
|
+
# (bs, num_queries, 256)
|
796
|
+
top_k_features = features[batch_ind, topk_ind].view(bs, self.num_queries, -1)
|
797
|
+
# (bs, num_queries, 4)
|
798
|
+
top_k_anchors = anchors[:, topk_ind].view(bs, self.num_queries, -1)
|
799
|
+
|
800
|
+
# Dynamic anchors + static content
|
801
|
+
refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors
|
802
|
+
|
803
|
+
enc_bboxes = refer_bbox.sigmoid()
|
804
|
+
if dn_bbox is not None:
|
805
|
+
refer_bbox = torch.cat([dn_bbox, refer_bbox], 1)
|
806
|
+
enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1)
|
807
|
+
|
808
|
+
embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) if self.learnt_init_query else top_k_features
|
809
|
+
if self.training:
|
810
|
+
refer_bbox = refer_bbox.detach()
|
811
|
+
if not self.learnt_init_query:
|
812
|
+
embeddings = embeddings.detach()
|
813
|
+
if dn_embed is not None:
|
814
|
+
embeddings = torch.cat([dn_embed, embeddings], 1)
|
815
|
+
|
816
|
+
return embeddings, refer_bbox, enc_bboxes, enc_scores
|
817
|
+
|
818
|
+
def _reset_parameters(self):
|
819
|
+
"""Initializes or resets the parameters of the model's various components with predefined weights and biases."""
|
820
|
+
# Class and bbox head init
|
821
|
+
bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
|
822
|
+
# NOTE: the weight initialization in `linear_init` would cause NaN when training with custom datasets.
|
823
|
+
# linear_init(self.enc_score_head)
|
824
|
+
constant_(self.enc_score_head.bias, bias_cls)
|
825
|
+
constant_(self.enc_bbox_head.layers[-1].weight, 0.0)
|
826
|
+
constant_(self.enc_bbox_head.layers[-1].bias, 0.0)
|
827
|
+
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
|
828
|
+
# linear_init(cls_)
|
829
|
+
constant_(cls_.bias, bias_cls)
|
830
|
+
constant_(reg_.layers[-1].weight, 0.0)
|
831
|
+
constant_(reg_.layers[-1].bias, 0.0)
|
832
|
+
|
833
|
+
linear_init(self.enc_output[0])
|
834
|
+
xavier_uniform_(self.enc_output[0].weight)
|
835
|
+
if self.learnt_init_query:
|
836
|
+
xavier_uniform_(self.tgt_embed.weight)
|
837
|
+
xavier_uniform_(self.query_pos_head.layers[0].weight)
|
838
|
+
xavier_uniform_(self.query_pos_head.layers[1].weight)
|
839
|
+
for layer in self.input_proj:
|
840
|
+
xavier_uniform_(layer[0].weight)
|
841
|
+
|
842
|
+
|
843
|
+
class v10Detect(Detect):
|
844
|
+
"""
|
845
|
+
v10 Detection head from https://arxiv.org/pdf/2405.14458.
|
846
|
+
|
847
|
+
Args:
|
848
|
+
nc (int): Number of classes.
|
849
|
+
ch (tuple): Tuple of channel sizes.
|
850
|
+
|
851
|
+
Attributes:
|
852
|
+
max_det (int): Maximum number of detections.
|
853
|
+
|
854
|
+
Methods:
|
855
|
+
__init__(self, nc=80, ch=()): Initializes the v10Detect object.
|
856
|
+
forward(self, x): Performs forward pass of the v10Detect module.
|
857
|
+
bias_init(self): Initializes biases of the Detect module.
|
858
|
+
|
859
|
+
"""
|
860
|
+
|
861
|
+
end2end = True
|
862
|
+
|
863
|
+
def __init__(self, nc=80, ch=()):
|
864
|
+
"""Initializes the v10Detect object with the specified number of classes and input channels."""
|
865
|
+
super().__init__(nc, ch)
|
866
|
+
c3 = max(ch[0], min(self.nc, 100)) # channels
|
867
|
+
# Light cls head
|
868
|
+
self.cv3 = nn.ModuleList(
|
869
|
+
nn.Sequential(
|
870
|
+
nn.Sequential(Conv(x, x, 3, g=x), Conv(x, c3, 1)),
|
871
|
+
nn.Sequential(Conv(c3, c3, 3, g=c3), Conv(c3, c3, 1)),
|
872
|
+
nn.Conv2d(c3, self.nc, 1),
|
873
|
+
)
|
874
|
+
for x in ch
|
875
|
+
)
|
876
|
+
self.one2one_cv3 = copy.deepcopy(self.cv3)
|
877
|
+
|
878
|
+
def fuse(self):
|
879
|
+
"""Removes the one2many head."""
|
880
|
+
self.cv2 = self.cv3 = nn.ModuleList([nn.Identity()] * self.nl)
|