dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (272) hide show
  1. dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
  2. dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
  3. dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
  4. dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
  5. dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
  6. dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
  7. tests/__init__.py +22 -0
  8. tests/conftest.py +83 -0
  9. tests/test_cli.py +138 -0
  10. tests/test_cuda.py +215 -0
  11. tests/test_engine.py +131 -0
  12. tests/test_exports.py +236 -0
  13. tests/test_integrations.py +154 -0
  14. tests/test_python.py +694 -0
  15. tests/test_solutions.py +187 -0
  16. ultralytics/__init__.py +30 -0
  17. ultralytics/assets/bus.jpg +0 -0
  18. ultralytics/assets/zidane.jpg +0 -0
  19. ultralytics/cfg/__init__.py +1023 -0
  20. ultralytics/cfg/datasets/Argoverse.yaml +77 -0
  21. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  22. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  23. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  24. ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
  25. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  26. ultralytics/cfg/datasets/Objects365.yaml +443 -0
  27. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  28. ultralytics/cfg/datasets/VOC.yaml +106 -0
  29. ultralytics/cfg/datasets/VisDrone.yaml +77 -0
  30. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  31. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  32. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  33. ultralytics/cfg/datasets/coco-pose.yaml +42 -0
  34. ultralytics/cfg/datasets/coco.yaml +118 -0
  35. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  36. ultralytics/cfg/datasets/coco128.yaml +101 -0
  37. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  38. ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
  39. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  40. ultralytics/cfg/datasets/coco8.yaml +101 -0
  41. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  42. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  43. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  44. ultralytics/cfg/datasets/dota8.yaml +35 -0
  45. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  46. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  47. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  48. ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
  49. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  50. ultralytics/cfg/datasets/signature.yaml +21 -0
  51. ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
  52. ultralytics/cfg/datasets/xView.yaml +155 -0
  53. ultralytics/cfg/default.yaml +127 -0
  54. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  55. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  56. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  57. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  58. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  59. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  60. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  61. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  62. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  63. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  64. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  65. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  66. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  68. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  69. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  70. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  71. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  74. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  75. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  76. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  77. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  78. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  79. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  80. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  81. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  82. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  83. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
  84. ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
  85. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  86. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  87. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  88. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  89. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  90. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  91. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  92. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  93. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  94. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  95. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  96. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  97. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  98. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  99. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  100. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  101. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  102. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  103. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  105. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  106. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  107. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  108. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  109. ultralytics/cfg/trackers/botsort.yaml +22 -0
  110. ultralytics/cfg/trackers/bytetrack.yaml +14 -0
  111. ultralytics/data/__init__.py +26 -0
  112. ultralytics/data/annotator.py +66 -0
  113. ultralytics/data/augment.py +2945 -0
  114. ultralytics/data/base.py +438 -0
  115. ultralytics/data/build.py +258 -0
  116. ultralytics/data/converter.py +754 -0
  117. ultralytics/data/dataset.py +834 -0
  118. ultralytics/data/loaders.py +676 -0
  119. ultralytics/data/scripts/download_weights.sh +18 -0
  120. ultralytics/data/scripts/get_coco.sh +61 -0
  121. ultralytics/data/scripts/get_coco128.sh +18 -0
  122. ultralytics/data/scripts/get_imagenet.sh +52 -0
  123. ultralytics/data/split.py +125 -0
  124. ultralytics/data/split_dota.py +325 -0
  125. ultralytics/data/utils.py +777 -0
  126. ultralytics/engine/__init__.py +1 -0
  127. ultralytics/engine/exporter.py +1519 -0
  128. ultralytics/engine/model.py +1156 -0
  129. ultralytics/engine/predictor.py +502 -0
  130. ultralytics/engine/results.py +1840 -0
  131. ultralytics/engine/trainer.py +853 -0
  132. ultralytics/engine/tuner.py +243 -0
  133. ultralytics/engine/validator.py +377 -0
  134. ultralytics/hub/__init__.py +168 -0
  135. ultralytics/hub/auth.py +137 -0
  136. ultralytics/hub/google/__init__.py +176 -0
  137. ultralytics/hub/session.py +446 -0
  138. ultralytics/hub/utils.py +248 -0
  139. ultralytics/models/__init__.py +9 -0
  140. ultralytics/models/fastsam/__init__.py +7 -0
  141. ultralytics/models/fastsam/model.py +61 -0
  142. ultralytics/models/fastsam/predict.py +181 -0
  143. ultralytics/models/fastsam/utils.py +24 -0
  144. ultralytics/models/fastsam/val.py +40 -0
  145. ultralytics/models/nas/__init__.py +7 -0
  146. ultralytics/models/nas/model.py +102 -0
  147. ultralytics/models/nas/predict.py +58 -0
  148. ultralytics/models/nas/val.py +39 -0
  149. ultralytics/models/rtdetr/__init__.py +7 -0
  150. ultralytics/models/rtdetr/model.py +63 -0
  151. ultralytics/models/rtdetr/predict.py +84 -0
  152. ultralytics/models/rtdetr/train.py +85 -0
  153. ultralytics/models/rtdetr/val.py +191 -0
  154. ultralytics/models/sam/__init__.py +6 -0
  155. ultralytics/models/sam/amg.py +260 -0
  156. ultralytics/models/sam/build.py +358 -0
  157. ultralytics/models/sam/model.py +170 -0
  158. ultralytics/models/sam/modules/__init__.py +1 -0
  159. ultralytics/models/sam/modules/blocks.py +1129 -0
  160. ultralytics/models/sam/modules/decoders.py +515 -0
  161. ultralytics/models/sam/modules/encoders.py +854 -0
  162. ultralytics/models/sam/modules/memory_attention.py +299 -0
  163. ultralytics/models/sam/modules/sam.py +1006 -0
  164. ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
  165. ultralytics/models/sam/modules/transformer.py +351 -0
  166. ultralytics/models/sam/modules/utils.py +394 -0
  167. ultralytics/models/sam/predict.py +1605 -0
  168. ultralytics/models/utils/__init__.py +1 -0
  169. ultralytics/models/utils/loss.py +455 -0
  170. ultralytics/models/utils/ops.py +268 -0
  171. ultralytics/models/yolo/__init__.py +7 -0
  172. ultralytics/models/yolo/classify/__init__.py +7 -0
  173. ultralytics/models/yolo/classify/predict.py +88 -0
  174. ultralytics/models/yolo/classify/train.py +233 -0
  175. ultralytics/models/yolo/classify/val.py +215 -0
  176. ultralytics/models/yolo/detect/__init__.py +7 -0
  177. ultralytics/models/yolo/detect/predict.py +124 -0
  178. ultralytics/models/yolo/detect/train.py +217 -0
  179. ultralytics/models/yolo/detect/val.py +451 -0
  180. ultralytics/models/yolo/model.py +354 -0
  181. ultralytics/models/yolo/obb/__init__.py +7 -0
  182. ultralytics/models/yolo/obb/predict.py +66 -0
  183. ultralytics/models/yolo/obb/train.py +81 -0
  184. ultralytics/models/yolo/obb/val.py +283 -0
  185. ultralytics/models/yolo/pose/__init__.py +7 -0
  186. ultralytics/models/yolo/pose/predict.py +79 -0
  187. ultralytics/models/yolo/pose/train.py +154 -0
  188. ultralytics/models/yolo/pose/val.py +394 -0
  189. ultralytics/models/yolo/segment/__init__.py +7 -0
  190. ultralytics/models/yolo/segment/predict.py +113 -0
  191. ultralytics/models/yolo/segment/train.py +123 -0
  192. ultralytics/models/yolo/segment/val.py +428 -0
  193. ultralytics/models/yolo/world/__init__.py +5 -0
  194. ultralytics/models/yolo/world/train.py +119 -0
  195. ultralytics/models/yolo/world/train_world.py +176 -0
  196. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  197. ultralytics/models/yolo/yoloe/predict.py +169 -0
  198. ultralytics/models/yolo/yoloe/train.py +298 -0
  199. ultralytics/models/yolo/yoloe/train_seg.py +124 -0
  200. ultralytics/models/yolo/yoloe/val.py +191 -0
  201. ultralytics/nn/__init__.py +29 -0
  202. ultralytics/nn/autobackend.py +842 -0
  203. ultralytics/nn/modules/__init__.py +182 -0
  204. ultralytics/nn/modules/activation.py +53 -0
  205. ultralytics/nn/modules/block.py +1966 -0
  206. ultralytics/nn/modules/conv.py +712 -0
  207. ultralytics/nn/modules/head.py +880 -0
  208. ultralytics/nn/modules/transformer.py +713 -0
  209. ultralytics/nn/modules/utils.py +164 -0
  210. ultralytics/nn/tasks.py +1627 -0
  211. ultralytics/nn/text_model.py +351 -0
  212. ultralytics/solutions/__init__.py +41 -0
  213. ultralytics/solutions/ai_gym.py +116 -0
  214. ultralytics/solutions/analytics.py +252 -0
  215. ultralytics/solutions/config.py +106 -0
  216. ultralytics/solutions/distance_calculation.py +124 -0
  217. ultralytics/solutions/heatmap.py +127 -0
  218. ultralytics/solutions/instance_segmentation.py +84 -0
  219. ultralytics/solutions/object_blurrer.py +90 -0
  220. ultralytics/solutions/object_counter.py +195 -0
  221. ultralytics/solutions/object_cropper.py +84 -0
  222. ultralytics/solutions/parking_management.py +273 -0
  223. ultralytics/solutions/queue_management.py +93 -0
  224. ultralytics/solutions/region_counter.py +120 -0
  225. ultralytics/solutions/security_alarm.py +154 -0
  226. ultralytics/solutions/similarity_search.py +172 -0
  227. ultralytics/solutions/solutions.py +724 -0
  228. ultralytics/solutions/speed_estimation.py +110 -0
  229. ultralytics/solutions/streamlit_inference.py +196 -0
  230. ultralytics/solutions/templates/similarity-search.html +160 -0
  231. ultralytics/solutions/trackzone.py +88 -0
  232. ultralytics/solutions/vision_eye.py +68 -0
  233. ultralytics/trackers/__init__.py +7 -0
  234. ultralytics/trackers/basetrack.py +124 -0
  235. ultralytics/trackers/bot_sort.py +260 -0
  236. ultralytics/trackers/byte_tracker.py +480 -0
  237. ultralytics/trackers/track.py +125 -0
  238. ultralytics/trackers/utils/__init__.py +1 -0
  239. ultralytics/trackers/utils/gmc.py +376 -0
  240. ultralytics/trackers/utils/kalman_filter.py +493 -0
  241. ultralytics/trackers/utils/matching.py +157 -0
  242. ultralytics/utils/__init__.py +1435 -0
  243. ultralytics/utils/autobatch.py +106 -0
  244. ultralytics/utils/autodevice.py +174 -0
  245. ultralytics/utils/benchmarks.py +695 -0
  246. ultralytics/utils/callbacks/__init__.py +5 -0
  247. ultralytics/utils/callbacks/base.py +234 -0
  248. ultralytics/utils/callbacks/clearml.py +153 -0
  249. ultralytics/utils/callbacks/comet.py +552 -0
  250. ultralytics/utils/callbacks/dvc.py +205 -0
  251. ultralytics/utils/callbacks/hub.py +108 -0
  252. ultralytics/utils/callbacks/mlflow.py +138 -0
  253. ultralytics/utils/callbacks/neptune.py +140 -0
  254. ultralytics/utils/callbacks/raytune.py +43 -0
  255. ultralytics/utils/callbacks/tensorboard.py +132 -0
  256. ultralytics/utils/callbacks/wb.py +185 -0
  257. ultralytics/utils/checks.py +897 -0
  258. ultralytics/utils/dist.py +119 -0
  259. ultralytics/utils/downloads.py +499 -0
  260. ultralytics/utils/errors.py +43 -0
  261. ultralytics/utils/export.py +219 -0
  262. ultralytics/utils/files.py +221 -0
  263. ultralytics/utils/instance.py +499 -0
  264. ultralytics/utils/loss.py +813 -0
  265. ultralytics/utils/metrics.py +1356 -0
  266. ultralytics/utils/ops.py +885 -0
  267. ultralytics/utils/patches.py +143 -0
  268. ultralytics/utils/plotting.py +1011 -0
  269. ultralytics/utils/tal.py +416 -0
  270. ultralytics/utils/torch_utils.py +990 -0
  271. ultralytics/utils/triton.py +116 -0
  272. ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,32 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLO12-cls image classification model
4
+ # Model docs: https://docs.ultralytics.com/models/yolo12
5
+ # Task docs: https://docs.ultralytics.com/tasks/classify
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolo12n-cls.yaml' will call yolo12-cls.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.50, 0.25, 1024] # summary: 152 layers, 1,820,976 parameters, 1,820,976 gradients, 3.7 GFLOPs
12
+ s: [0.50, 0.50, 1024] # summary: 152 layers, 6,206,992 parameters, 6,206,992 gradients, 13.6 GFLOPs
13
+ m: [0.50, 1.00, 512] # summary: 172 layers, 12,083,088 parameters, 12,083,088 gradients, 44.2 GFLOPs
14
+ l: [1.00, 1.00, 512] # summary: 312 layers, 15,558,640 parameters, 15,558,640 gradients, 56.9 GFLOPs
15
+ x: [1.00, 1.50, 512] # summary: 312 layers, 34,172,592 parameters, 34,172,592 gradients, 126.5 GFLOPs
16
+
17
+ # YOLO12n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 2, C3k2, [256, False, 0.25]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 2, C3k2, [512, False, 0.25]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 4, A2C2f, [512, True, 4]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 4, A2C2f, [1024, True, 1]] # 8
29
+
30
+ # YOLO12n head
31
+ head:
32
+ - [-1, 1, Classify, [nc]] # Classify
@@ -0,0 +1,48 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLO12-obb Oriented Bounding Boxes (OBB) model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolo12
5
+ # Task docs: https://docs.ultralytics.com/tasks/obb
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolo12n-obb.yaml' will call yolo12-obb.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.50, 0.25, 1024] # summary: 287 layers, 2,673,955 parameters, 2,673,939 gradients, 6.9 GFLOPs
12
+ s: [0.50, 0.50, 1024] # summary: 287 layers, 9,570,275 parameters, 9,570,259 gradients, 22.7 GFLOPs
13
+ m: [0.50, 1.00, 512] # summary: 307 layers, 21,048,003 parameters, 21,047,987 gradients, 71.8 GFLOPs
14
+ l: [1.00, 1.00, 512] # summary: 503 layers, 27,299,619 parameters, 27,299,603 gradients, 93.4 GFLOPs
15
+ x: [1.00, 1.50, 512] # summary: 503 layers, 61,119,939 parameters, 61,119,923 gradients, 208.6 GFLOPs
16
+
17
+ # YOLO12n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 2, C3k2, [256, False, 0.25]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 2, C3k2, [512, False, 0.25]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 4, A2C2f, [512, True, 4]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 4, A2C2f, [1024, True, 1]] # 8
29
+
30
+ # YOLO12n head
31
+ head:
32
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
33
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
34
+ - [-1, 2, A2C2f, [512, False, -1]] # 11
35
+
36
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
38
+ - [-1, 2, A2C2f, [256, False, -1]] # 14
39
+
40
+ - [-1, 1, Conv, [256, 3, 2]]
41
+ - [[-1, 11], 1, Concat, [1]] # cat head P4
42
+ - [-1, 2, A2C2f, [512, False, -1]] # 17
43
+
44
+ - [-1, 1, Conv, [512, 3, 2]]
45
+ - [[-1, 8], 1, Concat, [1]] # cat head P5
46
+ - [-1, 2, C3k2, [1024, True]] # 20 (P5/32-large)
47
+
48
+ - [[14, 17, 20], 1, OBB, [nc, 1]] # Detect(P3, P4, P5)
@@ -0,0 +1,49 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLO12-pose keypoints/pose estimation model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolo12
5
+ # Task docs: https://docs.ultralytics.com/tasks/pose
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
10
+ scales: # model compound scaling constants, i.e. 'model=yolo12n-pose.yaml' will call yolo12-pose.yaml with scale 'n'
11
+ # [depth, width, max_channels]
12
+ n: [0.50, 0.25, 1024] # summary: 287 layers, 2,886,715 parameters, 2,886,699 gradients, 7.8 GFLOPs
13
+ s: [0.50, 0.50, 1024] # summary: 287 layers, 9,774,155 parameters, 9,774,139 gradients, 23.5 GFLOPs
14
+ m: [0.50, 1.00, 512] # summary: 307 layers, 21,057,753 parameters, 21,057,737 gradients, 71.8 GFLOPs
15
+ l: [1.00, 1.00, 512] # summary: 503 layers, 27,309,369 parameters, 27,309,353 gradients, 93.5 GFLOPs
16
+ x: [1.00, 1.50, 512] # summary: 503 layers, 61,134,489 parameters, 61,134,473 gradients, 208.7 GFLOPs
17
+
18
+ # YOLO12n backbone
19
+ backbone:
20
+ # [from, repeats, module, args]
21
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
22
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
23
+ - [-1, 2, C3k2, [256, False, 0.25]]
24
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
25
+ - [-1, 2, C3k2, [512, False, 0.25]]
26
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
27
+ - [-1, 4, A2C2f, [512, True, 4]]
28
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
29
+ - [-1, 4, A2C2f, [1024, True, 1]] # 8
30
+
31
+ # YOLO12n head
32
+ head:
33
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
35
+ - [-1, 2, A2C2f, [512, False, -1]] # 11
36
+
37
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
38
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
39
+ - [-1, 2, A2C2f, [256, False, -1]] # 14
40
+
41
+ - [-1, 1, Conv, [256, 3, 2]]
42
+ - [[-1, 11], 1, Concat, [1]] # cat head P4
43
+ - [-1, 2, A2C2f, [512, False, -1]] # 17
44
+
45
+ - [-1, 1, Conv, [512, 3, 2]]
46
+ - [[-1, 8], 1, Concat, [1]] # cat head P5
47
+ - [-1, 2, C3k2, [1024, True]] # 20 (P5/32-large)
48
+
49
+ - [[14, 17, 20], 1, Pose, [nc, kpt_shape]] # Detect(P3, P4, P5)
@@ -0,0 +1,48 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLO12-seg instance segmentation model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolo12
5
+ # Task docs: https://docs.ultralytics.com/tasks/segment
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolo12n-seg.yaml' will call yolo12-seg.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.50, 0.25, 1024] # summary: 294 layers, 2,855,056 parameters, 2,855,040 gradients, 10.6 GFLOPs
12
+ s: [0.50, 0.50, 1024] # summary: 294 layers, 9,938,592 parameters, 9,938,576 gradients, 35.7 GFLOPs
13
+ m: [0.50, 1.00, 512] # summary: 314 layers, 22,505,376 parameters, 22,505,360 gradients, 123.5 GFLOPs
14
+ l: [1.00, 1.00, 512] # summary: 510 layers, 28,756,992 parameters, 28,756,976 gradients, 145.1 GFLOPs
15
+ x: [1.00, 1.50, 512] # summary: 510 layers, 64,387,264 parameters, 64,387,248 gradients, 324.6 GFLOPs
16
+
17
+ # YOLO12n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 2, C3k2, [256, False, 0.25]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 2, C3k2, [512, False, 0.25]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 4, A2C2f, [512, True, 4]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 4, A2C2f, [1024, True, 1]] # 8
29
+
30
+ # YOLO12n head
31
+ head:
32
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
33
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
34
+ - [-1, 2, A2C2f, [512, False, -1]] # 11
35
+
36
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
38
+ - [-1, 2, A2C2f, [256, False, -1]] # 14
39
+
40
+ - [-1, 1, Conv, [256, 3, 2]]
41
+ - [[-1, 11], 1, Concat, [1]] # cat head P4
42
+ - [-1, 2, A2C2f, [512, False, -1]] # 17
43
+
44
+ - [-1, 1, Conv, [512, 3, 2]]
45
+ - [[-1, 8], 1, Concat, [1]] # cat head P5
46
+ - [-1, 2, C3k2, [1024, True]] # 20 (P5/32-large)
47
+
48
+ - [[14, 17, 20], 1, Segment, [nc, 32, 256]] # Detect(P3, P4, P5)
@@ -0,0 +1,48 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLO12 object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolo12
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolo12n.yaml' will call yolo12.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.50, 0.25, 1024] # summary: 272 layers, 2,602,288 parameters, 2,602,272 gradients, 6.7 GFLOPs
12
+ s: [0.50, 0.50, 1024] # summary: 272 layers, 9,284,096 parameters, 9,284,080 gradients, 21.7 GFLOPs
13
+ m: [0.50, 1.00, 512] # summary: 292 layers, 20,199,168 parameters, 20,199,152 gradients, 68.1 GFLOPs
14
+ l: [1.00, 1.00, 512] # summary: 488 layers, 26,450,784 parameters, 26,450,768 gradients, 89.7 GFLOPs
15
+ x: [1.00, 1.50, 512] # summary: 488 layers, 59,210,784 parameters, 59,210,768 gradients, 200.3 GFLOPs
16
+
17
+ # YOLO12n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 2, C3k2, [256, False, 0.25]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 2, C3k2, [512, False, 0.25]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 4, A2C2f, [512, True, 4]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 4, A2C2f, [1024, True, 1]] # 8
29
+
30
+ # YOLO12n head
31
+ head:
32
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
33
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
34
+ - [-1, 2, A2C2f, [512, False, -1]] # 11
35
+
36
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
38
+ - [-1, 2, A2C2f, [256, False, -1]] # 14
39
+
40
+ - [-1, 1, Conv, [256, 3, 2]]
41
+ - [[-1, 11], 1, Concat, [1]] # cat head P4
42
+ - [-1, 2, A2C2f, [512, False, -1]] # 17
43
+
44
+ - [-1, 1, Conv, [512, 3, 2]]
45
+ - [[-1, 8], 1, Concat, [1]] # cat head P5
46
+ - [-1, 2, C3k2, [1024, True]] # 20 (P5/32-large)
47
+
48
+ - [[14, 17, 20], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,53 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics RT-DETR-l hybrid object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/rtdetr
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ l: [1.00, 1.00, 1024]
12
+
13
+ backbone:
14
+ # [from, repeats, module, args]
15
+ - [-1, 1, HGStem, [32, 48]] # 0-P2/4
16
+ - [-1, 6, HGBlock, [48, 128, 3]] # stage 1
17
+
18
+ - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
19
+ - [-1, 6, HGBlock, [96, 512, 3]] # stage 2
20
+
21
+ - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16
22
+ - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
23
+ - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
24
+ - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3
25
+
26
+ - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32
27
+ - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
28
+
29
+ head:
30
+ - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
31
+ - [-1, 1, AIFI, [1024, 8]]
32
+ - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
33
+
34
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
35
+ - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
36
+ - [[-2, -1], 1, Concat, [1]]
37
+ - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
38
+ - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
39
+
40
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
41
+ - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
42
+ - [[-2, -1], 1, Concat, [1]] # cat backbone P4
43
+ - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
44
+
45
+ - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
46
+ - [[-1, 17], 1, Concat, [1]] # cat Y4
47
+ - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
48
+
49
+ - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
50
+ - [[-1, 12], 1, Concat, [1]] # cat Y5
51
+ - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
52
+
53
+ - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,45 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics RT-DETR-ResNet101 hybrid object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/rtdetr
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ l: [1.00, 1.00, 1024]
12
+
13
+ backbone:
14
+ # [from, repeats, module, args]
15
+ - [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0
16
+ - [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1
17
+ - [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2
18
+ - [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3
19
+ - [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4
20
+
21
+ head:
22
+ - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
23
+ - [-1, 1, AIFI, [1024, 8]]
24
+ - [-1, 1, Conv, [256, 1, 1]] # 7
25
+
26
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
27
+ - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
28
+ - [[-2, -1], 1, Concat, [1]]
29
+ - [-1, 3, RepC3, [256]] # 11
30
+ - [-1, 1, Conv, [256, 1, 1]] # 12
31
+
32
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
33
+ - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
34
+ - [[-2, -1], 1, Concat, [1]] # cat backbone P4
35
+ - [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
36
+
37
+ - [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
38
+ - [[-1, 12], 1, Concat, [1]] # cat Y4
39
+ - [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
40
+
41
+ - [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
42
+ - [[-1, 7], 1, Concat, [1]] # cat Y5
43
+ - [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
44
+
45
+ - [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,45 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics RT-DETR-ResNet50 hybrid object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/rtdetr
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ l: [1.00, 1.00, 1024]
12
+
13
+ backbone:
14
+ # [from, repeats, module, args]
15
+ - [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0
16
+ - [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1
17
+ - [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2
18
+ - [-1, 1, ResNetLayer, [512, 256, 2, False, 6]] # 3
19
+ - [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4
20
+
21
+ head:
22
+ - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
23
+ - [-1, 1, AIFI, [1024, 8]]
24
+ - [-1, 1, Conv, [256, 1, 1]] # 7
25
+
26
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
27
+ - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
28
+ - [[-2, -1], 1, Concat, [1]]
29
+ - [-1, 3, RepC3, [256]] # 11
30
+ - [-1, 1, Conv, [256, 1, 1]] # 12
31
+
32
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
33
+ - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
34
+ - [[-2, -1], 1, Concat, [1]] # cat backbone P4
35
+ - [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
36
+
37
+ - [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
38
+ - [[-1, 12], 1, Concat, [1]] # cat Y4
39
+ - [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
40
+
41
+ - [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
42
+ - [[-1, 7], 1, Concat, [1]] # cat Y5
43
+ - [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
44
+
45
+ - [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,57 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics RT-DETR-x hybrid object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/rtdetr
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ x: [1.00, 1.00, 2048]
12
+
13
+ backbone:
14
+ # [from, repeats, module, args]
15
+ - [-1, 1, HGStem, [32, 64]] # 0-P2/4
16
+ - [-1, 6, HGBlock, [64, 128, 3]] # stage 1
17
+
18
+ - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
19
+ - [-1, 6, HGBlock, [128, 512, 3]]
20
+ - [-1, 6, HGBlock, [128, 512, 3, False, True]] # 4-stage 2
21
+
22
+ - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 5-P3/16
23
+ - [-1, 6, HGBlock, [256, 1024, 5, True, False]] # cm, c2, k, light, shortcut
24
+ - [-1, 6, HGBlock, [256, 1024, 5, True, True]]
25
+ - [-1, 6, HGBlock, [256, 1024, 5, True, True]]
26
+ - [-1, 6, HGBlock, [256, 1024, 5, True, True]]
27
+ - [-1, 6, HGBlock, [256, 1024, 5, True, True]] # 10-stage 3
28
+
29
+ - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 11-P4/32
30
+ - [-1, 6, HGBlock, [512, 2048, 5, True, False]]
31
+ - [-1, 6, HGBlock, [512, 2048, 5, True, True]] # 13-stage 4
32
+
33
+ head:
34
+ - [-1, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 14 input_proj.2
35
+ - [-1, 1, AIFI, [2048, 8]]
36
+ - [-1, 1, Conv, [384, 1, 1]] # 16, Y5, lateral_convs.0
37
+
38
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
39
+ - [10, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 18 input_proj.1
40
+ - [[-2, -1], 1, Concat, [1]]
41
+ - [-1, 3, RepC3, [384]] # 20, fpn_blocks.0
42
+ - [-1, 1, Conv, [384, 1, 1]] # 21, Y4, lateral_convs.1
43
+
44
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
45
+ - [4, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 23 input_proj.0
46
+ - [[-2, -1], 1, Concat, [1]] # cat backbone P4
47
+ - [-1, 3, RepC3, [384]] # X3 (25), fpn_blocks.1
48
+
49
+ - [-1, 1, Conv, [384, 3, 2]] # 26, downsample_convs.0
50
+ - [[-1, 21], 1, Concat, [1]] # cat Y4
51
+ - [-1, 3, RepC3, [384]] # F4 (28), pan_blocks.0
52
+
53
+ - [-1, 1, Conv, [384, 3, 2]] # 29, downsample_convs.1
54
+ - [[-1, 16], 1, Concat, [1]] # cat Y5
55
+ - [-1, 3, RepC3, [384]] # F5 (31), pan_blocks.1
56
+
57
+ - [[25, 28, 31], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,45 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLOv10b object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov10
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ b: [0.67, 1.00, 512]
12
+
13
+ backbone:
14
+ # [from, repeats, module, args]
15
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
16
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
17
+ - [-1, 3, C2f, [128, True]]
18
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
19
+ - [-1, 6, C2f, [256, True]]
20
+ - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
21
+ - [-1, 6, C2f, [512, True]]
22
+ - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
23
+ - [-1, 3, C2fCIB, [1024, True]]
24
+ - [-1, 1, SPPF, [1024, 5]] # 9
25
+ - [-1, 1, PSA, [1024]] # 10
26
+
27
+ # YOLOv10.0n head
28
+ head:
29
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31
+ - [-1, 3, C2fCIB, [512, True]] # 13
32
+
33
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35
+ - [-1, 3, C2f, [256]] # 16 (P3/8-small)
36
+
37
+ - [-1, 1, Conv, [256, 3, 2]]
38
+ - [[-1, 13], 1, Concat, [1]] # cat head P4
39
+ - [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
40
+
41
+ - [-1, 1, SCDown, [512, 3, 2]]
42
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
43
+ - [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
44
+
45
+ - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,45 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLOv10l object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov10
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ l: [1.00, 1.00, 512]
12
+
13
+ backbone:
14
+ # [from, repeats, module, args]
15
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
16
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
17
+ - [-1, 3, C2f, [128, True]]
18
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
19
+ - [-1, 6, C2f, [256, True]]
20
+ - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
21
+ - [-1, 6, C2f, [512, True]]
22
+ - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
23
+ - [-1, 3, C2fCIB, [1024, True]]
24
+ - [-1, 1, SPPF, [1024, 5]] # 9
25
+ - [-1, 1, PSA, [1024]] # 10
26
+
27
+ # YOLOv10.0n head
28
+ head:
29
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31
+ - [-1, 3, C2fCIB, [512, True]] # 13
32
+
33
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35
+ - [-1, 3, C2f, [256]] # 16 (P3/8-small)
36
+
37
+ - [-1, 1, Conv, [256, 3, 2]]
38
+ - [[-1, 13], 1, Concat, [1]] # cat head P4
39
+ - [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
40
+
41
+ - [-1, 1, SCDown, [512, 3, 2]]
42
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
43
+ - [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
44
+
45
+ - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,45 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLOv10m object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov10
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ m: [0.67, 0.75, 768]
12
+
13
+ backbone:
14
+ # [from, repeats, module, args]
15
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
16
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
17
+ - [-1, 3, C2f, [128, True]]
18
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
19
+ - [-1, 6, C2f, [256, True]]
20
+ - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
21
+ - [-1, 6, C2f, [512, True]]
22
+ - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
23
+ - [-1, 3, C2fCIB, [1024, True]]
24
+ - [-1, 1, SPPF, [1024, 5]] # 9
25
+ - [-1, 1, PSA, [1024]] # 10
26
+
27
+ # YOLOv10.0n head
28
+ head:
29
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31
+ - [-1, 3, C2f, [512]] # 13
32
+
33
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35
+ - [-1, 3, C2f, [256]] # 16 (P3/8-small)
36
+
37
+ - [-1, 1, Conv, [256, 3, 2]]
38
+ - [[-1, 13], 1, Concat, [1]] # cat head P4
39
+ - [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
40
+
41
+ - [-1, 1, SCDown, [512, 3, 2]]
42
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
43
+ - [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
44
+
45
+ - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,45 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLOv10n object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov10
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.33, 0.25, 1024]
12
+
13
+ backbone:
14
+ # [from, repeats, module, args]
15
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
16
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
17
+ - [-1, 3, C2f, [128, True]]
18
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
19
+ - [-1, 6, C2f, [256, True]]
20
+ - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
21
+ - [-1, 6, C2f, [512, True]]
22
+ - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
23
+ - [-1, 3, C2f, [1024, True]]
24
+ - [-1, 1, SPPF, [1024, 5]] # 9
25
+ - [-1, 1, PSA, [1024]] # 10
26
+
27
+ # YOLOv10.0n head
28
+ head:
29
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31
+ - [-1, 3, C2f, [512]] # 13
32
+
33
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35
+ - [-1, 3, C2f, [256]] # 16 (P3/8-small)
36
+
37
+ - [-1, 1, Conv, [256, 3, 2]]
38
+ - [[-1, 13], 1, Concat, [1]] # cat head P4
39
+ - [-1, 3, C2f, [512]] # 19 (P4/16-medium)
40
+
41
+ - [-1, 1, SCDown, [512, 3, 2]]
42
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
43
+ - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)
44
+
45
+ - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,45 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLOv10s object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov10
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ s: [0.33, 0.50, 1024]
12
+
13
+ backbone:
14
+ # [from, repeats, module, args]
15
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
16
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
17
+ - [-1, 3, C2f, [128, True]]
18
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
19
+ - [-1, 6, C2f, [256, True]]
20
+ - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
21
+ - [-1, 6, C2f, [512, True]]
22
+ - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
23
+ - [-1, 3, C2fCIB, [1024, True, True]]
24
+ - [-1, 1, SPPF, [1024, 5]] # 9
25
+ - [-1, 1, PSA, [1024]] # 10
26
+
27
+ # YOLOv10.0n head
28
+ head:
29
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31
+ - [-1, 3, C2f, [512]] # 13
32
+
33
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35
+ - [-1, 3, C2f, [256]] # 16 (P3/8-small)
36
+
37
+ - [-1, 1, Conv, [256, 3, 2]]
38
+ - [[-1, 13], 1, Concat, [1]] # cat head P4
39
+ - [-1, 3, C2f, [512]] # 19 (P4/16-medium)
40
+
41
+ - [-1, 1, SCDown, [512, 3, 2]]
42
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
43
+ - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)
44
+
45
+ - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)