dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (272) hide show
  1. dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
  2. dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
  3. dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
  4. dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
  5. dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
  6. dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
  7. tests/__init__.py +22 -0
  8. tests/conftest.py +83 -0
  9. tests/test_cli.py +138 -0
  10. tests/test_cuda.py +215 -0
  11. tests/test_engine.py +131 -0
  12. tests/test_exports.py +236 -0
  13. tests/test_integrations.py +154 -0
  14. tests/test_python.py +694 -0
  15. tests/test_solutions.py +187 -0
  16. ultralytics/__init__.py +30 -0
  17. ultralytics/assets/bus.jpg +0 -0
  18. ultralytics/assets/zidane.jpg +0 -0
  19. ultralytics/cfg/__init__.py +1023 -0
  20. ultralytics/cfg/datasets/Argoverse.yaml +77 -0
  21. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  22. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  23. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  24. ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
  25. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  26. ultralytics/cfg/datasets/Objects365.yaml +443 -0
  27. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  28. ultralytics/cfg/datasets/VOC.yaml +106 -0
  29. ultralytics/cfg/datasets/VisDrone.yaml +77 -0
  30. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  31. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  32. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  33. ultralytics/cfg/datasets/coco-pose.yaml +42 -0
  34. ultralytics/cfg/datasets/coco.yaml +118 -0
  35. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  36. ultralytics/cfg/datasets/coco128.yaml +101 -0
  37. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  38. ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
  39. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  40. ultralytics/cfg/datasets/coco8.yaml +101 -0
  41. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  42. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  43. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  44. ultralytics/cfg/datasets/dota8.yaml +35 -0
  45. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  46. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  47. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  48. ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
  49. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  50. ultralytics/cfg/datasets/signature.yaml +21 -0
  51. ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
  52. ultralytics/cfg/datasets/xView.yaml +155 -0
  53. ultralytics/cfg/default.yaml +127 -0
  54. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  55. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  56. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  57. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  58. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  59. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  60. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  61. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  62. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  63. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  64. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  65. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  66. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  68. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  69. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  70. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  71. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  74. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  75. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  76. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  77. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  78. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  79. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  80. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  81. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  82. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  83. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
  84. ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
  85. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  86. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  87. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  88. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  89. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  90. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  91. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  92. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  93. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  94. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  95. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  96. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  97. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  98. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  99. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  100. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  101. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  102. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  103. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  105. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  106. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  107. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  108. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  109. ultralytics/cfg/trackers/botsort.yaml +22 -0
  110. ultralytics/cfg/trackers/bytetrack.yaml +14 -0
  111. ultralytics/data/__init__.py +26 -0
  112. ultralytics/data/annotator.py +66 -0
  113. ultralytics/data/augment.py +2945 -0
  114. ultralytics/data/base.py +438 -0
  115. ultralytics/data/build.py +258 -0
  116. ultralytics/data/converter.py +754 -0
  117. ultralytics/data/dataset.py +834 -0
  118. ultralytics/data/loaders.py +676 -0
  119. ultralytics/data/scripts/download_weights.sh +18 -0
  120. ultralytics/data/scripts/get_coco.sh +61 -0
  121. ultralytics/data/scripts/get_coco128.sh +18 -0
  122. ultralytics/data/scripts/get_imagenet.sh +52 -0
  123. ultralytics/data/split.py +125 -0
  124. ultralytics/data/split_dota.py +325 -0
  125. ultralytics/data/utils.py +777 -0
  126. ultralytics/engine/__init__.py +1 -0
  127. ultralytics/engine/exporter.py +1519 -0
  128. ultralytics/engine/model.py +1156 -0
  129. ultralytics/engine/predictor.py +502 -0
  130. ultralytics/engine/results.py +1840 -0
  131. ultralytics/engine/trainer.py +853 -0
  132. ultralytics/engine/tuner.py +243 -0
  133. ultralytics/engine/validator.py +377 -0
  134. ultralytics/hub/__init__.py +168 -0
  135. ultralytics/hub/auth.py +137 -0
  136. ultralytics/hub/google/__init__.py +176 -0
  137. ultralytics/hub/session.py +446 -0
  138. ultralytics/hub/utils.py +248 -0
  139. ultralytics/models/__init__.py +9 -0
  140. ultralytics/models/fastsam/__init__.py +7 -0
  141. ultralytics/models/fastsam/model.py +61 -0
  142. ultralytics/models/fastsam/predict.py +181 -0
  143. ultralytics/models/fastsam/utils.py +24 -0
  144. ultralytics/models/fastsam/val.py +40 -0
  145. ultralytics/models/nas/__init__.py +7 -0
  146. ultralytics/models/nas/model.py +102 -0
  147. ultralytics/models/nas/predict.py +58 -0
  148. ultralytics/models/nas/val.py +39 -0
  149. ultralytics/models/rtdetr/__init__.py +7 -0
  150. ultralytics/models/rtdetr/model.py +63 -0
  151. ultralytics/models/rtdetr/predict.py +84 -0
  152. ultralytics/models/rtdetr/train.py +85 -0
  153. ultralytics/models/rtdetr/val.py +191 -0
  154. ultralytics/models/sam/__init__.py +6 -0
  155. ultralytics/models/sam/amg.py +260 -0
  156. ultralytics/models/sam/build.py +358 -0
  157. ultralytics/models/sam/model.py +170 -0
  158. ultralytics/models/sam/modules/__init__.py +1 -0
  159. ultralytics/models/sam/modules/blocks.py +1129 -0
  160. ultralytics/models/sam/modules/decoders.py +515 -0
  161. ultralytics/models/sam/modules/encoders.py +854 -0
  162. ultralytics/models/sam/modules/memory_attention.py +299 -0
  163. ultralytics/models/sam/modules/sam.py +1006 -0
  164. ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
  165. ultralytics/models/sam/modules/transformer.py +351 -0
  166. ultralytics/models/sam/modules/utils.py +394 -0
  167. ultralytics/models/sam/predict.py +1605 -0
  168. ultralytics/models/utils/__init__.py +1 -0
  169. ultralytics/models/utils/loss.py +455 -0
  170. ultralytics/models/utils/ops.py +268 -0
  171. ultralytics/models/yolo/__init__.py +7 -0
  172. ultralytics/models/yolo/classify/__init__.py +7 -0
  173. ultralytics/models/yolo/classify/predict.py +88 -0
  174. ultralytics/models/yolo/classify/train.py +233 -0
  175. ultralytics/models/yolo/classify/val.py +215 -0
  176. ultralytics/models/yolo/detect/__init__.py +7 -0
  177. ultralytics/models/yolo/detect/predict.py +124 -0
  178. ultralytics/models/yolo/detect/train.py +217 -0
  179. ultralytics/models/yolo/detect/val.py +451 -0
  180. ultralytics/models/yolo/model.py +354 -0
  181. ultralytics/models/yolo/obb/__init__.py +7 -0
  182. ultralytics/models/yolo/obb/predict.py +66 -0
  183. ultralytics/models/yolo/obb/train.py +81 -0
  184. ultralytics/models/yolo/obb/val.py +283 -0
  185. ultralytics/models/yolo/pose/__init__.py +7 -0
  186. ultralytics/models/yolo/pose/predict.py +79 -0
  187. ultralytics/models/yolo/pose/train.py +154 -0
  188. ultralytics/models/yolo/pose/val.py +394 -0
  189. ultralytics/models/yolo/segment/__init__.py +7 -0
  190. ultralytics/models/yolo/segment/predict.py +113 -0
  191. ultralytics/models/yolo/segment/train.py +123 -0
  192. ultralytics/models/yolo/segment/val.py +428 -0
  193. ultralytics/models/yolo/world/__init__.py +5 -0
  194. ultralytics/models/yolo/world/train.py +119 -0
  195. ultralytics/models/yolo/world/train_world.py +176 -0
  196. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  197. ultralytics/models/yolo/yoloe/predict.py +169 -0
  198. ultralytics/models/yolo/yoloe/train.py +298 -0
  199. ultralytics/models/yolo/yoloe/train_seg.py +124 -0
  200. ultralytics/models/yolo/yoloe/val.py +191 -0
  201. ultralytics/nn/__init__.py +29 -0
  202. ultralytics/nn/autobackend.py +842 -0
  203. ultralytics/nn/modules/__init__.py +182 -0
  204. ultralytics/nn/modules/activation.py +53 -0
  205. ultralytics/nn/modules/block.py +1966 -0
  206. ultralytics/nn/modules/conv.py +712 -0
  207. ultralytics/nn/modules/head.py +880 -0
  208. ultralytics/nn/modules/transformer.py +713 -0
  209. ultralytics/nn/modules/utils.py +164 -0
  210. ultralytics/nn/tasks.py +1627 -0
  211. ultralytics/nn/text_model.py +351 -0
  212. ultralytics/solutions/__init__.py +41 -0
  213. ultralytics/solutions/ai_gym.py +116 -0
  214. ultralytics/solutions/analytics.py +252 -0
  215. ultralytics/solutions/config.py +106 -0
  216. ultralytics/solutions/distance_calculation.py +124 -0
  217. ultralytics/solutions/heatmap.py +127 -0
  218. ultralytics/solutions/instance_segmentation.py +84 -0
  219. ultralytics/solutions/object_blurrer.py +90 -0
  220. ultralytics/solutions/object_counter.py +195 -0
  221. ultralytics/solutions/object_cropper.py +84 -0
  222. ultralytics/solutions/parking_management.py +273 -0
  223. ultralytics/solutions/queue_management.py +93 -0
  224. ultralytics/solutions/region_counter.py +120 -0
  225. ultralytics/solutions/security_alarm.py +154 -0
  226. ultralytics/solutions/similarity_search.py +172 -0
  227. ultralytics/solutions/solutions.py +724 -0
  228. ultralytics/solutions/speed_estimation.py +110 -0
  229. ultralytics/solutions/streamlit_inference.py +196 -0
  230. ultralytics/solutions/templates/similarity-search.html +160 -0
  231. ultralytics/solutions/trackzone.py +88 -0
  232. ultralytics/solutions/vision_eye.py +68 -0
  233. ultralytics/trackers/__init__.py +7 -0
  234. ultralytics/trackers/basetrack.py +124 -0
  235. ultralytics/trackers/bot_sort.py +260 -0
  236. ultralytics/trackers/byte_tracker.py +480 -0
  237. ultralytics/trackers/track.py +125 -0
  238. ultralytics/trackers/utils/__init__.py +1 -0
  239. ultralytics/trackers/utils/gmc.py +376 -0
  240. ultralytics/trackers/utils/kalman_filter.py +493 -0
  241. ultralytics/trackers/utils/matching.py +157 -0
  242. ultralytics/utils/__init__.py +1435 -0
  243. ultralytics/utils/autobatch.py +106 -0
  244. ultralytics/utils/autodevice.py +174 -0
  245. ultralytics/utils/benchmarks.py +695 -0
  246. ultralytics/utils/callbacks/__init__.py +5 -0
  247. ultralytics/utils/callbacks/base.py +234 -0
  248. ultralytics/utils/callbacks/clearml.py +153 -0
  249. ultralytics/utils/callbacks/comet.py +552 -0
  250. ultralytics/utils/callbacks/dvc.py +205 -0
  251. ultralytics/utils/callbacks/hub.py +108 -0
  252. ultralytics/utils/callbacks/mlflow.py +138 -0
  253. ultralytics/utils/callbacks/neptune.py +140 -0
  254. ultralytics/utils/callbacks/raytune.py +43 -0
  255. ultralytics/utils/callbacks/tensorboard.py +132 -0
  256. ultralytics/utils/callbacks/wb.py +185 -0
  257. ultralytics/utils/checks.py +897 -0
  258. ultralytics/utils/dist.py +119 -0
  259. ultralytics/utils/downloads.py +499 -0
  260. ultralytics/utils/errors.py +43 -0
  261. ultralytics/utils/export.py +219 -0
  262. ultralytics/utils/files.py +221 -0
  263. ultralytics/utils/instance.py +499 -0
  264. ultralytics/utils/loss.py +813 -0
  265. ultralytics/utils/metrics.py +1356 -0
  266. ultralytics/utils/ops.py +885 -0
  267. ultralytics/utils/patches.py +143 -0
  268. ultralytics/utils/plotting.py +1011 -0
  269. ultralytics/utils/tal.py +416 -0
  270. ultralytics/utils/torch_utils.py +990 -0
  271. ultralytics/utils/triton.py +116 -0
  272. ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,243 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+ """
3
+ Module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection, instance
4
+ segmentation, image classification, pose estimation, and multi-object tracking.
5
+
6
+ Hyperparameter tuning is the process of systematically searching for the optimal set of hyperparameters
7
+ that yield the best model performance. This is particularly crucial in deep learning models like YOLO,
8
+ where small changes in hyperparameters can lead to significant differences in model accuracy and efficiency.
9
+
10
+ Examples:
11
+ Tune hyperparameters for YOLO11n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
12
+ >>> from ultralytics import YOLO
13
+ >>> model = YOLO("yolo11n.pt")
14
+ >>> model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False)
15
+ """
16
+
17
+ import random
18
+ import shutil
19
+ import subprocess
20
+ import time
21
+
22
+ import numpy as np
23
+ import torch
24
+
25
+ from ultralytics.cfg import get_cfg, get_save_dir
26
+ from ultralytics.utils import DEFAULT_CFG, LOGGER, YAML, callbacks, colorstr, remove_colorstr
27
+ from ultralytics.utils.plotting import plot_tune_results
28
+
29
+
30
+ class Tuner:
31
+ """
32
+ A class for hyperparameter tuning of YOLO models.
33
+
34
+ The class evolves YOLO model hyperparameters over a given number of iterations by mutating them according to the
35
+ search space and retraining the model to evaluate their performance.
36
+
37
+ Attributes:
38
+ space (dict): Hyperparameter search space containing bounds and scaling factors for mutation.
39
+ tune_dir (Path): Directory where evolution logs and results will be saved.
40
+ tune_csv (Path): Path to the CSV file where evolution logs are saved.
41
+ args (dict): Configuration arguments for the tuning process.
42
+ callbacks (list): Callback functions to be executed during tuning.
43
+ prefix (str): Prefix string for logging messages.
44
+
45
+ Methods:
46
+ _mutate: Mutates the given hyperparameters within the specified bounds.
47
+ __call__: Executes the hyperparameter evolution across multiple iterations.
48
+
49
+ Examples:
50
+ Tune hyperparameters for YOLO11n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
51
+ >>> from ultralytics import YOLO
52
+ >>> model = YOLO("yolo11n.pt")
53
+ >>> model.tune(
54
+ ... data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False
55
+ ... )
56
+
57
+ Tune with custom search space.
58
+ >>> model.tune(space={key1: val1, key2: val2}) # custom search space dictionary
59
+ """
60
+
61
+ def __init__(self, args=DEFAULT_CFG, _callbacks=None):
62
+ """
63
+ Initialize the Tuner with configurations.
64
+
65
+ Args:
66
+ args (dict): Configuration for hyperparameter evolution.
67
+ _callbacks (list, optional): Callback functions to be executed during tuning.
68
+ """
69
+ self.space = args.pop("space", None) or { # key: (min, max, gain(optional))
70
+ # 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
71
+ "lr0": (1e-5, 1e-1), # initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
72
+ "lrf": (0.0001, 0.1), # final OneCycleLR learning rate (lr0 * lrf)
73
+ "momentum": (0.7, 0.98, 0.3), # SGD momentum/Adam beta1
74
+ "weight_decay": (0.0, 0.001), # optimizer weight decay 5e-4
75
+ "warmup_epochs": (0.0, 5.0), # warmup epochs (fractions ok)
76
+ "warmup_momentum": (0.0, 0.95), # warmup initial momentum
77
+ "box": (1.0, 20.0), # box loss gain
78
+ "cls": (0.2, 4.0), # cls loss gain (scale with pixels)
79
+ "dfl": (0.4, 6.0), # dfl loss gain
80
+ "hsv_h": (0.0, 0.1), # image HSV-Hue augmentation (fraction)
81
+ "hsv_s": (0.0, 0.9), # image HSV-Saturation augmentation (fraction)
82
+ "hsv_v": (0.0, 0.9), # image HSV-Value augmentation (fraction)
83
+ "degrees": (0.0, 45.0), # image rotation (+/- deg)
84
+ "translate": (0.0, 0.9), # image translation (+/- fraction)
85
+ "scale": (0.0, 0.95), # image scale (+/- gain)
86
+ "shear": (0.0, 10.0), # image shear (+/- deg)
87
+ "perspective": (0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
88
+ "flipud": (0.0, 1.0), # image flip up-down (probability)
89
+ "fliplr": (0.0, 1.0), # image flip left-right (probability)
90
+ "bgr": (0.0, 1.0), # image channel bgr (probability)
91
+ "mosaic": (0.0, 1.0), # image mosaic (probability)
92
+ "mixup": (0.0, 1.0), # image mixup (probability)
93
+ "cutmix": (0.0, 1.0), # image cutmix (probability)
94
+ "copy_paste": (0.0, 1.0), # segment copy-paste (probability)
95
+ }
96
+ self.args = get_cfg(overrides=args)
97
+ self.args.exist_ok = self.args.resume # resume w/ same tune_dir
98
+ self.tune_dir = get_save_dir(self.args, name=self.args.name or "tune")
99
+ self.args.name, self.args.exist_ok, self.args.resume = (None, False, False) # reset to not affect training
100
+ self.tune_csv = self.tune_dir / "tune_results.csv"
101
+ self.callbacks = _callbacks or callbacks.get_default_callbacks()
102
+ self.prefix = colorstr("Tuner: ")
103
+ callbacks.add_integration_callbacks(self)
104
+ LOGGER.info(
105
+ f"{self.prefix}Initialized Tuner instance with 'tune_dir={self.tune_dir}'\n"
106
+ f"{self.prefix}💡 Learn about tuning at https://docs.ultralytics.com/guides/hyperparameter-tuning"
107
+ )
108
+
109
+ def _mutate(self, parent="single", n=5, mutation=0.8, sigma=0.2):
110
+ """
111
+ Mutate hyperparameters based on bounds and scaling factors specified in `self.space`.
112
+
113
+ Args:
114
+ parent (str): Parent selection method: 'single' or 'weighted'.
115
+ n (int): Number of parents to consider.
116
+ mutation (float): Probability of a parameter mutation in any given iteration.
117
+ sigma (float): Standard deviation for Gaussian random number generator.
118
+
119
+ Returns:
120
+ (dict): A dictionary containing mutated hyperparameters.
121
+ """
122
+ if self.tune_csv.exists(): # if CSV file exists: select best hyps and mutate
123
+ # Select parent(s)
124
+ x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1)
125
+ fitness = x[:, 0] # first column
126
+ n = min(n, len(x)) # number of previous results to consider
127
+ x = x[np.argsort(-fitness)][:n] # top n mutations
128
+ w = x[:, 0] - x[:, 0].min() + 1e-6 # weights (sum > 0)
129
+ if parent == "single" or len(x) == 1:
130
+ # x = x[random.randint(0, n - 1)] # random selection
131
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
132
+ elif parent == "weighted":
133
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
134
+
135
+ # Mutate
136
+ r = np.random # method
137
+ r.seed(int(time.time()))
138
+ g = np.array([v[2] if len(v) == 3 else 1.0 for v in self.space.values()]) # gains 0-1
139
+ ng = len(self.space)
140
+ v = np.ones(ng)
141
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
142
+ v = (g * (r.random(ng) < mutation) * r.randn(ng) * r.random() * sigma + 1).clip(0.3, 3.0)
143
+ hyp = {k: float(x[i + 1] * v[i]) for i, k in enumerate(self.space.keys())}
144
+ else:
145
+ hyp = {k: getattr(self.args, k) for k in self.space.keys()}
146
+
147
+ # Constrain to limits
148
+ for k, v in self.space.items():
149
+ hyp[k] = max(hyp[k], v[0]) # lower limit
150
+ hyp[k] = min(hyp[k], v[1]) # upper limit
151
+ hyp[k] = round(hyp[k], 5) # significant digits
152
+
153
+ return hyp
154
+
155
+ def __call__(self, model=None, iterations=10, cleanup=True):
156
+ """
157
+ Execute the hyperparameter evolution process when the Tuner instance is called.
158
+
159
+ This method iterates through the number of iterations, performing the following steps in each iteration:
160
+
161
+ 1. Load the existing hyperparameters or initialize new ones.
162
+ 2. Mutate the hyperparameters using the `mutate` method.
163
+ 3. Train a YOLO model with the mutated hyperparameters.
164
+ 4. Log the fitness score and mutated hyperparameters to a CSV file.
165
+
166
+ Args:
167
+ model (Model): A pre-initialized YOLO model to be used for training.
168
+ iterations (int): The number of generations to run the evolution for.
169
+ cleanup (bool): Whether to delete iteration weights to reduce storage space used during tuning.
170
+
171
+ Note:
172
+ The method utilizes the `self.tune_csv` Path object to read and log hyperparameters and fitness scores.
173
+ Ensure this path is set correctly in the Tuner instance.
174
+ """
175
+ t0 = time.time()
176
+ best_save_dir, best_metrics = None, None
177
+ (self.tune_dir / "weights").mkdir(parents=True, exist_ok=True)
178
+ start = 0
179
+ if self.tune_csv.exists():
180
+ x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1)
181
+ start = x.shape[0]
182
+ LOGGER.info(f"{self.prefix}Resuming tuning run {self.tune_dir} from iteration {start + 1}...")
183
+ for i in range(start, iterations):
184
+ # Mutate hyperparameters
185
+ mutated_hyp = self._mutate()
186
+ LOGGER.info(f"{self.prefix}Starting iteration {i + 1}/{iterations} with hyperparameters: {mutated_hyp}")
187
+
188
+ metrics = {}
189
+ train_args = {**vars(self.args), **mutated_hyp}
190
+ save_dir = get_save_dir(get_cfg(train_args))
191
+ weights_dir = save_dir / "weights"
192
+ try:
193
+ # Train YOLO model with mutated hyperparameters (run in subprocess to avoid dataloader hang)
194
+ launch = [__import__("sys").executable, "-m", "ultralytics.cfg.__init__"] # workaround yolo not found
195
+ cmd = [*launch, "train", *(f"{k}={v}" for k, v in train_args.items())]
196
+ return_code = subprocess.run(cmd, check=True).returncode
197
+ ckpt_file = weights_dir / ("best.pt" if (weights_dir / "best.pt").exists() else "last.pt")
198
+ metrics = torch.load(ckpt_file)["train_metrics"]
199
+ assert return_code == 0, "training failed"
200
+
201
+ except Exception as e:
202
+ LOGGER.error(f"training failure for hyperparameter tuning iteration {i + 1}\n{e}")
203
+
204
+ # Save results and mutated_hyp to CSV
205
+ fitness = metrics.get("fitness", 0.0)
206
+ log_row = [round(fitness, 5)] + [mutated_hyp[k] for k in self.space.keys()]
207
+ headers = "" if self.tune_csv.exists() else (",".join(["fitness"] + list(self.space.keys())) + "\n")
208
+ with open(self.tune_csv, "a", encoding="utf-8") as f:
209
+ f.write(headers + ",".join(map(str, log_row)) + "\n")
210
+
211
+ # Get best results
212
+ x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1)
213
+ fitness = x[:, 0] # first column
214
+ best_idx = fitness.argmax()
215
+ best_is_current = best_idx == i
216
+ if best_is_current:
217
+ best_save_dir = save_dir
218
+ best_metrics = {k: round(v, 5) for k, v in metrics.items()}
219
+ for ckpt in weights_dir.glob("*.pt"):
220
+ shutil.copy2(ckpt, self.tune_dir / "weights")
221
+ elif cleanup:
222
+ shutil.rmtree(weights_dir, ignore_errors=True) # remove iteration weights/ dir to reduce storage space
223
+
224
+ # Plot tune results
225
+ plot_tune_results(self.tune_csv)
226
+
227
+ # Save and print tune results
228
+ header = (
229
+ f"{self.prefix}{i + 1}/{iterations} iterations complete ✅ ({time.time() - t0:.2f}s)\n"
230
+ f"{self.prefix}Results saved to {colorstr('bold', self.tune_dir)}\n"
231
+ f"{self.prefix}Best fitness={fitness[best_idx]} observed at iteration {best_idx + 1}\n"
232
+ f"{self.prefix}Best fitness metrics are {best_metrics}\n"
233
+ f"{self.prefix}Best fitness model is {best_save_dir}\n"
234
+ f"{self.prefix}Best fitness hyperparameters are printed below.\n"
235
+ )
236
+ LOGGER.info("\n" + header)
237
+ data = {k: float(x[best_idx, i + 1]) for i, k in enumerate(self.space.keys())}
238
+ YAML.save(
239
+ self.tune_dir / "best_hyperparameters.yaml",
240
+ data=data,
241
+ header=remove_colorstr(header.replace(self.prefix, "# ")) + "\n",
242
+ )
243
+ YAML.print(self.tune_dir / "best_hyperparameters.yaml")
@@ -0,0 +1,377 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+ """
3
+ Check a model's accuracy on a test or val split of a dataset.
4
+
5
+ Usage:
6
+ $ yolo mode=val model=yolo11n.pt data=coco8.yaml imgsz=640
7
+
8
+ Usage - formats:
9
+ $ yolo mode=val model=yolo11n.pt # PyTorch
10
+ yolo11n.torchscript # TorchScript
11
+ yolo11n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
12
+ yolo11n_openvino_model # OpenVINO
13
+ yolo11n.engine # TensorRT
14
+ yolo11n.mlpackage # CoreML (macOS-only)
15
+ yolo11n_saved_model # TensorFlow SavedModel
16
+ yolo11n.pb # TensorFlow GraphDef
17
+ yolo11n.tflite # TensorFlow Lite
18
+ yolo11n_edgetpu.tflite # TensorFlow Edge TPU
19
+ yolo11n_paddle_model # PaddlePaddle
20
+ yolo11n.mnn # MNN
21
+ yolo11n_ncnn_model # NCNN
22
+ yolo11n_imx_model # Sony IMX
23
+ yolo11n_rknn_model # Rockchip RKNN
24
+ """
25
+
26
+ import json
27
+ import time
28
+ from pathlib import Path
29
+
30
+ import numpy as np
31
+ import torch
32
+
33
+ from ultralytics.cfg import get_cfg, get_save_dir
34
+ from ultralytics.data.utils import check_cls_dataset, check_det_dataset
35
+ from ultralytics.nn.autobackend import AutoBackend
36
+ from ultralytics.utils import LOGGER, TQDM, callbacks, colorstr, emojis
37
+ from ultralytics.utils.checks import check_imgsz
38
+ from ultralytics.utils.ops import Profile
39
+ from ultralytics.utils.torch_utils import de_parallel, select_device, smart_inference_mode
40
+
41
+
42
+ class BaseValidator:
43
+ """
44
+ A base class for creating validators.
45
+
46
+ This class provides the foundation for validation processes, including model evaluation, metric computation, and
47
+ result visualization.
48
+
49
+ Attributes:
50
+ args (SimpleNamespace): Configuration for the validator.
51
+ dataloader (DataLoader): Dataloader to use for validation.
52
+ pbar (tqdm): Progress bar to update during validation.
53
+ model (nn.Module): Model to validate.
54
+ data (dict): Data dictionary containing dataset information.
55
+ device (torch.device): Device to use for validation.
56
+ batch_i (int): Current batch index.
57
+ training (bool): Whether the model is in training mode.
58
+ names (dict): Class names mapping.
59
+ seen (int): Number of images seen so far during validation.
60
+ stats (dict): Statistics collected during validation.
61
+ confusion_matrix: Confusion matrix for classification evaluation.
62
+ nc (int): Number of classes.
63
+ iouv (torch.Tensor): IoU thresholds from 0.50 to 0.95 in spaces of 0.05.
64
+ jdict (list): List to store JSON validation results.
65
+ speed (dict): Dictionary with keys 'preprocess', 'inference', 'loss', 'postprocess' and their respective
66
+ batch processing times in milliseconds.
67
+ save_dir (Path): Directory to save results.
68
+ plots (dict): Dictionary to store plots for visualization.
69
+ callbacks (dict): Dictionary to store various callback functions.
70
+
71
+ Methods:
72
+ __call__: Execute validation process, running inference on dataloader and computing performance metrics.
73
+ match_predictions: Match predictions to ground truth objects using IoU.
74
+ add_callback: Append the given callback to the specified event.
75
+ run_callbacks: Run all callbacks associated with a specified event.
76
+ get_dataloader: Get data loader from dataset path and batch size.
77
+ build_dataset: Build dataset from image path.
78
+ preprocess: Preprocess an input batch.
79
+ postprocess: Postprocess the predictions.
80
+ init_metrics: Initialize performance metrics for the YOLO model.
81
+ update_metrics: Update metrics based on predictions and batch.
82
+ finalize_metrics: Finalize and return all metrics.
83
+ get_stats: Return statistics about the model's performance.
84
+ check_stats: Check statistics.
85
+ print_results: Print the results of the model's predictions.
86
+ get_desc: Get description of the YOLO model.
87
+ on_plot: Register plots (e.g. to be consumed in callbacks).
88
+ plot_val_samples: Plot validation samples during training.
89
+ plot_predictions: Plot YOLO model predictions on batch images.
90
+ pred_to_json: Convert predictions to JSON format.
91
+ eval_json: Evaluate and return JSON format of prediction statistics.
92
+ """
93
+
94
+ def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
95
+ """
96
+ Initialize a BaseValidator instance.
97
+
98
+ Args:
99
+ dataloader (torch.utils.data.DataLoader, optional): Dataloader to be used for validation.
100
+ save_dir (Path, optional): Directory to save results.
101
+ pbar (tqdm.tqdm, optional): Progress bar for displaying progress.
102
+ args (SimpleNamespace, optional): Configuration for the validator.
103
+ _callbacks (dict, optional): Dictionary to store various callback functions.
104
+ """
105
+ self.args = get_cfg(overrides=args)
106
+ self.dataloader = dataloader
107
+ self.pbar = pbar
108
+ self.stride = None
109
+ self.data = None
110
+ self.device = None
111
+ self.batch_i = None
112
+ self.training = True
113
+ self.names = None
114
+ self.seen = None
115
+ self.stats = None
116
+ self.confusion_matrix = None
117
+ self.nc = None
118
+ self.iouv = None
119
+ self.jdict = None
120
+ self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
121
+
122
+ self.save_dir = save_dir or get_save_dir(self.args)
123
+ (self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
124
+ if self.args.conf is None:
125
+ self.args.conf = 0.001 # default conf=0.001
126
+ self.args.imgsz = check_imgsz(self.args.imgsz, max_dim=1)
127
+
128
+ self.plots = {}
129
+ self.callbacks = _callbacks or callbacks.get_default_callbacks()
130
+
131
+ @smart_inference_mode()
132
+ def __call__(self, trainer=None, model=None):
133
+ """
134
+ Execute validation process, running inference on dataloader and computing performance metrics.
135
+
136
+ Args:
137
+ trainer (object, optional): Trainer object that contains the model to validate.
138
+ model (nn.Module, optional): Model to validate if not using a trainer.
139
+
140
+ Returns:
141
+ stats (dict): Dictionary containing validation statistics.
142
+ """
143
+ self.training = trainer is not None
144
+ augment = self.args.augment and (not self.training)
145
+ if self.training:
146
+ self.device = trainer.device
147
+ self.data = trainer.data
148
+ # Force FP16 val during training
149
+ self.args.half = self.device.type != "cpu" and trainer.amp
150
+ model = trainer.ema.ema or trainer.model
151
+ model = model.half() if self.args.half else model.float()
152
+ # self.model = model
153
+ self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
154
+ self.args.plots &= trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1)
155
+ model.eval()
156
+ else:
157
+ if str(self.args.model).endswith(".yaml") and model is None:
158
+ LOGGER.warning("validating an untrained model YAML will result in 0 mAP.")
159
+ callbacks.add_integration_callbacks(self)
160
+ model = AutoBackend(
161
+ weights=model or self.args.model,
162
+ device=select_device(self.args.device, self.args.batch),
163
+ dnn=self.args.dnn,
164
+ data=self.args.data,
165
+ fp16=self.args.half,
166
+ )
167
+ # self.model = model
168
+ self.device = model.device # update device
169
+ self.args.half = model.fp16 # update half
170
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
171
+ imgsz = check_imgsz(self.args.imgsz, stride=stride)
172
+ if engine:
173
+ self.args.batch = model.batch_size
174
+ elif not (pt or jit or getattr(model, "dynamic", False)):
175
+ self.args.batch = model.metadata.get("batch", 1) # export.py models default to batch-size 1
176
+ LOGGER.info(f"Setting batch={self.args.batch} input of shape ({self.args.batch}, 3, {imgsz}, {imgsz})")
177
+
178
+ if str(self.args.data).split(".")[-1] in {"yaml", "yml"}:
179
+ self.data = check_det_dataset(self.args.data)
180
+ elif self.args.task == "classify":
181
+ self.data = check_cls_dataset(self.args.data, split=self.args.split)
182
+ else:
183
+ raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found ❌"))
184
+
185
+ if self.device.type in {"cpu", "mps"}:
186
+ self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
187
+ if not (pt or getattr(model, "dynamic", False)):
188
+ self.args.rect = False
189
+ self.stride = model.stride # used in get_dataloader() for padding
190
+ self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch)
191
+
192
+ model.eval()
193
+ model.warmup(imgsz=(1 if pt else self.args.batch, self.data["channels"], imgsz, imgsz)) # warmup
194
+
195
+ self.run_callbacks("on_val_start")
196
+ dt = (
197
+ Profile(device=self.device),
198
+ Profile(device=self.device),
199
+ Profile(device=self.device),
200
+ Profile(device=self.device),
201
+ )
202
+ bar = TQDM(self.dataloader, desc=self.get_desc(), total=len(self.dataloader))
203
+ self.init_metrics(de_parallel(model))
204
+ self.jdict = [] # empty before each val
205
+ for batch_i, batch in enumerate(bar):
206
+ self.run_callbacks("on_val_batch_start")
207
+ self.batch_i = batch_i
208
+ # Preprocess
209
+ with dt[0]:
210
+ batch = self.preprocess(batch)
211
+
212
+ # Inference
213
+ with dt[1]:
214
+ preds = model(batch["img"], augment=augment)
215
+
216
+ # Loss
217
+ with dt[2]:
218
+ if self.training:
219
+ self.loss += model.loss(batch, preds)[1]
220
+
221
+ # Postprocess
222
+ with dt[3]:
223
+ preds = self.postprocess(preds)
224
+
225
+ self.update_metrics(preds, batch)
226
+ if self.args.plots and batch_i < 3:
227
+ self.plot_val_samples(batch, batch_i)
228
+ self.plot_predictions(batch, preds, batch_i)
229
+
230
+ self.run_callbacks("on_val_batch_end")
231
+ stats = self.get_stats()
232
+ self.check_stats(stats)
233
+ self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1e3 for x in dt)))
234
+ self.finalize_metrics()
235
+ self.print_results()
236
+ self.run_callbacks("on_val_end")
237
+ if self.training:
238
+ model.float()
239
+ results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")}
240
+ return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats
241
+ else:
242
+ LOGGER.info(
243
+ "Speed: {:.1f}ms preprocess, {:.1f}ms inference, {:.1f}ms loss, {:.1f}ms postprocess per image".format(
244
+ *tuple(self.speed.values())
245
+ )
246
+ )
247
+ if self.args.save_json and self.jdict:
248
+ with open(str(self.save_dir / "predictions.json"), "w", encoding="utf-8") as f:
249
+ LOGGER.info(f"Saving {f.name}...")
250
+ json.dump(self.jdict, f) # flatten and save
251
+ stats = self.eval_json(stats) # update stats
252
+ if self.args.plots or self.args.save_json:
253
+ LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
254
+ return stats
255
+
256
+ def match_predictions(
257
+ self, pred_classes: torch.Tensor, true_classes: torch.Tensor, iou: torch.Tensor, use_scipy: bool = False
258
+ ) -> torch.Tensor:
259
+ """
260
+ Match predictions to ground truth objects using IoU.
261
+
262
+ Args:
263
+ pred_classes (torch.Tensor): Predicted class indices of shape (N,).
264
+ true_classes (torch.Tensor): Target class indices of shape (M,).
265
+ iou (torch.Tensor): An NxM tensor containing the pairwise IoU values for predictions and ground truth.
266
+ use_scipy (bool): Whether to use scipy for matching (more precise).
267
+
268
+ Returns:
269
+ (torch.Tensor): Correct tensor of shape (N, 10) for 10 IoU thresholds.
270
+ """
271
+ # Dx10 matrix, where D - detections, 10 - IoU thresholds
272
+ correct = np.zeros((pred_classes.shape[0], self.iouv.shape[0])).astype(bool)
273
+ # LxD matrix where L - labels (rows), D - detections (columns)
274
+ correct_class = true_classes[:, None] == pred_classes
275
+ iou = iou * correct_class # zero out the wrong classes
276
+ iou = iou.cpu().numpy()
277
+ for i, threshold in enumerate(self.iouv.cpu().tolist()):
278
+ if use_scipy:
279
+ # WARNING: known issue that reduces mAP in https://github.com/ultralytics/ultralytics/pull/4708
280
+ import scipy # scope import to avoid importing for all commands
281
+
282
+ cost_matrix = iou * (iou >= threshold)
283
+ if cost_matrix.any():
284
+ labels_idx, detections_idx = scipy.optimize.linear_sum_assignment(cost_matrix)
285
+ valid = cost_matrix[labels_idx, detections_idx] > 0
286
+ if valid.any():
287
+ correct[detections_idx[valid], i] = True
288
+ else:
289
+ matches = np.nonzero(iou >= threshold) # IoU > threshold and classes match
290
+ matches = np.array(matches).T
291
+ if matches.shape[0]:
292
+ if matches.shape[0] > 1:
293
+ matches = matches[iou[matches[:, 0], matches[:, 1]].argsort()[::-1]]
294
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
295
+ # matches = matches[matches[:, 2].argsort()[::-1]]
296
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
297
+ correct[matches[:, 1].astype(int), i] = True
298
+ return torch.tensor(correct, dtype=torch.bool, device=pred_classes.device)
299
+
300
+ def add_callback(self, event: str, callback):
301
+ """Append the given callback to the specified event."""
302
+ self.callbacks[event].append(callback)
303
+
304
+ def run_callbacks(self, event: str):
305
+ """Run all callbacks associated with a specified event."""
306
+ for callback in self.callbacks.get(event, []):
307
+ callback(self)
308
+
309
+ def get_dataloader(self, dataset_path, batch_size):
310
+ """Get data loader from dataset path and batch size."""
311
+ raise NotImplementedError("get_dataloader function not implemented for this validator")
312
+
313
+ def build_dataset(self, img_path):
314
+ """Build dataset from image path."""
315
+ raise NotImplementedError("build_dataset function not implemented in validator")
316
+
317
+ def preprocess(self, batch):
318
+ """Preprocess an input batch."""
319
+ return batch
320
+
321
+ def postprocess(self, preds):
322
+ """Postprocess the predictions."""
323
+ return preds
324
+
325
+ def init_metrics(self, model):
326
+ """Initialize performance metrics for the YOLO model."""
327
+ pass
328
+
329
+ def update_metrics(self, preds, batch):
330
+ """Update metrics based on predictions and batch."""
331
+ pass
332
+
333
+ def finalize_metrics(self, *args, **kwargs):
334
+ """Finalize and return all metrics."""
335
+ pass
336
+
337
+ def get_stats(self):
338
+ """Return statistics about the model's performance."""
339
+ return {}
340
+
341
+ def check_stats(self, stats):
342
+ """Check statistics."""
343
+ pass
344
+
345
+ def print_results(self):
346
+ """Print the results of the model's predictions."""
347
+ pass
348
+
349
+ def get_desc(self):
350
+ """Get description of the YOLO model."""
351
+ pass
352
+
353
+ @property
354
+ def metric_keys(self):
355
+ """Return the metric keys used in YOLO training/validation."""
356
+ return []
357
+
358
+ def on_plot(self, name, data=None):
359
+ """Register plots (e.g. to be consumed in callbacks)."""
360
+ self.plots[Path(name)] = {"data": data, "timestamp": time.time()}
361
+
362
+ # TODO: may need to put these following functions into callback
363
+ def plot_val_samples(self, batch, ni):
364
+ """Plot validation samples during training."""
365
+ pass
366
+
367
+ def plot_predictions(self, batch, preds, ni):
368
+ """Plot YOLO model predictions on batch images."""
369
+ pass
370
+
371
+ def pred_to_json(self, preds, batch):
372
+ """Convert predictions to JSON format."""
373
+ pass
374
+
375
+ def eval_json(self, stats):
376
+ """Evaluate and return JSON format of prediction statistics."""
377
+ pass