dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
- tests/__init__.py +22 -0
- tests/conftest.py +83 -0
- tests/test_cli.py +138 -0
- tests/test_cuda.py +215 -0
- tests/test_engine.py +131 -0
- tests/test_exports.py +236 -0
- tests/test_integrations.py +154 -0
- tests/test_python.py +694 -0
- tests/test_solutions.py +187 -0
- ultralytics/__init__.py +30 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1023 -0
- ultralytics/cfg/datasets/Argoverse.yaml +77 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +443 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +106 -0
- ultralytics/cfg/datasets/VisDrone.yaml +77 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +42 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +24 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +22 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +127 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +22 -0
- ultralytics/cfg/trackers/bytetrack.yaml +14 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2945 -0
- ultralytics/data/base.py +438 -0
- ultralytics/data/build.py +258 -0
- ultralytics/data/converter.py +754 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +676 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +125 -0
- ultralytics/data/split_dota.py +325 -0
- ultralytics/data/utils.py +777 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1519 -0
- ultralytics/engine/model.py +1156 -0
- ultralytics/engine/predictor.py +502 -0
- ultralytics/engine/results.py +1840 -0
- ultralytics/engine/trainer.py +853 -0
- ultralytics/engine/tuner.py +243 -0
- ultralytics/engine/validator.py +377 -0
- ultralytics/hub/__init__.py +168 -0
- ultralytics/hub/auth.py +137 -0
- ultralytics/hub/google/__init__.py +176 -0
- ultralytics/hub/session.py +446 -0
- ultralytics/hub/utils.py +248 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +61 -0
- ultralytics/models/fastsam/predict.py +181 -0
- ultralytics/models/fastsam/utils.py +24 -0
- ultralytics/models/fastsam/val.py +40 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +102 -0
- ultralytics/models/nas/predict.py +58 -0
- ultralytics/models/nas/val.py +39 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +84 -0
- ultralytics/models/rtdetr/train.py +85 -0
- ultralytics/models/rtdetr/val.py +191 -0
- ultralytics/models/sam/__init__.py +6 -0
- ultralytics/models/sam/amg.py +260 -0
- ultralytics/models/sam/build.py +358 -0
- ultralytics/models/sam/model.py +170 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1129 -0
- ultralytics/models/sam/modules/decoders.py +515 -0
- ultralytics/models/sam/modules/encoders.py +854 -0
- ultralytics/models/sam/modules/memory_attention.py +299 -0
- ultralytics/models/sam/modules/sam.py +1006 -0
- ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
- ultralytics/models/sam/modules/transformer.py +351 -0
- ultralytics/models/sam/modules/utils.py +394 -0
- ultralytics/models/sam/predict.py +1605 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +455 -0
- ultralytics/models/utils/ops.py +268 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +88 -0
- ultralytics/models/yolo/classify/train.py +233 -0
- ultralytics/models/yolo/classify/val.py +215 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +124 -0
- ultralytics/models/yolo/detect/train.py +217 -0
- ultralytics/models/yolo/detect/val.py +451 -0
- ultralytics/models/yolo/model.py +354 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +66 -0
- ultralytics/models/yolo/obb/train.py +81 -0
- ultralytics/models/yolo/obb/val.py +283 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +79 -0
- ultralytics/models/yolo/pose/train.py +154 -0
- ultralytics/models/yolo/pose/val.py +394 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +113 -0
- ultralytics/models/yolo/segment/train.py +123 -0
- ultralytics/models/yolo/segment/val.py +428 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +119 -0
- ultralytics/models/yolo/world/train_world.py +176 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +169 -0
- ultralytics/models/yolo/yoloe/train.py +298 -0
- ultralytics/models/yolo/yoloe/train_seg.py +124 -0
- ultralytics/models/yolo/yoloe/val.py +191 -0
- ultralytics/nn/__init__.py +29 -0
- ultralytics/nn/autobackend.py +842 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +53 -0
- ultralytics/nn/modules/block.py +1966 -0
- ultralytics/nn/modules/conv.py +712 -0
- ultralytics/nn/modules/head.py +880 -0
- ultralytics/nn/modules/transformer.py +713 -0
- ultralytics/nn/modules/utils.py +164 -0
- ultralytics/nn/tasks.py +1627 -0
- ultralytics/nn/text_model.py +351 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +116 -0
- ultralytics/solutions/analytics.py +252 -0
- ultralytics/solutions/config.py +106 -0
- ultralytics/solutions/distance_calculation.py +124 -0
- ultralytics/solutions/heatmap.py +127 -0
- ultralytics/solutions/instance_segmentation.py +84 -0
- ultralytics/solutions/object_blurrer.py +90 -0
- ultralytics/solutions/object_counter.py +195 -0
- ultralytics/solutions/object_cropper.py +84 -0
- ultralytics/solutions/parking_management.py +273 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +120 -0
- ultralytics/solutions/security_alarm.py +154 -0
- ultralytics/solutions/similarity_search.py +172 -0
- ultralytics/solutions/solutions.py +724 -0
- ultralytics/solutions/speed_estimation.py +110 -0
- ultralytics/solutions/streamlit_inference.py +196 -0
- ultralytics/solutions/templates/similarity-search.html +160 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +68 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +124 -0
- ultralytics/trackers/bot_sort.py +260 -0
- ultralytics/trackers/byte_tracker.py +480 -0
- ultralytics/trackers/track.py +125 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +376 -0
- ultralytics/trackers/utils/kalman_filter.py +493 -0
- ultralytics/trackers/utils/matching.py +157 -0
- ultralytics/utils/__init__.py +1435 -0
- ultralytics/utils/autobatch.py +106 -0
- ultralytics/utils/autodevice.py +174 -0
- ultralytics/utils/benchmarks.py +695 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +234 -0
- ultralytics/utils/callbacks/clearml.py +153 -0
- ultralytics/utils/callbacks/comet.py +552 -0
- ultralytics/utils/callbacks/dvc.py +205 -0
- ultralytics/utils/callbacks/hub.py +108 -0
- ultralytics/utils/callbacks/mlflow.py +138 -0
- ultralytics/utils/callbacks/neptune.py +140 -0
- ultralytics/utils/callbacks/raytune.py +43 -0
- ultralytics/utils/callbacks/tensorboard.py +132 -0
- ultralytics/utils/callbacks/wb.py +185 -0
- ultralytics/utils/checks.py +897 -0
- ultralytics/utils/dist.py +119 -0
- ultralytics/utils/downloads.py +499 -0
- ultralytics/utils/errors.py +43 -0
- ultralytics/utils/export.py +219 -0
- ultralytics/utils/files.py +221 -0
- ultralytics/utils/instance.py +499 -0
- ultralytics/utils/loss.py +813 -0
- ultralytics/utils/metrics.py +1356 -0
- ultralytics/utils/ops.py +885 -0
- ultralytics/utils/patches.py +143 -0
- ultralytics/utils/plotting.py +1011 -0
- ultralytics/utils/tal.py +416 -0
- ultralytics/utils/torch_utils.py +990 -0
- ultralytics/utils/triton.py +116 -0
- ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,22 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# Medical-pills dataset by Ultralytics
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/detect/medical-pills/
|
5
|
+
# Example usage: yolo train data=medical-pills.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── medical-pills ← downloads here (8.19 MB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/medical-pills # dataset root dir
|
13
|
+
train: train/images # train images (relative to 'path') 92 images
|
14
|
+
val: valid/images # val images (relative to 'path') 23 images
|
15
|
+
test: # test images (relative to 'path')
|
16
|
+
|
17
|
+
# Classes
|
18
|
+
names:
|
19
|
+
0: pill
|
20
|
+
|
21
|
+
# Download script/URL (optional)
|
22
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/medical-pills.zip
|
@@ -0,0 +1,666 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# Open Images v7 dataset https://storage.googleapis.com/openimages/web/index.html by Google
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/detect/open-images-v7/
|
5
|
+
# Example usage: yolo train data=open-images-v7.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── open-images-v7 ← downloads here (561 GB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/open-images-v7 # dataset root dir
|
13
|
+
train: images/train # train images (relative to 'path') 1743042 images
|
14
|
+
val: images/val # val images (relative to 'path') 41620 images
|
15
|
+
test: # test images (optional)
|
16
|
+
|
17
|
+
# Classes
|
18
|
+
names:
|
19
|
+
0: Accordion
|
20
|
+
1: Adhesive tape
|
21
|
+
2: Aircraft
|
22
|
+
3: Airplane
|
23
|
+
4: Alarm clock
|
24
|
+
5: Alpaca
|
25
|
+
6: Ambulance
|
26
|
+
7: Animal
|
27
|
+
8: Ant
|
28
|
+
9: Antelope
|
29
|
+
10: Apple
|
30
|
+
11: Armadillo
|
31
|
+
12: Artichoke
|
32
|
+
13: Auto part
|
33
|
+
14: Axe
|
34
|
+
15: Backpack
|
35
|
+
16: Bagel
|
36
|
+
17: Baked goods
|
37
|
+
18: Balance beam
|
38
|
+
19: Ball
|
39
|
+
20: Balloon
|
40
|
+
21: Banana
|
41
|
+
22: Band-aid
|
42
|
+
23: Banjo
|
43
|
+
24: Barge
|
44
|
+
25: Barrel
|
45
|
+
26: Baseball bat
|
46
|
+
27: Baseball glove
|
47
|
+
28: Bat (Animal)
|
48
|
+
29: Bathroom accessory
|
49
|
+
30: Bathroom cabinet
|
50
|
+
31: Bathtub
|
51
|
+
32: Beaker
|
52
|
+
33: Bear
|
53
|
+
34: Bed
|
54
|
+
35: Bee
|
55
|
+
36: Beehive
|
56
|
+
37: Beer
|
57
|
+
38: Beetle
|
58
|
+
39: Bell pepper
|
59
|
+
40: Belt
|
60
|
+
41: Bench
|
61
|
+
42: Bicycle
|
62
|
+
43: Bicycle helmet
|
63
|
+
44: Bicycle wheel
|
64
|
+
45: Bidet
|
65
|
+
46: Billboard
|
66
|
+
47: Billiard table
|
67
|
+
48: Binoculars
|
68
|
+
49: Bird
|
69
|
+
50: Blender
|
70
|
+
51: Blue jay
|
71
|
+
52: Boat
|
72
|
+
53: Bomb
|
73
|
+
54: Book
|
74
|
+
55: Bookcase
|
75
|
+
56: Boot
|
76
|
+
57: Bottle
|
77
|
+
58: Bottle opener
|
78
|
+
59: Bow and arrow
|
79
|
+
60: Bowl
|
80
|
+
61: Bowling equipment
|
81
|
+
62: Box
|
82
|
+
63: Boy
|
83
|
+
64: Brassiere
|
84
|
+
65: Bread
|
85
|
+
66: Briefcase
|
86
|
+
67: Broccoli
|
87
|
+
68: Bronze sculpture
|
88
|
+
69: Brown bear
|
89
|
+
70: Building
|
90
|
+
71: Bull
|
91
|
+
72: Burrito
|
92
|
+
73: Bus
|
93
|
+
74: Bust
|
94
|
+
75: Butterfly
|
95
|
+
76: Cabbage
|
96
|
+
77: Cabinetry
|
97
|
+
78: Cake
|
98
|
+
79: Cake stand
|
99
|
+
80: Calculator
|
100
|
+
81: Camel
|
101
|
+
82: Camera
|
102
|
+
83: Can opener
|
103
|
+
84: Canary
|
104
|
+
85: Candle
|
105
|
+
86: Candy
|
106
|
+
87: Cannon
|
107
|
+
88: Canoe
|
108
|
+
89: Cantaloupe
|
109
|
+
90: Car
|
110
|
+
91: Carnivore
|
111
|
+
92: Carrot
|
112
|
+
93: Cart
|
113
|
+
94: Cassette deck
|
114
|
+
95: Castle
|
115
|
+
96: Cat
|
116
|
+
97: Cat furniture
|
117
|
+
98: Caterpillar
|
118
|
+
99: Cattle
|
119
|
+
100: Ceiling fan
|
120
|
+
101: Cello
|
121
|
+
102: Centipede
|
122
|
+
103: Chainsaw
|
123
|
+
104: Chair
|
124
|
+
105: Cheese
|
125
|
+
106: Cheetah
|
126
|
+
107: Chest of drawers
|
127
|
+
108: Chicken
|
128
|
+
109: Chime
|
129
|
+
110: Chisel
|
130
|
+
111: Chopsticks
|
131
|
+
112: Christmas tree
|
132
|
+
113: Clock
|
133
|
+
114: Closet
|
134
|
+
115: Clothing
|
135
|
+
116: Coat
|
136
|
+
117: Cocktail
|
137
|
+
118: Cocktail shaker
|
138
|
+
119: Coconut
|
139
|
+
120: Coffee
|
140
|
+
121: Coffee cup
|
141
|
+
122: Coffee table
|
142
|
+
123: Coffeemaker
|
143
|
+
124: Coin
|
144
|
+
125: Common fig
|
145
|
+
126: Common sunflower
|
146
|
+
127: Computer keyboard
|
147
|
+
128: Computer monitor
|
148
|
+
129: Computer mouse
|
149
|
+
130: Container
|
150
|
+
131: Convenience store
|
151
|
+
132: Cookie
|
152
|
+
133: Cooking spray
|
153
|
+
134: Corded phone
|
154
|
+
135: Cosmetics
|
155
|
+
136: Couch
|
156
|
+
137: Countertop
|
157
|
+
138: Cowboy hat
|
158
|
+
139: Crab
|
159
|
+
140: Cream
|
160
|
+
141: Cricket ball
|
161
|
+
142: Crocodile
|
162
|
+
143: Croissant
|
163
|
+
144: Crown
|
164
|
+
145: Crutch
|
165
|
+
146: Cucumber
|
166
|
+
147: Cupboard
|
167
|
+
148: Curtain
|
168
|
+
149: Cutting board
|
169
|
+
150: Dagger
|
170
|
+
151: Dairy Product
|
171
|
+
152: Deer
|
172
|
+
153: Desk
|
173
|
+
154: Dessert
|
174
|
+
155: Diaper
|
175
|
+
156: Dice
|
176
|
+
157: Digital clock
|
177
|
+
158: Dinosaur
|
178
|
+
159: Dishwasher
|
179
|
+
160: Dog
|
180
|
+
161: Dog bed
|
181
|
+
162: Doll
|
182
|
+
163: Dolphin
|
183
|
+
164: Door
|
184
|
+
165: Door handle
|
185
|
+
166: Doughnut
|
186
|
+
167: Dragonfly
|
187
|
+
168: Drawer
|
188
|
+
169: Dress
|
189
|
+
170: Drill (Tool)
|
190
|
+
171: Drink
|
191
|
+
172: Drinking straw
|
192
|
+
173: Drum
|
193
|
+
174: Duck
|
194
|
+
175: Dumbbell
|
195
|
+
176: Eagle
|
196
|
+
177: Earrings
|
197
|
+
178: Egg (Food)
|
198
|
+
179: Elephant
|
199
|
+
180: Envelope
|
200
|
+
181: Eraser
|
201
|
+
182: Face powder
|
202
|
+
183: Facial tissue holder
|
203
|
+
184: Falcon
|
204
|
+
185: Fashion accessory
|
205
|
+
186: Fast food
|
206
|
+
187: Fax
|
207
|
+
188: Fedora
|
208
|
+
189: Filing cabinet
|
209
|
+
190: Fire hydrant
|
210
|
+
191: Fireplace
|
211
|
+
192: Fish
|
212
|
+
193: Flag
|
213
|
+
194: Flashlight
|
214
|
+
195: Flower
|
215
|
+
196: Flowerpot
|
216
|
+
197: Flute
|
217
|
+
198: Flying disc
|
218
|
+
199: Food
|
219
|
+
200: Food processor
|
220
|
+
201: Football
|
221
|
+
202: Football helmet
|
222
|
+
203: Footwear
|
223
|
+
204: Fork
|
224
|
+
205: Fountain
|
225
|
+
206: Fox
|
226
|
+
207: French fries
|
227
|
+
208: French horn
|
228
|
+
209: Frog
|
229
|
+
210: Fruit
|
230
|
+
211: Frying pan
|
231
|
+
212: Furniture
|
232
|
+
213: Garden Asparagus
|
233
|
+
214: Gas stove
|
234
|
+
215: Giraffe
|
235
|
+
216: Girl
|
236
|
+
217: Glasses
|
237
|
+
218: Glove
|
238
|
+
219: Goat
|
239
|
+
220: Goggles
|
240
|
+
221: Goldfish
|
241
|
+
222: Golf ball
|
242
|
+
223: Golf cart
|
243
|
+
224: Gondola
|
244
|
+
225: Goose
|
245
|
+
226: Grape
|
246
|
+
227: Grapefruit
|
247
|
+
228: Grinder
|
248
|
+
229: Guacamole
|
249
|
+
230: Guitar
|
250
|
+
231: Hair dryer
|
251
|
+
232: Hair spray
|
252
|
+
233: Hamburger
|
253
|
+
234: Hammer
|
254
|
+
235: Hamster
|
255
|
+
236: Hand dryer
|
256
|
+
237: Handbag
|
257
|
+
238: Handgun
|
258
|
+
239: Harbor seal
|
259
|
+
240: Harmonica
|
260
|
+
241: Harp
|
261
|
+
242: Harpsichord
|
262
|
+
243: Hat
|
263
|
+
244: Headphones
|
264
|
+
245: Heater
|
265
|
+
246: Hedgehog
|
266
|
+
247: Helicopter
|
267
|
+
248: Helmet
|
268
|
+
249: High heels
|
269
|
+
250: Hiking equipment
|
270
|
+
251: Hippopotamus
|
271
|
+
252: Home appliance
|
272
|
+
253: Honeycomb
|
273
|
+
254: Horizontal bar
|
274
|
+
255: Horse
|
275
|
+
256: Hot dog
|
276
|
+
257: House
|
277
|
+
258: Houseplant
|
278
|
+
259: Human arm
|
279
|
+
260: Human beard
|
280
|
+
261: Human body
|
281
|
+
262: Human ear
|
282
|
+
263: Human eye
|
283
|
+
264: Human face
|
284
|
+
265: Human foot
|
285
|
+
266: Human hair
|
286
|
+
267: Human hand
|
287
|
+
268: Human head
|
288
|
+
269: Human leg
|
289
|
+
270: Human mouth
|
290
|
+
271: Human nose
|
291
|
+
272: Humidifier
|
292
|
+
273: Ice cream
|
293
|
+
274: Indoor rower
|
294
|
+
275: Infant bed
|
295
|
+
276: Insect
|
296
|
+
277: Invertebrate
|
297
|
+
278: Ipod
|
298
|
+
279: Isopod
|
299
|
+
280: Jacket
|
300
|
+
281: Jacuzzi
|
301
|
+
282: Jaguar (Animal)
|
302
|
+
283: Jeans
|
303
|
+
284: Jellyfish
|
304
|
+
285: Jet ski
|
305
|
+
286: Jug
|
306
|
+
287: Juice
|
307
|
+
288: Kangaroo
|
308
|
+
289: Kettle
|
309
|
+
290: Kitchen & dining room table
|
310
|
+
291: Kitchen appliance
|
311
|
+
292: Kitchen knife
|
312
|
+
293: Kitchen utensil
|
313
|
+
294: Kitchenware
|
314
|
+
295: Kite
|
315
|
+
296: Knife
|
316
|
+
297: Koala
|
317
|
+
298: Ladder
|
318
|
+
299: Ladle
|
319
|
+
300: Ladybug
|
320
|
+
301: Lamp
|
321
|
+
302: Land vehicle
|
322
|
+
303: Lantern
|
323
|
+
304: Laptop
|
324
|
+
305: Lavender (Plant)
|
325
|
+
306: Lemon
|
326
|
+
307: Leopard
|
327
|
+
308: Light bulb
|
328
|
+
309: Light switch
|
329
|
+
310: Lighthouse
|
330
|
+
311: Lily
|
331
|
+
312: Limousine
|
332
|
+
313: Lion
|
333
|
+
314: Lipstick
|
334
|
+
315: Lizard
|
335
|
+
316: Lobster
|
336
|
+
317: Loveseat
|
337
|
+
318: Luggage and bags
|
338
|
+
319: Lynx
|
339
|
+
320: Magpie
|
340
|
+
321: Mammal
|
341
|
+
322: Man
|
342
|
+
323: Mango
|
343
|
+
324: Maple
|
344
|
+
325: Maracas
|
345
|
+
326: Marine invertebrates
|
346
|
+
327: Marine mammal
|
347
|
+
328: Measuring cup
|
348
|
+
329: Mechanical fan
|
349
|
+
330: Medical equipment
|
350
|
+
331: Microphone
|
351
|
+
332: Microwave oven
|
352
|
+
333: Milk
|
353
|
+
334: Miniskirt
|
354
|
+
335: Mirror
|
355
|
+
336: Missile
|
356
|
+
337: Mixer
|
357
|
+
338: Mixing bowl
|
358
|
+
339: Mobile phone
|
359
|
+
340: Monkey
|
360
|
+
341: Moths and butterflies
|
361
|
+
342: Motorcycle
|
362
|
+
343: Mouse
|
363
|
+
344: Muffin
|
364
|
+
345: Mug
|
365
|
+
346: Mule
|
366
|
+
347: Mushroom
|
367
|
+
348: Musical instrument
|
368
|
+
349: Musical keyboard
|
369
|
+
350: Nail (Construction)
|
370
|
+
351: Necklace
|
371
|
+
352: Nightstand
|
372
|
+
353: Oboe
|
373
|
+
354: Office building
|
374
|
+
355: Office supplies
|
375
|
+
356: Orange
|
376
|
+
357: Organ (Musical Instrument)
|
377
|
+
358: Ostrich
|
378
|
+
359: Otter
|
379
|
+
360: Oven
|
380
|
+
361: Owl
|
381
|
+
362: Oyster
|
382
|
+
363: Paddle
|
383
|
+
364: Palm tree
|
384
|
+
365: Pancake
|
385
|
+
366: Panda
|
386
|
+
367: Paper cutter
|
387
|
+
368: Paper towel
|
388
|
+
369: Parachute
|
389
|
+
370: Parking meter
|
390
|
+
371: Parrot
|
391
|
+
372: Pasta
|
392
|
+
373: Pastry
|
393
|
+
374: Peach
|
394
|
+
375: Pear
|
395
|
+
376: Pen
|
396
|
+
377: Pencil case
|
397
|
+
378: Pencil sharpener
|
398
|
+
379: Penguin
|
399
|
+
380: Perfume
|
400
|
+
381: Person
|
401
|
+
382: Personal care
|
402
|
+
383: Personal flotation device
|
403
|
+
384: Piano
|
404
|
+
385: Picnic basket
|
405
|
+
386: Picture frame
|
406
|
+
387: Pig
|
407
|
+
388: Pillow
|
408
|
+
389: Pineapple
|
409
|
+
390: Pitcher (Container)
|
410
|
+
391: Pizza
|
411
|
+
392: Pizza cutter
|
412
|
+
393: Plant
|
413
|
+
394: Plastic bag
|
414
|
+
395: Plate
|
415
|
+
396: Platter
|
416
|
+
397: Plumbing fixture
|
417
|
+
398: Polar bear
|
418
|
+
399: Pomegranate
|
419
|
+
400: Popcorn
|
420
|
+
401: Porch
|
421
|
+
402: Porcupine
|
422
|
+
403: Poster
|
423
|
+
404: Potato
|
424
|
+
405: Power plugs and sockets
|
425
|
+
406: Pressure cooker
|
426
|
+
407: Pretzel
|
427
|
+
408: Printer
|
428
|
+
409: Pumpkin
|
429
|
+
410: Punching bag
|
430
|
+
411: Rabbit
|
431
|
+
412: Raccoon
|
432
|
+
413: Racket
|
433
|
+
414: Radish
|
434
|
+
415: Ratchet (Device)
|
435
|
+
416: Raven
|
436
|
+
417: Rays and skates
|
437
|
+
418: Red panda
|
438
|
+
419: Refrigerator
|
439
|
+
420: Remote control
|
440
|
+
421: Reptile
|
441
|
+
422: Rhinoceros
|
442
|
+
423: Rifle
|
443
|
+
424: Ring binder
|
444
|
+
425: Rocket
|
445
|
+
426: Roller skates
|
446
|
+
427: Rose
|
447
|
+
428: Rugby ball
|
448
|
+
429: Ruler
|
449
|
+
430: Salad
|
450
|
+
431: Salt and pepper shakers
|
451
|
+
432: Sandal
|
452
|
+
433: Sandwich
|
453
|
+
434: Saucer
|
454
|
+
435: Saxophone
|
455
|
+
436: Scale
|
456
|
+
437: Scarf
|
457
|
+
438: Scissors
|
458
|
+
439: Scoreboard
|
459
|
+
440: Scorpion
|
460
|
+
441: Screwdriver
|
461
|
+
442: Sculpture
|
462
|
+
443: Sea lion
|
463
|
+
444: Sea turtle
|
464
|
+
445: Seafood
|
465
|
+
446: Seahorse
|
466
|
+
447: Seat belt
|
467
|
+
448: Segway
|
468
|
+
449: Serving tray
|
469
|
+
450: Sewing machine
|
470
|
+
451: Shark
|
471
|
+
452: Sheep
|
472
|
+
453: Shelf
|
473
|
+
454: Shellfish
|
474
|
+
455: Shirt
|
475
|
+
456: Shorts
|
476
|
+
457: Shotgun
|
477
|
+
458: Shower
|
478
|
+
459: Shrimp
|
479
|
+
460: Sink
|
480
|
+
461: Skateboard
|
481
|
+
462: Ski
|
482
|
+
463: Skirt
|
483
|
+
464: Skull
|
484
|
+
465: Skunk
|
485
|
+
466: Skyscraper
|
486
|
+
467: Slow cooker
|
487
|
+
468: Snack
|
488
|
+
469: Snail
|
489
|
+
470: Snake
|
490
|
+
471: Snowboard
|
491
|
+
472: Snowman
|
492
|
+
473: Snowmobile
|
493
|
+
474: Snowplow
|
494
|
+
475: Soap dispenser
|
495
|
+
476: Sock
|
496
|
+
477: Sofa bed
|
497
|
+
478: Sombrero
|
498
|
+
479: Sparrow
|
499
|
+
480: Spatula
|
500
|
+
481: Spice rack
|
501
|
+
482: Spider
|
502
|
+
483: Spoon
|
503
|
+
484: Sports equipment
|
504
|
+
485: Sports uniform
|
505
|
+
486: Squash (Plant)
|
506
|
+
487: Squid
|
507
|
+
488: Squirrel
|
508
|
+
489: Stairs
|
509
|
+
490: Stapler
|
510
|
+
491: Starfish
|
511
|
+
492: Stationary bicycle
|
512
|
+
493: Stethoscope
|
513
|
+
494: Stool
|
514
|
+
495: Stop sign
|
515
|
+
496: Strawberry
|
516
|
+
497: Street light
|
517
|
+
498: Stretcher
|
518
|
+
499: Studio couch
|
519
|
+
500: Submarine
|
520
|
+
501: Submarine sandwich
|
521
|
+
502: Suit
|
522
|
+
503: Suitcase
|
523
|
+
504: Sun hat
|
524
|
+
505: Sunglasses
|
525
|
+
506: Surfboard
|
526
|
+
507: Sushi
|
527
|
+
508: Swan
|
528
|
+
509: Swim cap
|
529
|
+
510: Swimming pool
|
530
|
+
511: Swimwear
|
531
|
+
512: Sword
|
532
|
+
513: Syringe
|
533
|
+
514: Table
|
534
|
+
515: Table tennis racket
|
535
|
+
516: Tablet computer
|
536
|
+
517: Tableware
|
537
|
+
518: Taco
|
538
|
+
519: Tank
|
539
|
+
520: Tap
|
540
|
+
521: Tart
|
541
|
+
522: Taxi
|
542
|
+
523: Tea
|
543
|
+
524: Teapot
|
544
|
+
525: Teddy bear
|
545
|
+
526: Telephone
|
546
|
+
527: Television
|
547
|
+
528: Tennis ball
|
548
|
+
529: Tennis racket
|
549
|
+
530: Tent
|
550
|
+
531: Tiara
|
551
|
+
532: Tick
|
552
|
+
533: Tie
|
553
|
+
534: Tiger
|
554
|
+
535: Tin can
|
555
|
+
536: Tire
|
556
|
+
537: Toaster
|
557
|
+
538: Toilet
|
558
|
+
539: Toilet paper
|
559
|
+
540: Tomato
|
560
|
+
541: Tool
|
561
|
+
542: Toothbrush
|
562
|
+
543: Torch
|
563
|
+
544: Tortoise
|
564
|
+
545: Towel
|
565
|
+
546: Tower
|
566
|
+
547: Toy
|
567
|
+
548: Traffic light
|
568
|
+
549: Traffic sign
|
569
|
+
550: Train
|
570
|
+
551: Training bench
|
571
|
+
552: Treadmill
|
572
|
+
553: Tree
|
573
|
+
554: Tree house
|
574
|
+
555: Tripod
|
575
|
+
556: Trombone
|
576
|
+
557: Trousers
|
577
|
+
558: Truck
|
578
|
+
559: Trumpet
|
579
|
+
560: Turkey
|
580
|
+
561: Turtle
|
581
|
+
562: Umbrella
|
582
|
+
563: Unicycle
|
583
|
+
564: Van
|
584
|
+
565: Vase
|
585
|
+
566: Vegetable
|
586
|
+
567: Vehicle
|
587
|
+
568: Vehicle registration plate
|
588
|
+
569: Violin
|
589
|
+
570: Volleyball (Ball)
|
590
|
+
571: Waffle
|
591
|
+
572: Waffle iron
|
592
|
+
573: Wall clock
|
593
|
+
574: Wardrobe
|
594
|
+
575: Washing machine
|
595
|
+
576: Waste container
|
596
|
+
577: Watch
|
597
|
+
578: Watercraft
|
598
|
+
579: Watermelon
|
599
|
+
580: Weapon
|
600
|
+
581: Whale
|
601
|
+
582: Wheel
|
602
|
+
583: Wheelchair
|
603
|
+
584: Whisk
|
604
|
+
585: Whiteboard
|
605
|
+
586: Willow
|
606
|
+
587: Window
|
607
|
+
588: Window blind
|
608
|
+
589: Wine
|
609
|
+
590: Wine glass
|
610
|
+
591: Wine rack
|
611
|
+
592: Winter melon
|
612
|
+
593: Wok
|
613
|
+
594: Woman
|
614
|
+
595: Wood-burning stove
|
615
|
+
596: Woodpecker
|
616
|
+
597: Worm
|
617
|
+
598: Wrench
|
618
|
+
599: Zebra
|
619
|
+
600: Zucchini
|
620
|
+
|
621
|
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
622
|
+
download: |
|
623
|
+
import warnings
|
624
|
+
|
625
|
+
from ultralytics.utils import LOGGER, SETTINGS, Path, get_ubuntu_version, is_ubuntu
|
626
|
+
from ultralytics.utils.checks import check_requirements, check_version
|
627
|
+
|
628
|
+
check_requirements("fiftyone")
|
629
|
+
if is_ubuntu() and check_version(get_ubuntu_version(), ">=22.04"):
|
630
|
+
# Ubuntu>=22.04 patch https://github.com/voxel51/fiftyone/issues/2961#issuecomment-1666519347
|
631
|
+
check_requirements("fiftyone-db-ubuntu2204")
|
632
|
+
|
633
|
+
import fiftyone as fo
|
634
|
+
import fiftyone.zoo as foz
|
635
|
+
|
636
|
+
name = "open-images-v7"
|
637
|
+
fo.config.dataset_zoo_dir = Path(SETTINGS["datasets_dir"]) / "fiftyone" / name
|
638
|
+
fraction = 1.0 # fraction of full dataset to use
|
639
|
+
LOGGER.warning("WARNING ⚠️ Open Images V7 dataset requires at least **561 GB of free space. Starting download...")
|
640
|
+
for split in "train", "validation": # 1743042 train, 41620 val images
|
641
|
+
train = split == "train"
|
642
|
+
|
643
|
+
# Load Open Images dataset
|
644
|
+
dataset = foz.load_zoo_dataset(
|
645
|
+
name,
|
646
|
+
split=split,
|
647
|
+
label_types=["detections"],
|
648
|
+
max_samples=round((1743042 if train else 41620) * fraction),
|
649
|
+
)
|
650
|
+
|
651
|
+
# Define classes
|
652
|
+
if train:
|
653
|
+
classes = dataset.default_classes # all classes
|
654
|
+
# classes = dataset.distinct('ground_truth.detections.label') # only observed classes
|
655
|
+
|
656
|
+
# Export to YOLO format
|
657
|
+
with warnings.catch_warnings():
|
658
|
+
warnings.filterwarnings("ignore", category=UserWarning, module="fiftyone.utils.yolo")
|
659
|
+
dataset.export(
|
660
|
+
export_dir=str(Path(SETTINGS["datasets_dir"]) / name),
|
661
|
+
dataset_type=fo.types.YOLOv5Dataset,
|
662
|
+
label_field="ground_truth",
|
663
|
+
split="val" if split == "validation" else split,
|
664
|
+
classes=classes,
|
665
|
+
overwrite=train,
|
666
|
+
)
|
@@ -0,0 +1,22 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# Package-seg dataset by Ultralytics
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/segment/package-seg/
|
5
|
+
# Example usage: yolo train data=package-seg.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── package-seg ← downloads here (102 MB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/package-seg # dataset root dir
|
13
|
+
train: train/images # train images (relative to 'path') 1920 images
|
14
|
+
val: valid/images # val images (relative to 'path') 89 images
|
15
|
+
test: test/images # test images (relative to 'path') 188 images
|
16
|
+
|
17
|
+
# Classes
|
18
|
+
names:
|
19
|
+
0: package
|
20
|
+
|
21
|
+
# Download script/URL (optional)
|
22
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/package-seg.zip
|
@@ -0,0 +1,21 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# Signature dataset by Ultralytics
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/detect/signature/
|
5
|
+
# Example usage: yolo train data=signature.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── signature ← downloads here (11.2 MB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/signature # dataset root dir
|
13
|
+
train: train/images # train images (relative to 'path') 143 images
|
14
|
+
val: valid/images # val images (relative to 'path') 35 images
|
15
|
+
|
16
|
+
# Classes
|
17
|
+
names:
|
18
|
+
0: signature
|
19
|
+
|
20
|
+
# Download script/URL (optional)
|
21
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/signature.zip
|