dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (272) hide show
  1. dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
  2. dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
  3. dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
  4. dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
  5. dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
  6. dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
  7. tests/__init__.py +22 -0
  8. tests/conftest.py +83 -0
  9. tests/test_cli.py +138 -0
  10. tests/test_cuda.py +215 -0
  11. tests/test_engine.py +131 -0
  12. tests/test_exports.py +236 -0
  13. tests/test_integrations.py +154 -0
  14. tests/test_python.py +694 -0
  15. tests/test_solutions.py +187 -0
  16. ultralytics/__init__.py +30 -0
  17. ultralytics/assets/bus.jpg +0 -0
  18. ultralytics/assets/zidane.jpg +0 -0
  19. ultralytics/cfg/__init__.py +1023 -0
  20. ultralytics/cfg/datasets/Argoverse.yaml +77 -0
  21. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  22. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  23. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  24. ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
  25. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  26. ultralytics/cfg/datasets/Objects365.yaml +443 -0
  27. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  28. ultralytics/cfg/datasets/VOC.yaml +106 -0
  29. ultralytics/cfg/datasets/VisDrone.yaml +77 -0
  30. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  31. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  32. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  33. ultralytics/cfg/datasets/coco-pose.yaml +42 -0
  34. ultralytics/cfg/datasets/coco.yaml +118 -0
  35. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  36. ultralytics/cfg/datasets/coco128.yaml +101 -0
  37. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  38. ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
  39. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  40. ultralytics/cfg/datasets/coco8.yaml +101 -0
  41. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  42. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  43. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  44. ultralytics/cfg/datasets/dota8.yaml +35 -0
  45. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  46. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  47. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  48. ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
  49. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  50. ultralytics/cfg/datasets/signature.yaml +21 -0
  51. ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
  52. ultralytics/cfg/datasets/xView.yaml +155 -0
  53. ultralytics/cfg/default.yaml +127 -0
  54. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  55. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  56. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  57. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  58. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  59. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  60. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  61. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  62. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  63. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  64. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  65. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  66. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  68. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  69. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  70. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  71. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  74. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  75. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  76. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  77. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  78. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  79. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  80. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  81. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  82. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  83. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
  84. ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
  85. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  86. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  87. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  88. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  89. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  90. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  91. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  92. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  93. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  94. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  95. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  96. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  97. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  98. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  99. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  100. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  101. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  102. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  103. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  105. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  106. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  107. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  108. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  109. ultralytics/cfg/trackers/botsort.yaml +22 -0
  110. ultralytics/cfg/trackers/bytetrack.yaml +14 -0
  111. ultralytics/data/__init__.py +26 -0
  112. ultralytics/data/annotator.py +66 -0
  113. ultralytics/data/augment.py +2945 -0
  114. ultralytics/data/base.py +438 -0
  115. ultralytics/data/build.py +258 -0
  116. ultralytics/data/converter.py +754 -0
  117. ultralytics/data/dataset.py +834 -0
  118. ultralytics/data/loaders.py +676 -0
  119. ultralytics/data/scripts/download_weights.sh +18 -0
  120. ultralytics/data/scripts/get_coco.sh +61 -0
  121. ultralytics/data/scripts/get_coco128.sh +18 -0
  122. ultralytics/data/scripts/get_imagenet.sh +52 -0
  123. ultralytics/data/split.py +125 -0
  124. ultralytics/data/split_dota.py +325 -0
  125. ultralytics/data/utils.py +777 -0
  126. ultralytics/engine/__init__.py +1 -0
  127. ultralytics/engine/exporter.py +1519 -0
  128. ultralytics/engine/model.py +1156 -0
  129. ultralytics/engine/predictor.py +502 -0
  130. ultralytics/engine/results.py +1840 -0
  131. ultralytics/engine/trainer.py +853 -0
  132. ultralytics/engine/tuner.py +243 -0
  133. ultralytics/engine/validator.py +377 -0
  134. ultralytics/hub/__init__.py +168 -0
  135. ultralytics/hub/auth.py +137 -0
  136. ultralytics/hub/google/__init__.py +176 -0
  137. ultralytics/hub/session.py +446 -0
  138. ultralytics/hub/utils.py +248 -0
  139. ultralytics/models/__init__.py +9 -0
  140. ultralytics/models/fastsam/__init__.py +7 -0
  141. ultralytics/models/fastsam/model.py +61 -0
  142. ultralytics/models/fastsam/predict.py +181 -0
  143. ultralytics/models/fastsam/utils.py +24 -0
  144. ultralytics/models/fastsam/val.py +40 -0
  145. ultralytics/models/nas/__init__.py +7 -0
  146. ultralytics/models/nas/model.py +102 -0
  147. ultralytics/models/nas/predict.py +58 -0
  148. ultralytics/models/nas/val.py +39 -0
  149. ultralytics/models/rtdetr/__init__.py +7 -0
  150. ultralytics/models/rtdetr/model.py +63 -0
  151. ultralytics/models/rtdetr/predict.py +84 -0
  152. ultralytics/models/rtdetr/train.py +85 -0
  153. ultralytics/models/rtdetr/val.py +191 -0
  154. ultralytics/models/sam/__init__.py +6 -0
  155. ultralytics/models/sam/amg.py +260 -0
  156. ultralytics/models/sam/build.py +358 -0
  157. ultralytics/models/sam/model.py +170 -0
  158. ultralytics/models/sam/modules/__init__.py +1 -0
  159. ultralytics/models/sam/modules/blocks.py +1129 -0
  160. ultralytics/models/sam/modules/decoders.py +515 -0
  161. ultralytics/models/sam/modules/encoders.py +854 -0
  162. ultralytics/models/sam/modules/memory_attention.py +299 -0
  163. ultralytics/models/sam/modules/sam.py +1006 -0
  164. ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
  165. ultralytics/models/sam/modules/transformer.py +351 -0
  166. ultralytics/models/sam/modules/utils.py +394 -0
  167. ultralytics/models/sam/predict.py +1605 -0
  168. ultralytics/models/utils/__init__.py +1 -0
  169. ultralytics/models/utils/loss.py +455 -0
  170. ultralytics/models/utils/ops.py +268 -0
  171. ultralytics/models/yolo/__init__.py +7 -0
  172. ultralytics/models/yolo/classify/__init__.py +7 -0
  173. ultralytics/models/yolo/classify/predict.py +88 -0
  174. ultralytics/models/yolo/classify/train.py +233 -0
  175. ultralytics/models/yolo/classify/val.py +215 -0
  176. ultralytics/models/yolo/detect/__init__.py +7 -0
  177. ultralytics/models/yolo/detect/predict.py +124 -0
  178. ultralytics/models/yolo/detect/train.py +217 -0
  179. ultralytics/models/yolo/detect/val.py +451 -0
  180. ultralytics/models/yolo/model.py +354 -0
  181. ultralytics/models/yolo/obb/__init__.py +7 -0
  182. ultralytics/models/yolo/obb/predict.py +66 -0
  183. ultralytics/models/yolo/obb/train.py +81 -0
  184. ultralytics/models/yolo/obb/val.py +283 -0
  185. ultralytics/models/yolo/pose/__init__.py +7 -0
  186. ultralytics/models/yolo/pose/predict.py +79 -0
  187. ultralytics/models/yolo/pose/train.py +154 -0
  188. ultralytics/models/yolo/pose/val.py +394 -0
  189. ultralytics/models/yolo/segment/__init__.py +7 -0
  190. ultralytics/models/yolo/segment/predict.py +113 -0
  191. ultralytics/models/yolo/segment/train.py +123 -0
  192. ultralytics/models/yolo/segment/val.py +428 -0
  193. ultralytics/models/yolo/world/__init__.py +5 -0
  194. ultralytics/models/yolo/world/train.py +119 -0
  195. ultralytics/models/yolo/world/train_world.py +176 -0
  196. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  197. ultralytics/models/yolo/yoloe/predict.py +169 -0
  198. ultralytics/models/yolo/yoloe/train.py +298 -0
  199. ultralytics/models/yolo/yoloe/train_seg.py +124 -0
  200. ultralytics/models/yolo/yoloe/val.py +191 -0
  201. ultralytics/nn/__init__.py +29 -0
  202. ultralytics/nn/autobackend.py +842 -0
  203. ultralytics/nn/modules/__init__.py +182 -0
  204. ultralytics/nn/modules/activation.py +53 -0
  205. ultralytics/nn/modules/block.py +1966 -0
  206. ultralytics/nn/modules/conv.py +712 -0
  207. ultralytics/nn/modules/head.py +880 -0
  208. ultralytics/nn/modules/transformer.py +713 -0
  209. ultralytics/nn/modules/utils.py +164 -0
  210. ultralytics/nn/tasks.py +1627 -0
  211. ultralytics/nn/text_model.py +351 -0
  212. ultralytics/solutions/__init__.py +41 -0
  213. ultralytics/solutions/ai_gym.py +116 -0
  214. ultralytics/solutions/analytics.py +252 -0
  215. ultralytics/solutions/config.py +106 -0
  216. ultralytics/solutions/distance_calculation.py +124 -0
  217. ultralytics/solutions/heatmap.py +127 -0
  218. ultralytics/solutions/instance_segmentation.py +84 -0
  219. ultralytics/solutions/object_blurrer.py +90 -0
  220. ultralytics/solutions/object_counter.py +195 -0
  221. ultralytics/solutions/object_cropper.py +84 -0
  222. ultralytics/solutions/parking_management.py +273 -0
  223. ultralytics/solutions/queue_management.py +93 -0
  224. ultralytics/solutions/region_counter.py +120 -0
  225. ultralytics/solutions/security_alarm.py +154 -0
  226. ultralytics/solutions/similarity_search.py +172 -0
  227. ultralytics/solutions/solutions.py +724 -0
  228. ultralytics/solutions/speed_estimation.py +110 -0
  229. ultralytics/solutions/streamlit_inference.py +196 -0
  230. ultralytics/solutions/templates/similarity-search.html +160 -0
  231. ultralytics/solutions/trackzone.py +88 -0
  232. ultralytics/solutions/vision_eye.py +68 -0
  233. ultralytics/trackers/__init__.py +7 -0
  234. ultralytics/trackers/basetrack.py +124 -0
  235. ultralytics/trackers/bot_sort.py +260 -0
  236. ultralytics/trackers/byte_tracker.py +480 -0
  237. ultralytics/trackers/track.py +125 -0
  238. ultralytics/trackers/utils/__init__.py +1 -0
  239. ultralytics/trackers/utils/gmc.py +376 -0
  240. ultralytics/trackers/utils/kalman_filter.py +493 -0
  241. ultralytics/trackers/utils/matching.py +157 -0
  242. ultralytics/utils/__init__.py +1435 -0
  243. ultralytics/utils/autobatch.py +106 -0
  244. ultralytics/utils/autodevice.py +174 -0
  245. ultralytics/utils/benchmarks.py +695 -0
  246. ultralytics/utils/callbacks/__init__.py +5 -0
  247. ultralytics/utils/callbacks/base.py +234 -0
  248. ultralytics/utils/callbacks/clearml.py +153 -0
  249. ultralytics/utils/callbacks/comet.py +552 -0
  250. ultralytics/utils/callbacks/dvc.py +205 -0
  251. ultralytics/utils/callbacks/hub.py +108 -0
  252. ultralytics/utils/callbacks/mlflow.py +138 -0
  253. ultralytics/utils/callbacks/neptune.py +140 -0
  254. ultralytics/utils/callbacks/raytune.py +43 -0
  255. ultralytics/utils/callbacks/tensorboard.py +132 -0
  256. ultralytics/utils/callbacks/wb.py +185 -0
  257. ultralytics/utils/checks.py +897 -0
  258. ultralytics/utils/dist.py +119 -0
  259. ultralytics/utils/downloads.py +499 -0
  260. ultralytics/utils/errors.py +43 -0
  261. ultralytics/utils/export.py +219 -0
  262. ultralytics/utils/files.py +221 -0
  263. ultralytics/utils/instance.py +499 -0
  264. ultralytics/utils/loss.py +813 -0
  265. ultralytics/utils/metrics.py +1356 -0
  266. ultralytics/utils/ops.py +885 -0
  267. ultralytics/utils/patches.py +143 -0
  268. ultralytics/utils/plotting.py +1011 -0
  269. ultralytics/utils/tal.py +416 -0
  270. ultralytics/utils/torch_utils.py +990 -0
  271. ultralytics/utils/triton.py +116 -0
  272. ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,22 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Medical-pills dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/medical-pills/
5
+ # Example usage: yolo train data=medical-pills.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── medical-pills ← downloads here (8.19 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/medical-pills # dataset root dir
13
+ train: train/images # train images (relative to 'path') 92 images
14
+ val: valid/images # val images (relative to 'path') 23 images
15
+ test: # test images (relative to 'path')
16
+
17
+ # Classes
18
+ names:
19
+ 0: pill
20
+
21
+ # Download script/URL (optional)
22
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/medical-pills.zip
@@ -0,0 +1,666 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Open Images v7 dataset https://storage.googleapis.com/openimages/web/index.html by Google
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/open-images-v7/
5
+ # Example usage: yolo train data=open-images-v7.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── open-images-v7 ← downloads here (561 GB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/open-images-v7 # dataset root dir
13
+ train: images/train # train images (relative to 'path') 1743042 images
14
+ val: images/val # val images (relative to 'path') 41620 images
15
+ test: # test images (optional)
16
+
17
+ # Classes
18
+ names:
19
+ 0: Accordion
20
+ 1: Adhesive tape
21
+ 2: Aircraft
22
+ 3: Airplane
23
+ 4: Alarm clock
24
+ 5: Alpaca
25
+ 6: Ambulance
26
+ 7: Animal
27
+ 8: Ant
28
+ 9: Antelope
29
+ 10: Apple
30
+ 11: Armadillo
31
+ 12: Artichoke
32
+ 13: Auto part
33
+ 14: Axe
34
+ 15: Backpack
35
+ 16: Bagel
36
+ 17: Baked goods
37
+ 18: Balance beam
38
+ 19: Ball
39
+ 20: Balloon
40
+ 21: Banana
41
+ 22: Band-aid
42
+ 23: Banjo
43
+ 24: Barge
44
+ 25: Barrel
45
+ 26: Baseball bat
46
+ 27: Baseball glove
47
+ 28: Bat (Animal)
48
+ 29: Bathroom accessory
49
+ 30: Bathroom cabinet
50
+ 31: Bathtub
51
+ 32: Beaker
52
+ 33: Bear
53
+ 34: Bed
54
+ 35: Bee
55
+ 36: Beehive
56
+ 37: Beer
57
+ 38: Beetle
58
+ 39: Bell pepper
59
+ 40: Belt
60
+ 41: Bench
61
+ 42: Bicycle
62
+ 43: Bicycle helmet
63
+ 44: Bicycle wheel
64
+ 45: Bidet
65
+ 46: Billboard
66
+ 47: Billiard table
67
+ 48: Binoculars
68
+ 49: Bird
69
+ 50: Blender
70
+ 51: Blue jay
71
+ 52: Boat
72
+ 53: Bomb
73
+ 54: Book
74
+ 55: Bookcase
75
+ 56: Boot
76
+ 57: Bottle
77
+ 58: Bottle opener
78
+ 59: Bow and arrow
79
+ 60: Bowl
80
+ 61: Bowling equipment
81
+ 62: Box
82
+ 63: Boy
83
+ 64: Brassiere
84
+ 65: Bread
85
+ 66: Briefcase
86
+ 67: Broccoli
87
+ 68: Bronze sculpture
88
+ 69: Brown bear
89
+ 70: Building
90
+ 71: Bull
91
+ 72: Burrito
92
+ 73: Bus
93
+ 74: Bust
94
+ 75: Butterfly
95
+ 76: Cabbage
96
+ 77: Cabinetry
97
+ 78: Cake
98
+ 79: Cake stand
99
+ 80: Calculator
100
+ 81: Camel
101
+ 82: Camera
102
+ 83: Can opener
103
+ 84: Canary
104
+ 85: Candle
105
+ 86: Candy
106
+ 87: Cannon
107
+ 88: Canoe
108
+ 89: Cantaloupe
109
+ 90: Car
110
+ 91: Carnivore
111
+ 92: Carrot
112
+ 93: Cart
113
+ 94: Cassette deck
114
+ 95: Castle
115
+ 96: Cat
116
+ 97: Cat furniture
117
+ 98: Caterpillar
118
+ 99: Cattle
119
+ 100: Ceiling fan
120
+ 101: Cello
121
+ 102: Centipede
122
+ 103: Chainsaw
123
+ 104: Chair
124
+ 105: Cheese
125
+ 106: Cheetah
126
+ 107: Chest of drawers
127
+ 108: Chicken
128
+ 109: Chime
129
+ 110: Chisel
130
+ 111: Chopsticks
131
+ 112: Christmas tree
132
+ 113: Clock
133
+ 114: Closet
134
+ 115: Clothing
135
+ 116: Coat
136
+ 117: Cocktail
137
+ 118: Cocktail shaker
138
+ 119: Coconut
139
+ 120: Coffee
140
+ 121: Coffee cup
141
+ 122: Coffee table
142
+ 123: Coffeemaker
143
+ 124: Coin
144
+ 125: Common fig
145
+ 126: Common sunflower
146
+ 127: Computer keyboard
147
+ 128: Computer monitor
148
+ 129: Computer mouse
149
+ 130: Container
150
+ 131: Convenience store
151
+ 132: Cookie
152
+ 133: Cooking spray
153
+ 134: Corded phone
154
+ 135: Cosmetics
155
+ 136: Couch
156
+ 137: Countertop
157
+ 138: Cowboy hat
158
+ 139: Crab
159
+ 140: Cream
160
+ 141: Cricket ball
161
+ 142: Crocodile
162
+ 143: Croissant
163
+ 144: Crown
164
+ 145: Crutch
165
+ 146: Cucumber
166
+ 147: Cupboard
167
+ 148: Curtain
168
+ 149: Cutting board
169
+ 150: Dagger
170
+ 151: Dairy Product
171
+ 152: Deer
172
+ 153: Desk
173
+ 154: Dessert
174
+ 155: Diaper
175
+ 156: Dice
176
+ 157: Digital clock
177
+ 158: Dinosaur
178
+ 159: Dishwasher
179
+ 160: Dog
180
+ 161: Dog bed
181
+ 162: Doll
182
+ 163: Dolphin
183
+ 164: Door
184
+ 165: Door handle
185
+ 166: Doughnut
186
+ 167: Dragonfly
187
+ 168: Drawer
188
+ 169: Dress
189
+ 170: Drill (Tool)
190
+ 171: Drink
191
+ 172: Drinking straw
192
+ 173: Drum
193
+ 174: Duck
194
+ 175: Dumbbell
195
+ 176: Eagle
196
+ 177: Earrings
197
+ 178: Egg (Food)
198
+ 179: Elephant
199
+ 180: Envelope
200
+ 181: Eraser
201
+ 182: Face powder
202
+ 183: Facial tissue holder
203
+ 184: Falcon
204
+ 185: Fashion accessory
205
+ 186: Fast food
206
+ 187: Fax
207
+ 188: Fedora
208
+ 189: Filing cabinet
209
+ 190: Fire hydrant
210
+ 191: Fireplace
211
+ 192: Fish
212
+ 193: Flag
213
+ 194: Flashlight
214
+ 195: Flower
215
+ 196: Flowerpot
216
+ 197: Flute
217
+ 198: Flying disc
218
+ 199: Food
219
+ 200: Food processor
220
+ 201: Football
221
+ 202: Football helmet
222
+ 203: Footwear
223
+ 204: Fork
224
+ 205: Fountain
225
+ 206: Fox
226
+ 207: French fries
227
+ 208: French horn
228
+ 209: Frog
229
+ 210: Fruit
230
+ 211: Frying pan
231
+ 212: Furniture
232
+ 213: Garden Asparagus
233
+ 214: Gas stove
234
+ 215: Giraffe
235
+ 216: Girl
236
+ 217: Glasses
237
+ 218: Glove
238
+ 219: Goat
239
+ 220: Goggles
240
+ 221: Goldfish
241
+ 222: Golf ball
242
+ 223: Golf cart
243
+ 224: Gondola
244
+ 225: Goose
245
+ 226: Grape
246
+ 227: Grapefruit
247
+ 228: Grinder
248
+ 229: Guacamole
249
+ 230: Guitar
250
+ 231: Hair dryer
251
+ 232: Hair spray
252
+ 233: Hamburger
253
+ 234: Hammer
254
+ 235: Hamster
255
+ 236: Hand dryer
256
+ 237: Handbag
257
+ 238: Handgun
258
+ 239: Harbor seal
259
+ 240: Harmonica
260
+ 241: Harp
261
+ 242: Harpsichord
262
+ 243: Hat
263
+ 244: Headphones
264
+ 245: Heater
265
+ 246: Hedgehog
266
+ 247: Helicopter
267
+ 248: Helmet
268
+ 249: High heels
269
+ 250: Hiking equipment
270
+ 251: Hippopotamus
271
+ 252: Home appliance
272
+ 253: Honeycomb
273
+ 254: Horizontal bar
274
+ 255: Horse
275
+ 256: Hot dog
276
+ 257: House
277
+ 258: Houseplant
278
+ 259: Human arm
279
+ 260: Human beard
280
+ 261: Human body
281
+ 262: Human ear
282
+ 263: Human eye
283
+ 264: Human face
284
+ 265: Human foot
285
+ 266: Human hair
286
+ 267: Human hand
287
+ 268: Human head
288
+ 269: Human leg
289
+ 270: Human mouth
290
+ 271: Human nose
291
+ 272: Humidifier
292
+ 273: Ice cream
293
+ 274: Indoor rower
294
+ 275: Infant bed
295
+ 276: Insect
296
+ 277: Invertebrate
297
+ 278: Ipod
298
+ 279: Isopod
299
+ 280: Jacket
300
+ 281: Jacuzzi
301
+ 282: Jaguar (Animal)
302
+ 283: Jeans
303
+ 284: Jellyfish
304
+ 285: Jet ski
305
+ 286: Jug
306
+ 287: Juice
307
+ 288: Kangaroo
308
+ 289: Kettle
309
+ 290: Kitchen & dining room table
310
+ 291: Kitchen appliance
311
+ 292: Kitchen knife
312
+ 293: Kitchen utensil
313
+ 294: Kitchenware
314
+ 295: Kite
315
+ 296: Knife
316
+ 297: Koala
317
+ 298: Ladder
318
+ 299: Ladle
319
+ 300: Ladybug
320
+ 301: Lamp
321
+ 302: Land vehicle
322
+ 303: Lantern
323
+ 304: Laptop
324
+ 305: Lavender (Plant)
325
+ 306: Lemon
326
+ 307: Leopard
327
+ 308: Light bulb
328
+ 309: Light switch
329
+ 310: Lighthouse
330
+ 311: Lily
331
+ 312: Limousine
332
+ 313: Lion
333
+ 314: Lipstick
334
+ 315: Lizard
335
+ 316: Lobster
336
+ 317: Loveseat
337
+ 318: Luggage and bags
338
+ 319: Lynx
339
+ 320: Magpie
340
+ 321: Mammal
341
+ 322: Man
342
+ 323: Mango
343
+ 324: Maple
344
+ 325: Maracas
345
+ 326: Marine invertebrates
346
+ 327: Marine mammal
347
+ 328: Measuring cup
348
+ 329: Mechanical fan
349
+ 330: Medical equipment
350
+ 331: Microphone
351
+ 332: Microwave oven
352
+ 333: Milk
353
+ 334: Miniskirt
354
+ 335: Mirror
355
+ 336: Missile
356
+ 337: Mixer
357
+ 338: Mixing bowl
358
+ 339: Mobile phone
359
+ 340: Monkey
360
+ 341: Moths and butterflies
361
+ 342: Motorcycle
362
+ 343: Mouse
363
+ 344: Muffin
364
+ 345: Mug
365
+ 346: Mule
366
+ 347: Mushroom
367
+ 348: Musical instrument
368
+ 349: Musical keyboard
369
+ 350: Nail (Construction)
370
+ 351: Necklace
371
+ 352: Nightstand
372
+ 353: Oboe
373
+ 354: Office building
374
+ 355: Office supplies
375
+ 356: Orange
376
+ 357: Organ (Musical Instrument)
377
+ 358: Ostrich
378
+ 359: Otter
379
+ 360: Oven
380
+ 361: Owl
381
+ 362: Oyster
382
+ 363: Paddle
383
+ 364: Palm tree
384
+ 365: Pancake
385
+ 366: Panda
386
+ 367: Paper cutter
387
+ 368: Paper towel
388
+ 369: Parachute
389
+ 370: Parking meter
390
+ 371: Parrot
391
+ 372: Pasta
392
+ 373: Pastry
393
+ 374: Peach
394
+ 375: Pear
395
+ 376: Pen
396
+ 377: Pencil case
397
+ 378: Pencil sharpener
398
+ 379: Penguin
399
+ 380: Perfume
400
+ 381: Person
401
+ 382: Personal care
402
+ 383: Personal flotation device
403
+ 384: Piano
404
+ 385: Picnic basket
405
+ 386: Picture frame
406
+ 387: Pig
407
+ 388: Pillow
408
+ 389: Pineapple
409
+ 390: Pitcher (Container)
410
+ 391: Pizza
411
+ 392: Pizza cutter
412
+ 393: Plant
413
+ 394: Plastic bag
414
+ 395: Plate
415
+ 396: Platter
416
+ 397: Plumbing fixture
417
+ 398: Polar bear
418
+ 399: Pomegranate
419
+ 400: Popcorn
420
+ 401: Porch
421
+ 402: Porcupine
422
+ 403: Poster
423
+ 404: Potato
424
+ 405: Power plugs and sockets
425
+ 406: Pressure cooker
426
+ 407: Pretzel
427
+ 408: Printer
428
+ 409: Pumpkin
429
+ 410: Punching bag
430
+ 411: Rabbit
431
+ 412: Raccoon
432
+ 413: Racket
433
+ 414: Radish
434
+ 415: Ratchet (Device)
435
+ 416: Raven
436
+ 417: Rays and skates
437
+ 418: Red panda
438
+ 419: Refrigerator
439
+ 420: Remote control
440
+ 421: Reptile
441
+ 422: Rhinoceros
442
+ 423: Rifle
443
+ 424: Ring binder
444
+ 425: Rocket
445
+ 426: Roller skates
446
+ 427: Rose
447
+ 428: Rugby ball
448
+ 429: Ruler
449
+ 430: Salad
450
+ 431: Salt and pepper shakers
451
+ 432: Sandal
452
+ 433: Sandwich
453
+ 434: Saucer
454
+ 435: Saxophone
455
+ 436: Scale
456
+ 437: Scarf
457
+ 438: Scissors
458
+ 439: Scoreboard
459
+ 440: Scorpion
460
+ 441: Screwdriver
461
+ 442: Sculpture
462
+ 443: Sea lion
463
+ 444: Sea turtle
464
+ 445: Seafood
465
+ 446: Seahorse
466
+ 447: Seat belt
467
+ 448: Segway
468
+ 449: Serving tray
469
+ 450: Sewing machine
470
+ 451: Shark
471
+ 452: Sheep
472
+ 453: Shelf
473
+ 454: Shellfish
474
+ 455: Shirt
475
+ 456: Shorts
476
+ 457: Shotgun
477
+ 458: Shower
478
+ 459: Shrimp
479
+ 460: Sink
480
+ 461: Skateboard
481
+ 462: Ski
482
+ 463: Skirt
483
+ 464: Skull
484
+ 465: Skunk
485
+ 466: Skyscraper
486
+ 467: Slow cooker
487
+ 468: Snack
488
+ 469: Snail
489
+ 470: Snake
490
+ 471: Snowboard
491
+ 472: Snowman
492
+ 473: Snowmobile
493
+ 474: Snowplow
494
+ 475: Soap dispenser
495
+ 476: Sock
496
+ 477: Sofa bed
497
+ 478: Sombrero
498
+ 479: Sparrow
499
+ 480: Spatula
500
+ 481: Spice rack
501
+ 482: Spider
502
+ 483: Spoon
503
+ 484: Sports equipment
504
+ 485: Sports uniform
505
+ 486: Squash (Plant)
506
+ 487: Squid
507
+ 488: Squirrel
508
+ 489: Stairs
509
+ 490: Stapler
510
+ 491: Starfish
511
+ 492: Stationary bicycle
512
+ 493: Stethoscope
513
+ 494: Stool
514
+ 495: Stop sign
515
+ 496: Strawberry
516
+ 497: Street light
517
+ 498: Stretcher
518
+ 499: Studio couch
519
+ 500: Submarine
520
+ 501: Submarine sandwich
521
+ 502: Suit
522
+ 503: Suitcase
523
+ 504: Sun hat
524
+ 505: Sunglasses
525
+ 506: Surfboard
526
+ 507: Sushi
527
+ 508: Swan
528
+ 509: Swim cap
529
+ 510: Swimming pool
530
+ 511: Swimwear
531
+ 512: Sword
532
+ 513: Syringe
533
+ 514: Table
534
+ 515: Table tennis racket
535
+ 516: Tablet computer
536
+ 517: Tableware
537
+ 518: Taco
538
+ 519: Tank
539
+ 520: Tap
540
+ 521: Tart
541
+ 522: Taxi
542
+ 523: Tea
543
+ 524: Teapot
544
+ 525: Teddy bear
545
+ 526: Telephone
546
+ 527: Television
547
+ 528: Tennis ball
548
+ 529: Tennis racket
549
+ 530: Tent
550
+ 531: Tiara
551
+ 532: Tick
552
+ 533: Tie
553
+ 534: Tiger
554
+ 535: Tin can
555
+ 536: Tire
556
+ 537: Toaster
557
+ 538: Toilet
558
+ 539: Toilet paper
559
+ 540: Tomato
560
+ 541: Tool
561
+ 542: Toothbrush
562
+ 543: Torch
563
+ 544: Tortoise
564
+ 545: Towel
565
+ 546: Tower
566
+ 547: Toy
567
+ 548: Traffic light
568
+ 549: Traffic sign
569
+ 550: Train
570
+ 551: Training bench
571
+ 552: Treadmill
572
+ 553: Tree
573
+ 554: Tree house
574
+ 555: Tripod
575
+ 556: Trombone
576
+ 557: Trousers
577
+ 558: Truck
578
+ 559: Trumpet
579
+ 560: Turkey
580
+ 561: Turtle
581
+ 562: Umbrella
582
+ 563: Unicycle
583
+ 564: Van
584
+ 565: Vase
585
+ 566: Vegetable
586
+ 567: Vehicle
587
+ 568: Vehicle registration plate
588
+ 569: Violin
589
+ 570: Volleyball (Ball)
590
+ 571: Waffle
591
+ 572: Waffle iron
592
+ 573: Wall clock
593
+ 574: Wardrobe
594
+ 575: Washing machine
595
+ 576: Waste container
596
+ 577: Watch
597
+ 578: Watercraft
598
+ 579: Watermelon
599
+ 580: Weapon
600
+ 581: Whale
601
+ 582: Wheel
602
+ 583: Wheelchair
603
+ 584: Whisk
604
+ 585: Whiteboard
605
+ 586: Willow
606
+ 587: Window
607
+ 588: Window blind
608
+ 589: Wine
609
+ 590: Wine glass
610
+ 591: Wine rack
611
+ 592: Winter melon
612
+ 593: Wok
613
+ 594: Woman
614
+ 595: Wood-burning stove
615
+ 596: Woodpecker
616
+ 597: Worm
617
+ 598: Wrench
618
+ 599: Zebra
619
+ 600: Zucchini
620
+
621
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
622
+ download: |
623
+ import warnings
624
+
625
+ from ultralytics.utils import LOGGER, SETTINGS, Path, get_ubuntu_version, is_ubuntu
626
+ from ultralytics.utils.checks import check_requirements, check_version
627
+
628
+ check_requirements("fiftyone")
629
+ if is_ubuntu() and check_version(get_ubuntu_version(), ">=22.04"):
630
+ # Ubuntu>=22.04 patch https://github.com/voxel51/fiftyone/issues/2961#issuecomment-1666519347
631
+ check_requirements("fiftyone-db-ubuntu2204")
632
+
633
+ import fiftyone as fo
634
+ import fiftyone.zoo as foz
635
+
636
+ name = "open-images-v7"
637
+ fo.config.dataset_zoo_dir = Path(SETTINGS["datasets_dir"]) / "fiftyone" / name
638
+ fraction = 1.0 # fraction of full dataset to use
639
+ LOGGER.warning("WARNING ⚠️ Open Images V7 dataset requires at least **561 GB of free space. Starting download...")
640
+ for split in "train", "validation": # 1743042 train, 41620 val images
641
+ train = split == "train"
642
+
643
+ # Load Open Images dataset
644
+ dataset = foz.load_zoo_dataset(
645
+ name,
646
+ split=split,
647
+ label_types=["detections"],
648
+ max_samples=round((1743042 if train else 41620) * fraction),
649
+ )
650
+
651
+ # Define classes
652
+ if train:
653
+ classes = dataset.default_classes # all classes
654
+ # classes = dataset.distinct('ground_truth.detections.label') # only observed classes
655
+
656
+ # Export to YOLO format
657
+ with warnings.catch_warnings():
658
+ warnings.filterwarnings("ignore", category=UserWarning, module="fiftyone.utils.yolo")
659
+ dataset.export(
660
+ export_dir=str(Path(SETTINGS["datasets_dir"]) / name),
661
+ dataset_type=fo.types.YOLOv5Dataset,
662
+ label_field="ground_truth",
663
+ split="val" if split == "validation" else split,
664
+ classes=classes,
665
+ overwrite=train,
666
+ )
@@ -0,0 +1,22 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Package-seg dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/segment/package-seg/
5
+ # Example usage: yolo train data=package-seg.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── package-seg ← downloads here (102 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/package-seg # dataset root dir
13
+ train: train/images # train images (relative to 'path') 1920 images
14
+ val: valid/images # val images (relative to 'path') 89 images
15
+ test: test/images # test images (relative to 'path') 188 images
16
+
17
+ # Classes
18
+ names:
19
+ 0: package
20
+
21
+ # Download script/URL (optional)
22
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/package-seg.zip
@@ -0,0 +1,21 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Signature dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/signature/
5
+ # Example usage: yolo train data=signature.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── signature ← downloads here (11.2 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/signature # dataset root dir
13
+ train: train/images # train images (relative to 'path') 143 images
14
+ val: valid/images # val images (relative to 'path') 35 images
15
+
16
+ # Classes
17
+ names:
18
+ 0: signature
19
+
20
+ # Download script/URL (optional)
21
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/signature.zip