dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
- tests/__init__.py +22 -0
- tests/conftest.py +83 -0
- tests/test_cli.py +138 -0
- tests/test_cuda.py +215 -0
- tests/test_engine.py +131 -0
- tests/test_exports.py +236 -0
- tests/test_integrations.py +154 -0
- tests/test_python.py +694 -0
- tests/test_solutions.py +187 -0
- ultralytics/__init__.py +30 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1023 -0
- ultralytics/cfg/datasets/Argoverse.yaml +77 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +443 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +106 -0
- ultralytics/cfg/datasets/VisDrone.yaml +77 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +42 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +24 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +22 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +127 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +22 -0
- ultralytics/cfg/trackers/bytetrack.yaml +14 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2945 -0
- ultralytics/data/base.py +438 -0
- ultralytics/data/build.py +258 -0
- ultralytics/data/converter.py +754 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +676 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +125 -0
- ultralytics/data/split_dota.py +325 -0
- ultralytics/data/utils.py +777 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1519 -0
- ultralytics/engine/model.py +1156 -0
- ultralytics/engine/predictor.py +502 -0
- ultralytics/engine/results.py +1840 -0
- ultralytics/engine/trainer.py +853 -0
- ultralytics/engine/tuner.py +243 -0
- ultralytics/engine/validator.py +377 -0
- ultralytics/hub/__init__.py +168 -0
- ultralytics/hub/auth.py +137 -0
- ultralytics/hub/google/__init__.py +176 -0
- ultralytics/hub/session.py +446 -0
- ultralytics/hub/utils.py +248 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +61 -0
- ultralytics/models/fastsam/predict.py +181 -0
- ultralytics/models/fastsam/utils.py +24 -0
- ultralytics/models/fastsam/val.py +40 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +102 -0
- ultralytics/models/nas/predict.py +58 -0
- ultralytics/models/nas/val.py +39 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +84 -0
- ultralytics/models/rtdetr/train.py +85 -0
- ultralytics/models/rtdetr/val.py +191 -0
- ultralytics/models/sam/__init__.py +6 -0
- ultralytics/models/sam/amg.py +260 -0
- ultralytics/models/sam/build.py +358 -0
- ultralytics/models/sam/model.py +170 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1129 -0
- ultralytics/models/sam/modules/decoders.py +515 -0
- ultralytics/models/sam/modules/encoders.py +854 -0
- ultralytics/models/sam/modules/memory_attention.py +299 -0
- ultralytics/models/sam/modules/sam.py +1006 -0
- ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
- ultralytics/models/sam/modules/transformer.py +351 -0
- ultralytics/models/sam/modules/utils.py +394 -0
- ultralytics/models/sam/predict.py +1605 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +455 -0
- ultralytics/models/utils/ops.py +268 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +88 -0
- ultralytics/models/yolo/classify/train.py +233 -0
- ultralytics/models/yolo/classify/val.py +215 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +124 -0
- ultralytics/models/yolo/detect/train.py +217 -0
- ultralytics/models/yolo/detect/val.py +451 -0
- ultralytics/models/yolo/model.py +354 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +66 -0
- ultralytics/models/yolo/obb/train.py +81 -0
- ultralytics/models/yolo/obb/val.py +283 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +79 -0
- ultralytics/models/yolo/pose/train.py +154 -0
- ultralytics/models/yolo/pose/val.py +394 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +113 -0
- ultralytics/models/yolo/segment/train.py +123 -0
- ultralytics/models/yolo/segment/val.py +428 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +119 -0
- ultralytics/models/yolo/world/train_world.py +176 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +169 -0
- ultralytics/models/yolo/yoloe/train.py +298 -0
- ultralytics/models/yolo/yoloe/train_seg.py +124 -0
- ultralytics/models/yolo/yoloe/val.py +191 -0
- ultralytics/nn/__init__.py +29 -0
- ultralytics/nn/autobackend.py +842 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +53 -0
- ultralytics/nn/modules/block.py +1966 -0
- ultralytics/nn/modules/conv.py +712 -0
- ultralytics/nn/modules/head.py +880 -0
- ultralytics/nn/modules/transformer.py +713 -0
- ultralytics/nn/modules/utils.py +164 -0
- ultralytics/nn/tasks.py +1627 -0
- ultralytics/nn/text_model.py +351 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +116 -0
- ultralytics/solutions/analytics.py +252 -0
- ultralytics/solutions/config.py +106 -0
- ultralytics/solutions/distance_calculation.py +124 -0
- ultralytics/solutions/heatmap.py +127 -0
- ultralytics/solutions/instance_segmentation.py +84 -0
- ultralytics/solutions/object_blurrer.py +90 -0
- ultralytics/solutions/object_counter.py +195 -0
- ultralytics/solutions/object_cropper.py +84 -0
- ultralytics/solutions/parking_management.py +273 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +120 -0
- ultralytics/solutions/security_alarm.py +154 -0
- ultralytics/solutions/similarity_search.py +172 -0
- ultralytics/solutions/solutions.py +724 -0
- ultralytics/solutions/speed_estimation.py +110 -0
- ultralytics/solutions/streamlit_inference.py +196 -0
- ultralytics/solutions/templates/similarity-search.html +160 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +68 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +124 -0
- ultralytics/trackers/bot_sort.py +260 -0
- ultralytics/trackers/byte_tracker.py +480 -0
- ultralytics/trackers/track.py +125 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +376 -0
- ultralytics/trackers/utils/kalman_filter.py +493 -0
- ultralytics/trackers/utils/matching.py +157 -0
- ultralytics/utils/__init__.py +1435 -0
- ultralytics/utils/autobatch.py +106 -0
- ultralytics/utils/autodevice.py +174 -0
- ultralytics/utils/benchmarks.py +695 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +234 -0
- ultralytics/utils/callbacks/clearml.py +153 -0
- ultralytics/utils/callbacks/comet.py +552 -0
- ultralytics/utils/callbacks/dvc.py +205 -0
- ultralytics/utils/callbacks/hub.py +108 -0
- ultralytics/utils/callbacks/mlflow.py +138 -0
- ultralytics/utils/callbacks/neptune.py +140 -0
- ultralytics/utils/callbacks/raytune.py +43 -0
- ultralytics/utils/callbacks/tensorboard.py +132 -0
- ultralytics/utils/callbacks/wb.py +185 -0
- ultralytics/utils/checks.py +897 -0
- ultralytics/utils/dist.py +119 -0
- ultralytics/utils/downloads.py +499 -0
- ultralytics/utils/errors.py +43 -0
- ultralytics/utils/export.py +219 -0
- ultralytics/utils/files.py +221 -0
- ultralytics/utils/instance.py +499 -0
- ultralytics/utils/loss.py +813 -0
- ultralytics/utils/metrics.py +1356 -0
- ultralytics/utils/ops.py +885 -0
- ultralytics/utils/patches.py +143 -0
- ultralytics/utils/plotting.py +1011 -0
- ultralytics/utils/tal.py +416 -0
- ultralytics/utils/torch_utils.py +990 -0
- ultralytics/utils/triton.py +116 -0
- ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,41 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# YOLOv9c object detection model with P3/8 - P5/32 outputs
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov9
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
6
|
+
# 358 layers, 25590912 parameters, 104.0 GFLOPs
|
7
|
+
|
8
|
+
# Parameters
|
9
|
+
nc: 80 # number of classes
|
10
|
+
|
11
|
+
# GELAN backbone
|
12
|
+
backbone:
|
13
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
14
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
15
|
+
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]] # 2
|
16
|
+
- [-1, 1, ADown, [256]] # 3-P3/8
|
17
|
+
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]] # 4
|
18
|
+
- [-1, 1, ADown, [512]] # 5-P4/16
|
19
|
+
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 6
|
20
|
+
- [-1, 1, ADown, [512]] # 7-P5/32
|
21
|
+
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 8
|
22
|
+
- [-1, 1, SPPELAN, [512, 256]] # 9
|
23
|
+
|
24
|
+
head:
|
25
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
26
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
27
|
+
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 12
|
28
|
+
|
29
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
30
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
31
|
+
- [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]] # 15 (P3/8-small)
|
32
|
+
|
33
|
+
- [-1, 1, ADown, [256]]
|
34
|
+
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
35
|
+
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 18 (P4/16-medium)
|
36
|
+
|
37
|
+
- [-1, 1, ADown, [512]]
|
38
|
+
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
39
|
+
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 21 (P5/32-large)
|
40
|
+
|
41
|
+
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
@@ -0,0 +1,64 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# YOLOv9e-seg instance segmentation model with P3/8 - P5/32 outputs
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov9
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/segment
|
6
|
+
# 743 layers, 60512800 parameters, 248.4 GFLOPs
|
7
|
+
|
8
|
+
# Parameters
|
9
|
+
nc: 80 # number of classes
|
10
|
+
|
11
|
+
# GELAN backbone
|
12
|
+
backbone:
|
13
|
+
- [-1, 1, nn.Identity, []]
|
14
|
+
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
|
15
|
+
- [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
|
16
|
+
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 3
|
17
|
+
- [-1, 1, ADown, [256]] # 4-P3/8
|
18
|
+
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 5
|
19
|
+
- [-1, 1, ADown, [512]] # 6-P4/16
|
20
|
+
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 7
|
21
|
+
- [-1, 1, ADown, [1024]] # 8-P5/32
|
22
|
+
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 9
|
23
|
+
|
24
|
+
- [1, 1, CBLinear, [[64]]] # 10
|
25
|
+
- [3, 1, CBLinear, [[64, 128]]] # 11
|
26
|
+
- [5, 1, CBLinear, [[64, 128, 256]]] # 12
|
27
|
+
- [7, 1, CBLinear, [[64, 128, 256, 512]]] # 13
|
28
|
+
- [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]] # 14
|
29
|
+
|
30
|
+
- [0, 1, Conv, [64, 3, 2]] # 15-P1/2
|
31
|
+
- [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]] # 16
|
32
|
+
- [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
|
33
|
+
- [[11, 12, 13, 14, -1], 1, CBFuse, [[1, 1, 1, 1]]] # 18
|
34
|
+
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 19
|
35
|
+
- [-1, 1, ADown, [256]] # 20-P3/8
|
36
|
+
- [[12, 13, 14, -1], 1, CBFuse, [[2, 2, 2]]] # 21
|
37
|
+
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 22
|
38
|
+
- [-1, 1, ADown, [512]] # 23-P4/16
|
39
|
+
- [[13, 14, -1], 1, CBFuse, [[3, 3]]] # 24
|
40
|
+
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 25
|
41
|
+
- [-1, 1, ADown, [1024]] # 26-P5/32
|
42
|
+
- [[14, -1], 1, CBFuse, [[4]]] # 27
|
43
|
+
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 28
|
44
|
+
- [-1, 1, SPPELAN, [512, 256]] # 29
|
45
|
+
|
46
|
+
# GELAN head
|
47
|
+
head:
|
48
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
49
|
+
- [[-1, 25], 1, Concat, [1]] # cat backbone P4
|
50
|
+
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 32
|
51
|
+
|
52
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
53
|
+
- [[-1, 22], 1, Concat, [1]] # cat backbone P3
|
54
|
+
- [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]] # 35 (P3/8-small)
|
55
|
+
|
56
|
+
- [-1, 1, ADown, [256]]
|
57
|
+
- [[-1, 32], 1, Concat, [1]] # cat head P4
|
58
|
+
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 38 (P4/16-medium)
|
59
|
+
|
60
|
+
- [-1, 1, ADown, [512]]
|
61
|
+
- [[-1, 29], 1, Concat, [1]] # cat head P5
|
62
|
+
- [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]] # 41 (P5/32-large)
|
63
|
+
|
64
|
+
- [[35, 38, 41], 1, Segment, [nc, 32, 256]] # Segment (P3, P4, P5)
|
@@ -0,0 +1,64 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# YOLOv9e object detection model with P3/8 - P5/32 outputs
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov9
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
6
|
+
# 721 layers, 58206592 parameters, 193.0 GFLOPs
|
7
|
+
|
8
|
+
# Parameters
|
9
|
+
nc: 80 # number of classes
|
10
|
+
|
11
|
+
# GELAN backbone
|
12
|
+
backbone:
|
13
|
+
- [-1, 1, nn.Identity, []]
|
14
|
+
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
|
15
|
+
- [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
|
16
|
+
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 3
|
17
|
+
- [-1, 1, ADown, [256]] # 4-P3/8
|
18
|
+
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 5
|
19
|
+
- [-1, 1, ADown, [512]] # 6-P4/16
|
20
|
+
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 7
|
21
|
+
- [-1, 1, ADown, [1024]] # 8-P5/32
|
22
|
+
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 9
|
23
|
+
|
24
|
+
- [1, 1, CBLinear, [[64]]] # 10
|
25
|
+
- [3, 1, CBLinear, [[64, 128]]] # 11
|
26
|
+
- [5, 1, CBLinear, [[64, 128, 256]]] # 12
|
27
|
+
- [7, 1, CBLinear, [[64, 128, 256, 512]]] # 13
|
28
|
+
- [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]] # 14
|
29
|
+
|
30
|
+
- [0, 1, Conv, [64, 3, 2]] # 15-P1/2
|
31
|
+
- [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]] # 16
|
32
|
+
- [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
|
33
|
+
- [[11, 12, 13, 14, -1], 1, CBFuse, [[1, 1, 1, 1]]] # 18
|
34
|
+
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 19
|
35
|
+
- [-1, 1, ADown, [256]] # 20-P3/8
|
36
|
+
- [[12, 13, 14, -1], 1, CBFuse, [[2, 2, 2]]] # 21
|
37
|
+
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 22
|
38
|
+
- [-1, 1, ADown, [512]] # 23-P4/16
|
39
|
+
- [[13, 14, -1], 1, CBFuse, [[3, 3]]] # 24
|
40
|
+
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 25
|
41
|
+
- [-1, 1, ADown, [1024]] # 26-P5/32
|
42
|
+
- [[14, -1], 1, CBFuse, [[4]]] # 27
|
43
|
+
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 28
|
44
|
+
- [-1, 1, SPPELAN, [512, 256]] # 29
|
45
|
+
|
46
|
+
# GELAN head
|
47
|
+
head:
|
48
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
49
|
+
- [[-1, 25], 1, Concat, [1]] # cat backbone P4
|
50
|
+
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 32
|
51
|
+
|
52
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
53
|
+
- [[-1, 22], 1, Concat, [1]] # cat backbone P3
|
54
|
+
- [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]] # 35 (P3/8-small)
|
55
|
+
|
56
|
+
- [-1, 1, ADown, [256]]
|
57
|
+
- [[-1, 32], 1, Concat, [1]] # cat head P4
|
58
|
+
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 38 (P4/16-medium)
|
59
|
+
|
60
|
+
- [-1, 1, ADown, [512]]
|
61
|
+
- [[-1, 29], 1, Concat, [1]] # cat head P5
|
62
|
+
- [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]] # 41 (P5/32-large)
|
63
|
+
|
64
|
+
- [[35, 38, 41], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
@@ -0,0 +1,41 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# YOLOv9m object detection model with P3/8 - P5/32 outputs
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov9
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
6
|
+
# 348 layers, 20216160 parameters, 77.9 GFLOPs
|
7
|
+
|
8
|
+
# Parameters
|
9
|
+
nc: 80 # number of classes
|
10
|
+
|
11
|
+
# GELAN backbone
|
12
|
+
backbone:
|
13
|
+
- [-1, 1, Conv, [32, 3, 2]] # 0-P1/2
|
14
|
+
- [-1, 1, Conv, [64, 3, 2]] # 1-P2/4
|
15
|
+
- [-1, 1, RepNCSPELAN4, [128, 128, 64, 1]] # 2
|
16
|
+
- [-1, 1, AConv, [240]] # 3-P3/8
|
17
|
+
- [-1, 1, RepNCSPELAN4, [240, 240, 120, 1]] # 4
|
18
|
+
- [-1, 1, AConv, [360]] # 5-P4/16
|
19
|
+
- [-1, 1, RepNCSPELAN4, [360, 360, 180, 1]] # 6
|
20
|
+
- [-1, 1, AConv, [480]] # 7-P5/32
|
21
|
+
- [-1, 1, RepNCSPELAN4, [480, 480, 240, 1]] # 8
|
22
|
+
- [-1, 1, SPPELAN, [480, 240]] # 9
|
23
|
+
|
24
|
+
head:
|
25
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
26
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
27
|
+
- [-1, 1, RepNCSPELAN4, [360, 360, 180, 1]] # 12
|
28
|
+
|
29
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
30
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
31
|
+
- [-1, 1, RepNCSPELAN4, [240, 240, 120, 1]] # 15
|
32
|
+
|
33
|
+
- [-1, 1, AConv, [180]]
|
34
|
+
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
35
|
+
- [-1, 1, RepNCSPELAN4, [360, 360, 180, 1]] # 18 (P4/16-medium)
|
36
|
+
|
37
|
+
- [-1, 1, AConv, [240]]
|
38
|
+
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
39
|
+
- [-1, 1, RepNCSPELAN4, [480, 480, 240, 1]] # 21 (P5/32-large)
|
40
|
+
|
41
|
+
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
@@ -0,0 +1,41 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# YOLOv9s object detection model with P3/8 - P5/32 outputs
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov9
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
6
|
+
# 544 layers, 7318368 parameters, 27.6 GFLOPs
|
7
|
+
|
8
|
+
# Parameters
|
9
|
+
nc: 80 # number of classes
|
10
|
+
|
11
|
+
# GELAN backbone
|
12
|
+
backbone:
|
13
|
+
- [-1, 1, Conv, [32, 3, 2]] # 0-P1/2
|
14
|
+
- [-1, 1, Conv, [64, 3, 2]] # 1-P2/4
|
15
|
+
- [-1, 1, ELAN1, [64, 64, 32]] # 2
|
16
|
+
- [-1, 1, AConv, [128]] # 3-P3/8
|
17
|
+
- [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]] # 4
|
18
|
+
- [-1, 1, AConv, [192]] # 5-P4/16
|
19
|
+
- [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]] # 6
|
20
|
+
- [-1, 1, AConv, [256]] # 7-P5/32
|
21
|
+
- [-1, 1, RepNCSPELAN4, [256, 256, 128, 3]] # 8
|
22
|
+
- [-1, 1, SPPELAN, [256, 128]] # 9
|
23
|
+
|
24
|
+
head:
|
25
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
26
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
27
|
+
- [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]] # 12
|
28
|
+
|
29
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
30
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
31
|
+
- [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]] # 15
|
32
|
+
|
33
|
+
- [-1, 1, AConv, [96]]
|
34
|
+
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
35
|
+
- [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]] # 18 (P4/16-medium)
|
36
|
+
|
37
|
+
- [-1, 1, AConv, [128]]
|
38
|
+
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
39
|
+
- [-1, 1, RepNCSPELAN4, [256, 256, 128, 3]] # 21 (P5/32-large)
|
40
|
+
|
41
|
+
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4 P5)
|
@@ -0,0 +1,41 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# YOLOv9t object detection model with P3/8 - P5/32 outputs
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov9
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
6
|
+
# 544 layers, 2128720 parameters, 8.5 GFLOPs
|
7
|
+
|
8
|
+
# Parameters
|
9
|
+
nc: 80 # number of classes
|
10
|
+
|
11
|
+
# GELAN backbone
|
12
|
+
backbone:
|
13
|
+
- [-1, 1, Conv, [16, 3, 2]] # 0-P1/2
|
14
|
+
- [-1, 1, Conv, [32, 3, 2]] # 1-P2/4
|
15
|
+
- [-1, 1, ELAN1, [32, 32, 16]] # 2
|
16
|
+
- [-1, 1, AConv, [64]] # 3-P3/8
|
17
|
+
- [-1, 1, RepNCSPELAN4, [64, 64, 32, 3]] # 4
|
18
|
+
- [-1, 1, AConv, [96]] # 5-P4/16
|
19
|
+
- [-1, 1, RepNCSPELAN4, [96, 96, 48, 3]] # 6
|
20
|
+
- [-1, 1, AConv, [128]] # 7-P5/32
|
21
|
+
- [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]] # 8
|
22
|
+
- [-1, 1, SPPELAN, [128, 64]] # 9
|
23
|
+
|
24
|
+
head:
|
25
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
26
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
27
|
+
- [-1, 1, RepNCSPELAN4, [96, 96, 48, 3]] # 12
|
28
|
+
|
29
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
30
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
31
|
+
- [-1, 1, RepNCSPELAN4, [64, 64, 32, 3]] # 15
|
32
|
+
|
33
|
+
- [-1, 1, AConv, [48]]
|
34
|
+
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
35
|
+
- [-1, 1, RepNCSPELAN4, [96, 96, 48, 3]] # 18 (P4/16-medium)
|
36
|
+
|
37
|
+
- [-1, 1, AConv, [64]]
|
38
|
+
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
39
|
+
- [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]] # 21 (P5/32-large)
|
40
|
+
|
41
|
+
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
@@ -0,0 +1,22 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# Default Ultralytics settings for BoT-SORT tracker when using mode="track"
|
4
|
+
# For documentation and examples see https://docs.ultralytics.com/modes/track/
|
5
|
+
# For BoT-SORT source code see https://github.com/NirAharon/BoT-SORT
|
6
|
+
|
7
|
+
tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
|
8
|
+
track_high_thresh: 0.25 # threshold for the first association
|
9
|
+
track_low_thresh: 0.1 # threshold for the second association
|
10
|
+
new_track_thresh: 0.25 # threshold for init new track if the detection does not match any tracks
|
11
|
+
track_buffer: 30 # buffer to calculate the time when to remove tracks
|
12
|
+
match_thresh: 0.8 # threshold for matching tracks
|
13
|
+
fuse_score: True # Whether to fuse confidence scores with the iou distances before matching
|
14
|
+
# min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
|
15
|
+
|
16
|
+
# BoT-SORT settings
|
17
|
+
gmc_method: sparseOptFlow # method of global motion compensation
|
18
|
+
# ReID model related thresh
|
19
|
+
proximity_thresh: 0.5 # minimum IoU for valid match with ReID
|
20
|
+
appearance_thresh: 0.8 # minimum appearance similarity for ReID
|
21
|
+
with_reid: False
|
22
|
+
model: auto # uses native features if detector is YOLO else yolo11n-cls.pt
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# Default Ultralytics settings for ByteTrack tracker when using mode="track"
|
4
|
+
# For documentation and examples see https://docs.ultralytics.com/modes/track/
|
5
|
+
# For ByteTrack source code see https://github.com/ifzhang/ByteTrack
|
6
|
+
|
7
|
+
tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
|
8
|
+
track_high_thresh: 0.25 # threshold for the first association
|
9
|
+
track_low_thresh: 0.1 # threshold for the second association
|
10
|
+
new_track_thresh: 0.25 # threshold for init new track if the detection does not match any tracks
|
11
|
+
track_buffer: 30 # buffer to calculate the time when to remove tracks
|
12
|
+
match_thresh: 0.8 # threshold for matching tracks
|
13
|
+
fuse_score: True # Whether to fuse confidence scores with the iou distances before matching
|
14
|
+
# min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
|
@@ -0,0 +1,26 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
from .base import BaseDataset
|
4
|
+
from .build import build_dataloader, build_grounding, build_yolo_dataset, load_inference_source
|
5
|
+
from .dataset import (
|
6
|
+
ClassificationDataset,
|
7
|
+
GroundingDataset,
|
8
|
+
SemanticDataset,
|
9
|
+
YOLOConcatDataset,
|
10
|
+
YOLODataset,
|
11
|
+
YOLOMultiModalDataset,
|
12
|
+
)
|
13
|
+
|
14
|
+
__all__ = (
|
15
|
+
"BaseDataset",
|
16
|
+
"ClassificationDataset",
|
17
|
+
"SemanticDataset",
|
18
|
+
"YOLODataset",
|
19
|
+
"YOLOMultiModalDataset",
|
20
|
+
"YOLOConcatDataset",
|
21
|
+
"GroundingDataset",
|
22
|
+
"build_yolo_dataset",
|
23
|
+
"build_grounding",
|
24
|
+
"build_dataloader",
|
25
|
+
"load_inference_source",
|
26
|
+
)
|
@@ -0,0 +1,66 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
from pathlib import Path
|
4
|
+
from typing import List, Optional, Union
|
5
|
+
|
6
|
+
from ultralytics import SAM, YOLO
|
7
|
+
|
8
|
+
|
9
|
+
def auto_annotate(
|
10
|
+
data: Union[str, Path],
|
11
|
+
det_model: str = "yolo11x.pt",
|
12
|
+
sam_model: str = "sam_b.pt",
|
13
|
+
device: str = "",
|
14
|
+
conf: float = 0.25,
|
15
|
+
iou: float = 0.45,
|
16
|
+
imgsz: int = 640,
|
17
|
+
max_det: int = 300,
|
18
|
+
classes: Optional[List[int]] = None,
|
19
|
+
output_dir: Optional[Union[str, Path]] = None,
|
20
|
+
) -> None:
|
21
|
+
"""
|
22
|
+
Automatically annotate images using a YOLO object detection model and a SAM segmentation model.
|
23
|
+
|
24
|
+
This function processes images in a specified directory, detects objects using a YOLO model, and then generates
|
25
|
+
segmentation masks using a SAM model. The resulting annotations are saved as text files.
|
26
|
+
|
27
|
+
Args:
|
28
|
+
data (str | Path): Path to a folder containing images to be annotated.
|
29
|
+
det_model (str): Path or name of the pre-trained YOLO detection model.
|
30
|
+
sam_model (str): Path or name of the pre-trained SAM segmentation model.
|
31
|
+
device (str): Device to run the models on (e.g., 'cpu', 'cuda', '0').
|
32
|
+
conf (float): Confidence threshold for detection model.
|
33
|
+
iou (float): IoU threshold for filtering overlapping boxes in detection results.
|
34
|
+
imgsz (int): Input image resize dimension.
|
35
|
+
max_det (int): Maximum number of detections per image.
|
36
|
+
classes (List[int] | None): Filter predictions to specified class IDs, returning only relevant detections.
|
37
|
+
output_dir (str | Path | None): Directory to save the annotated results. If None, a default directory is created.
|
38
|
+
|
39
|
+
Examples:
|
40
|
+
>>> from ultralytics.data.annotator import auto_annotate
|
41
|
+
>>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt")
|
42
|
+
"""
|
43
|
+
det_model = YOLO(det_model)
|
44
|
+
sam_model = SAM(sam_model)
|
45
|
+
|
46
|
+
data = Path(data)
|
47
|
+
if not output_dir:
|
48
|
+
output_dir = data.parent / f"{data.stem}_auto_annotate_labels"
|
49
|
+
Path(output_dir).mkdir(exist_ok=True, parents=True)
|
50
|
+
|
51
|
+
det_results = det_model(
|
52
|
+
data, stream=True, device=device, conf=conf, iou=iou, imgsz=imgsz, max_det=max_det, classes=classes
|
53
|
+
)
|
54
|
+
|
55
|
+
for result in det_results:
|
56
|
+
class_ids = result.boxes.cls.int().tolist() # noqa
|
57
|
+
if class_ids:
|
58
|
+
boxes = result.boxes.xyxy # Boxes object for bbox outputs
|
59
|
+
sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device)
|
60
|
+
segments = sam_results[0].masks.xyn
|
61
|
+
|
62
|
+
with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w", encoding="utf-8") as f:
|
63
|
+
for i, s in enumerate(segments):
|
64
|
+
if s.any():
|
65
|
+
segment = map(str, s.reshape(-1).tolist())
|
66
|
+
f.write(f"{class_ids[i]} " + " ".join(segment) + "\n")
|