dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
- tests/__init__.py +22 -0
- tests/conftest.py +83 -0
- tests/test_cli.py +138 -0
- tests/test_cuda.py +215 -0
- tests/test_engine.py +131 -0
- tests/test_exports.py +236 -0
- tests/test_integrations.py +154 -0
- tests/test_python.py +694 -0
- tests/test_solutions.py +187 -0
- ultralytics/__init__.py +30 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1023 -0
- ultralytics/cfg/datasets/Argoverse.yaml +77 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +443 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +106 -0
- ultralytics/cfg/datasets/VisDrone.yaml +77 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +42 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +24 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +22 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +127 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +22 -0
- ultralytics/cfg/trackers/bytetrack.yaml +14 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2945 -0
- ultralytics/data/base.py +438 -0
- ultralytics/data/build.py +258 -0
- ultralytics/data/converter.py +754 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +676 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +125 -0
- ultralytics/data/split_dota.py +325 -0
- ultralytics/data/utils.py +777 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1519 -0
- ultralytics/engine/model.py +1156 -0
- ultralytics/engine/predictor.py +502 -0
- ultralytics/engine/results.py +1840 -0
- ultralytics/engine/trainer.py +853 -0
- ultralytics/engine/tuner.py +243 -0
- ultralytics/engine/validator.py +377 -0
- ultralytics/hub/__init__.py +168 -0
- ultralytics/hub/auth.py +137 -0
- ultralytics/hub/google/__init__.py +176 -0
- ultralytics/hub/session.py +446 -0
- ultralytics/hub/utils.py +248 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +61 -0
- ultralytics/models/fastsam/predict.py +181 -0
- ultralytics/models/fastsam/utils.py +24 -0
- ultralytics/models/fastsam/val.py +40 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +102 -0
- ultralytics/models/nas/predict.py +58 -0
- ultralytics/models/nas/val.py +39 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +84 -0
- ultralytics/models/rtdetr/train.py +85 -0
- ultralytics/models/rtdetr/val.py +191 -0
- ultralytics/models/sam/__init__.py +6 -0
- ultralytics/models/sam/amg.py +260 -0
- ultralytics/models/sam/build.py +358 -0
- ultralytics/models/sam/model.py +170 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1129 -0
- ultralytics/models/sam/modules/decoders.py +515 -0
- ultralytics/models/sam/modules/encoders.py +854 -0
- ultralytics/models/sam/modules/memory_attention.py +299 -0
- ultralytics/models/sam/modules/sam.py +1006 -0
- ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
- ultralytics/models/sam/modules/transformer.py +351 -0
- ultralytics/models/sam/modules/utils.py +394 -0
- ultralytics/models/sam/predict.py +1605 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +455 -0
- ultralytics/models/utils/ops.py +268 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +88 -0
- ultralytics/models/yolo/classify/train.py +233 -0
- ultralytics/models/yolo/classify/val.py +215 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +124 -0
- ultralytics/models/yolo/detect/train.py +217 -0
- ultralytics/models/yolo/detect/val.py +451 -0
- ultralytics/models/yolo/model.py +354 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +66 -0
- ultralytics/models/yolo/obb/train.py +81 -0
- ultralytics/models/yolo/obb/val.py +283 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +79 -0
- ultralytics/models/yolo/pose/train.py +154 -0
- ultralytics/models/yolo/pose/val.py +394 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +113 -0
- ultralytics/models/yolo/segment/train.py +123 -0
- ultralytics/models/yolo/segment/val.py +428 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +119 -0
- ultralytics/models/yolo/world/train_world.py +176 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +169 -0
- ultralytics/models/yolo/yoloe/train.py +298 -0
- ultralytics/models/yolo/yoloe/train_seg.py +124 -0
- ultralytics/models/yolo/yoloe/val.py +191 -0
- ultralytics/nn/__init__.py +29 -0
- ultralytics/nn/autobackend.py +842 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +53 -0
- ultralytics/nn/modules/block.py +1966 -0
- ultralytics/nn/modules/conv.py +712 -0
- ultralytics/nn/modules/head.py +880 -0
- ultralytics/nn/modules/transformer.py +713 -0
- ultralytics/nn/modules/utils.py +164 -0
- ultralytics/nn/tasks.py +1627 -0
- ultralytics/nn/text_model.py +351 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +116 -0
- ultralytics/solutions/analytics.py +252 -0
- ultralytics/solutions/config.py +106 -0
- ultralytics/solutions/distance_calculation.py +124 -0
- ultralytics/solutions/heatmap.py +127 -0
- ultralytics/solutions/instance_segmentation.py +84 -0
- ultralytics/solutions/object_blurrer.py +90 -0
- ultralytics/solutions/object_counter.py +195 -0
- ultralytics/solutions/object_cropper.py +84 -0
- ultralytics/solutions/parking_management.py +273 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +120 -0
- ultralytics/solutions/security_alarm.py +154 -0
- ultralytics/solutions/similarity_search.py +172 -0
- ultralytics/solutions/solutions.py +724 -0
- ultralytics/solutions/speed_estimation.py +110 -0
- ultralytics/solutions/streamlit_inference.py +196 -0
- ultralytics/solutions/templates/similarity-search.html +160 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +68 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +124 -0
- ultralytics/trackers/bot_sort.py +260 -0
- ultralytics/trackers/byte_tracker.py +480 -0
- ultralytics/trackers/track.py +125 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +376 -0
- ultralytics/trackers/utils/kalman_filter.py +493 -0
- ultralytics/trackers/utils/matching.py +157 -0
- ultralytics/utils/__init__.py +1435 -0
- ultralytics/utils/autobatch.py +106 -0
- ultralytics/utils/autodevice.py +174 -0
- ultralytics/utils/benchmarks.py +695 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +234 -0
- ultralytics/utils/callbacks/clearml.py +153 -0
- ultralytics/utils/callbacks/comet.py +552 -0
- ultralytics/utils/callbacks/dvc.py +205 -0
- ultralytics/utils/callbacks/hub.py +108 -0
- ultralytics/utils/callbacks/mlflow.py +138 -0
- ultralytics/utils/callbacks/neptune.py +140 -0
- ultralytics/utils/callbacks/raytune.py +43 -0
- ultralytics/utils/callbacks/tensorboard.py +132 -0
- ultralytics/utils/callbacks/wb.py +185 -0
- ultralytics/utils/checks.py +897 -0
- ultralytics/utils/dist.py +119 -0
- ultralytics/utils/downloads.py +499 -0
- ultralytics/utils/errors.py +43 -0
- ultralytics/utils/export.py +219 -0
- ultralytics/utils/files.py +221 -0
- ultralytics/utils/instance.py +499 -0
- ultralytics/utils/loss.py +813 -0
- ultralytics/utils/metrics.py +1356 -0
- ultralytics/utils/ops.py +885 -0
- ultralytics/utils/patches.py +143 -0
- ultralytics/utils/plotting.py +1011 -0
- ultralytics/utils/tal.py +416 -0
- ultralytics/utils/torch_utils.py +990 -0
- ultralytics/utils/triton.py +116 -0
- ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,754 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
import json
|
4
|
+
import random
|
5
|
+
import shutil
|
6
|
+
from collections import defaultdict
|
7
|
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
8
|
+
from pathlib import Path
|
9
|
+
|
10
|
+
import cv2
|
11
|
+
import numpy as np
|
12
|
+
from PIL import Image
|
13
|
+
|
14
|
+
from ultralytics.utils import DATASETS_DIR, LOGGER, NUM_THREADS, TQDM
|
15
|
+
from ultralytics.utils.downloads import download, zip_directory
|
16
|
+
from ultralytics.utils.files import increment_path
|
17
|
+
|
18
|
+
|
19
|
+
def coco91_to_coco80_class():
|
20
|
+
"""
|
21
|
+
Converts 91-index COCO class IDs to 80-index COCO class IDs.
|
22
|
+
|
23
|
+
Returns:
|
24
|
+
(list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the
|
25
|
+
corresponding 91-index class ID.
|
26
|
+
"""
|
27
|
+
return [
|
28
|
+
0,
|
29
|
+
1,
|
30
|
+
2,
|
31
|
+
3,
|
32
|
+
4,
|
33
|
+
5,
|
34
|
+
6,
|
35
|
+
7,
|
36
|
+
8,
|
37
|
+
9,
|
38
|
+
10,
|
39
|
+
None,
|
40
|
+
11,
|
41
|
+
12,
|
42
|
+
13,
|
43
|
+
14,
|
44
|
+
15,
|
45
|
+
16,
|
46
|
+
17,
|
47
|
+
18,
|
48
|
+
19,
|
49
|
+
20,
|
50
|
+
21,
|
51
|
+
22,
|
52
|
+
23,
|
53
|
+
None,
|
54
|
+
24,
|
55
|
+
25,
|
56
|
+
None,
|
57
|
+
None,
|
58
|
+
26,
|
59
|
+
27,
|
60
|
+
28,
|
61
|
+
29,
|
62
|
+
30,
|
63
|
+
31,
|
64
|
+
32,
|
65
|
+
33,
|
66
|
+
34,
|
67
|
+
35,
|
68
|
+
36,
|
69
|
+
37,
|
70
|
+
38,
|
71
|
+
39,
|
72
|
+
None,
|
73
|
+
40,
|
74
|
+
41,
|
75
|
+
42,
|
76
|
+
43,
|
77
|
+
44,
|
78
|
+
45,
|
79
|
+
46,
|
80
|
+
47,
|
81
|
+
48,
|
82
|
+
49,
|
83
|
+
50,
|
84
|
+
51,
|
85
|
+
52,
|
86
|
+
53,
|
87
|
+
54,
|
88
|
+
55,
|
89
|
+
56,
|
90
|
+
57,
|
91
|
+
58,
|
92
|
+
59,
|
93
|
+
None,
|
94
|
+
60,
|
95
|
+
None,
|
96
|
+
None,
|
97
|
+
61,
|
98
|
+
None,
|
99
|
+
62,
|
100
|
+
63,
|
101
|
+
64,
|
102
|
+
65,
|
103
|
+
66,
|
104
|
+
67,
|
105
|
+
68,
|
106
|
+
69,
|
107
|
+
70,
|
108
|
+
71,
|
109
|
+
72,
|
110
|
+
None,
|
111
|
+
73,
|
112
|
+
74,
|
113
|
+
75,
|
114
|
+
76,
|
115
|
+
77,
|
116
|
+
78,
|
117
|
+
79,
|
118
|
+
None,
|
119
|
+
]
|
120
|
+
|
121
|
+
|
122
|
+
def coco80_to_coco91_class():
|
123
|
+
r"""
|
124
|
+
Converts 80-index (val2014) to 91-index (paper).
|
125
|
+
For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/.
|
126
|
+
|
127
|
+
Examples:
|
128
|
+
>>> import numpy as np
|
129
|
+
>>> a = np.loadtxt("data/coco.names", dtype="str", delimiter="\n")
|
130
|
+
>>> b = np.loadtxt("data/coco_paper.names", dtype="str", delimiter="\n")
|
131
|
+
|
132
|
+
Convert the darknet to COCO format
|
133
|
+
>>> x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]
|
134
|
+
|
135
|
+
Convert the COCO to darknet format
|
136
|
+
>>> x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]
|
137
|
+
"""
|
138
|
+
return [
|
139
|
+
1,
|
140
|
+
2,
|
141
|
+
3,
|
142
|
+
4,
|
143
|
+
5,
|
144
|
+
6,
|
145
|
+
7,
|
146
|
+
8,
|
147
|
+
9,
|
148
|
+
10,
|
149
|
+
11,
|
150
|
+
13,
|
151
|
+
14,
|
152
|
+
15,
|
153
|
+
16,
|
154
|
+
17,
|
155
|
+
18,
|
156
|
+
19,
|
157
|
+
20,
|
158
|
+
21,
|
159
|
+
22,
|
160
|
+
23,
|
161
|
+
24,
|
162
|
+
25,
|
163
|
+
27,
|
164
|
+
28,
|
165
|
+
31,
|
166
|
+
32,
|
167
|
+
33,
|
168
|
+
34,
|
169
|
+
35,
|
170
|
+
36,
|
171
|
+
37,
|
172
|
+
38,
|
173
|
+
39,
|
174
|
+
40,
|
175
|
+
41,
|
176
|
+
42,
|
177
|
+
43,
|
178
|
+
44,
|
179
|
+
46,
|
180
|
+
47,
|
181
|
+
48,
|
182
|
+
49,
|
183
|
+
50,
|
184
|
+
51,
|
185
|
+
52,
|
186
|
+
53,
|
187
|
+
54,
|
188
|
+
55,
|
189
|
+
56,
|
190
|
+
57,
|
191
|
+
58,
|
192
|
+
59,
|
193
|
+
60,
|
194
|
+
61,
|
195
|
+
62,
|
196
|
+
63,
|
197
|
+
64,
|
198
|
+
65,
|
199
|
+
67,
|
200
|
+
70,
|
201
|
+
72,
|
202
|
+
73,
|
203
|
+
74,
|
204
|
+
75,
|
205
|
+
76,
|
206
|
+
77,
|
207
|
+
78,
|
208
|
+
79,
|
209
|
+
80,
|
210
|
+
81,
|
211
|
+
82,
|
212
|
+
84,
|
213
|
+
85,
|
214
|
+
86,
|
215
|
+
87,
|
216
|
+
88,
|
217
|
+
89,
|
218
|
+
90,
|
219
|
+
]
|
220
|
+
|
221
|
+
|
222
|
+
def convert_coco(
|
223
|
+
labels_dir="../coco/annotations/",
|
224
|
+
save_dir="coco_converted/",
|
225
|
+
use_segments=False,
|
226
|
+
use_keypoints=False,
|
227
|
+
cls91to80=True,
|
228
|
+
lvis=False,
|
229
|
+
):
|
230
|
+
"""
|
231
|
+
Converts COCO dataset annotations to a YOLO annotation format suitable for training YOLO models.
|
232
|
+
|
233
|
+
Args:
|
234
|
+
labels_dir (str, optional): Path to directory containing COCO dataset annotation files.
|
235
|
+
save_dir (str, optional): Path to directory to save results to.
|
236
|
+
use_segments (bool, optional): Whether to include segmentation masks in the output.
|
237
|
+
use_keypoints (bool, optional): Whether to include keypoint annotations in the output.
|
238
|
+
cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs.
|
239
|
+
lvis (bool, optional): Whether to convert data in lvis dataset way.
|
240
|
+
|
241
|
+
Examples:
|
242
|
+
>>> from ultralytics.data.converter import convert_coco
|
243
|
+
|
244
|
+
Convert COCO annotations to YOLO format
|
245
|
+
>>> convert_coco("../datasets/coco/annotations/", use_segments=True, use_keypoints=False, cls91to80=False)
|
246
|
+
|
247
|
+
Convert LVIS annotations to YOLO format
|
248
|
+
>>> convert_coco(
|
249
|
+
>>> "../datasets/lvis/annotations/",
|
250
|
+
... use_segments=True,
|
251
|
+
... use_keypoints=False,
|
252
|
+
... cls91to80=False,
|
253
|
+
... lvis=True
|
254
|
+
... )
|
255
|
+
|
256
|
+
Output:
|
257
|
+
Generates output files in the specified output directory.
|
258
|
+
"""
|
259
|
+
# Create dataset directory
|
260
|
+
save_dir = increment_path(save_dir) # increment if save directory already exists
|
261
|
+
for p in save_dir / "labels", save_dir / "images":
|
262
|
+
p.mkdir(parents=True, exist_ok=True) # make dir
|
263
|
+
|
264
|
+
# Convert classes
|
265
|
+
coco80 = coco91_to_coco80_class()
|
266
|
+
|
267
|
+
# Import json
|
268
|
+
for json_file in sorted(Path(labels_dir).resolve().glob("*.json")):
|
269
|
+
lname = "" if lvis else json_file.stem.replace("instances_", "")
|
270
|
+
fn = Path(save_dir) / "labels" / lname # folder name
|
271
|
+
fn.mkdir(parents=True, exist_ok=True)
|
272
|
+
if lvis:
|
273
|
+
# NOTE: create folders for both train and val in advance,
|
274
|
+
# since LVIS val set contains images from COCO 2017 train in addition to the COCO 2017 val split.
|
275
|
+
(fn / "train2017").mkdir(parents=True, exist_ok=True)
|
276
|
+
(fn / "val2017").mkdir(parents=True, exist_ok=True)
|
277
|
+
with open(json_file, encoding="utf-8") as f:
|
278
|
+
data = json.load(f)
|
279
|
+
|
280
|
+
# Create image dict
|
281
|
+
images = {f"{x['id']:d}": x for x in data["images"]}
|
282
|
+
# Create image-annotations dict
|
283
|
+
annotations = defaultdict(list)
|
284
|
+
for ann in data["annotations"]:
|
285
|
+
annotations[ann["image_id"]].append(ann)
|
286
|
+
|
287
|
+
image_txt = []
|
288
|
+
# Write labels file
|
289
|
+
for img_id, anns in TQDM(annotations.items(), desc=f"Annotations {json_file}"):
|
290
|
+
img = images[f"{img_id:d}"]
|
291
|
+
h, w = img["height"], img["width"]
|
292
|
+
f = str(Path(img["coco_url"]).relative_to("http://images.cocodataset.org")) if lvis else img["file_name"]
|
293
|
+
if lvis:
|
294
|
+
image_txt.append(str(Path("./images") / f))
|
295
|
+
|
296
|
+
bboxes = []
|
297
|
+
segments = []
|
298
|
+
keypoints = []
|
299
|
+
for ann in anns:
|
300
|
+
if ann.get("iscrowd", False):
|
301
|
+
continue
|
302
|
+
# The COCO box format is [top left x, top left y, width, height]
|
303
|
+
box = np.array(ann["bbox"], dtype=np.float64)
|
304
|
+
box[:2] += box[2:] / 2 # xy top-left corner to center
|
305
|
+
box[[0, 2]] /= w # normalize x
|
306
|
+
box[[1, 3]] /= h # normalize y
|
307
|
+
if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0
|
308
|
+
continue
|
309
|
+
|
310
|
+
cls = coco80[ann["category_id"] - 1] if cls91to80 else ann["category_id"] - 1 # class
|
311
|
+
box = [cls] + box.tolist()
|
312
|
+
if box not in bboxes:
|
313
|
+
bboxes.append(box)
|
314
|
+
if use_segments and ann.get("segmentation") is not None:
|
315
|
+
if len(ann["segmentation"]) == 0:
|
316
|
+
segments.append([])
|
317
|
+
continue
|
318
|
+
elif len(ann["segmentation"]) > 1:
|
319
|
+
s = merge_multi_segment(ann["segmentation"])
|
320
|
+
s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist()
|
321
|
+
else:
|
322
|
+
s = [j for i in ann["segmentation"] for j in i] # all segments concatenated
|
323
|
+
s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist()
|
324
|
+
s = [cls] + s
|
325
|
+
segments.append(s)
|
326
|
+
if use_keypoints and ann.get("keypoints") is not None:
|
327
|
+
keypoints.append(
|
328
|
+
box + (np.array(ann["keypoints"]).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist()
|
329
|
+
)
|
330
|
+
|
331
|
+
# Write
|
332
|
+
with open((fn / f).with_suffix(".txt"), "a", encoding="utf-8") as file:
|
333
|
+
for i in range(len(bboxes)):
|
334
|
+
if use_keypoints:
|
335
|
+
line = (*(keypoints[i]),) # cls, box, keypoints
|
336
|
+
else:
|
337
|
+
line = (
|
338
|
+
*(segments[i] if use_segments and len(segments[i]) > 0 else bboxes[i]),
|
339
|
+
) # cls, box or segments
|
340
|
+
file.write(("%g " * len(line)).rstrip() % line + "\n")
|
341
|
+
|
342
|
+
if lvis:
|
343
|
+
filename = Path(save_dir) / json_file.name.replace("lvis_v1_", "").replace(".json", ".txt")
|
344
|
+
with open(filename, "a", encoding="utf-8") as f:
|
345
|
+
f.writelines(f"{line}\n" for line in image_txt)
|
346
|
+
|
347
|
+
LOGGER.info(f"{'LVIS' if lvis else 'COCO'} data converted successfully.\nResults saved to {save_dir.resolve()}")
|
348
|
+
|
349
|
+
|
350
|
+
def convert_segment_masks_to_yolo_seg(masks_dir, output_dir, classes):
|
351
|
+
"""
|
352
|
+
Converts a dataset of segmentation mask images to the YOLO segmentation format.
|
353
|
+
|
354
|
+
This function takes the directory containing the binary format mask images and converts them into YOLO segmentation format.
|
355
|
+
The converted masks are saved in the specified output directory.
|
356
|
+
|
357
|
+
Args:
|
358
|
+
masks_dir (str): The path to the directory where all mask images (png, jpg) are stored.
|
359
|
+
output_dir (str): The path to the directory where the converted YOLO segmentation masks will be stored.
|
360
|
+
classes (int): Total classes in the dataset i.e. for COCO classes=80
|
361
|
+
|
362
|
+
Examples:
|
363
|
+
>>> from ultralytics.data.converter import convert_segment_masks_to_yolo_seg
|
364
|
+
|
365
|
+
The classes here is the total classes in the dataset, for COCO dataset we have 80 classes
|
366
|
+
>>> convert_segment_masks_to_yolo_seg("path/to/masks_directory", "path/to/output/directory", classes=80)
|
367
|
+
|
368
|
+
Notes:
|
369
|
+
The expected directory structure for the masks is:
|
370
|
+
|
371
|
+
- masks
|
372
|
+
├─ mask_image_01.png or mask_image_01.jpg
|
373
|
+
├─ mask_image_02.png or mask_image_02.jpg
|
374
|
+
├─ mask_image_03.png or mask_image_03.jpg
|
375
|
+
└─ mask_image_04.png or mask_image_04.jpg
|
376
|
+
|
377
|
+
After execution, the labels will be organized in the following structure:
|
378
|
+
|
379
|
+
- output_dir
|
380
|
+
├─ mask_yolo_01.txt
|
381
|
+
├─ mask_yolo_02.txt
|
382
|
+
├─ mask_yolo_03.txt
|
383
|
+
└─ mask_yolo_04.txt
|
384
|
+
"""
|
385
|
+
pixel_to_class_mapping = {i + 1: i for i in range(classes)}
|
386
|
+
for mask_path in Path(masks_dir).iterdir():
|
387
|
+
if mask_path.suffix in {".png", ".jpg"}:
|
388
|
+
mask = cv2.imread(str(mask_path), cv2.IMREAD_GRAYSCALE) # Read the mask image in grayscale
|
389
|
+
img_height, img_width = mask.shape # Get image dimensions
|
390
|
+
LOGGER.info(f"Processing {mask_path} imgsz = {img_height} x {img_width}")
|
391
|
+
|
392
|
+
unique_values = np.unique(mask) # Get unique pixel values representing different classes
|
393
|
+
yolo_format_data = []
|
394
|
+
|
395
|
+
for value in unique_values:
|
396
|
+
if value == 0:
|
397
|
+
continue # Skip background
|
398
|
+
class_index = pixel_to_class_mapping.get(value, -1)
|
399
|
+
if class_index == -1:
|
400
|
+
LOGGER.warning(f"Unknown class for pixel value {value} in file {mask_path}, skipping.")
|
401
|
+
continue
|
402
|
+
|
403
|
+
# Create a binary mask for the current class and find contours
|
404
|
+
contours, _ = cv2.findContours(
|
405
|
+
(mask == value).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
406
|
+
) # Find contours
|
407
|
+
|
408
|
+
for contour in contours:
|
409
|
+
if len(contour) >= 3: # YOLO requires at least 3 points for a valid segmentation
|
410
|
+
contour = contour.squeeze() # Remove single-dimensional entries
|
411
|
+
yolo_format = [class_index]
|
412
|
+
for point in contour:
|
413
|
+
# Normalize the coordinates
|
414
|
+
yolo_format.append(round(point[0] / img_width, 6)) # Rounding to 6 decimal places
|
415
|
+
yolo_format.append(round(point[1] / img_height, 6))
|
416
|
+
yolo_format_data.append(yolo_format)
|
417
|
+
# Save Ultralytics YOLO format data to file
|
418
|
+
output_path = Path(output_dir) / f"{mask_path.stem}.txt"
|
419
|
+
with open(output_path, "w", encoding="utf-8") as file:
|
420
|
+
for item in yolo_format_data:
|
421
|
+
line = " ".join(map(str, item))
|
422
|
+
file.write(line + "\n")
|
423
|
+
LOGGER.info(f"Processed and stored at {output_path} imgsz = {img_height} x {img_width}")
|
424
|
+
|
425
|
+
|
426
|
+
def convert_dota_to_yolo_obb(dota_root_path: str):
|
427
|
+
"""
|
428
|
+
Converts DOTA dataset annotations to YOLO OBB (Oriented Bounding Box) format.
|
429
|
+
|
430
|
+
The function processes images in the 'train' and 'val' folders of the DOTA dataset. For each image, it reads the
|
431
|
+
associated label from the original labels directory and writes new labels in YOLO OBB format to a new directory.
|
432
|
+
|
433
|
+
Args:
|
434
|
+
dota_root_path (str): The root directory path of the DOTA dataset.
|
435
|
+
|
436
|
+
Examples:
|
437
|
+
>>> from ultralytics.data.converter import convert_dota_to_yolo_obb
|
438
|
+
>>> convert_dota_to_yolo_obb("path/to/DOTA")
|
439
|
+
|
440
|
+
Notes:
|
441
|
+
The directory structure assumed for the DOTA dataset:
|
442
|
+
|
443
|
+
- DOTA
|
444
|
+
├─ images
|
445
|
+
│ ├─ train
|
446
|
+
│ └─ val
|
447
|
+
└─ labels
|
448
|
+
├─ train_original
|
449
|
+
└─ val_original
|
450
|
+
|
451
|
+
After execution, the function will organize the labels into:
|
452
|
+
|
453
|
+
- DOTA
|
454
|
+
└─ labels
|
455
|
+
├─ train
|
456
|
+
└─ val
|
457
|
+
"""
|
458
|
+
dota_root_path = Path(dota_root_path)
|
459
|
+
|
460
|
+
# Class names to indices mapping
|
461
|
+
class_mapping = {
|
462
|
+
"plane": 0,
|
463
|
+
"ship": 1,
|
464
|
+
"storage-tank": 2,
|
465
|
+
"baseball-diamond": 3,
|
466
|
+
"tennis-court": 4,
|
467
|
+
"basketball-court": 5,
|
468
|
+
"ground-track-field": 6,
|
469
|
+
"harbor": 7,
|
470
|
+
"bridge": 8,
|
471
|
+
"large-vehicle": 9,
|
472
|
+
"small-vehicle": 10,
|
473
|
+
"helicopter": 11,
|
474
|
+
"roundabout": 12,
|
475
|
+
"soccer-ball-field": 13,
|
476
|
+
"swimming-pool": 14,
|
477
|
+
"container-crane": 15,
|
478
|
+
"airport": 16,
|
479
|
+
"helipad": 17,
|
480
|
+
}
|
481
|
+
|
482
|
+
def convert_label(image_name, image_width, image_height, orig_label_dir, save_dir):
|
483
|
+
"""Converts a single image's DOTA annotation to YOLO OBB format and saves it to a specified directory."""
|
484
|
+
orig_label_path = orig_label_dir / f"{image_name}.txt"
|
485
|
+
save_path = save_dir / f"{image_name}.txt"
|
486
|
+
|
487
|
+
with orig_label_path.open("r") as f, save_path.open("w") as g:
|
488
|
+
lines = f.readlines()
|
489
|
+
for line in lines:
|
490
|
+
parts = line.strip().split()
|
491
|
+
if len(parts) < 9:
|
492
|
+
continue
|
493
|
+
class_name = parts[8]
|
494
|
+
class_idx = class_mapping[class_name]
|
495
|
+
coords = [float(p) for p in parts[:8]]
|
496
|
+
normalized_coords = [
|
497
|
+
coords[i] / image_width if i % 2 == 0 else coords[i] / image_height for i in range(8)
|
498
|
+
]
|
499
|
+
formatted_coords = [f"{coord:.6g}" for coord in normalized_coords]
|
500
|
+
g.write(f"{class_idx} {' '.join(formatted_coords)}\n")
|
501
|
+
|
502
|
+
for phase in ["train", "val"]:
|
503
|
+
image_dir = dota_root_path / "images" / phase
|
504
|
+
orig_label_dir = dota_root_path / "labels" / f"{phase}_original"
|
505
|
+
save_dir = dota_root_path / "labels" / phase
|
506
|
+
|
507
|
+
save_dir.mkdir(parents=True, exist_ok=True)
|
508
|
+
|
509
|
+
image_paths = list(image_dir.iterdir())
|
510
|
+
for image_path in TQDM(image_paths, desc=f"Processing {phase} images"):
|
511
|
+
if image_path.suffix != ".png":
|
512
|
+
continue
|
513
|
+
image_name_without_ext = image_path.stem
|
514
|
+
img = cv2.imread(str(image_path))
|
515
|
+
h, w = img.shape[:2]
|
516
|
+
convert_label(image_name_without_ext, w, h, orig_label_dir, save_dir)
|
517
|
+
|
518
|
+
|
519
|
+
def min_index(arr1, arr2):
|
520
|
+
"""
|
521
|
+
Find a pair of indexes with the shortest distance between two arrays of 2D points.
|
522
|
+
|
523
|
+
Args:
|
524
|
+
arr1 (np.ndarray): A NumPy array of shape (N, 2) representing N 2D points.
|
525
|
+
arr2 (np.ndarray): A NumPy array of shape (M, 2) representing M 2D points.
|
526
|
+
|
527
|
+
Returns:
|
528
|
+
(tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively.
|
529
|
+
"""
|
530
|
+
dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1)
|
531
|
+
return np.unravel_index(np.argmin(dis, axis=None), dis.shape)
|
532
|
+
|
533
|
+
|
534
|
+
def merge_multi_segment(segments):
|
535
|
+
"""
|
536
|
+
Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment.
|
537
|
+
This function connects these coordinates with a thin line to merge all segments into one.
|
538
|
+
|
539
|
+
Args:
|
540
|
+
segments (List[List]): Original segmentations in COCO's JSON file.
|
541
|
+
Each element is a list of coordinates, like [segmentation1, segmentation2,...].
|
542
|
+
|
543
|
+
Returns:
|
544
|
+
s (List[np.ndarray]): A list of connected segments represented as NumPy arrays.
|
545
|
+
"""
|
546
|
+
s = []
|
547
|
+
segments = [np.array(i).reshape(-1, 2) for i in segments]
|
548
|
+
idx_list = [[] for _ in range(len(segments))]
|
549
|
+
|
550
|
+
# Record the indexes with min distance between each segment
|
551
|
+
for i in range(1, len(segments)):
|
552
|
+
idx1, idx2 = min_index(segments[i - 1], segments[i])
|
553
|
+
idx_list[i - 1].append(idx1)
|
554
|
+
idx_list[i].append(idx2)
|
555
|
+
|
556
|
+
# Use two round to connect all the segments
|
557
|
+
for k in range(2):
|
558
|
+
# Forward connection
|
559
|
+
if k == 0:
|
560
|
+
for i, idx in enumerate(idx_list):
|
561
|
+
# Middle segments have two indexes, reverse the index of middle segments
|
562
|
+
if len(idx) == 2 and idx[0] > idx[1]:
|
563
|
+
idx = idx[::-1]
|
564
|
+
segments[i] = segments[i][::-1, :]
|
565
|
+
|
566
|
+
segments[i] = np.roll(segments[i], -idx[0], axis=0)
|
567
|
+
segments[i] = np.concatenate([segments[i], segments[i][:1]])
|
568
|
+
# Deal with the first segment and the last one
|
569
|
+
if i in {0, len(idx_list) - 1}:
|
570
|
+
s.append(segments[i])
|
571
|
+
else:
|
572
|
+
idx = [0, idx[1] - idx[0]]
|
573
|
+
s.append(segments[i][idx[0] : idx[1] + 1])
|
574
|
+
|
575
|
+
else:
|
576
|
+
for i in range(len(idx_list) - 1, -1, -1):
|
577
|
+
if i not in {0, len(idx_list) - 1}:
|
578
|
+
idx = idx_list[i]
|
579
|
+
nidx = abs(idx[1] - idx[0])
|
580
|
+
s.append(segments[i][nidx:])
|
581
|
+
return s
|
582
|
+
|
583
|
+
|
584
|
+
def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt", device=None):
|
585
|
+
"""
|
586
|
+
Converts existing object detection dataset (bounding boxes) to segmentation dataset or oriented bounding box (OBB)
|
587
|
+
in YOLO format. Generates segmentation data using SAM auto-annotator as needed.
|
588
|
+
|
589
|
+
Args:
|
590
|
+
im_dir (str | Path): Path to image directory to convert.
|
591
|
+
save_dir (str | Path): Path to save the generated labels, labels will be saved
|
592
|
+
into `labels-segment` in the same directory level of `im_dir` if save_dir is None.
|
593
|
+
sam_model (str): Segmentation model to use for intermediate segmentation data.
|
594
|
+
device (int | str): The specific device to run SAM models.
|
595
|
+
|
596
|
+
Notes:
|
597
|
+
The input directory structure assumed for dataset:
|
598
|
+
|
599
|
+
- im_dir
|
600
|
+
├─ 001.jpg
|
601
|
+
├─ ...
|
602
|
+
└─ NNN.jpg
|
603
|
+
- labels
|
604
|
+
├─ 001.txt
|
605
|
+
├─ ...
|
606
|
+
└─ NNN.txt
|
607
|
+
"""
|
608
|
+
from ultralytics import SAM
|
609
|
+
from ultralytics.data import YOLODataset
|
610
|
+
from ultralytics.utils.ops import xywh2xyxy
|
611
|
+
|
612
|
+
# NOTE: add placeholder to pass class index check
|
613
|
+
dataset = YOLODataset(im_dir, data=dict(names=list(range(1000))))
|
614
|
+
if len(dataset.labels[0]["segments"]) > 0: # if it's segment data
|
615
|
+
LOGGER.info("Segmentation labels detected, no need to generate new ones!")
|
616
|
+
return
|
617
|
+
|
618
|
+
LOGGER.info("Detection labels detected, generating segment labels by SAM model!")
|
619
|
+
sam_model = SAM(sam_model)
|
620
|
+
for label in TQDM(dataset.labels, total=len(dataset.labels), desc="Generating segment labels"):
|
621
|
+
h, w = label["shape"]
|
622
|
+
boxes = label["bboxes"]
|
623
|
+
if len(boxes) == 0: # skip empty labels
|
624
|
+
continue
|
625
|
+
boxes[:, [0, 2]] *= w
|
626
|
+
boxes[:, [1, 3]] *= h
|
627
|
+
im = cv2.imread(label["im_file"])
|
628
|
+
sam_results = sam_model(im, bboxes=xywh2xyxy(boxes), verbose=False, save=False, device=device)
|
629
|
+
label["segments"] = sam_results[0].masks.xyn
|
630
|
+
|
631
|
+
save_dir = Path(save_dir) if save_dir else Path(im_dir).parent / "labels-segment"
|
632
|
+
save_dir.mkdir(parents=True, exist_ok=True)
|
633
|
+
for label in dataset.labels:
|
634
|
+
texts = []
|
635
|
+
lb_name = Path(label["im_file"]).with_suffix(".txt").name
|
636
|
+
txt_file = save_dir / lb_name
|
637
|
+
cls = label["cls"]
|
638
|
+
for i, s in enumerate(label["segments"]):
|
639
|
+
if len(s) == 0:
|
640
|
+
continue
|
641
|
+
line = (int(cls[i]), *s.reshape(-1))
|
642
|
+
texts.append(("%g " * len(line)).rstrip() % line)
|
643
|
+
with open(txt_file, "a", encoding="utf-8") as f:
|
644
|
+
f.writelines(text + "\n" for text in texts)
|
645
|
+
LOGGER.info(f"Generated segment labels saved in {save_dir}")
|
646
|
+
|
647
|
+
|
648
|
+
def create_synthetic_coco_dataset():
|
649
|
+
"""
|
650
|
+
Creates a synthetic COCO dataset with random images based on filenames from label lists.
|
651
|
+
|
652
|
+
This function downloads COCO labels, reads image filenames from label list files,
|
653
|
+
creates synthetic images for train2017 and val2017 subsets, and organizes
|
654
|
+
them in the COCO dataset structure. It uses multithreading to generate images efficiently.
|
655
|
+
|
656
|
+
Examples:
|
657
|
+
>>> from ultralytics.data.converter import create_synthetic_coco_dataset
|
658
|
+
>>> create_synthetic_coco_dataset()
|
659
|
+
|
660
|
+
Notes:
|
661
|
+
- Requires internet connection to download label files.
|
662
|
+
- Generates random RGB images of varying sizes (480x480 to 640x640 pixels).
|
663
|
+
- Existing test2017 directory is removed as it's not needed.
|
664
|
+
- Reads image filenames from train2017.txt and val2017.txt files.
|
665
|
+
"""
|
666
|
+
|
667
|
+
def create_synthetic_image(image_file):
|
668
|
+
"""Generates synthetic images with random sizes and colors for dataset augmentation or testing purposes."""
|
669
|
+
if not image_file.exists():
|
670
|
+
size = (random.randint(480, 640), random.randint(480, 640))
|
671
|
+
Image.new(
|
672
|
+
"RGB",
|
673
|
+
size=size,
|
674
|
+
color=(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)),
|
675
|
+
).save(image_file)
|
676
|
+
|
677
|
+
# Download labels
|
678
|
+
dir = DATASETS_DIR / "coco"
|
679
|
+
url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
|
680
|
+
label_zip = "coco2017labels-segments.zip"
|
681
|
+
download([url + label_zip], dir=dir.parent)
|
682
|
+
|
683
|
+
# Create synthetic images
|
684
|
+
shutil.rmtree(dir / "labels" / "test2017", ignore_errors=True) # Remove test2017 directory as not needed
|
685
|
+
with ThreadPoolExecutor(max_workers=NUM_THREADS) as executor:
|
686
|
+
for subset in ["train2017", "val2017"]:
|
687
|
+
subset_dir = dir / "images" / subset
|
688
|
+
subset_dir.mkdir(parents=True, exist_ok=True)
|
689
|
+
|
690
|
+
# Read image filenames from label list file
|
691
|
+
label_list_file = dir / f"{subset}.txt"
|
692
|
+
if label_list_file.exists():
|
693
|
+
with open(label_list_file, encoding="utf-8") as f:
|
694
|
+
image_files = [dir / line.strip() for line in f]
|
695
|
+
|
696
|
+
# Submit all tasks
|
697
|
+
futures = [executor.submit(create_synthetic_image, image_file) for image_file in image_files]
|
698
|
+
for _ in TQDM(as_completed(futures), total=len(futures), desc=f"Generating images for {subset}"):
|
699
|
+
pass # The actual work is done in the background
|
700
|
+
else:
|
701
|
+
LOGGER.warning(f"Labels file {label_list_file} does not exist. Skipping image creation for {subset}.")
|
702
|
+
|
703
|
+
LOGGER.info("Synthetic COCO dataset created successfully.")
|
704
|
+
|
705
|
+
|
706
|
+
def convert_to_multispectral(path, n_channels=10, replace=False, zip=False):
|
707
|
+
"""
|
708
|
+
Convert RGB images to multispectral images by interpolating across wavelength bands.
|
709
|
+
|
710
|
+
This function takes RGB images and interpolates them to create multispectral images with a specified number
|
711
|
+
of channels. It can process either a single image or a directory of images.
|
712
|
+
|
713
|
+
Args:
|
714
|
+
path (str | Path): Path to an image file or directory containing images to convert.
|
715
|
+
n_channels (int): Number of spectral channels to generate in the output image.
|
716
|
+
replace (bool): Whether to replace the original image file with the converted one.
|
717
|
+
zip (bool): Whether to zip the converted images into a zip file.
|
718
|
+
|
719
|
+
Examples:
|
720
|
+
>>> # Convert a single image
|
721
|
+
>>> convert_to_multispectral("path/to/image.jpg", n_channels=10)
|
722
|
+
>>> # Convert a dataset
|
723
|
+
>>> convert_to_multispectral("../datasets/coco8", n_channels=10)
|
724
|
+
"""
|
725
|
+
from scipy.interpolate import interp1d
|
726
|
+
|
727
|
+
from ultralytics.data.utils import IMG_FORMATS
|
728
|
+
|
729
|
+
path = Path(path)
|
730
|
+
if path.is_dir():
|
731
|
+
# Process directory
|
732
|
+
im_files = sum([list(path.rglob(f"*.{ext}")) for ext in (IMG_FORMATS - {"tif", "tiff"})], [])
|
733
|
+
for im_path in im_files:
|
734
|
+
try:
|
735
|
+
convert_to_multispectral(im_path, n_channels)
|
736
|
+
if replace:
|
737
|
+
im_path.unlink()
|
738
|
+
except Exception as e:
|
739
|
+
LOGGER.info(f"Error converting {im_path}: {e}")
|
740
|
+
|
741
|
+
if zip:
|
742
|
+
zip_directory(path)
|
743
|
+
else:
|
744
|
+
# Process a single image
|
745
|
+
output_path = path.with_suffix(".tiff")
|
746
|
+
img = cv2.cvtColor(cv2.imread(str(path)), cv2.COLOR_BGR2RGB)
|
747
|
+
|
748
|
+
# Interpolate all pixels at once
|
749
|
+
rgb_wavelengths = np.array([650, 510, 475]) # R, G, B wavelengths (nm)
|
750
|
+
target_wavelengths = np.linspace(450, 700, n_channels)
|
751
|
+
f = interp1d(rgb_wavelengths.T, img, kind="linear", bounds_error=False, fill_value="extrapolate")
|
752
|
+
multispectral = f(target_wavelengths)
|
753
|
+
cv2.imwritemulti(str(output_path), np.clip(multispectral, 0, 255).astype(np.uint8).transpose(2, 0, 1))
|
754
|
+
LOGGER.info(f"Converted {output_path}")
|