dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
- tests/__init__.py +22 -0
- tests/conftest.py +83 -0
- tests/test_cli.py +138 -0
- tests/test_cuda.py +215 -0
- tests/test_engine.py +131 -0
- tests/test_exports.py +236 -0
- tests/test_integrations.py +154 -0
- tests/test_python.py +694 -0
- tests/test_solutions.py +187 -0
- ultralytics/__init__.py +30 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1023 -0
- ultralytics/cfg/datasets/Argoverse.yaml +77 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +443 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +106 -0
- ultralytics/cfg/datasets/VisDrone.yaml +77 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +42 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +24 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +22 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +127 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +22 -0
- ultralytics/cfg/trackers/bytetrack.yaml +14 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2945 -0
- ultralytics/data/base.py +438 -0
- ultralytics/data/build.py +258 -0
- ultralytics/data/converter.py +754 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +676 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +125 -0
- ultralytics/data/split_dota.py +325 -0
- ultralytics/data/utils.py +777 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1519 -0
- ultralytics/engine/model.py +1156 -0
- ultralytics/engine/predictor.py +502 -0
- ultralytics/engine/results.py +1840 -0
- ultralytics/engine/trainer.py +853 -0
- ultralytics/engine/tuner.py +243 -0
- ultralytics/engine/validator.py +377 -0
- ultralytics/hub/__init__.py +168 -0
- ultralytics/hub/auth.py +137 -0
- ultralytics/hub/google/__init__.py +176 -0
- ultralytics/hub/session.py +446 -0
- ultralytics/hub/utils.py +248 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +61 -0
- ultralytics/models/fastsam/predict.py +181 -0
- ultralytics/models/fastsam/utils.py +24 -0
- ultralytics/models/fastsam/val.py +40 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +102 -0
- ultralytics/models/nas/predict.py +58 -0
- ultralytics/models/nas/val.py +39 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +84 -0
- ultralytics/models/rtdetr/train.py +85 -0
- ultralytics/models/rtdetr/val.py +191 -0
- ultralytics/models/sam/__init__.py +6 -0
- ultralytics/models/sam/amg.py +260 -0
- ultralytics/models/sam/build.py +358 -0
- ultralytics/models/sam/model.py +170 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1129 -0
- ultralytics/models/sam/modules/decoders.py +515 -0
- ultralytics/models/sam/modules/encoders.py +854 -0
- ultralytics/models/sam/modules/memory_attention.py +299 -0
- ultralytics/models/sam/modules/sam.py +1006 -0
- ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
- ultralytics/models/sam/modules/transformer.py +351 -0
- ultralytics/models/sam/modules/utils.py +394 -0
- ultralytics/models/sam/predict.py +1605 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +455 -0
- ultralytics/models/utils/ops.py +268 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +88 -0
- ultralytics/models/yolo/classify/train.py +233 -0
- ultralytics/models/yolo/classify/val.py +215 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +124 -0
- ultralytics/models/yolo/detect/train.py +217 -0
- ultralytics/models/yolo/detect/val.py +451 -0
- ultralytics/models/yolo/model.py +354 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +66 -0
- ultralytics/models/yolo/obb/train.py +81 -0
- ultralytics/models/yolo/obb/val.py +283 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +79 -0
- ultralytics/models/yolo/pose/train.py +154 -0
- ultralytics/models/yolo/pose/val.py +394 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +113 -0
- ultralytics/models/yolo/segment/train.py +123 -0
- ultralytics/models/yolo/segment/val.py +428 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +119 -0
- ultralytics/models/yolo/world/train_world.py +176 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +169 -0
- ultralytics/models/yolo/yoloe/train.py +298 -0
- ultralytics/models/yolo/yoloe/train_seg.py +124 -0
- ultralytics/models/yolo/yoloe/val.py +191 -0
- ultralytics/nn/__init__.py +29 -0
- ultralytics/nn/autobackend.py +842 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +53 -0
- ultralytics/nn/modules/block.py +1966 -0
- ultralytics/nn/modules/conv.py +712 -0
- ultralytics/nn/modules/head.py +880 -0
- ultralytics/nn/modules/transformer.py +713 -0
- ultralytics/nn/modules/utils.py +164 -0
- ultralytics/nn/tasks.py +1627 -0
- ultralytics/nn/text_model.py +351 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +116 -0
- ultralytics/solutions/analytics.py +252 -0
- ultralytics/solutions/config.py +106 -0
- ultralytics/solutions/distance_calculation.py +124 -0
- ultralytics/solutions/heatmap.py +127 -0
- ultralytics/solutions/instance_segmentation.py +84 -0
- ultralytics/solutions/object_blurrer.py +90 -0
- ultralytics/solutions/object_counter.py +195 -0
- ultralytics/solutions/object_cropper.py +84 -0
- ultralytics/solutions/parking_management.py +273 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +120 -0
- ultralytics/solutions/security_alarm.py +154 -0
- ultralytics/solutions/similarity_search.py +172 -0
- ultralytics/solutions/solutions.py +724 -0
- ultralytics/solutions/speed_estimation.py +110 -0
- ultralytics/solutions/streamlit_inference.py +196 -0
- ultralytics/solutions/templates/similarity-search.html +160 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +68 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +124 -0
- ultralytics/trackers/bot_sort.py +260 -0
- ultralytics/trackers/byte_tracker.py +480 -0
- ultralytics/trackers/track.py +125 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +376 -0
- ultralytics/trackers/utils/kalman_filter.py +493 -0
- ultralytics/trackers/utils/matching.py +157 -0
- ultralytics/utils/__init__.py +1435 -0
- ultralytics/utils/autobatch.py +106 -0
- ultralytics/utils/autodevice.py +174 -0
- ultralytics/utils/benchmarks.py +695 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +234 -0
- ultralytics/utils/callbacks/clearml.py +153 -0
- ultralytics/utils/callbacks/comet.py +552 -0
- ultralytics/utils/callbacks/dvc.py +205 -0
- ultralytics/utils/callbacks/hub.py +108 -0
- ultralytics/utils/callbacks/mlflow.py +138 -0
- ultralytics/utils/callbacks/neptune.py +140 -0
- ultralytics/utils/callbacks/raytune.py +43 -0
- ultralytics/utils/callbacks/tensorboard.py +132 -0
- ultralytics/utils/callbacks/wb.py +185 -0
- ultralytics/utils/checks.py +897 -0
- ultralytics/utils/dist.py +119 -0
- ultralytics/utils/downloads.py +499 -0
- ultralytics/utils/errors.py +43 -0
- ultralytics/utils/export.py +219 -0
- ultralytics/utils/files.py +221 -0
- ultralytics/utils/instance.py +499 -0
- ultralytics/utils/loss.py +813 -0
- ultralytics/utils/metrics.py +1356 -0
- ultralytics/utils/ops.py +885 -0
- ultralytics/utils/patches.py +143 -0
- ultralytics/utils/plotting.py +1011 -0
- ultralytics/utils/tal.py +416 -0
- ultralytics/utils/torch_utils.py +990 -0
- ultralytics/utils/triton.py +116 -0
- ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,23 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# Brain-tumor dataset by Ultralytics
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
|
5
|
+
# Example usage: yolo train data=brain-tumor.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── brain-tumor ← downloads here (4.05 MB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/brain-tumor # dataset root dir
|
13
|
+
train: train/images # train images (relative to 'path') 893 images
|
14
|
+
val: valid/images # val images (relative to 'path') 223 images
|
15
|
+
test: # test images (relative to 'path')
|
16
|
+
|
17
|
+
# Classes
|
18
|
+
names:
|
19
|
+
0: negative
|
20
|
+
1: positive
|
21
|
+
|
22
|
+
# Download script/URL (optional)
|
23
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/brain-tumor.zip
|
@@ -0,0 +1,44 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# Carparts-seg dataset by Ultralytics
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/
|
5
|
+
# Example usage: yolo train data=carparts-seg.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── carparts-seg ← downloads here (132 MB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/carparts-seg # dataset root dir
|
13
|
+
train: train/images # train images (relative to 'path') 3516 images
|
14
|
+
val: valid/images # val images (relative to 'path') 276 images
|
15
|
+
test: test/images # test images (relative to 'path') 401 images
|
16
|
+
|
17
|
+
# Classes
|
18
|
+
names:
|
19
|
+
0: back_bumper
|
20
|
+
1: back_door
|
21
|
+
2: back_glass
|
22
|
+
3: back_left_door
|
23
|
+
4: back_left_light
|
24
|
+
5: back_light
|
25
|
+
6: back_right_door
|
26
|
+
7: back_right_light
|
27
|
+
8: front_bumper
|
28
|
+
9: front_door
|
29
|
+
10: front_glass
|
30
|
+
11: front_left_door
|
31
|
+
12: front_left_light
|
32
|
+
13: front_light
|
33
|
+
14: front_right_door
|
34
|
+
15: front_right_light
|
35
|
+
16: hood
|
36
|
+
17: left_mirror
|
37
|
+
18: object
|
38
|
+
19: right_mirror
|
39
|
+
20: tailgate
|
40
|
+
21: trunk
|
41
|
+
22: wheel
|
42
|
+
|
43
|
+
# Download script/URL (optional)
|
44
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/carparts-seg.zip
|
@@ -0,0 +1,42 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# COCO 2017 Keypoints dataset https://cocodataset.org by Microsoft
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/pose/coco/
|
5
|
+
# Example usage: yolo train data=coco-pose.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── coco-pose ← downloads here (20.1 GB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/coco-pose # dataset root dir
|
13
|
+
train: train2017.txt # train images (relative to 'path') 56599 images
|
14
|
+
val: val2017.txt # val images (relative to 'path') 2346 images
|
15
|
+
test: test-dev2017.txt # 20288 of 40670 images, submit to https://codalab.lisn.upsaclay.fr/competitions/7403
|
16
|
+
|
17
|
+
# Keypoints
|
18
|
+
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
19
|
+
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
20
|
+
|
21
|
+
# Classes
|
22
|
+
names:
|
23
|
+
0: person
|
24
|
+
|
25
|
+
# Download script/URL (optional)
|
26
|
+
download: |
|
27
|
+
from pathlib import Path
|
28
|
+
|
29
|
+
from ultralytics.utils.downloads import download
|
30
|
+
|
31
|
+
# Download labels
|
32
|
+
dir = Path(yaml["path"]) # dataset root dir
|
33
|
+
url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
|
34
|
+
urls = [f"{url}coco2017labels-pose.zip"]
|
35
|
+
download(urls, dir=dir.parent)
|
36
|
+
# Download data
|
37
|
+
urls = [
|
38
|
+
"http://images.cocodataset.org/zips/train2017.zip", # 19G, 118k images
|
39
|
+
"http://images.cocodataset.org/zips/val2017.zip", # 1G, 5k images
|
40
|
+
"http://images.cocodataset.org/zips/test2017.zip", # 7G, 41k images (optional)
|
41
|
+
]
|
42
|
+
download(urls, dir=dir / "images", threads=3)
|
@@ -0,0 +1,118 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# COCO 2017 dataset https://cocodataset.org by Microsoft
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
|
5
|
+
# Example usage: yolo train data=coco.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── coco ← downloads here (20.1 GB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/coco # dataset root dir
|
13
|
+
train: train2017.txt # train images (relative to 'path') 118287 images
|
14
|
+
val: val2017.txt # val images (relative to 'path') 5000 images
|
15
|
+
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
16
|
+
|
17
|
+
# Classes
|
18
|
+
names:
|
19
|
+
0: person
|
20
|
+
1: bicycle
|
21
|
+
2: car
|
22
|
+
3: motorcycle
|
23
|
+
4: airplane
|
24
|
+
5: bus
|
25
|
+
6: train
|
26
|
+
7: truck
|
27
|
+
8: boat
|
28
|
+
9: traffic light
|
29
|
+
10: fire hydrant
|
30
|
+
11: stop sign
|
31
|
+
12: parking meter
|
32
|
+
13: bench
|
33
|
+
14: bird
|
34
|
+
15: cat
|
35
|
+
16: dog
|
36
|
+
17: horse
|
37
|
+
18: sheep
|
38
|
+
19: cow
|
39
|
+
20: elephant
|
40
|
+
21: bear
|
41
|
+
22: zebra
|
42
|
+
23: giraffe
|
43
|
+
24: backpack
|
44
|
+
25: umbrella
|
45
|
+
26: handbag
|
46
|
+
27: tie
|
47
|
+
28: suitcase
|
48
|
+
29: frisbee
|
49
|
+
30: skis
|
50
|
+
31: snowboard
|
51
|
+
32: sports ball
|
52
|
+
33: kite
|
53
|
+
34: baseball bat
|
54
|
+
35: baseball glove
|
55
|
+
36: skateboard
|
56
|
+
37: surfboard
|
57
|
+
38: tennis racket
|
58
|
+
39: bottle
|
59
|
+
40: wine glass
|
60
|
+
41: cup
|
61
|
+
42: fork
|
62
|
+
43: knife
|
63
|
+
44: spoon
|
64
|
+
45: bowl
|
65
|
+
46: banana
|
66
|
+
47: apple
|
67
|
+
48: sandwich
|
68
|
+
49: orange
|
69
|
+
50: broccoli
|
70
|
+
51: carrot
|
71
|
+
52: hot dog
|
72
|
+
53: pizza
|
73
|
+
54: donut
|
74
|
+
55: cake
|
75
|
+
56: chair
|
76
|
+
57: couch
|
77
|
+
58: potted plant
|
78
|
+
59: bed
|
79
|
+
60: dining table
|
80
|
+
61: toilet
|
81
|
+
62: tv
|
82
|
+
63: laptop
|
83
|
+
64: mouse
|
84
|
+
65: remote
|
85
|
+
66: keyboard
|
86
|
+
67: cell phone
|
87
|
+
68: microwave
|
88
|
+
69: oven
|
89
|
+
70: toaster
|
90
|
+
71: sink
|
91
|
+
72: refrigerator
|
92
|
+
73: book
|
93
|
+
74: clock
|
94
|
+
75: vase
|
95
|
+
76: scissors
|
96
|
+
77: teddy bear
|
97
|
+
78: hair drier
|
98
|
+
79: toothbrush
|
99
|
+
|
100
|
+
# Download script/URL (optional)
|
101
|
+
download: |
|
102
|
+
from pathlib import Path
|
103
|
+
|
104
|
+
from ultralytics.utils.downloads import download
|
105
|
+
|
106
|
+
# Download labels
|
107
|
+
segments = True # segment or box labels
|
108
|
+
dir = Path(yaml["path"]) # dataset root dir
|
109
|
+
url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
|
110
|
+
urls = [url + ("coco2017labels-segments.zip" if segments else "coco2017labels.zip")] # labels
|
111
|
+
download(urls, dir=dir.parent)
|
112
|
+
# Download data
|
113
|
+
urls = [
|
114
|
+
"http://images.cocodataset.org/zips/train2017.zip", # 19G, 118k images
|
115
|
+
"http://images.cocodataset.org/zips/val2017.zip", # 1G, 5k images
|
116
|
+
"http://images.cocodataset.org/zips/test2017.zip", # 7G, 41k images (optional)
|
117
|
+
]
|
118
|
+
download(urls, dir=dir / "images", threads=3)
|
@@ -0,0 +1,101 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/segment/coco/
|
5
|
+
# Example usage: yolo train data=coco128.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── coco128-seg ← downloads here (7 MB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/coco128-seg # dataset root dir
|
13
|
+
train: images/train2017 # train images (relative to 'path') 128 images
|
14
|
+
val: images/train2017 # val images (relative to 'path') 128 images
|
15
|
+
test: # test images (optional)
|
16
|
+
|
17
|
+
# Classes
|
18
|
+
names:
|
19
|
+
0: person
|
20
|
+
1: bicycle
|
21
|
+
2: car
|
22
|
+
3: motorcycle
|
23
|
+
4: airplane
|
24
|
+
5: bus
|
25
|
+
6: train
|
26
|
+
7: truck
|
27
|
+
8: boat
|
28
|
+
9: traffic light
|
29
|
+
10: fire hydrant
|
30
|
+
11: stop sign
|
31
|
+
12: parking meter
|
32
|
+
13: bench
|
33
|
+
14: bird
|
34
|
+
15: cat
|
35
|
+
16: dog
|
36
|
+
17: horse
|
37
|
+
18: sheep
|
38
|
+
19: cow
|
39
|
+
20: elephant
|
40
|
+
21: bear
|
41
|
+
22: zebra
|
42
|
+
23: giraffe
|
43
|
+
24: backpack
|
44
|
+
25: umbrella
|
45
|
+
26: handbag
|
46
|
+
27: tie
|
47
|
+
28: suitcase
|
48
|
+
29: frisbee
|
49
|
+
30: skis
|
50
|
+
31: snowboard
|
51
|
+
32: sports ball
|
52
|
+
33: kite
|
53
|
+
34: baseball bat
|
54
|
+
35: baseball glove
|
55
|
+
36: skateboard
|
56
|
+
37: surfboard
|
57
|
+
38: tennis racket
|
58
|
+
39: bottle
|
59
|
+
40: wine glass
|
60
|
+
41: cup
|
61
|
+
42: fork
|
62
|
+
43: knife
|
63
|
+
44: spoon
|
64
|
+
45: bowl
|
65
|
+
46: banana
|
66
|
+
47: apple
|
67
|
+
48: sandwich
|
68
|
+
49: orange
|
69
|
+
50: broccoli
|
70
|
+
51: carrot
|
71
|
+
52: hot dog
|
72
|
+
53: pizza
|
73
|
+
54: donut
|
74
|
+
55: cake
|
75
|
+
56: chair
|
76
|
+
57: couch
|
77
|
+
58: potted plant
|
78
|
+
59: bed
|
79
|
+
60: dining table
|
80
|
+
61: toilet
|
81
|
+
62: tv
|
82
|
+
63: laptop
|
83
|
+
64: mouse
|
84
|
+
65: remote
|
85
|
+
66: keyboard
|
86
|
+
67: cell phone
|
87
|
+
68: microwave
|
88
|
+
69: oven
|
89
|
+
70: toaster
|
90
|
+
71: sink
|
91
|
+
72: refrigerator
|
92
|
+
73: book
|
93
|
+
74: clock
|
94
|
+
75: vase
|
95
|
+
76: scissors
|
96
|
+
77: teddy bear
|
97
|
+
78: hair drier
|
98
|
+
79: toothbrush
|
99
|
+
|
100
|
+
# Download script/URL (optional)
|
101
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128-seg.zip
|
@@ -0,0 +1,101 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
|
5
|
+
# Example usage: yolo train data=coco128.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── coco128 ← downloads here (7 MB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/coco128 # dataset root dir
|
13
|
+
train: images/train2017 # train images (relative to 'path') 128 images
|
14
|
+
val: images/train2017 # val images (relative to 'path') 128 images
|
15
|
+
test: # test images (optional)
|
16
|
+
|
17
|
+
# Classes
|
18
|
+
names:
|
19
|
+
0: person
|
20
|
+
1: bicycle
|
21
|
+
2: car
|
22
|
+
3: motorcycle
|
23
|
+
4: airplane
|
24
|
+
5: bus
|
25
|
+
6: train
|
26
|
+
7: truck
|
27
|
+
8: boat
|
28
|
+
9: traffic light
|
29
|
+
10: fire hydrant
|
30
|
+
11: stop sign
|
31
|
+
12: parking meter
|
32
|
+
13: bench
|
33
|
+
14: bird
|
34
|
+
15: cat
|
35
|
+
16: dog
|
36
|
+
17: horse
|
37
|
+
18: sheep
|
38
|
+
19: cow
|
39
|
+
20: elephant
|
40
|
+
21: bear
|
41
|
+
22: zebra
|
42
|
+
23: giraffe
|
43
|
+
24: backpack
|
44
|
+
25: umbrella
|
45
|
+
26: handbag
|
46
|
+
27: tie
|
47
|
+
28: suitcase
|
48
|
+
29: frisbee
|
49
|
+
30: skis
|
50
|
+
31: snowboard
|
51
|
+
32: sports ball
|
52
|
+
33: kite
|
53
|
+
34: baseball bat
|
54
|
+
35: baseball glove
|
55
|
+
36: skateboard
|
56
|
+
37: surfboard
|
57
|
+
38: tennis racket
|
58
|
+
39: bottle
|
59
|
+
40: wine glass
|
60
|
+
41: cup
|
61
|
+
42: fork
|
62
|
+
43: knife
|
63
|
+
44: spoon
|
64
|
+
45: bowl
|
65
|
+
46: banana
|
66
|
+
47: apple
|
67
|
+
48: sandwich
|
68
|
+
49: orange
|
69
|
+
50: broccoli
|
70
|
+
51: carrot
|
71
|
+
52: hot dog
|
72
|
+
53: pizza
|
73
|
+
54: donut
|
74
|
+
55: cake
|
75
|
+
56: chair
|
76
|
+
57: couch
|
77
|
+
58: potted plant
|
78
|
+
59: bed
|
79
|
+
60: dining table
|
80
|
+
61: toilet
|
81
|
+
62: tv
|
82
|
+
63: laptop
|
83
|
+
64: mouse
|
84
|
+
65: remote
|
85
|
+
66: keyboard
|
86
|
+
67: cell phone
|
87
|
+
68: microwave
|
88
|
+
69: oven
|
89
|
+
70: toaster
|
90
|
+
71: sink
|
91
|
+
72: refrigerator
|
92
|
+
73: book
|
93
|
+
74: clock
|
94
|
+
75: vase
|
95
|
+
76: scissors
|
96
|
+
77: teddy bear
|
97
|
+
78: hair drier
|
98
|
+
79: toothbrush
|
99
|
+
|
100
|
+
# Download script/URL (optional)
|
101
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip
|
@@ -0,0 +1,104 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# COCO8-Multispectral dataset (COCO8 images interpolated across 10 channels in the visual spectrum) by Ultralytics
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8-multispectral/
|
5
|
+
# Example usage: yolo train data=coco8-multispectral.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── coco8-multispectral ← downloads here (20.2 MB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/coco8-multispectral # dataset root dir
|
13
|
+
train: images/train # train images (relative to 'path') 4 images
|
14
|
+
val: images/val # val images (relative to 'path') 4 images
|
15
|
+
test: # test images (optional)
|
16
|
+
|
17
|
+
# Number of multispectral image channels
|
18
|
+
channels: 10
|
19
|
+
|
20
|
+
# Classes
|
21
|
+
names:
|
22
|
+
0: person
|
23
|
+
1: bicycle
|
24
|
+
2: car
|
25
|
+
3: motorcycle
|
26
|
+
4: airplane
|
27
|
+
5: bus
|
28
|
+
6: train
|
29
|
+
7: truck
|
30
|
+
8: boat
|
31
|
+
9: traffic light
|
32
|
+
10: fire hydrant
|
33
|
+
11: stop sign
|
34
|
+
12: parking meter
|
35
|
+
13: bench
|
36
|
+
14: bird
|
37
|
+
15: cat
|
38
|
+
16: dog
|
39
|
+
17: horse
|
40
|
+
18: sheep
|
41
|
+
19: cow
|
42
|
+
20: elephant
|
43
|
+
21: bear
|
44
|
+
22: zebra
|
45
|
+
23: giraffe
|
46
|
+
24: backpack
|
47
|
+
25: umbrella
|
48
|
+
26: handbag
|
49
|
+
27: tie
|
50
|
+
28: suitcase
|
51
|
+
29: frisbee
|
52
|
+
30: skis
|
53
|
+
31: snowboard
|
54
|
+
32: sports ball
|
55
|
+
33: kite
|
56
|
+
34: baseball bat
|
57
|
+
35: baseball glove
|
58
|
+
36: skateboard
|
59
|
+
37: surfboard
|
60
|
+
38: tennis racket
|
61
|
+
39: bottle
|
62
|
+
40: wine glass
|
63
|
+
41: cup
|
64
|
+
42: fork
|
65
|
+
43: knife
|
66
|
+
44: spoon
|
67
|
+
45: bowl
|
68
|
+
46: banana
|
69
|
+
47: apple
|
70
|
+
48: sandwich
|
71
|
+
49: orange
|
72
|
+
50: broccoli
|
73
|
+
51: carrot
|
74
|
+
52: hot dog
|
75
|
+
53: pizza
|
76
|
+
54: donut
|
77
|
+
55: cake
|
78
|
+
56: chair
|
79
|
+
57: couch
|
80
|
+
58: potted plant
|
81
|
+
59: bed
|
82
|
+
60: dining table
|
83
|
+
61: toilet
|
84
|
+
62: tv
|
85
|
+
63: laptop
|
86
|
+
64: mouse
|
87
|
+
65: remote
|
88
|
+
66: keyboard
|
89
|
+
67: cell phone
|
90
|
+
68: microwave
|
91
|
+
69: oven
|
92
|
+
70: toaster
|
93
|
+
71: sink
|
94
|
+
72: refrigerator
|
95
|
+
73: book
|
96
|
+
74: clock
|
97
|
+
75: vase
|
98
|
+
76: scissors
|
99
|
+
77: teddy bear
|
100
|
+
78: hair drier
|
101
|
+
79: toothbrush
|
102
|
+
|
103
|
+
# Download script/URL (optional)
|
104
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-multispectral.zip
|
@@ -0,0 +1,26 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
|
5
|
+
# Example usage: yolo train data=coco8-pose.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── coco8-pose ← downloads here (1 MB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/coco8-pose # dataset root dir
|
13
|
+
train: images/train # train images (relative to 'path') 4 images
|
14
|
+
val: images/val # val images (relative to 'path') 4 images
|
15
|
+
test: # test images (optional)
|
16
|
+
|
17
|
+
# Keypoints
|
18
|
+
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
19
|
+
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
20
|
+
|
21
|
+
# Classes
|
22
|
+
names:
|
23
|
+
0: person
|
24
|
+
|
25
|
+
# Download script/URL (optional)
|
26
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
|
@@ -0,0 +1,101 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
|
5
|
+
# Example usage: yolo train data=coco8-seg.yaml
|
6
|
+
# parent
|
7
|
+
# ├── ultralytics
|
8
|
+
# └── datasets
|
9
|
+
# └── coco8-seg ← downloads here (1 MB)
|
10
|
+
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
+
path: ../datasets/coco8-seg # dataset root dir
|
13
|
+
train: images/train # train images (relative to 'path') 4 images
|
14
|
+
val: images/val # val images (relative to 'path') 4 images
|
15
|
+
test: # test images (optional)
|
16
|
+
|
17
|
+
# Classes
|
18
|
+
names:
|
19
|
+
0: person
|
20
|
+
1: bicycle
|
21
|
+
2: car
|
22
|
+
3: motorcycle
|
23
|
+
4: airplane
|
24
|
+
5: bus
|
25
|
+
6: train
|
26
|
+
7: truck
|
27
|
+
8: boat
|
28
|
+
9: traffic light
|
29
|
+
10: fire hydrant
|
30
|
+
11: stop sign
|
31
|
+
12: parking meter
|
32
|
+
13: bench
|
33
|
+
14: bird
|
34
|
+
15: cat
|
35
|
+
16: dog
|
36
|
+
17: horse
|
37
|
+
18: sheep
|
38
|
+
19: cow
|
39
|
+
20: elephant
|
40
|
+
21: bear
|
41
|
+
22: zebra
|
42
|
+
23: giraffe
|
43
|
+
24: backpack
|
44
|
+
25: umbrella
|
45
|
+
26: handbag
|
46
|
+
27: tie
|
47
|
+
28: suitcase
|
48
|
+
29: frisbee
|
49
|
+
30: skis
|
50
|
+
31: snowboard
|
51
|
+
32: sports ball
|
52
|
+
33: kite
|
53
|
+
34: baseball bat
|
54
|
+
35: baseball glove
|
55
|
+
36: skateboard
|
56
|
+
37: surfboard
|
57
|
+
38: tennis racket
|
58
|
+
39: bottle
|
59
|
+
40: wine glass
|
60
|
+
41: cup
|
61
|
+
42: fork
|
62
|
+
43: knife
|
63
|
+
44: spoon
|
64
|
+
45: bowl
|
65
|
+
46: banana
|
66
|
+
47: apple
|
67
|
+
48: sandwich
|
68
|
+
49: orange
|
69
|
+
50: broccoli
|
70
|
+
51: carrot
|
71
|
+
52: hot dog
|
72
|
+
53: pizza
|
73
|
+
54: donut
|
74
|
+
55: cake
|
75
|
+
56: chair
|
76
|
+
57: couch
|
77
|
+
58: potted plant
|
78
|
+
59: bed
|
79
|
+
60: dining table
|
80
|
+
61: toilet
|
81
|
+
62: tv
|
82
|
+
63: laptop
|
83
|
+
64: mouse
|
84
|
+
65: remote
|
85
|
+
66: keyboard
|
86
|
+
67: cell phone
|
87
|
+
68: microwave
|
88
|
+
69: oven
|
89
|
+
70: toaster
|
90
|
+
71: sink
|
91
|
+
72: refrigerator
|
92
|
+
73: book
|
93
|
+
74: clock
|
94
|
+
75: vase
|
95
|
+
76: scissors
|
96
|
+
77: teddy bear
|
97
|
+
78: hair drier
|
98
|
+
79: toothbrush
|
99
|
+
|
100
|
+
# Download script/URL (optional)
|
101
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip
|