dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (272) hide show
  1. dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
  2. dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
  3. dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
  4. dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
  5. dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
  6. dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
  7. tests/__init__.py +22 -0
  8. tests/conftest.py +83 -0
  9. tests/test_cli.py +138 -0
  10. tests/test_cuda.py +215 -0
  11. tests/test_engine.py +131 -0
  12. tests/test_exports.py +236 -0
  13. tests/test_integrations.py +154 -0
  14. tests/test_python.py +694 -0
  15. tests/test_solutions.py +187 -0
  16. ultralytics/__init__.py +30 -0
  17. ultralytics/assets/bus.jpg +0 -0
  18. ultralytics/assets/zidane.jpg +0 -0
  19. ultralytics/cfg/__init__.py +1023 -0
  20. ultralytics/cfg/datasets/Argoverse.yaml +77 -0
  21. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  22. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  23. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  24. ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
  25. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  26. ultralytics/cfg/datasets/Objects365.yaml +443 -0
  27. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  28. ultralytics/cfg/datasets/VOC.yaml +106 -0
  29. ultralytics/cfg/datasets/VisDrone.yaml +77 -0
  30. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  31. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  32. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  33. ultralytics/cfg/datasets/coco-pose.yaml +42 -0
  34. ultralytics/cfg/datasets/coco.yaml +118 -0
  35. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  36. ultralytics/cfg/datasets/coco128.yaml +101 -0
  37. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  38. ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
  39. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  40. ultralytics/cfg/datasets/coco8.yaml +101 -0
  41. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  42. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  43. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  44. ultralytics/cfg/datasets/dota8.yaml +35 -0
  45. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  46. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  47. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  48. ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
  49. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  50. ultralytics/cfg/datasets/signature.yaml +21 -0
  51. ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
  52. ultralytics/cfg/datasets/xView.yaml +155 -0
  53. ultralytics/cfg/default.yaml +127 -0
  54. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  55. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  56. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  57. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  58. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  59. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  60. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  61. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  62. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  63. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  64. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  65. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  66. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  68. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  69. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  70. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  71. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  74. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  75. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  76. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  77. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  78. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  79. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  80. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  81. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  82. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  83. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
  84. ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
  85. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  86. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  87. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  88. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  89. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  90. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  91. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  92. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  93. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  94. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  95. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  96. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  97. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  98. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  99. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  100. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  101. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  102. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  103. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  105. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  106. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  107. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  108. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  109. ultralytics/cfg/trackers/botsort.yaml +22 -0
  110. ultralytics/cfg/trackers/bytetrack.yaml +14 -0
  111. ultralytics/data/__init__.py +26 -0
  112. ultralytics/data/annotator.py +66 -0
  113. ultralytics/data/augment.py +2945 -0
  114. ultralytics/data/base.py +438 -0
  115. ultralytics/data/build.py +258 -0
  116. ultralytics/data/converter.py +754 -0
  117. ultralytics/data/dataset.py +834 -0
  118. ultralytics/data/loaders.py +676 -0
  119. ultralytics/data/scripts/download_weights.sh +18 -0
  120. ultralytics/data/scripts/get_coco.sh +61 -0
  121. ultralytics/data/scripts/get_coco128.sh +18 -0
  122. ultralytics/data/scripts/get_imagenet.sh +52 -0
  123. ultralytics/data/split.py +125 -0
  124. ultralytics/data/split_dota.py +325 -0
  125. ultralytics/data/utils.py +777 -0
  126. ultralytics/engine/__init__.py +1 -0
  127. ultralytics/engine/exporter.py +1519 -0
  128. ultralytics/engine/model.py +1156 -0
  129. ultralytics/engine/predictor.py +502 -0
  130. ultralytics/engine/results.py +1840 -0
  131. ultralytics/engine/trainer.py +853 -0
  132. ultralytics/engine/tuner.py +243 -0
  133. ultralytics/engine/validator.py +377 -0
  134. ultralytics/hub/__init__.py +168 -0
  135. ultralytics/hub/auth.py +137 -0
  136. ultralytics/hub/google/__init__.py +176 -0
  137. ultralytics/hub/session.py +446 -0
  138. ultralytics/hub/utils.py +248 -0
  139. ultralytics/models/__init__.py +9 -0
  140. ultralytics/models/fastsam/__init__.py +7 -0
  141. ultralytics/models/fastsam/model.py +61 -0
  142. ultralytics/models/fastsam/predict.py +181 -0
  143. ultralytics/models/fastsam/utils.py +24 -0
  144. ultralytics/models/fastsam/val.py +40 -0
  145. ultralytics/models/nas/__init__.py +7 -0
  146. ultralytics/models/nas/model.py +102 -0
  147. ultralytics/models/nas/predict.py +58 -0
  148. ultralytics/models/nas/val.py +39 -0
  149. ultralytics/models/rtdetr/__init__.py +7 -0
  150. ultralytics/models/rtdetr/model.py +63 -0
  151. ultralytics/models/rtdetr/predict.py +84 -0
  152. ultralytics/models/rtdetr/train.py +85 -0
  153. ultralytics/models/rtdetr/val.py +191 -0
  154. ultralytics/models/sam/__init__.py +6 -0
  155. ultralytics/models/sam/amg.py +260 -0
  156. ultralytics/models/sam/build.py +358 -0
  157. ultralytics/models/sam/model.py +170 -0
  158. ultralytics/models/sam/modules/__init__.py +1 -0
  159. ultralytics/models/sam/modules/blocks.py +1129 -0
  160. ultralytics/models/sam/modules/decoders.py +515 -0
  161. ultralytics/models/sam/modules/encoders.py +854 -0
  162. ultralytics/models/sam/modules/memory_attention.py +299 -0
  163. ultralytics/models/sam/modules/sam.py +1006 -0
  164. ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
  165. ultralytics/models/sam/modules/transformer.py +351 -0
  166. ultralytics/models/sam/modules/utils.py +394 -0
  167. ultralytics/models/sam/predict.py +1605 -0
  168. ultralytics/models/utils/__init__.py +1 -0
  169. ultralytics/models/utils/loss.py +455 -0
  170. ultralytics/models/utils/ops.py +268 -0
  171. ultralytics/models/yolo/__init__.py +7 -0
  172. ultralytics/models/yolo/classify/__init__.py +7 -0
  173. ultralytics/models/yolo/classify/predict.py +88 -0
  174. ultralytics/models/yolo/classify/train.py +233 -0
  175. ultralytics/models/yolo/classify/val.py +215 -0
  176. ultralytics/models/yolo/detect/__init__.py +7 -0
  177. ultralytics/models/yolo/detect/predict.py +124 -0
  178. ultralytics/models/yolo/detect/train.py +217 -0
  179. ultralytics/models/yolo/detect/val.py +451 -0
  180. ultralytics/models/yolo/model.py +354 -0
  181. ultralytics/models/yolo/obb/__init__.py +7 -0
  182. ultralytics/models/yolo/obb/predict.py +66 -0
  183. ultralytics/models/yolo/obb/train.py +81 -0
  184. ultralytics/models/yolo/obb/val.py +283 -0
  185. ultralytics/models/yolo/pose/__init__.py +7 -0
  186. ultralytics/models/yolo/pose/predict.py +79 -0
  187. ultralytics/models/yolo/pose/train.py +154 -0
  188. ultralytics/models/yolo/pose/val.py +394 -0
  189. ultralytics/models/yolo/segment/__init__.py +7 -0
  190. ultralytics/models/yolo/segment/predict.py +113 -0
  191. ultralytics/models/yolo/segment/train.py +123 -0
  192. ultralytics/models/yolo/segment/val.py +428 -0
  193. ultralytics/models/yolo/world/__init__.py +5 -0
  194. ultralytics/models/yolo/world/train.py +119 -0
  195. ultralytics/models/yolo/world/train_world.py +176 -0
  196. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  197. ultralytics/models/yolo/yoloe/predict.py +169 -0
  198. ultralytics/models/yolo/yoloe/train.py +298 -0
  199. ultralytics/models/yolo/yoloe/train_seg.py +124 -0
  200. ultralytics/models/yolo/yoloe/val.py +191 -0
  201. ultralytics/nn/__init__.py +29 -0
  202. ultralytics/nn/autobackend.py +842 -0
  203. ultralytics/nn/modules/__init__.py +182 -0
  204. ultralytics/nn/modules/activation.py +53 -0
  205. ultralytics/nn/modules/block.py +1966 -0
  206. ultralytics/nn/modules/conv.py +712 -0
  207. ultralytics/nn/modules/head.py +880 -0
  208. ultralytics/nn/modules/transformer.py +713 -0
  209. ultralytics/nn/modules/utils.py +164 -0
  210. ultralytics/nn/tasks.py +1627 -0
  211. ultralytics/nn/text_model.py +351 -0
  212. ultralytics/solutions/__init__.py +41 -0
  213. ultralytics/solutions/ai_gym.py +116 -0
  214. ultralytics/solutions/analytics.py +252 -0
  215. ultralytics/solutions/config.py +106 -0
  216. ultralytics/solutions/distance_calculation.py +124 -0
  217. ultralytics/solutions/heatmap.py +127 -0
  218. ultralytics/solutions/instance_segmentation.py +84 -0
  219. ultralytics/solutions/object_blurrer.py +90 -0
  220. ultralytics/solutions/object_counter.py +195 -0
  221. ultralytics/solutions/object_cropper.py +84 -0
  222. ultralytics/solutions/parking_management.py +273 -0
  223. ultralytics/solutions/queue_management.py +93 -0
  224. ultralytics/solutions/region_counter.py +120 -0
  225. ultralytics/solutions/security_alarm.py +154 -0
  226. ultralytics/solutions/similarity_search.py +172 -0
  227. ultralytics/solutions/solutions.py +724 -0
  228. ultralytics/solutions/speed_estimation.py +110 -0
  229. ultralytics/solutions/streamlit_inference.py +196 -0
  230. ultralytics/solutions/templates/similarity-search.html +160 -0
  231. ultralytics/solutions/trackzone.py +88 -0
  232. ultralytics/solutions/vision_eye.py +68 -0
  233. ultralytics/trackers/__init__.py +7 -0
  234. ultralytics/trackers/basetrack.py +124 -0
  235. ultralytics/trackers/bot_sort.py +260 -0
  236. ultralytics/trackers/byte_tracker.py +480 -0
  237. ultralytics/trackers/track.py +125 -0
  238. ultralytics/trackers/utils/__init__.py +1 -0
  239. ultralytics/trackers/utils/gmc.py +376 -0
  240. ultralytics/trackers/utils/kalman_filter.py +493 -0
  241. ultralytics/trackers/utils/matching.py +157 -0
  242. ultralytics/utils/__init__.py +1435 -0
  243. ultralytics/utils/autobatch.py +106 -0
  244. ultralytics/utils/autodevice.py +174 -0
  245. ultralytics/utils/benchmarks.py +695 -0
  246. ultralytics/utils/callbacks/__init__.py +5 -0
  247. ultralytics/utils/callbacks/base.py +234 -0
  248. ultralytics/utils/callbacks/clearml.py +153 -0
  249. ultralytics/utils/callbacks/comet.py +552 -0
  250. ultralytics/utils/callbacks/dvc.py +205 -0
  251. ultralytics/utils/callbacks/hub.py +108 -0
  252. ultralytics/utils/callbacks/mlflow.py +138 -0
  253. ultralytics/utils/callbacks/neptune.py +140 -0
  254. ultralytics/utils/callbacks/raytune.py +43 -0
  255. ultralytics/utils/callbacks/tensorboard.py +132 -0
  256. ultralytics/utils/callbacks/wb.py +185 -0
  257. ultralytics/utils/checks.py +897 -0
  258. ultralytics/utils/dist.py +119 -0
  259. ultralytics/utils/downloads.py +499 -0
  260. ultralytics/utils/errors.py +43 -0
  261. ultralytics/utils/export.py +219 -0
  262. ultralytics/utils/files.py +221 -0
  263. ultralytics/utils/instance.py +499 -0
  264. ultralytics/utils/loss.py +813 -0
  265. ultralytics/utils/metrics.py +1356 -0
  266. ultralytics/utils/ops.py +885 -0
  267. ultralytics/utils/patches.py +143 -0
  268. ultralytics/utils/plotting.py +1011 -0
  269. ultralytics/utils/tal.py +416 -0
  270. ultralytics/utils/torch_utils.py +990 -0
  271. ultralytics/utils/triton.py +116 -0
  272. ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,23 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Brain-tumor dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
5
+ # Example usage: yolo train data=brain-tumor.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── brain-tumor ← downloads here (4.05 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/brain-tumor # dataset root dir
13
+ train: train/images # train images (relative to 'path') 893 images
14
+ val: valid/images # val images (relative to 'path') 223 images
15
+ test: # test images (relative to 'path')
16
+
17
+ # Classes
18
+ names:
19
+ 0: negative
20
+ 1: positive
21
+
22
+ # Download script/URL (optional)
23
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/brain-tumor.zip
@@ -0,0 +1,44 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Carparts-seg dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/
5
+ # Example usage: yolo train data=carparts-seg.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── carparts-seg ← downloads here (132 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/carparts-seg # dataset root dir
13
+ train: train/images # train images (relative to 'path') 3516 images
14
+ val: valid/images # val images (relative to 'path') 276 images
15
+ test: test/images # test images (relative to 'path') 401 images
16
+
17
+ # Classes
18
+ names:
19
+ 0: back_bumper
20
+ 1: back_door
21
+ 2: back_glass
22
+ 3: back_left_door
23
+ 4: back_left_light
24
+ 5: back_light
25
+ 6: back_right_door
26
+ 7: back_right_light
27
+ 8: front_bumper
28
+ 9: front_door
29
+ 10: front_glass
30
+ 11: front_left_door
31
+ 12: front_left_light
32
+ 13: front_light
33
+ 14: front_right_door
34
+ 15: front_right_light
35
+ 16: hood
36
+ 17: left_mirror
37
+ 18: object
38
+ 19: right_mirror
39
+ 20: tailgate
40
+ 21: trunk
41
+ 22: wheel
42
+
43
+ # Download script/URL (optional)
44
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/carparts-seg.zip
@@ -0,0 +1,42 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO 2017 Keypoints dataset https://cocodataset.org by Microsoft
4
+ # Documentation: https://docs.ultralytics.com/datasets/pose/coco/
5
+ # Example usage: yolo train data=coco-pose.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── coco-pose ← downloads here (20.1 GB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/coco-pose # dataset root dir
13
+ train: train2017.txt # train images (relative to 'path') 56599 images
14
+ val: val2017.txt # val images (relative to 'path') 2346 images
15
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://codalab.lisn.upsaclay.fr/competitions/7403
16
+
17
+ # Keypoints
18
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
19
+ flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
20
+
21
+ # Classes
22
+ names:
23
+ 0: person
24
+
25
+ # Download script/URL (optional)
26
+ download: |
27
+ from pathlib import Path
28
+
29
+ from ultralytics.utils.downloads import download
30
+
31
+ # Download labels
32
+ dir = Path(yaml["path"]) # dataset root dir
33
+ url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
34
+ urls = [f"{url}coco2017labels-pose.zip"]
35
+ download(urls, dir=dir.parent)
36
+ # Download data
37
+ urls = [
38
+ "http://images.cocodataset.org/zips/train2017.zip", # 19G, 118k images
39
+ "http://images.cocodataset.org/zips/val2017.zip", # 1G, 5k images
40
+ "http://images.cocodataset.org/zips/test2017.zip", # 7G, 41k images (optional)
41
+ ]
42
+ download(urls, dir=dir / "images", threads=3)
@@ -0,0 +1,118 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO 2017 dataset https://cocodataset.org by Microsoft
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/coco/
5
+ # Example usage: yolo train data=coco.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── coco ← downloads here (20.1 GB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/coco # dataset root dir
13
+ train: train2017.txt # train images (relative to 'path') 118287 images
14
+ val: val2017.txt # val images (relative to 'path') 5000 images
15
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
16
+
17
+ # Classes
18
+ names:
19
+ 0: person
20
+ 1: bicycle
21
+ 2: car
22
+ 3: motorcycle
23
+ 4: airplane
24
+ 5: bus
25
+ 6: train
26
+ 7: truck
27
+ 8: boat
28
+ 9: traffic light
29
+ 10: fire hydrant
30
+ 11: stop sign
31
+ 12: parking meter
32
+ 13: bench
33
+ 14: bird
34
+ 15: cat
35
+ 16: dog
36
+ 17: horse
37
+ 18: sheep
38
+ 19: cow
39
+ 20: elephant
40
+ 21: bear
41
+ 22: zebra
42
+ 23: giraffe
43
+ 24: backpack
44
+ 25: umbrella
45
+ 26: handbag
46
+ 27: tie
47
+ 28: suitcase
48
+ 29: frisbee
49
+ 30: skis
50
+ 31: snowboard
51
+ 32: sports ball
52
+ 33: kite
53
+ 34: baseball bat
54
+ 35: baseball glove
55
+ 36: skateboard
56
+ 37: surfboard
57
+ 38: tennis racket
58
+ 39: bottle
59
+ 40: wine glass
60
+ 41: cup
61
+ 42: fork
62
+ 43: knife
63
+ 44: spoon
64
+ 45: bowl
65
+ 46: banana
66
+ 47: apple
67
+ 48: sandwich
68
+ 49: orange
69
+ 50: broccoli
70
+ 51: carrot
71
+ 52: hot dog
72
+ 53: pizza
73
+ 54: donut
74
+ 55: cake
75
+ 56: chair
76
+ 57: couch
77
+ 58: potted plant
78
+ 59: bed
79
+ 60: dining table
80
+ 61: toilet
81
+ 62: tv
82
+ 63: laptop
83
+ 64: mouse
84
+ 65: remote
85
+ 66: keyboard
86
+ 67: cell phone
87
+ 68: microwave
88
+ 69: oven
89
+ 70: toaster
90
+ 71: sink
91
+ 72: refrigerator
92
+ 73: book
93
+ 74: clock
94
+ 75: vase
95
+ 76: scissors
96
+ 77: teddy bear
97
+ 78: hair drier
98
+ 79: toothbrush
99
+
100
+ # Download script/URL (optional)
101
+ download: |
102
+ from pathlib import Path
103
+
104
+ from ultralytics.utils.downloads import download
105
+
106
+ # Download labels
107
+ segments = True # segment or box labels
108
+ dir = Path(yaml["path"]) # dataset root dir
109
+ url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
110
+ urls = [url + ("coco2017labels-segments.zip" if segments else "coco2017labels.zip")] # labels
111
+ download(urls, dir=dir.parent)
112
+ # Download data
113
+ urls = [
114
+ "http://images.cocodataset.org/zips/train2017.zip", # 19G, 118k images
115
+ "http://images.cocodataset.org/zips/val2017.zip", # 1G, 5k images
116
+ "http://images.cocodataset.org/zips/test2017.zip", # 7G, 41k images (optional)
117
+ ]
118
+ download(urls, dir=dir / "images", threads=3)
@@ -0,0 +1,101 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/segment/coco/
5
+ # Example usage: yolo train data=coco128.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── coco128-seg ← downloads here (7 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/coco128-seg # dataset root dir
13
+ train: images/train2017 # train images (relative to 'path') 128 images
14
+ val: images/train2017 # val images (relative to 'path') 128 images
15
+ test: # test images (optional)
16
+
17
+ # Classes
18
+ names:
19
+ 0: person
20
+ 1: bicycle
21
+ 2: car
22
+ 3: motorcycle
23
+ 4: airplane
24
+ 5: bus
25
+ 6: train
26
+ 7: truck
27
+ 8: boat
28
+ 9: traffic light
29
+ 10: fire hydrant
30
+ 11: stop sign
31
+ 12: parking meter
32
+ 13: bench
33
+ 14: bird
34
+ 15: cat
35
+ 16: dog
36
+ 17: horse
37
+ 18: sheep
38
+ 19: cow
39
+ 20: elephant
40
+ 21: bear
41
+ 22: zebra
42
+ 23: giraffe
43
+ 24: backpack
44
+ 25: umbrella
45
+ 26: handbag
46
+ 27: tie
47
+ 28: suitcase
48
+ 29: frisbee
49
+ 30: skis
50
+ 31: snowboard
51
+ 32: sports ball
52
+ 33: kite
53
+ 34: baseball bat
54
+ 35: baseball glove
55
+ 36: skateboard
56
+ 37: surfboard
57
+ 38: tennis racket
58
+ 39: bottle
59
+ 40: wine glass
60
+ 41: cup
61
+ 42: fork
62
+ 43: knife
63
+ 44: spoon
64
+ 45: bowl
65
+ 46: banana
66
+ 47: apple
67
+ 48: sandwich
68
+ 49: orange
69
+ 50: broccoli
70
+ 51: carrot
71
+ 52: hot dog
72
+ 53: pizza
73
+ 54: donut
74
+ 55: cake
75
+ 56: chair
76
+ 57: couch
77
+ 58: potted plant
78
+ 59: bed
79
+ 60: dining table
80
+ 61: toilet
81
+ 62: tv
82
+ 63: laptop
83
+ 64: mouse
84
+ 65: remote
85
+ 66: keyboard
86
+ 67: cell phone
87
+ 68: microwave
88
+ 69: oven
89
+ 70: toaster
90
+ 71: sink
91
+ 72: refrigerator
92
+ 73: book
93
+ 74: clock
94
+ 75: vase
95
+ 76: scissors
96
+ 77: teddy bear
97
+ 78: hair drier
98
+ 79: toothbrush
99
+
100
+ # Download script/URL (optional)
101
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128-seg.zip
@@ -0,0 +1,101 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/coco/
5
+ # Example usage: yolo train data=coco128.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── coco128 ← downloads here (7 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/coco128 # dataset root dir
13
+ train: images/train2017 # train images (relative to 'path') 128 images
14
+ val: images/train2017 # val images (relative to 'path') 128 images
15
+ test: # test images (optional)
16
+
17
+ # Classes
18
+ names:
19
+ 0: person
20
+ 1: bicycle
21
+ 2: car
22
+ 3: motorcycle
23
+ 4: airplane
24
+ 5: bus
25
+ 6: train
26
+ 7: truck
27
+ 8: boat
28
+ 9: traffic light
29
+ 10: fire hydrant
30
+ 11: stop sign
31
+ 12: parking meter
32
+ 13: bench
33
+ 14: bird
34
+ 15: cat
35
+ 16: dog
36
+ 17: horse
37
+ 18: sheep
38
+ 19: cow
39
+ 20: elephant
40
+ 21: bear
41
+ 22: zebra
42
+ 23: giraffe
43
+ 24: backpack
44
+ 25: umbrella
45
+ 26: handbag
46
+ 27: tie
47
+ 28: suitcase
48
+ 29: frisbee
49
+ 30: skis
50
+ 31: snowboard
51
+ 32: sports ball
52
+ 33: kite
53
+ 34: baseball bat
54
+ 35: baseball glove
55
+ 36: skateboard
56
+ 37: surfboard
57
+ 38: tennis racket
58
+ 39: bottle
59
+ 40: wine glass
60
+ 41: cup
61
+ 42: fork
62
+ 43: knife
63
+ 44: spoon
64
+ 45: bowl
65
+ 46: banana
66
+ 47: apple
67
+ 48: sandwich
68
+ 49: orange
69
+ 50: broccoli
70
+ 51: carrot
71
+ 52: hot dog
72
+ 53: pizza
73
+ 54: donut
74
+ 55: cake
75
+ 56: chair
76
+ 57: couch
77
+ 58: potted plant
78
+ 59: bed
79
+ 60: dining table
80
+ 61: toilet
81
+ 62: tv
82
+ 63: laptop
83
+ 64: mouse
84
+ 65: remote
85
+ 66: keyboard
86
+ 67: cell phone
87
+ 68: microwave
88
+ 69: oven
89
+ 70: toaster
90
+ 71: sink
91
+ 72: refrigerator
92
+ 73: book
93
+ 74: clock
94
+ 75: vase
95
+ 76: scissors
96
+ 77: teddy bear
97
+ 78: hair drier
98
+ 79: toothbrush
99
+
100
+ # Download script/URL (optional)
101
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip
@@ -0,0 +1,104 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO8-Multispectral dataset (COCO8 images interpolated across 10 channels in the visual spectrum) by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/coco8-multispectral/
5
+ # Example usage: yolo train data=coco8-multispectral.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── coco8-multispectral ← downloads here (20.2 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/coco8-multispectral # dataset root dir
13
+ train: images/train # train images (relative to 'path') 4 images
14
+ val: images/val # val images (relative to 'path') 4 images
15
+ test: # test images (optional)
16
+
17
+ # Number of multispectral image channels
18
+ channels: 10
19
+
20
+ # Classes
21
+ names:
22
+ 0: person
23
+ 1: bicycle
24
+ 2: car
25
+ 3: motorcycle
26
+ 4: airplane
27
+ 5: bus
28
+ 6: train
29
+ 7: truck
30
+ 8: boat
31
+ 9: traffic light
32
+ 10: fire hydrant
33
+ 11: stop sign
34
+ 12: parking meter
35
+ 13: bench
36
+ 14: bird
37
+ 15: cat
38
+ 16: dog
39
+ 17: horse
40
+ 18: sheep
41
+ 19: cow
42
+ 20: elephant
43
+ 21: bear
44
+ 22: zebra
45
+ 23: giraffe
46
+ 24: backpack
47
+ 25: umbrella
48
+ 26: handbag
49
+ 27: tie
50
+ 28: suitcase
51
+ 29: frisbee
52
+ 30: skis
53
+ 31: snowboard
54
+ 32: sports ball
55
+ 33: kite
56
+ 34: baseball bat
57
+ 35: baseball glove
58
+ 36: skateboard
59
+ 37: surfboard
60
+ 38: tennis racket
61
+ 39: bottle
62
+ 40: wine glass
63
+ 41: cup
64
+ 42: fork
65
+ 43: knife
66
+ 44: spoon
67
+ 45: bowl
68
+ 46: banana
69
+ 47: apple
70
+ 48: sandwich
71
+ 49: orange
72
+ 50: broccoli
73
+ 51: carrot
74
+ 52: hot dog
75
+ 53: pizza
76
+ 54: donut
77
+ 55: cake
78
+ 56: chair
79
+ 57: couch
80
+ 58: potted plant
81
+ 59: bed
82
+ 60: dining table
83
+ 61: toilet
84
+ 62: tv
85
+ 63: laptop
86
+ 64: mouse
87
+ 65: remote
88
+ 66: keyboard
89
+ 67: cell phone
90
+ 68: microwave
91
+ 69: oven
92
+ 70: toaster
93
+ 71: sink
94
+ 72: refrigerator
95
+ 73: book
96
+ 74: clock
97
+ 75: vase
98
+ 76: scissors
99
+ 77: teddy bear
100
+ 78: hair drier
101
+ 79: toothbrush
102
+
103
+ # Download script/URL (optional)
104
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-multispectral.zip
@@ -0,0 +1,26 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
5
+ # Example usage: yolo train data=coco8-pose.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── coco8-pose ← downloads here (1 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/coco8-pose # dataset root dir
13
+ train: images/train # train images (relative to 'path') 4 images
14
+ val: images/val # val images (relative to 'path') 4 images
15
+ test: # test images (optional)
16
+
17
+ # Keypoints
18
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
19
+ flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
20
+
21
+ # Classes
22
+ names:
23
+ 0: person
24
+
25
+ # Download script/URL (optional)
26
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
@@ -0,0 +1,101 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
5
+ # Example usage: yolo train data=coco8-seg.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── coco8-seg ← downloads here (1 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/coco8-seg # dataset root dir
13
+ train: images/train # train images (relative to 'path') 4 images
14
+ val: images/val # val images (relative to 'path') 4 images
15
+ test: # test images (optional)
16
+
17
+ # Classes
18
+ names:
19
+ 0: person
20
+ 1: bicycle
21
+ 2: car
22
+ 3: motorcycle
23
+ 4: airplane
24
+ 5: bus
25
+ 6: train
26
+ 7: truck
27
+ 8: boat
28
+ 9: traffic light
29
+ 10: fire hydrant
30
+ 11: stop sign
31
+ 12: parking meter
32
+ 13: bench
33
+ 14: bird
34
+ 15: cat
35
+ 16: dog
36
+ 17: horse
37
+ 18: sheep
38
+ 19: cow
39
+ 20: elephant
40
+ 21: bear
41
+ 22: zebra
42
+ 23: giraffe
43
+ 24: backpack
44
+ 25: umbrella
45
+ 26: handbag
46
+ 27: tie
47
+ 28: suitcase
48
+ 29: frisbee
49
+ 30: skis
50
+ 31: snowboard
51
+ 32: sports ball
52
+ 33: kite
53
+ 34: baseball bat
54
+ 35: baseball glove
55
+ 36: skateboard
56
+ 37: surfboard
57
+ 38: tennis racket
58
+ 39: bottle
59
+ 40: wine glass
60
+ 41: cup
61
+ 42: fork
62
+ 43: knife
63
+ 44: spoon
64
+ 45: bowl
65
+ 46: banana
66
+ 47: apple
67
+ 48: sandwich
68
+ 49: orange
69
+ 50: broccoli
70
+ 51: carrot
71
+ 52: hot dog
72
+ 53: pizza
73
+ 54: donut
74
+ 55: cake
75
+ 56: chair
76
+ 57: couch
77
+ 58: potted plant
78
+ 59: bed
79
+ 60: dining table
80
+ 61: toilet
81
+ 62: tv
82
+ 63: laptop
83
+ 64: mouse
84
+ 65: remote
85
+ 66: keyboard
86
+ 67: cell phone
87
+ 68: microwave
88
+ 69: oven
89
+ 70: toaster
90
+ 71: sink
91
+ 72: refrigerator
92
+ 73: book
93
+ 74: clock
94
+ 75: vase
95
+ 76: scissors
96
+ 77: teddy bear
97
+ 78: hair drier
98
+ 79: toothbrush
99
+
100
+ # Download script/URL (optional)
101
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip