dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (272) hide show
  1. dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
  2. dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
  3. dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
  4. dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
  5. dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
  6. dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
  7. tests/__init__.py +22 -0
  8. tests/conftest.py +83 -0
  9. tests/test_cli.py +138 -0
  10. tests/test_cuda.py +215 -0
  11. tests/test_engine.py +131 -0
  12. tests/test_exports.py +236 -0
  13. tests/test_integrations.py +154 -0
  14. tests/test_python.py +694 -0
  15. tests/test_solutions.py +187 -0
  16. ultralytics/__init__.py +30 -0
  17. ultralytics/assets/bus.jpg +0 -0
  18. ultralytics/assets/zidane.jpg +0 -0
  19. ultralytics/cfg/__init__.py +1023 -0
  20. ultralytics/cfg/datasets/Argoverse.yaml +77 -0
  21. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  22. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  23. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  24. ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
  25. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  26. ultralytics/cfg/datasets/Objects365.yaml +443 -0
  27. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  28. ultralytics/cfg/datasets/VOC.yaml +106 -0
  29. ultralytics/cfg/datasets/VisDrone.yaml +77 -0
  30. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  31. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  32. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  33. ultralytics/cfg/datasets/coco-pose.yaml +42 -0
  34. ultralytics/cfg/datasets/coco.yaml +118 -0
  35. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  36. ultralytics/cfg/datasets/coco128.yaml +101 -0
  37. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  38. ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
  39. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  40. ultralytics/cfg/datasets/coco8.yaml +101 -0
  41. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  42. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  43. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  44. ultralytics/cfg/datasets/dota8.yaml +35 -0
  45. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  46. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  47. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  48. ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
  49. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  50. ultralytics/cfg/datasets/signature.yaml +21 -0
  51. ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
  52. ultralytics/cfg/datasets/xView.yaml +155 -0
  53. ultralytics/cfg/default.yaml +127 -0
  54. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  55. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  56. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  57. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  58. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  59. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  60. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  61. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  62. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  63. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  64. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  65. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  66. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  68. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  69. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  70. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  71. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  74. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  75. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  76. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  77. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  78. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  79. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  80. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  81. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  82. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  83. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
  84. ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
  85. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  86. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  87. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  88. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  89. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  90. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  91. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  92. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  93. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  94. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  95. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  96. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  97. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  98. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  99. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  100. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  101. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  102. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  103. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  105. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  106. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  107. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  108. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  109. ultralytics/cfg/trackers/botsort.yaml +22 -0
  110. ultralytics/cfg/trackers/bytetrack.yaml +14 -0
  111. ultralytics/data/__init__.py +26 -0
  112. ultralytics/data/annotator.py +66 -0
  113. ultralytics/data/augment.py +2945 -0
  114. ultralytics/data/base.py +438 -0
  115. ultralytics/data/build.py +258 -0
  116. ultralytics/data/converter.py +754 -0
  117. ultralytics/data/dataset.py +834 -0
  118. ultralytics/data/loaders.py +676 -0
  119. ultralytics/data/scripts/download_weights.sh +18 -0
  120. ultralytics/data/scripts/get_coco.sh +61 -0
  121. ultralytics/data/scripts/get_coco128.sh +18 -0
  122. ultralytics/data/scripts/get_imagenet.sh +52 -0
  123. ultralytics/data/split.py +125 -0
  124. ultralytics/data/split_dota.py +325 -0
  125. ultralytics/data/utils.py +777 -0
  126. ultralytics/engine/__init__.py +1 -0
  127. ultralytics/engine/exporter.py +1519 -0
  128. ultralytics/engine/model.py +1156 -0
  129. ultralytics/engine/predictor.py +502 -0
  130. ultralytics/engine/results.py +1840 -0
  131. ultralytics/engine/trainer.py +853 -0
  132. ultralytics/engine/tuner.py +243 -0
  133. ultralytics/engine/validator.py +377 -0
  134. ultralytics/hub/__init__.py +168 -0
  135. ultralytics/hub/auth.py +137 -0
  136. ultralytics/hub/google/__init__.py +176 -0
  137. ultralytics/hub/session.py +446 -0
  138. ultralytics/hub/utils.py +248 -0
  139. ultralytics/models/__init__.py +9 -0
  140. ultralytics/models/fastsam/__init__.py +7 -0
  141. ultralytics/models/fastsam/model.py +61 -0
  142. ultralytics/models/fastsam/predict.py +181 -0
  143. ultralytics/models/fastsam/utils.py +24 -0
  144. ultralytics/models/fastsam/val.py +40 -0
  145. ultralytics/models/nas/__init__.py +7 -0
  146. ultralytics/models/nas/model.py +102 -0
  147. ultralytics/models/nas/predict.py +58 -0
  148. ultralytics/models/nas/val.py +39 -0
  149. ultralytics/models/rtdetr/__init__.py +7 -0
  150. ultralytics/models/rtdetr/model.py +63 -0
  151. ultralytics/models/rtdetr/predict.py +84 -0
  152. ultralytics/models/rtdetr/train.py +85 -0
  153. ultralytics/models/rtdetr/val.py +191 -0
  154. ultralytics/models/sam/__init__.py +6 -0
  155. ultralytics/models/sam/amg.py +260 -0
  156. ultralytics/models/sam/build.py +358 -0
  157. ultralytics/models/sam/model.py +170 -0
  158. ultralytics/models/sam/modules/__init__.py +1 -0
  159. ultralytics/models/sam/modules/blocks.py +1129 -0
  160. ultralytics/models/sam/modules/decoders.py +515 -0
  161. ultralytics/models/sam/modules/encoders.py +854 -0
  162. ultralytics/models/sam/modules/memory_attention.py +299 -0
  163. ultralytics/models/sam/modules/sam.py +1006 -0
  164. ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
  165. ultralytics/models/sam/modules/transformer.py +351 -0
  166. ultralytics/models/sam/modules/utils.py +394 -0
  167. ultralytics/models/sam/predict.py +1605 -0
  168. ultralytics/models/utils/__init__.py +1 -0
  169. ultralytics/models/utils/loss.py +455 -0
  170. ultralytics/models/utils/ops.py +268 -0
  171. ultralytics/models/yolo/__init__.py +7 -0
  172. ultralytics/models/yolo/classify/__init__.py +7 -0
  173. ultralytics/models/yolo/classify/predict.py +88 -0
  174. ultralytics/models/yolo/classify/train.py +233 -0
  175. ultralytics/models/yolo/classify/val.py +215 -0
  176. ultralytics/models/yolo/detect/__init__.py +7 -0
  177. ultralytics/models/yolo/detect/predict.py +124 -0
  178. ultralytics/models/yolo/detect/train.py +217 -0
  179. ultralytics/models/yolo/detect/val.py +451 -0
  180. ultralytics/models/yolo/model.py +354 -0
  181. ultralytics/models/yolo/obb/__init__.py +7 -0
  182. ultralytics/models/yolo/obb/predict.py +66 -0
  183. ultralytics/models/yolo/obb/train.py +81 -0
  184. ultralytics/models/yolo/obb/val.py +283 -0
  185. ultralytics/models/yolo/pose/__init__.py +7 -0
  186. ultralytics/models/yolo/pose/predict.py +79 -0
  187. ultralytics/models/yolo/pose/train.py +154 -0
  188. ultralytics/models/yolo/pose/val.py +394 -0
  189. ultralytics/models/yolo/segment/__init__.py +7 -0
  190. ultralytics/models/yolo/segment/predict.py +113 -0
  191. ultralytics/models/yolo/segment/train.py +123 -0
  192. ultralytics/models/yolo/segment/val.py +428 -0
  193. ultralytics/models/yolo/world/__init__.py +5 -0
  194. ultralytics/models/yolo/world/train.py +119 -0
  195. ultralytics/models/yolo/world/train_world.py +176 -0
  196. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  197. ultralytics/models/yolo/yoloe/predict.py +169 -0
  198. ultralytics/models/yolo/yoloe/train.py +298 -0
  199. ultralytics/models/yolo/yoloe/train_seg.py +124 -0
  200. ultralytics/models/yolo/yoloe/val.py +191 -0
  201. ultralytics/nn/__init__.py +29 -0
  202. ultralytics/nn/autobackend.py +842 -0
  203. ultralytics/nn/modules/__init__.py +182 -0
  204. ultralytics/nn/modules/activation.py +53 -0
  205. ultralytics/nn/modules/block.py +1966 -0
  206. ultralytics/nn/modules/conv.py +712 -0
  207. ultralytics/nn/modules/head.py +880 -0
  208. ultralytics/nn/modules/transformer.py +713 -0
  209. ultralytics/nn/modules/utils.py +164 -0
  210. ultralytics/nn/tasks.py +1627 -0
  211. ultralytics/nn/text_model.py +351 -0
  212. ultralytics/solutions/__init__.py +41 -0
  213. ultralytics/solutions/ai_gym.py +116 -0
  214. ultralytics/solutions/analytics.py +252 -0
  215. ultralytics/solutions/config.py +106 -0
  216. ultralytics/solutions/distance_calculation.py +124 -0
  217. ultralytics/solutions/heatmap.py +127 -0
  218. ultralytics/solutions/instance_segmentation.py +84 -0
  219. ultralytics/solutions/object_blurrer.py +90 -0
  220. ultralytics/solutions/object_counter.py +195 -0
  221. ultralytics/solutions/object_cropper.py +84 -0
  222. ultralytics/solutions/parking_management.py +273 -0
  223. ultralytics/solutions/queue_management.py +93 -0
  224. ultralytics/solutions/region_counter.py +120 -0
  225. ultralytics/solutions/security_alarm.py +154 -0
  226. ultralytics/solutions/similarity_search.py +172 -0
  227. ultralytics/solutions/solutions.py +724 -0
  228. ultralytics/solutions/speed_estimation.py +110 -0
  229. ultralytics/solutions/streamlit_inference.py +196 -0
  230. ultralytics/solutions/templates/similarity-search.html +160 -0
  231. ultralytics/solutions/trackzone.py +88 -0
  232. ultralytics/solutions/vision_eye.py +68 -0
  233. ultralytics/trackers/__init__.py +7 -0
  234. ultralytics/trackers/basetrack.py +124 -0
  235. ultralytics/trackers/bot_sort.py +260 -0
  236. ultralytics/trackers/byte_tracker.py +480 -0
  237. ultralytics/trackers/track.py +125 -0
  238. ultralytics/trackers/utils/__init__.py +1 -0
  239. ultralytics/trackers/utils/gmc.py +376 -0
  240. ultralytics/trackers/utils/kalman_filter.py +493 -0
  241. ultralytics/trackers/utils/matching.py +157 -0
  242. ultralytics/utils/__init__.py +1435 -0
  243. ultralytics/utils/autobatch.py +106 -0
  244. ultralytics/utils/autodevice.py +174 -0
  245. ultralytics/utils/benchmarks.py +695 -0
  246. ultralytics/utils/callbacks/__init__.py +5 -0
  247. ultralytics/utils/callbacks/base.py +234 -0
  248. ultralytics/utils/callbacks/clearml.py +153 -0
  249. ultralytics/utils/callbacks/comet.py +552 -0
  250. ultralytics/utils/callbacks/dvc.py +205 -0
  251. ultralytics/utils/callbacks/hub.py +108 -0
  252. ultralytics/utils/callbacks/mlflow.py +138 -0
  253. ultralytics/utils/callbacks/neptune.py +140 -0
  254. ultralytics/utils/callbacks/raytune.py +43 -0
  255. ultralytics/utils/callbacks/tensorboard.py +132 -0
  256. ultralytics/utils/callbacks/wb.py +185 -0
  257. ultralytics/utils/checks.py +897 -0
  258. ultralytics/utils/dist.py +119 -0
  259. ultralytics/utils/downloads.py +499 -0
  260. ultralytics/utils/errors.py +43 -0
  261. ultralytics/utils/export.py +219 -0
  262. ultralytics/utils/files.py +221 -0
  263. ultralytics/utils/instance.py +499 -0
  264. ultralytics/utils/loss.py +813 -0
  265. ultralytics/utils/metrics.py +1356 -0
  266. ultralytics/utils/ops.py +885 -0
  267. ultralytics/utils/patches.py +143 -0
  268. ultralytics/utils/plotting.py +1011 -0
  269. ultralytics/utils/tal.py +416 -0
  270. ultralytics/utils/torch_utils.py +990 -0
  271. ultralytics/utils/triton.py +116 -0
  272. ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,45 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLOv10x object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov10
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ x: [1.00, 1.25, 512]
12
+
13
+ backbone:
14
+ # [from, repeats, module, args]
15
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
16
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
17
+ - [-1, 3, C2f, [128, True]]
18
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
19
+ - [-1, 6, C2f, [256, True]]
20
+ - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
21
+ - [-1, 6, C2fCIB, [512, True]]
22
+ - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
23
+ - [-1, 3, C2fCIB, [1024, True]]
24
+ - [-1, 1, SPPF, [1024, 5]] # 9
25
+ - [-1, 1, PSA, [1024]] # 10
26
+
27
+ # YOLOv10.0n head
28
+ head:
29
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31
+ - [-1, 3, C2fCIB, [512, True]] # 13
32
+
33
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35
+ - [-1, 3, C2f, [256]] # 16 (P3/8-small)
36
+
37
+ - [-1, 1, Conv, [256, 3, 2]]
38
+ - [[-1, 13], 1, Concat, [1]] # cat head P4
39
+ - [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
40
+
41
+ - [-1, 1, SCDown, [512, 3, 2]]
42
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
43
+ - [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
44
+
45
+ - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,49 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLOv3-SPP object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov3
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ depth_multiple: 1.0 # model depth multiple
10
+ width_multiple: 1.0 # layer channel multiple
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ - [-1, 1, Conv, [32, 3, 1]] # 0
16
+ - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
17
+ - [-1, 1, Bottleneck, [64]]
18
+ - [-1, 1, Conv, [128, 3, 2]] # 3-P2/4
19
+ - [-1, 2, Bottleneck, [128]]
20
+ - [-1, 1, Conv, [256, 3, 2]] # 5-P3/8
21
+ - [-1, 8, Bottleneck, [256]]
22
+ - [-1, 1, Conv, [512, 3, 2]] # 7-P4/16
23
+ - [-1, 8, Bottleneck, [512]]
24
+ - [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32
25
+ - [-1, 4, Bottleneck, [1024]] # 10
26
+
27
+ # YOLOv3-SPP head
28
+ head:
29
+ - [-1, 1, Bottleneck, [1024, False]]
30
+ - [-1, 1, SPP, [512, [5, 9, 13]]]
31
+ - [-1, 1, Conv, [1024, 3, 1]]
32
+ - [-1, 1, Conv, [512, 1, 1]]
33
+ - [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large)
34
+
35
+ - [-2, 1, Conv, [256, 1, 1]]
36
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37
+ - [[-1, 8], 1, Concat, [1]] # cat backbone P4
38
+ - [-1, 1, Bottleneck, [512, False]]
39
+ - [-1, 1, Bottleneck, [512, False]]
40
+ - [-1, 1, Conv, [256, 1, 1]]
41
+ - [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium)
42
+
43
+ - [-2, 1, Conv, [128, 1, 1]]
44
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
45
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P3
46
+ - [-1, 1, Bottleneck, [256, False]]
47
+ - [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small)
48
+
49
+ - [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,40 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLOv3-tiiny object detection model with P4/16 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov3
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ depth_multiple: 1.0 # model depth multiple
10
+ width_multiple: 1.0 # layer channel multiple
11
+
12
+ # YOLOv3-tiny backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ - [-1, 1, Conv, [16, 3, 1]] # 0
16
+ - [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 1-P1/2
17
+ - [-1, 1, Conv, [32, 3, 1]]
18
+ - [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 3-P2/4
19
+ - [-1, 1, Conv, [64, 3, 1]]
20
+ - [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 5-P3/8
21
+ - [-1, 1, Conv, [128, 3, 1]]
22
+ - [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 7-P4/16
23
+ - [-1, 1, Conv, [256, 3, 1]]
24
+ - [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 9-P5/32
25
+ - [-1, 1, Conv, [512, 3, 1]]
26
+ - [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]] # 11
27
+ - [-1, 1, nn.MaxPool2d, [2, 1, 0]] # 12
28
+
29
+ # YOLOv3-tiny head
30
+ head:
31
+ - [-1, 1, Conv, [1024, 3, 1]]
32
+ - [-1, 1, Conv, [256, 1, 1]]
33
+ - [-1, 1, Conv, [512, 3, 1]] # 15 (P5/32-large)
34
+
35
+ - [-2, 1, Conv, [128, 1, 1]]
36
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37
+ - [[-1, 8], 1, Concat, [1]] # cat backbone P4
38
+ - [-1, 1, Conv, [256, 3, 1]] # 19 (P4/16-medium)
39
+
40
+ - [[19, 15], 1, Detect, [nc]] # Detect(P4, P5)
@@ -0,0 +1,49 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLOv3 object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov3
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ depth_multiple: 1.0 # model depth multiple
10
+ width_multiple: 1.0 # layer channel multiple
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ - [-1, 1, Conv, [32, 3, 1]] # 0
16
+ - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
17
+ - [-1, 1, Bottleneck, [64]]
18
+ - [-1, 1, Conv, [128, 3, 2]] # 3-P2/4
19
+ - [-1, 2, Bottleneck, [128]]
20
+ - [-1, 1, Conv, [256, 3, 2]] # 5-P3/8
21
+ - [-1, 8, Bottleneck, [256]]
22
+ - [-1, 1, Conv, [512, 3, 2]] # 7-P4/16
23
+ - [-1, 8, Bottleneck, [512]]
24
+ - [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32
25
+ - [-1, 4, Bottleneck, [1024]] # 10
26
+
27
+ # YOLOv3 head
28
+ head:
29
+ - [-1, 1, Bottleneck, [1024, False]]
30
+ - [-1, 1, Conv, [512, 1, 1]]
31
+ - [-1, 1, Conv, [1024, 3, 1]]
32
+ - [-1, 1, Conv, [512, 1, 1]]
33
+ - [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large)
34
+
35
+ - [-2, 1, Conv, [256, 1, 1]]
36
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37
+ - [[-1, 8], 1, Concat, [1]] # cat backbone P4
38
+ - [-1, 1, Bottleneck, [512, False]]
39
+ - [-1, 1, Bottleneck, [512, False]]
40
+ - [-1, 1, Conv, [256, 1, 1]]
41
+ - [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium)
42
+
43
+ - [-2, 1, Conv, [128, 1, 1]]
44
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
45
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P3
46
+ - [-1, 1, Bottleneck, [256, False]]
47
+ - [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small)
48
+
49
+ - [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,62 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLOv5 object detection model with P3/8 - P6/64 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov5
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov5n-p6.yaml' will call yolov5-p6.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.33, 0.25, 1024]
12
+ s: [0.33, 0.50, 1024]
13
+ m: [0.67, 0.75, 1024]
14
+ l: [1.00, 1.00, 1024]
15
+ x: [1.33, 1.25, 1024]
16
+
17
+ # YOLOv5 v6.0 backbone
18
+ backbone:
19
+ # [from, number, module, args]
20
+ - [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 3, C3, [128]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 6, C3, [256]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 9, C3, [512]]
27
+ - [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
28
+ - [-1, 3, C3, [768]]
29
+ - [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
30
+ - [-1, 3, C3, [1024]]
31
+ - [-1, 1, SPPF, [1024, 5]] # 11
32
+
33
+ # YOLOv5 v6.0 head
34
+ head:
35
+ - [-1, 1, Conv, [768, 1, 1]]
36
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37
+ - [[-1, 8], 1, Concat, [1]] # cat backbone P5
38
+ - [-1, 3, C3, [768, False]] # 15
39
+
40
+ - [-1, 1, Conv, [512, 1, 1]]
41
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
42
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
43
+ - [-1, 3, C3, [512, False]] # 19
44
+
45
+ - [-1, 1, Conv, [256, 1, 1]]
46
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
47
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
48
+ - [-1, 3, C3, [256, False]] # 23 (P3/8-small)
49
+
50
+ - [-1, 1, Conv, [256, 3, 2]]
51
+ - [[-1, 20], 1, Concat, [1]] # cat head P4
52
+ - [-1, 3, C3, [512, False]] # 26 (P4/16-medium)
53
+
54
+ - [-1, 1, Conv, [512, 3, 2]]
55
+ - [[-1, 16], 1, Concat, [1]] # cat head P5
56
+ - [-1, 3, C3, [768, False]] # 29 (P5/32-large)
57
+
58
+ - [-1, 1, Conv, [768, 3, 2]]
59
+ - [[-1, 12], 1, Concat, [1]] # cat head P6
60
+ - [-1, 3, C3, [1024, False]] # 32 (P6/64-xlarge)
61
+
62
+ - [[23, 26, 29, 32], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
@@ -0,0 +1,51 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLOv5 object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov5
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.33, 0.25, 1024]
12
+ s: [0.33, 0.50, 1024]
13
+ m: [0.67, 0.75, 1024]
14
+ l: [1.00, 1.00, 1024]
15
+ x: [1.33, 1.25, 1024]
16
+
17
+ # YOLOv5 v6.0 backbone
18
+ backbone:
19
+ # [from, number, module, args]
20
+ - [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 3, C3, [128]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 6, C3, [256]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 9, C3, [512]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 3, C3, [1024]]
29
+ - [-1, 1, SPPF, [1024, 5]] # 9
30
+
31
+ # YOLOv5 v6.0 head
32
+ head:
33
+ - [-1, 1, Conv, [512, 1, 1]]
34
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
35
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
36
+ - [-1, 3, C3, [512, False]] # 13
37
+
38
+ - [-1, 1, Conv, [256, 1, 1]]
39
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
40
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
41
+ - [-1, 3, C3, [256, False]] # 17 (P3/8-small)
42
+
43
+ - [-1, 1, Conv, [256, 3, 2]]
44
+ - [[-1, 14], 1, Concat, [1]] # cat head P4
45
+ - [-1, 3, C3, [512, False]] # 20 (P4/16-medium)
46
+
47
+ - [-1, 1, Conv, [512, 3, 2]]
48
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
49
+ - [-1, 3, C3, [1024, False]] # 23 (P5/32-large)
50
+
51
+ - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,56 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Meituan YOLOv6 object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov6
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ activation: torch.nn.ReLU() # (optional) model default activation function
10
+ scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n'
11
+ # [depth, width, max_channels]
12
+ n: [0.33, 0.25, 1024]
13
+ s: [0.33, 0.50, 1024]
14
+ m: [0.67, 0.75, 768]
15
+ l: [1.00, 1.00, 512]
16
+ x: [1.00, 1.25, 512]
17
+
18
+ # YOLOv6-3.0s backbone
19
+ backbone:
20
+ # [from, repeats, module, args]
21
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
22
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
23
+ - [-1, 6, Conv, [128, 3, 1]]
24
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
25
+ - [-1, 12, Conv, [256, 3, 1]]
26
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
27
+ - [-1, 18, Conv, [512, 3, 1]]
28
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
29
+ - [-1, 6, Conv, [1024, 3, 1]]
30
+ - [-1, 1, SPPF, [1024, 5]] # 9
31
+
32
+ # YOLOv6-3.0s head
33
+ head:
34
+ - [-1, 1, Conv, [256, 1, 1]]
35
+ - [-1, 1, nn.ConvTranspose2d, [256, 2, 2, 0]]
36
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
37
+ - [-1, 1, Conv, [256, 3, 1]]
38
+ - [-1, 9, Conv, [256, 3, 1]] # 14
39
+
40
+ - [-1, 1, Conv, [128, 1, 1]]
41
+ - [-1, 1, nn.ConvTranspose2d, [128, 2, 2, 0]]
42
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
43
+ - [-1, 1, Conv, [128, 3, 1]]
44
+ - [-1, 9, Conv, [128, 3, 1]] # 19
45
+
46
+ - [-1, 1, Conv, [128, 3, 2]]
47
+ - [[-1, 15], 1, Concat, [1]] # cat head P4
48
+ - [-1, 1, Conv, [256, 3, 1]]
49
+ - [-1, 9, Conv, [256, 3, 1]] # 23
50
+
51
+ - [-1, 1, Conv, [256, 3, 2]]
52
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
53
+ - [-1, 1, Conv, [512, 3, 1]]
54
+ - [-1, 9, Conv, [512, 3, 1]] # 27
55
+
56
+ - [[19, 23, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,45 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
6
+ # [depth, width, max_channels]
7
+ n: [0.33, 0.25, 1024] # YOLOv8n-world summary: 161 layers, 4204111 parameters, 4204095 gradients, 39.6 GFLOPs
8
+ s: [0.33, 0.50, 1024] # YOLOv8s-world summary: 161 layers, 13383496 parameters, 13383480 gradients, 71.5 GFLOPs
9
+ m: [0.67, 0.75, 768] # YOLOv8m-world summary: 201 layers, 29065310 parameters, 29065294 gradients, 131.4 GFLOPs
10
+ l: [1.00, 1.00, 512] # YOLOv8l-world summary: 241 layers, 47553970 parameters, 47553954 gradients, 225.6 GFLOPs
11
+ x: [1.00, 1.25, 512] # YOLOv8x-world summary: 241 layers, 73690217 parameters, 73690201 gradients, 330.8 GFLOPs
12
+
13
+ # YOLOv8.0n backbone
14
+ backbone:
15
+ # [from, repeats, module, args]
16
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
17
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
18
+ - [-1, 3, C2f, [128, True]]
19
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
20
+ - [-1, 6, C2f, [256, True]]
21
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
22
+ - [-1, 6, C2f, [512, True]]
23
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
24
+ - [-1, 3, C2f, [1024, True]]
25
+ - [-1, 1, SPPF, [1024, 5]] # 9
26
+
27
+ # YOLOv8.0n head
28
+ head:
29
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31
+ - [-1, 3, C2f, [512]] # 12
32
+
33
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35
+ - [-1, 3, C2f, [256]] # 15 (P3/8-small)
36
+
37
+ - [15, 1, Conv, [256, 3, 2]]
38
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
39
+ - [-1, 3, C2f, [512]] # 18 (P4/16-medium)
40
+
41
+ - [-1, 1, Conv, [512, 3, 2]]
42
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
43
+ - [-1, 3, C2f, [1024]] # 21 (P5/32-large)
44
+
45
+ - [[15, 18, 21], 1, YOLOESegment, [nc, 32, 256, 512, True]] # Segment(P3, P4, P5)
@@ -0,0 +1,45 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
6
+ # [depth, width, max_channels]
7
+ n: [0.33, 0.25, 1024] # YOLOv8n-worldv2 summary: 148 layers, 3695183 parameters, 3695167 gradients, 19.5 GFLOPS
8
+ s: [0.33, 0.50, 1024] # YOLOv8s-worldv2 summary: 148 layers, 12759880 parameters, 12759864 gradients, 51.0 GFLOPS
9
+ m: [0.67, 0.75, 768] # YOLOv8m-worldv2 summary: 188 layers, 28376158 parameters, 28376142 gradients, 110.5 GFLOPS
10
+ l: [1.00, 1.00, 512] # YOLOv8l-worldv2 summary: 228 layers, 46832050 parameters, 46832034 gradients, 204.5 GFLOPS
11
+ x: [1.00, 1.25, 512] # YOLOv8x-worldv2 summary: 228 layers, 72886377 parameters, 72886361 gradients, 309.3 GFLOPS
12
+
13
+ # YOLOv8.0n backbone
14
+ backbone:
15
+ # [from, repeats, module, args]
16
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
17
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
18
+ - [-1, 3, C2f, [128, True]]
19
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
20
+ - [-1, 6, C2f, [256, True]]
21
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
22
+ - [-1, 6, C2f, [512, True]]
23
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
24
+ - [-1, 3, C2f, [1024, True]]
25
+ - [-1, 1, SPPF, [1024, 5]] # 9
26
+
27
+ # YOLOv8.0n head
28
+ head:
29
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31
+ - [-1, 3, C2f, [512]] # 12
32
+
33
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35
+ - [-1, 3, C2f, [256]] # 15 (P3/8-small)
36
+
37
+ - [15, 1, Conv, [256, 3, 2]]
38
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
39
+ - [-1, 3, C2f, [512]] # 18 (P4/16-medium)
40
+
41
+ - [-1, 1, Conv, [512, 3, 2]]
42
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
43
+ - [-1, 3, C2f, [1024]] # 21 (P5/32-large)
44
+
45
+ - [[15, 18, 21], 1, YOLOEDetect, [nc, 512, True]] # Detect(P3, P4, P5)
@@ -0,0 +1,28 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLOv8-cls image classification model with ResNet101 backbone
4
+ # Model docs: https://docs.ultralytics.com/models/yolov8
5
+ # Task docs: https://docs.ultralytics.com/tasks/classify
6
+
7
+ # Parameters
8
+ nc: 1000 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.33, 0.25, 1024]
12
+ s: [0.33, 0.50, 1024]
13
+ m: [0.67, 0.75, 1024]
14
+ l: [1.00, 1.00, 1024]
15
+ x: [1.00, 1.25, 1024]
16
+
17
+ # YOLOv8.0n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0-P1/2
21
+ - [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1-P2/4
22
+ - [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2-P3/8
23
+ - [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3-P4/16
24
+ - [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4-P5/32
25
+
26
+ # YOLOv8.0n head
27
+ head:
28
+ - [-1, 1, Classify, [nc]] # Classify
@@ -0,0 +1,28 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLOv8-cls image classification model with ResNet50 backbone
4
+ # Model docs: https://docs.ultralytics.com/models/yolov8
5
+ # Task docs: https://docs.ultralytics.com/tasks/classify
6
+
7
+ # Parameters
8
+ nc: 1000 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.33, 0.25, 1024]
12
+ s: [0.33, 0.50, 1024]
13
+ m: [0.67, 0.75, 1024]
14
+ l: [1.00, 1.00, 1024]
15
+ x: [1.00, 1.25, 1024]
16
+
17
+ # YOLOv8.0n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0-P1/2
21
+ - [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1-P2/4
22
+ - [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2-P3/8
23
+ - [-1, 1, ResNetLayer, [512, 256, 2, False, 6]] # 3-P4/16
24
+ - [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4-P5/32
25
+
26
+ # YOLOv8.0n head
27
+ head:
28
+ - [-1, 1, Classify, [nc]] # Classify
@@ -0,0 +1,32 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLOv8-cls image classification model with YOLO backbone
4
+ # Model docs: https://docs.ultralytics.com/models/yolov8
5
+ # Task docs: https://docs.ultralytics.com/tasks/classify
6
+
7
+ # Parameters
8
+ nc: 1000 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.33, 0.25, 1024]
12
+ s: [0.33, 0.50, 1024]
13
+ m: [0.67, 0.75, 1024]
14
+ l: [1.00, 1.00, 1024]
15
+ x: [1.00, 1.25, 1024]
16
+
17
+ # YOLOv8.0n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 3, C2f, [128, True]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 6, C2f, [256, True]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 6, C2f, [512, True]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 3, C2f, [1024, True]]
29
+
30
+ # YOLOv8.0n head
31
+ head:
32
+ - [-1, 1, Classify, [nc]] # Classify
@@ -0,0 +1,58 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLOv8 object detection model with P2/4 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov8
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+ # Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
7
+
8
+ # Parameters
9
+ nc: 80 # number of classes
10
+ scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
11
+ # [depth, width, max_channels]
12
+ n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p2 summary: 290 layers, 2033944 parameters, 2033928 gradients, 13.8 GFLOPs
13
+ s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p2 summary: 290 layers, 5562080 parameters, 5562064 gradients, 25.1 GFLOPs
14
+ m: [0.67, 0.75, 768] # YOLOv8m-ghost-p2 summary: 434 layers, 9031728 parameters, 9031712 gradients, 42.8 GFLOPs
15
+ l: [1.00, 1.00, 512] # YOLOv8l-ghost-p2 summary: 578 layers, 12214448 parameters, 12214432 gradients, 69.1 GFLOPs
16
+ x: [1.00, 1.25, 512] # YOLOv8x-ghost-p2 summary: 578 layers, 18664776 parameters, 18664760 gradients, 103.3 GFLOPs
17
+
18
+ # YOLOv8.0-ghost backbone
19
+ backbone:
20
+ # [from, repeats, module, args]
21
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
22
+ - [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
23
+ - [-1, 3, C3Ghost, [128, True]]
24
+ - [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
25
+ - [-1, 6, C3Ghost, [256, True]]
26
+ - [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
27
+ - [-1, 6, C3Ghost, [512, True]]
28
+ - [-1, 1, GhostConv, [1024, 3, 2]] # 7-P5/32
29
+ - [-1, 3, C3Ghost, [1024, True]]
30
+ - [-1, 1, SPPF, [1024, 5]] # 9
31
+
32
+ # YOLOv8.0-ghost-p2 head
33
+ head:
34
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
35
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
36
+ - [-1, 3, C3Ghost, [512]] # 12
37
+
38
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
39
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
40
+ - [-1, 3, C3Ghost, [256]] # 15 (P3/8-small)
41
+
42
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
43
+ - [[-1, 2], 1, Concat, [1]] # cat backbone P2
44
+ - [-1, 3, C3Ghost, [128]] # 18 (P2/4-xsmall)
45
+
46
+ - [-1, 1, GhostConv, [128, 3, 2]]
47
+ - [[-1, 15], 1, Concat, [1]] # cat head P3
48
+ - [-1, 3, C3Ghost, [256]] # 21 (P3/8-small)
49
+
50
+ - [-1, 1, GhostConv, [256, 3, 2]]
51
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
52
+ - [-1, 3, C3Ghost, [512]] # 24 (P4/16-medium)
53
+
54
+ - [-1, 1, GhostConv, [512, 3, 2]]
55
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
56
+ - [-1, 3, C3Ghost, [1024]] # 27 (P5/32-large)
57
+
58
+ - [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
@@ -0,0 +1,60 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLOv8 object detection model with P3/8 - P6/64 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolov8
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+ # Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
7
+
8
+ # Parameters
9
+ nc: 80 # number of classes
10
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
11
+ # [depth, width, max_channels]
12
+ n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p6 summary: 312 layers, 2901100 parameters, 2901084 gradients, 5.8 GFLOPs
13
+ s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p6 summary: 312 layers, 9520008 parameters, 9519992 gradients, 16.4 GFLOPs
14
+ m: [0.67, 0.75, 768] # YOLOv8m-ghost-p6 summary: 468 layers, 18002904 parameters, 18002888 gradients, 34.4 GFLOPs
15
+ l: [1.00, 1.00, 512] # YOLOv8l-ghost-p6 summary: 624 layers, 21227584 parameters, 21227568 gradients, 55.3 GFLOPs
16
+ x: [1.00, 1.25, 512] # YOLOv8x-ghost-p6 summary: 624 layers, 33057852 parameters, 33057836 gradients, 85.7 GFLOPs
17
+
18
+ # YOLOv8.0-ghost backbone
19
+ backbone:
20
+ # [from, repeats, module, args]
21
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
22
+ - [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
23
+ - [-1, 3, C3Ghost, [128, True]]
24
+ - [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
25
+ - [-1, 6, C3Ghost, [256, True]]
26
+ - [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
27
+ - [-1, 6, C3Ghost, [512, True]]
28
+ - [-1, 1, GhostConv, [768, 3, 2]] # 7-P5/32
29
+ - [-1, 3, C3Ghost, [768, True]]
30
+ - [-1, 1, GhostConv, [1024, 3, 2]] # 9-P6/64
31
+ - [-1, 3, C3Ghost, [1024, True]]
32
+ - [-1, 1, SPPF, [1024, 5]] # 11
33
+
34
+ # YOLOv8.0-ghost-p6 head
35
+ head:
36
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37
+ - [[-1, 8], 1, Concat, [1]] # cat backbone P5
38
+ - [-1, 3, C3Ghost, [768]] # 14
39
+
40
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
41
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
42
+ - [-1, 3, C3Ghost, [512]] # 17
43
+
44
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
45
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
46
+ - [-1, 3, C3Ghost, [256]] # 20 (P3/8-small)
47
+
48
+ - [-1, 1, GhostConv, [256, 3, 2]]
49
+ - [[-1, 17], 1, Concat, [1]] # cat head P4
50
+ - [-1, 3, C3Ghost, [512]] # 23 (P4/16-medium)
51
+
52
+ - [-1, 1, GhostConv, [512, 3, 2]]
53
+ - [[-1, 14], 1, Concat, [1]] # cat head P5
54
+ - [-1, 3, C3Ghost, [768]] # 26 (P5/32-large)
55
+
56
+ - [-1, 1, GhostConv, [768, 3, 2]]
57
+ - [[-1, 11], 1, Concat, [1]] # cat head P6
58
+ - [-1, 3, C3Ghost, [1024]] # 29 (P6/64-xlarge)
59
+
60
+ - [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)